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S U M M A R Y 

Seismic and aseismic slip events result from episodic slips on faults and are often chaotic 
due to stress heterogeneity. Their predictability in nature is a widely open question. In this 
study, we forecast extreme events in a numerical model. The model, which consists of a single 
fault governed by rate-and-state friction, produces realistic sequences of slow events with a 
wide range of magnitudes and interevent times. The complex dynamics of this system arise 
from partial ruptures. As the system self-organizes, the state of the system is confined to a 
chaotic attractor of a relati vel y small dimension. We identify the instability regions within 

this attractor where large events initiate. These regions correspond to the particular stress 
distributions that are fav ourab le for near complete ruptures of the fault. We show that large 
events can be forecasted in time and space based on the determination of these instability 

regions in a low-dimensional space and the knowledge of the current slip rate on the fault. 

Key words: Seismic cycle; Self-organization; Earthquake interaction, forecasting, and pre- 
diction –Numerical modelling. 
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1  I N T RO D U C T I O N  

Earthquakes and slow slip events (SSEs) result from episodic fric- 
tional slip on the faults. Each slip event releases the elastic strain 
accumulated during an interevent period during which the fault is 
locked. This principle is often referred to as the elastic rebound the- 
ory in reference to Reid ( 1910 ). While the elastic rebound theory 
of fers v aluable insights into the long-term mean recurrence time 
of earthquakes and can be used for time-independent earthquake 
forecasting (Avouac 2015 ; Marsan & Tan 2020 ), it falls short of 
predicting the time or the magnitude of the larger events (Murray 
& Segall 2002 ). The difficulty is that earthquakes often exhibit a 
chaotic behaviour which is manifest in the irregular and rare oc- 
currence of large slip events and various empirical scaling laws, 
such as the Gutenberg–Richter and the Omori laws (Scholz 1989 ). 
The Gutenberg–Richter law (Gutenberg & Richter 1950 ) states that 
earthquake magnitudes are distributed exponentially (the number 
of earthquakes with magnitude larger than M , N ( M ) , is gi ven b y 
log 10 N ( M) = a − b M , where b is a scaling parameter of the order 
of one and a is a constant). The Omori law (Utsu et al. 1995 ) states 
that the rate of earthquakes during an aftershock sequence decays as 
1 /t where t is the time since the main shock. Chaotic behaviour has 
also been identified in sequences of SSEs in Cascadia (Gualandi 
et al. 2020 ). These events obey the same scaling laws as regular 
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earthquakes and produce very similar crack-like and pulse-like rup- 
tures, although with several orders of magnitudes smaller slip rate 
and stress drop (Michel et al. 2019 ). 

The main source of complexities in earthquake sequences is due 
to stress heterogeneities which can either be of static origin [due to 
fault geometry (Okubo & Aki 1987 ), roughness (Sagy et al. 2007 ; 
Cattania 2019 ) or heterogeneity of mechanical properties (Kaneko 
et al. 2010 )] or dynamical, due stress transfers among faults or 
within a single fault (Shaw & Rice 2000 ). As the stress evolves 
during the earthquake cycle, it generates asperities and barriers 
that can either facilitate a complete rupture of a fault (a system-size 
rupture) or impede the propagation of a rupture, resulting in a partial 
r upture. Par tial or complete ruptures of a fault system are therefore 
observed in nature (Konca et al. 2008 ). Large ruptures, though rare 
according to the Gutenberg–Richter law, hold greater significance 
from a seismic hazard perspective. 

Advances in the understanding of fault friction (Marone 1998 ) 
and in numerical modelling of earthquake sequences (Rice 1993 ; 
Lapusta et al. 2000 ; Lapusta & Liu 2009 ) now make it possible 
to produce realistic simulations (Barbot et al. 2012 ). When per- 
forming those numerical simulations, initial conditions cannot be 
an y arbitrary v alue, and it is also crucial to recognize that certain 
initial conditions hold more statistical rele v ance than others during 
the evolution of the system. For example, Lapusta & Rice ( 2003 ) 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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nd Rubin & Ampuero ( 2005 ) advocate for conducting simulations
ver multiple seismic cycles to mitigate the influence of arbitrary
hoices in initial conditions. In fact, the space of feasible stress
istributions on a fault during earthquake cycles is significantly
maller than the space of arbitrary initial conditions, as the dynam-
cal system self-organizes into a chaotic attractor (Shaw & Rice
000 ). When a dynamical system converges to its chaotic attractor,
ny state outside this attractor is not feasible within the system’s
 volution. Consequentl y, the space of feasible states is limited to the
ttractor itself, resulting in a significantly smaller domain compared
o the space of any arbitrary states for the system. 

Large events happen rarely in the chaotic evolution of the earth-
uake cycle so their forecast is extremely challenging. We hypoth-
size that as for other types of dynamical systems that produce
xtreme (or rare) events (Blonigan et al. 2019 ; Farazmand & Sap-
is 2019 ), the trajectory of the dynamical system must traverse
pecific instability regions within the chaotic attractor for large
ault ruptures to occur. These instability regions correspond to the
ptimal distributions of stress (or the states of the frictional inter-
 ace) that f acilitate large ruptures and are also accessible during
he evolution of the system because they are part of the chaotic
ttractor. Despite considerable research on deterministic chaos in
arthquake cycle models (Huang & Turcotte 1990 ; Becker 2000 ;
nghel et al. 2004 ; Kato 2016 ; Barbot 2019 ), certain essential

eatures of the chaotic attractor, particularly modes relevant to in-
tability that are also statistically feasible, have remained elusive in
he literature. This is primarily due to the high-dimensional, chaotic
nd multiscale nature of the problem, as well as the rarity of large
vents. 

The identification of the optimal state of the frictional interface
hat promotes large events, out of all the statistically feasible distri-
utions is the primary focus of this study. Following the approach of
Farazmand & Sapsis 2017 ), we use an approximation of the chaotic
ttractor of the system during the interevent period; this approxi-
ation uses Proper Orthogonal Decomposition (POD) to reduce

imension and account for the feasibility constraint. Representing
he optimal state of the frictional interface in a low-dimensional
pace is fav ourab le for the purpose of earthquake forecasting, as the
ata to constrain the physical parameters and current states of the
ystem are sparse for earthquake cycles. We use the proximity of the
urrent slip rate of the system to the slip rates of optimal solutions
o propose an ef fecti ve forecast method of large events. Our results
uggest that this framework can be used to predict events in both
pace and time when we have access to the slip rate on the fault
ith certain resolution. 
As our case study, we use a quasi-dynamic model with the stan-

ard rate-and-state friction with the ageing law (Ruina 1983 ). We
ppl y this methodolo gy to a 2-D fault within a 3-D medium, using
 model setup analogue to a model that has been shown to produce
 realistic sequence of SSEs similar to those observed in Cascadia
Dal Zilio et al. 2020 ). We limit the analysis to the case of SSEs as in
hat case a quasi-dynamic approximation is justified which speeds
p the numerical simulations (Rice 1993 ; Thomas et al. 2014 ).
he complexity of events (and in particular the frequency of small
vents) has been shown to depend on the ratio of the fault length
or width) to the nucleation size (Barbot 2019 ; Cattania 2019 ). We
enefit from the fact that SSEs have a much larger ratio of nucle-
tion size to the size of the fault compared to regular earthquakes.
he range of magnitude of events in our 1000 yr of synthetic data is
.6–7.4 whereas for a large fault system with typical earthquakes,
he range is much bigger. Spatially small-scale processes in regu-
ar earthquakes contribute to more complexity of the system. This
ight limit the applicability of our method to these events without
ny further considerations. 

 M O D E L  S E T  U P  

e use a quasi-dynamic model of slip events on a 2-D fault in a 3-D
lastic medium, assuming rate-and-state friction with the ageing
aw for the evolution of the state variable ( θ ): 

τ

σ̄n 
= μref + a ln 

(
V 

V ref 

) + b ln 
(

θV ref 

D RS 

)
, (1a) 

dθ

dt 
= 1 − θV 

D RS 
. (1b) 

Here, V (( x , y ) , t) : � × R 

+ → R 

+ is slip rate on the fault,
(( x , y ) , t) : � × R 

+ → R 

+ is the state variable, τ (( x , y ) , t) : � ×
 

+ → R 

+ is the frictional strength, σ̄n is the ef fecti ve normal stress
nd a, b, D RS are frictional properties of the surface ( �) and are pos-
tive. μref and V 

ref are reference friction and slip rate, respecti vel y.
he sign of a − b deter mines the frictional regime of the fault. For
 − b > 0 , the fault is velocity strengthening (VS); a jump in the
elocity would increase the fault strength. Regions with a − b > 0
uppress the rupture nucleation and acceleration. For a − b < 0
ault is velocity weakening (VW); a jump in the slip rate ( V ) and
lipping more than D RS , decrease the strength and the fault is capa-
le of nucleating earthquakes and accelerating the r uptures. a − b
 aries spatiall y and is plotted in Fig. 1 (a). 

The stress rate on the fault can also be written as: 

˙ = L ( V − V pl ) − G 

2 c s 
V̇ , (2) 

here L is a pseudo-differential operator, and contains elastostatic
esponse (Geubelle & Rice 1995 ), and V pl is the plate slip rate. G
nd c s are shear modulus and shear wave speed, respectively. By
aking the time deri v ati ve of eq. ( 1a ), and eliminating ̇τ using eq. ( 2 ),
 e ha ve a dynamical system for u = [ V , θ ] � . One can also use other
airs of variables such as [ V , τ ] � to describe this dynamical system.

In practice, we consider a planar thrust fault with 90 ◦ dip angle in
lastic half-space that consists of a VW patch (dotted area in Fig. 1 a),
ithin which ruptures can nucleate and propagate, surrounded by
 VS patch where the propagation of seismic ruptures is inhibited
Fig. 1 a). The fault is loaded by a surrounding fault that slips at a
onstant rate. 

The model, with the properly selected and piece-wise constant
arameters and initial conditions, exhibits a complex sequence of
vents with a variety of magnitudes distributed with a heavy tail
onsistent with the Gutenberg–Richter law (Fig. 1 b). The shear
tress on the locked portion of the fault (Fig. 1 c) increases during
he interevent period, leading to elastic strain energy build-up. Dur-
ng episodic slip events, the shear stress drops, and elastic strain
nergy is released and dissipated by frictional sliding and the ra-
iation damping (Fig. 1 c). To justify the assumption of ignoring
 ave propagation ef fects along the fault, we choose a parameter

egime that produces SSEs in which V is small enough that the
 ave ef fects across the faults are negligible. The model parameters

re taken from (Dal Zilio et al. 2020 ) to simulate SSEs similar to
hose in Cascadia. For simplicity we did not include the effect of
ore-pressure dilatancy. The frictional and physical properties of
ur problem are summarized in Table 1 and Fig. 1 . 

The time-series of the sequence of partial rupture with rare large
uptures is plotted in Figs 1 (c) and (d). Since stress is a function
f θ and V in the rate-and-state friction, and θ is not measurable,
e do not have access to stress distribution directly. As a result, in
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Figure 1. Geometry of the fault (a). The VW patch is the dotted area that is surrounded by the VS patch. The diamonds are the locations of slip rate 
measurements for the scenario in which we do not have full access to the slip rate on the entire fault. The number of events with a magnitude greater than M , 
( N M 

) is plotted in (b) for 1000 yr of simulation time. Maximum stress along the depth for the VW patch is plotted as a function of distance along strike and 
time (c). The maximum slip rate for the VW patch along the depth is plotted as a function of distance along strike and time (d). The time-series of the potency 
deficit and magnitudes are plotted in (e) and (f), respecti vel y. 

Table 1. Physical properties. 

VW region a 0.004 
b 0.014 

VS region a 0.019 
b 0.014 

Characteristic slip weakening distance D RS 0 . 045 (m) 
Reference steady state slip rate V ref 10 −6 m 

s 
Reference steady-state friction coefficient μref 0.6 
Ef fecti ve normal stress σ̄n 10 ( MPa ) 
Shear modulus G 30 ( GPa ) 
Plate loading velocity V pl 40 ( mm yr −1 ) 
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this work, we only assume that we have observations of the current 
slip rate when performing e xtreme ev ent forecasting. In practice, 
the current slip rate on the fault can be indirectly constrained by 
measurements of ground surface displacements which involves an 
inversion that greatly reduces the spatial resolution of slip rate. 
Therefore, we will also examine a simplified low-resolution slip 
rate measurement to mimic the limitations of real observations and 
assess the performance of our algorithm under such conditions. 
The slip potency deficit, which is the difference between the slip 
potenc y (inte gral of slip on the fault) and the slip potency if the 
fault w as uniforml y slipping at the loading rate, is plotted to show 

the chaotic behaviour of the system and the rare occurrence of large 
ev ents. The potenc y deficit builds up during the interevent period 

art/ggae417_f1.eps


Spatiotemporal forecast of extreme events 873 

a  

o  

s  

t

3
M

3

T  

(  

�  

[  

(  

t  

I  

o  

s  

u  

w  

t  

t  

b  

i  

w  

v  

a
 

p  

w  

t  

f  

f
t

u

w

W  

w  

a
 

B  

b
 

l  

h  

s  

1

s  

t  

o  

b  

W  

t  

p  

t  

 

t  

i

w  

m  

1  

m  

c  

I  

i  

b  

t  

m

w  

p  

m  

(  

b  

U

w  

e  

fi  

d  

w  

c  

i  

s  

t  

c  

o  

k  

S  

t
 

f  

t  

i  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/240/2/870/7905898 by C

alifornia Institute of Technology user on 07 M
arch 2025
nd drops during the episodic slip events (Fig. 1 e). The time-series
f the magnitude of events is also plotted in Fig. 1 (f). The maximum
lip rate on the fault is plotted in Fig. 2 with the dashed line as the
hreshold that we use for defining an event. 

 E X T R E M E  E V E N T S  F O R E C A S T I N G  

E T H O D S  

.1 Extr eme e vents f orm ulation 

he dynamical system that comes from combining eqs ( 1 ) and
 2 ) describes the coupled evolution of two functions V (( x , y ) , t) :
 × R 

+ → R 

+ and θ (( x , y ) , t) : � × R 

+ → R 

+ . We assume u =
 V , θ ] � belongs to an appropriately chosen function space U :
 � × R 

+ ) × ( � × R 

+ ) → R 

+ × R 

+ and characterizes the state of
he frictional interface at any given time and position on the fault.
n the context of rate-and-state friction, shear stress is a function
f the combination of variables ( V , θ ) . Also, the evolution of the
ystem is better rendered in the log 10 u space. Consequently, we
se the term ‘pre-event state’ to refer to the spatial distribution of
 = 

[
log 10 V , log 10 θ

]� 
before a rupture; nonetheless, we formulate

he dynamical model in terms of u = ( V , θ ) . To avoid confusion be-
ween the term ‘state’ as used to describe the system’s condition
efore an event and the ‘state variable’ in the friction law, we clar-
fy that ‘pre-event state’ refers to the overall system configuration,
 = 

[
log 10 V , log 10 θ

]� 
, prior to the event. Meanwhile, the ‘state

ariable’ ( θ ) specifically denotes the internal variable in the rate-
nd-state friction law. 

The dynamical system for u is both multi-scale and chaotic and
roduces ruptures with a variety of sizes. The governing equation is

∂u 
∂t = N ( u ) (3a) 

u ( x , y , 0) = u 0 ( x , y ) , ∀ ( x , y ) ∈ �, (3b) 

here N is a non-linear differential operator 1 that encompasses
he quasi-dynamic approximation of the elastodynamics and the
riction law (eqs 1 and 2 ). We denote S t as the solution operator
or the dynamical system, mapping the current state forward by t
ime-units: 

 ( x , y , t) = S t ( u ( x , y , 0) ) ; (4) 

e can break this map into the components S t V and S t θ : 

S t ( u ( x , y , 0) ) = 

[
S t V ( u ( x , y , 0) ) , S t θ ( u ( x, y, 0) ) 

]� 
. (5) 

e assume that the dynamical system has a global attractor A on
hich the dynamics are chaotic; we refer to this as the chaotic

ttractor in what follows. 
Inspired by Farazmand & Sapsis ( 2019 ), we define event set

E( V thresh ) for a prescribed threshold V thresh ∈ R 

+ as: 

E( V thresh ) = 

{ 

u ∈ U : sup 
( x ,y ) ∈ � 

V ( x , y ) ≥ V thresh 

} 

(6) 

y setting a proper event threshold ( V thresh ), the event set includes
oth partial and full ruptures. 

We now seek to determine the optimal feasible distributions of
og 10 u (pre-event state) in the interevent period that for a prediction
orizon T lead to large magnitude events. By a ‘feasible pre-event
tate’, we mean a state that is inside the chaotic attractor of the
 Technically a pseudo-differential operator. 

s  

w  

t

ystem; a combination of V and θ that is likely to be realized during
he evolution of the dynamical system. We also want our criteria for
ptimality of ‘pre-event state’ to be low-dimensional so that it can
e captured using observations that are typically sparse in reality.
e then use our low-dimensional critical pre-event state and only

he current measurable state of the system (slip rate, which can in
rinciple be estimated from geodetic measurements) to forecast the
ime and location of a possible large event in a time window horizon.

To formulate the question in mathematical terms, we introduce
he moment magnitude of fault slip cumulated over the duration of
ntegration �t . 

˜ M ( u ( x , y , t ); �t ) = 

2 

3 
log 10 

(
G 

∫ �t 

0 

∫ 
� 

S t 
′ 

V ( u ( x , y , t))d x d y d t 
′ 
)

− 6 , (7) 

here G is the elastic shear modulus. ˜ M measures the seismic
oment on the fault in the log 10 scale during �t time-units (Scholz

989 ). ˜ M is slightl y dif ferent from the definition of the moment
agnitude ( M) for one event because in ˜ M , we take �t to be a

onstant rather than being the actual duration of a particular event.
n practice, we set it to be larger than the longest duration of events
n our model. While we make use of ˜ M in our problem setup and
enefit from its continuity over u , we will report the performance of
he forecast of e xtreme ev ents with a regular definition of moment

agnitude ( M). 
We next define a cost function: 

F ( u ; �t, T ) = sup 
t∈ [0 ,T ) ̃

 M ( S t ( u ); �t) , (8) 

here function F : U → R takes u as input and, for a prescribed
rediction horizon ( T ) and event duration ( �t), finds the largest
oment magnitude generated by the initial condition u . The optimal

most dangerous) feasible pre-event state conditions are determined
y finding the local maxima ( U 

∗) of F ( u ; �t, T ) over u ∈ A \
E( V thresh ) through an optimization process: 

 

∗ = { u 

∗| u 

∗ ∈ A \ E( V thresh ) , u 

∗ is a local maximizer of 

F ( u ; �t, T ) , F ( u 

∗; �t, T ) > F 

∗
e } , (9) 

here F 

∗
e is some threshold for the magnitude to define a ‘large’

vent. eq. ( 9 ) encompasses the main question of this work; that is
nding optimal and statistically feasible pre-event state on the fault
uring the interevent period that makes large events in a short time
indow. In eq. ( 9 ), u 

∗ ∈ A \ E( V thresh ) ensures that u 

∗ is inside the
haotic attractor (statistical feasibility constraint) and also in the
ntere vent period; an y state ( u 

∗) outside A is inaccessible during the
ystem’s evolution because of the self-organization. After solving
he optimization problem (eq. 9 ), we use the ‘similarity’ of the
urrent states of the system to solutions of eq. ( 9 ), as an indicator
f an upcoming large event. We use the current slip rate as our only
nowledge of the current state of the system as θ is not measurable.
olutions to eq. ( 9 ) are instability regions inside the chaotic attractor

hat generate large ruptures within the time span of [0 , T ] . 
Set A \ E( V thresh ) is a complicated set in the high-dimensional

unction space U . Even if we can solve this optimization problem in
his large space, it would be impractical to represent pre-event state
n this high-dimensional space because the sparse data generally
vailable in reality can only yield a low-dimensional model of the
lip rate distribution on a fault. As a result, we approximate this set
ith a simpler set, characterized in a low-dimensional space using

he POD method. This approach is developed in the next part. 
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Figure 2. Time-series of the maximum slip rate for a period of 1000 yr (a) and 100 yr (b) with threshold velocity denoted by a dashed line. 
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3.2 Model reduction and forecast scheme 

Many high-dimensional chaotic dynamical systems can be approx- 
imated by a low-dimensional system (Brandst äter et al. 1983 ; Li 
et al. 2023 ; Rowley & Dawson 2017 ; Taira et al. 2017 ). Although 
the underlying dynamics of earthquakes and Slow Slip cycles are 
often chaotic (Huang & Turcotte 1990 ; Anghel et al. 2004 ; Kato 
2016 ; Barbot 2019 ; Becker 2000 ), in certain examples, it has been 
observed that the chaotic attractors are low dimensional (Gualandi 
et al. 2020 , 2023 ) which mathematically implies that we can ap- 
pro ximate the ev olution of the sequence of events using parame- 
ters in a finite-dimensional space instead of an infinite-dimensional 
function space. We use this property to reduce the dimension- 
ality and approximate the chaotic attractor during the interevent 
period. 

We approximate and reduce the dimensionality of the chaotic 
attractor of the system during the inter-event period using the POD 

technique (explained in Appendix A ). The POD approach is widely 
adopted in the study of turbulent fluid flow (Taira et al. 2017 ); it 
is a linear model reduction method that uses singular value decom- 
position on a data set of snapshot time-series of the field, with the 
time-av erage remov ed. This process identifies spatial modes that 
are ranked according to their statistical significance in the data set. 
Since the evolution of the system is better realized in the w = log 10 u 

space, we apply the POD on the w rather than u . We denote by w̄ 

the average of the snapshots of the field ( w) (with variable time 
stepping) during the interevent period. POD technique inputs snap- 
shots of w − w̄ during the interevent period and gives or thonor mal 
basis functions φi : � × � → R × R and their associated variance 
λi for i ≥ 1 where λ1 > λ2 > ... which quantifies the statistical im- 
portance of each mode in the data set. The subtraction of the mean 
is crucial because it ensures that the covariance matrix in the POD 

algorithm accurately reflects the variability and relationships within 
the data set, rather than being influenced by the absolute positions of 
the data points. Then we can describe w, and consequently u , using 
a new coordinate system with the basis functions defined by φi ’s. 
Since the basis functions are ordered by the variance they capture in 
the data, the truncation and approximation of the field w − w̄ , with 
the first N m 

POD modes captures a maximal statistical rele v ance 
(in the variance sense) of data between all possible N m 

-dimensional 
linear subspaces of log 10 U . 

We approximate w : w ∈ log 10 ( A \ E( V thresh ) ) as perturbations 
around w̄ = [ ̄w 

V , w̄ 

θ ] along those basis functions. Since we want 
to approximate only the interevent period we should exclude the 
event period ( E( V thresh ) ) from the data set of snapshots that are used 
to find POD modes ( φi ’s). Following Blonigan et al. ( 2019 ), we 
constrain the perturbations along those eigenvectors to lie within 
a hyperellipse with a radius along each eigenvector proportional 
to the standard deviation of the data captured by each mode. In 
other words, we allow more perturbation along those directions that 
capture more statistical rele v ance in the data. The approximation of 
the chaotic attractor during the interevent period can be written as: 

log 10 ( A \ E( V thresh ) ) ≈
{ 

w̄ + 

N m ∑ 

i= 1 
a i φi 

∣∣∣ N m ∑ 

i= 1 

a 2 i 

λi 
≤ r 2 0 

} 

, (10) 

where φi ’s ( i ≥ 1 ) are the or thonor mal basis functions ordered by 
the data variance they capture ( λi ) in the centred data set of time 
snapshots of w − w̄ excluding the event period E( V thresh ) . Here a i 
is the amplitude of perturbation along φi and N m 

is the number 
of basis functions we keep in our model reduction. The maximum 

perturbation along each basis function ( φi ) is constrained by the 
corresponding variance λi . One can play with the amplitude of the 
allowed perturbation which is represented by r 0 . 

Then eq. ( 9 ), which is an optimization problem in a high- 
dimensional function space U , constrained on a complicated set 
A \ E( V thresh ) , can be approximated as an optimization problem in 
a low-dimensional ( R 

N m ) space constrained within a hyperellipse. 
To solve the constrained optimization problem, we use optimal 
sampling in the framework of Bayesian optimization as it is useful 
when the objective function is costly to evaluate (Blanchard & Sap- 
sis 2021 ). The optimization method is described in Appendix B . 
Alternative approaches, such as adjoint-based optimization meth- 
ods, can also be used to enhance the efficiency of solving the opti- 
mization problem (Stiernstr öm et al. 2024 ; Blonigan et al. 2019 ). 
During the optimization process, we collect all optimal pre-event 
states ( w 

∗ = [ ( log V 

) ∗ , ( log θ ) ∗] � ) in a set W 

∗ that satisfies the fea- 
sibility constraint ( w 

∗ ∈ log 10 ( A \ E( V thresh ) ) ) and has the value of 
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F (10 w 
∗
; �t, T ) above the threshold F 

∗
e : 

W 

∗ : = 

{ 

w 

∗ = w̄ + 

N m ∑ 

i= 1 
a i φi 

∣∣∣ N m ∑ 

i= 1 

a 2 i 

λi 
≤ r 2 0 , F (10 w 

∗
; �t, T ) > F 

∗
e 

}
(

W 

∗ corresponds to the set of all of the pre-event states leading to
 xtreme ev ents. To perform the spatial forecast, we need to record
he evolution of each w 

∗ for up to time T . 
We use the proximity of the current state of the system to optimal

tates as an indicator of an upcoming large event. The current state
f the system ( w) is not measurable because θ is not measurable.
lip rate is the measurable component in w and we use it as a proxy
f the current state of the system. Then, following Blonigan et al.
 2019 ), we use the maximum cosine similarity between the log 10 

f the current slip rate ( log V ( t) ) and all of the optimal slip rates
 log V 

∗
i ’s) in the set W 

∗ as an indicator that signals an upcoming
arge event. 

I ( t) = max 
i 

〈
log V ( t) − w̄ 

V , log V 

∗
i − w̄ 

V 
〉
L 2 

‖ log V ( t ) − w̄ 

V ‖ 2 ‖ log V 

∗
i − w̄ 

V ‖ 2 
(12) 

here 〈·, ·〉 L 2 is the L 

2 inner product, w̄ 

V is the snapshot-average slip
ate during interevent periods in the data set, log V 

∗
i is the velocity

omponent of the i th optimal pre-event state ( w 

∗
i ) and ‖ . ‖ 2 is the

L 

2 norm. Note that I ( t) is only a function of the current slip rate on
he fault. 

 R E S U LT S  

.1 Extr eme e vent f or ecast 

e use a simulation run for a total duration of 2200 yr. We exclude
he initial 200 yr to eliminate the transient behaviour, letting the sys-
em converge to its chaotic attractor. To define the event set (eq. 6 ),
e set the event threshold V thresh = 5 × 10 −8 ( m s −1 ) . The event

hreshold is chosen such that we get reasonable scaling properties
nd also, don’t lose many events. The time-series of the maximum
lip velocity on the fault is plotted in Fig. 2 in which V thresh is de-
oted by a dashed line. We use data from t = 200 to t = 1200 yr to
erform the model reduction and find basis functions φi ’s and their
orresponding variances λi ’s. We approximate A \ E( V thresh ) using
q. ( 10 ) with a number of modes N m 

= 13 which capture more
han 85 per cent variance of the data (based on the discussion in
ppendix A ). The mean of the field ( ̄w = [ ̄w 

V , w̄ 

θ ] � ) together with
he first four eigenfunctions φi = [ φV 

i , φ
θ
i ] 

� for interevent periods
or the time range t ∈ [200 , 1200] (yr) are plotted in Fig. 3 with w̄
s the empirical mean of the interevent states of the system w, φV 

i 

s the i th eigenfunction of the log 10 V and φθ
i as the i th eigenfunc-

ion of the log 10 θ . Using φi ’s and λi ’s, we solve the optimization
rob lem w hich has T (prediction horizon), �t (event duration) and
 0 (amount of perturbation around w̄ ) as hyperparameters. We set
he prediction horizon to T = 0 . 5 ( yr ) and �t = 0 . 25 ( yr ) as the

aximum duration of events in the time window of t ∈ [200 , 1200]
r. With the increase of T , because of the effect of chaos, the pre-
ictability decreases and we would expect the performance of the
lgorithm to decrease. 

The value of r 0 in the eq. ( 10 ) controls the size of the hyper-
llipse which is the constraint of the optimization problem. We
erform the optimization for different values of r 0 (in Appendix B ).
or perturbations constrained within a small hyperellipse (small r 0 ),
he algorithm does not find any optimal pre-event state that leads
o a large event. This makes sense because, for small r 0 , w is close
o the w̄ which is the snapshot-average state of w during interevent
eriods. For very large r 0 , the approximation of A \ E( V thresh ) with
 hyperellipse is less valid because we let the perturbation have am-
litudes much larger than the standard deviation of each component
long each eigenfunction. So, one should find an intermediate r 0 
hose values of the cost function at the local maxima are larger but

lose to the maximum magnitude observed in the data set. Here, we
eport results for r 0 = 3 which means that we don’t let the pre-event
tate go outside the total 3 standard deviation range from w̄ in R 

N m .
nlike Blonigan et al. ( 2019 ) that, for a fluid flow problem, found a
nique solution for their similar optimization problem, we see con-
ergence to multiple local maxima ( w 

∗ = [ ( log V 

) ∗ , ( log θ ) ∗] � ) for
ifferent algorithm initiations. As a result, to make our algorithm ro-
ust, we solve the optimization problem multiple times with random
nitiations. 

The snapshot-average stress during the interevent period for the
W patch, and the pre-stress corresponding to one of the opti-
al solutions is plotted in Figs 4 (a) and (b). We have also plotted

he dimensionless quantity log 10 ( V θ/D RS ) in Fig. 4 (c). The term
V θ/D RS indicates whether the fault is above or below steady state in
he rate-and-state friction law. When V θ/D RS > 1 , the fault is above
teady state, signalling the nucleation phase, while V θ/D RS < 1
eans the fault is below steady state, in a healing phase (Rubin
 Ampuero 2005 ). The cumulative slip distribution corresponding

o the event with magnitude 7.5 led by the optimal pre-event state
s plotted in Fig. 4 (d). We have plotted the slip rate ( V ), and the
tate variable ( θ ) corresponding to this particular optimal solution,
ogether with the convergence of the optimization algorithm, in Ap-
endix B . We record the rupture extent of optimal solutions (a total
f 12 local maxima) that have F 

∗
e > 7 . 4 to use for spatial prediction.

hese optimal pre-event state distributions are relati vel y complex
ith heterogeneities both along the strike and along the dip direc-

ions. Because we have only approximated the chaotic attractor by a
yperellipse, the solutions of the optimization problem are unlikely
o be exactly observed in the simulation of the dynamical system
 volution. Howe ver, when initiating from suf ficientl y close points
ithin the chaotic attractor, the trajectories remain close together
uring the early stages of their evolution. We rely on this principle
o forecast the time and location of large slip events. It is inter-
sting to note that with the defined event threshold, we do not see
ny full-system size rupture in the forward simulation. Ho wever ,
f we start from homogeneous initial conditions, we see periodic
ault-size ruptures. This solution is probably unstable or stable with
 small basin of attraction because a relati vel y small perturbation
rom the homogeneous initial condition leads to the convergence of
he system to its chaotic attractor. 

The indicator I ( t) (eq. 12 ), can ef fecti vel y forecast large events
or the data set from t = 1200 to t = 2200 yr with a prediction
orizon of T = 0 . 5 (yr). To illustrate, I ( t) is plotted alongside F in
ig. 5 (a). A high value of F shows an upcoming large event in the

ime interval [0 , T ] and we observe that when F rises, the indicator
ignals a large event by rising to large values. We define a threshold

I e above which we signal an upcoming large event. We also define F e 

s the threshold for e xtreme ev ents; whenev er F is larger than F e we
ay that an e xtreme ev ent is going to happen in the next T year(s).
he values of F e and I e are determined such that the proportion
f the true positive and true ne gativ e forecasts of e xtreme ev ents
re maximized. By recording the values of I ( t) and F ( t) , we can
mpirically find the conditional probability P ( F | I ) (Fig. 5 b). Values
f F e and I e are denoted by the white vertical and horizontal dashed
ines in Fig. 5 (b). The probability in this context is with respect to the
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Figure 3. Snapshot-average of the log 10 of slip rate ( ̄w 

V ) and state variable ( ̄w 

θ ) during the interevent periods, and first four eigenfunctions for log 10 of slip 
rate ( φV 

i for 1 ≤ i ≤ 4) and state variable ( φθ
i for 1 ≤ i ≤ 4) that are ordered by the variance they capture in the data sets. The data set contains interevent 

snapshots of log 10 of slip rate and state variable during the interevent periods from the year 200 to 1200. 
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invariant measure of the chaotic attractor. Different quadrants of this 
plot show four conditions including true ne gativ e, false ne gativ e, 
true positive, and false positive from bottom left counter-clockwise 
to top left. While most of the high values of P ( F | I ) lie inside the true
ne gativ e and true positiv e re gions, it is essential to acknowledge that 
the probabilities of false ne gativ e and false positive are not zero. We 
also plot the empirical probability of observing an event greater than 
F e given the knowledge of I , ( P [ F > F e | I ] ). This value which is
denoted by P ee is plotted in Fig. 5 (c). P ee consistently rises to values 
close to one, which is another way to show that the indicator I can be 
used as a predictor of large events. We plot the forecast of rupture 
extent in Fig. 5 (d) which shows the ef fecti veness of both spatial 
and temporal forecasts of large events. Since w e ha ve recorded the 
rupture extent of optimal solutions (elements in set W 

∗), as soon 
as the current state of the system gets close to the i th optimal 
solution and the indicator signals an upcoming event ( I ( t) > I e ), 
we propose the recorded rupture extent of the i th optimal solution as 
the spatial forecast. Fig. 5 (e) shows the temporal forecast of events 
with the magnitude of events plotted in blue. Whenever the indicator 
has a value greater than I e , we forecast (red region) that an event 
larger than F e = 6 . 9 (black dashed line) will happen. Red shows 
the temporal prediction of events larger than F e . The magnitude 
in Fig. 5 (e) is calculated according to the regular definition of the 
magnitude of an e vent (i.e. b y integrating the slip velocity above 
the threshold over the exact duration of the event). In Movie S1, an 
animation of this prediction is available. 
4.2 Forecast with partial observation of slip rate 

So far, we have assumed that we have full access to the slip rate on the 
fault. Here, we relax this assumption and use slip rate measurements 
only at a few points on the fault (diamonds in Fig. 1 a). We denote ˆ V : 
R 

N p × R 

+ → R 

+ as the time-series of partial slip rate observation, 
where N p is the number of points of slip rate measurements and we 
take it to be 16 in this case study. We assume that these points are 
at the centre of the fault along the depth and have equal distances 
along the strike. We redefine the indicator I ( t) for this special case 
as follows: 

I ( t) = max 
i 

〈 
log ˆ V ( t) − ˆ w̄ 

V , log ˆ V 

∗
i − ˆ w̄ 

V 
〉 
R 

N p 

‖ log ˆ V ( t ) − ˆ w̄ 

V ‖ 2 ‖ log ˆ V 

∗
i − ˆ w̄ 

V ‖ 2 
, (13) 

where ˆ V 

∗
i is the slip rate at the measurement points (diamonds in 

Fig. 1 a) of the i th optimal solution in the set W 

∗. ˆ w̄ 

V is the average 
slip rate at the measurement points during the interevent period. 
〈 , 〉 R N p is the inner product in R 

N p . Fig. 6 shows the forecast perfor- 
mance in the limited slip rate measurement scenario. The general 
consistent increase in I ( . ) when the function F ( . ) rises is visible in
F ig. 6 (a). F igs 6 (b) and (c) show statistically the performance of the 
predictor. While most of the probability mass of P ( F | I ) belongs 
to true positive and true ne gativ e we should appreciate that there is 
more probability mass in the false positive quadrant compared to 
the scenario in which we have full access to the slip rate. This can 
be observed better in Figs 6 (c), (d) and (e). Although as I increases, 
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Figure 4. Snapshot-average of the shear stress on the VW patch of the fault 
during the interevent period (a). One of the local optimal pre-stress distribu- 
tions that leads to an event with a magnitude of 7.5 (b). The dimensionless 
quantity log 10 ( V 

∗θ∗/D RS ) for the optimal pre-event V ∗ and θ∗ is plotted in 
(c). The corresponding cumulative slip of the event that happens right after 
starting from optimal pre-event state (d). To increase the readability (a, b, c) 
are plotted only for the VW patch. The VW patch in (d) is denoted by the 
dashed white line. 
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P ee increases consistently, P ee is almost 0.9 when I is the maximum
hich suggests that there is a 10 per cent chance of a false positive

ignal when I takes its maximum value. This false positive can also
e observed in Figs 6 (d) and (e) around the year 1610. While it is
mportant to appreciate the limitations, the overall performance is
atisfying. To reduce this limitation, one can use filtering methods
o invert and approximate slip rates at a few more points on the fault
o improve the performance. 

.3 Impact of low resolution observation on prediction 

ccuracy 

n this part, we illustrate a limitation of our method as we lose
ore and more information with loosing the resolution of the data.
eal-world slip inversion on the fault has inherent low-pass fil-

er because the process of finding slip on the fault from surface
isplacements involves filtering techniques that ine vitabl y intro-
uce this type of limitation. These techniques are necessary due to
he measurement limitations, which cannot capture high-frequency
 ariations accuratel y, leading to a smoother and potentially less pre-
ise representation of the actual slip rates. We apply a Gaussian
ernel to the synthetic slip rate data, mimicking the characteristics
f realistic data sets. This approach enables us to systematically
ssess the impact of reduced resolution in the observed slip rate on
he performance of extreme event prediction. By varying the stan-
ard deviation of the Gaussian kernel, we evaluate how different
esolutions affect the algorithm’s accuracy. The standard deviation
s expressed in a dimensionless form relative to the width of the
W zone. 
We assume that the slip rate is corrupted by a Gaussian kernel

hich is defined mathematically as: 

G ( x , y ) = 

1 

2 πσ 2 
exp 

(
− x 2 + y 2 

2 σ 2 

)
, (14) 

here σ is the standard deviation of the Gaussian kernel, controlling
he extent of the smoothing effect. By convolving this kernel with
he original slip rate data V ( x , y ) , we obtain the low resolution slip
ate V 

′ ( x , y ) : 

V 

′ ( x , y ) = 

∫ 
� 

V ( x ′ , y ′ ) · G ( x − x ′ , y − y ′ ) d x ′ d y ′ . (15) 

o visually demonstrate the effect of the kernel on the data, we
lotted one snapshot of slip rate without applying the low-pass
lter in Fig. 7 (a) and then applied the low-pass filter with different
tandard deviation on that snapshot of the velocity and plot them
n Figs 7 (b)–(d). The conditional probability P ( F | I ) for a 1000-yr-
ong data that are corrupted by these Gaussian kernels are plotted
n Figs 7 (e)–(g). As the resolution decreases the probability mass
n the upper left (false positive) and lower right (false ne gativ e)
ncreases. Figs 7 (f) and (g) show that with a standard deviation
reater than 0 . 5 W V W 

, we have a large probability of a false signal.
his is a limitation of our work and potentially considering more
OD modes, using data assimilation techniques to more accurately

nvert for slip on the fault, and considering the history of the time-
eries are some of the methods that can be used to improve the
erformance when the slip rate on the fault is not well constrained.

 D I S C U S S I O N  

ur results demonstrate the possibility of predicting the time, size
nd spatial extent of extreme events in a simplified dynamical model
f earthquake sequences based on the instantaneous observation of
ault slip rate. By constraining the pre-event state on a fault to the
nly feasible ones and solving an optimization problem, we found
he optimal pre-event state in a low-dimensional space. Optimal
re-event state refers to configurations of slip rate and state vari-
ble heterogeneity on the fault triggering large events within small
ime windows. Identifying the optimal pre-event state distributions
hat are also statistically accessible during the earthquake cycle is
ivotal. 

States of the system self-organize into a chaotic attractor which
ccupies only a small fraction of all possible distributions on the
ault. The identification of the optimal pre-event state within this
educed set is crucial for two reasons. First, it helps establish a
ow-dimensional representation of optimal pre-event state; the sig-
ificance of reduced-order proxy of critical pre-event state is even
ore important for earthquakes than SSEs, primarily due to the

carcity of observational data obtained from palaeoseismic records.
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Figure 5. Spatiotemporal prediction of events. The time-series of the functions F and I show that I rises when there is an upcoming large event ( F is large), 
and it goes down when there is no upcoming large event. The blue and red dashed lines correspond to F e and I e (a). The empirical conditional probability 
P ( F | I ) . The vertical and horizontal dashed lines are F e , and I e , respecti vel y (b). The empirical probability of having an event with the value ̃  M greater than F e 
in the next 0 . 5 ( year ) as a function of the value of the indicator I (c). The spatiotemporal prediction of events is plotted by red where blue is the actual events 
in the data set (d). Prediction of the magnitudes with the blue bars as the magnitude of events in the data set. The horizontal axis for the blue bars denotes the 
time when an event starts. Red regions denote the times of high probability of large ev ents [abov e magnitude 6.9 (dashed line)] based on our indicator (e). The 
statistical plots (b, c) are calculated based on 1000 yr of data in the test set (data from the year 1200 to 2200). 
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Secondl y, e verything outside this set remains unseen during the 
earthquake cycle’s evolution. If that was not the case, the space 
of hypothetical stress distribution possibly leading to large events 
would be intractable. 

In Section 4.2 , we studied a scenario in which the slip rate is 
known at only a few points on the fault. The results are almost 
as good as when we have full access to the slip rate on the fault 
because the slip evolution at neighbouring points on the fault is 
strongly correlated due to elastic coupling. This result most likely 
benefits from large nucleation length for SSEs which is generally not 
true for earthquakes. The nucleation length for a 1-D fault for mode 
III is gi ven b y h ra = 

2 G D RS b 
πσ̄ ( b−a) 2 

(Rubin & Ampuero 2005 ), where G 

is shear modulus, σ̄ is the ef fecti ve normal stress and a, b, D are 
RS 
frictional parameters. For a 2-D fault, the nucleation size is given 
by h = ( π 2 / 4) h ra (Chen & Lapusta 2009 ), and is 29 . 7 ( km ) in our
model, whereas the width of the VW zone is W V W 

= 25 ( km ) . 
Slip rate data of a fault is determined through the inversion of 

surface displacement, which results in low spatial resolution. We 
therefore studied the performance of extreme event prediction when 
the synthetic slip rate is corrupted by a low pass filter. Our results 
Fig. 7 indicate that predictability is compromised when the standard 
deviation of the low-pass filter kernel gets larger and larger. This 
finding highlights a limitation in the application of our study in its 
current form when the slip rate on the fault is not well resolved. 
Addressing this limitation will be a focus of our future w ork. P oten- 
tial approaches include incorporating additional components into 
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Figure 6. Spatio-temporal prediction of events same as in Fig. 5 but using slip rate only at 16 points on the fault (denoted in Fig. 1 a by diamonds). 
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he extreme event criteria and solving a data assimilation problem,
uch as using the Ensemble Kalman filter, to more accurately invert
or slip rates on the fault. 

For earthquakes, the ratio of the nucleation size to fault dimen-
ions is much smaller than in SSEs. Rupture dynamics considera-
ions indicate that the initial shear stress must be suf ficientl y high
nd well-correlated across the entire fault for a system-spanning
arthquake to occur. Therefore, having information at least at the
cale of the fault dimension is essential to predict whether a big rup-
ure will happen. Ho wever , to predict when the event will nucleate,
t might be necessary to resolve the system at the scale of the nucle-
tion length, as constraints on the slip rate at this scale are crucial.
 key question remains: for earthquakes, is resolving the system

t the nucleation length scale necessary for time predictability, and
s resolution at the fault dimension sufficient to predict the extent
f rupture? Investigating the role of observational resolution in the
redictability of both the timing and extent of future seismic events
emains a significant challenge, which we aim to address in future
orks. 
 C O N C LU S I O N  

ur study suggests that the chaotic nature of earthquake se-
uences is not an insurmountable obstacle to time-dependent earth-
uake forecasting. Ho wever , we ackno wledge that we considered
 fav ourab le model setup designed to produce SSEs. It would be
ow interesting to test this approach in the case of a model setup
roducing regular earthquakes (i.e. with slip rates of 1 cm s −1 to
 m s −1 to be comparable to real earthquakes) with larger ratios
f fault dimensions to nucleation size and with a larger range of
arthquake magnitudes (Cattania 2019 ; Barbot 2021 ; Lambert &
apusta 2021 ). This is doable although computationally challeng-

ng. The amplitude of the stress heterogeneity would be more sub-
tantial for regular earthquakes, where dynamical wave-mediated
tresses allow for rupture propagation over lower stress condi-
ions than for aseismic slip, particularly in models with stronger
ynamical weakening or with persistent heterogeneity such as
or mal stress per turbations (Noda et al. 2009 ; Lamber t et al.
021 ). 
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Figure 7. Impact of the lowering the observed slip rate resolution on prediction. One snapshot of the slip rate is plotted in (a). To visualize the effect of 
reduction of resolution, the low-pass filter applied to the snapshot in (a) is plotted in (b, c, d) with different standard deviations. The conditional probability of 
P ( F | I ) when the slip rate is corrupted with a Gaussian low-pass filter with different standard deviations ( σ = 0 . 2 W V W 

, 0 . 5 W V W 

, 1 . 5 W V W 

) are plotted in (e, 
f, g) respecti vel y. 

2 https://github.com/ydluo/qdyn . 
3 https://github.com/ablancha/gpsearch . 
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It is expected that earthquake sequences would then show more 
complexity due to the cascading effects which are responsible for 
foreshocks and aftershocks in natural earthquake sequences, and 
which are not present in our simulations. In that reg ard, Blonig an 
et al. ( 2019 ) reported that the performance of their prediction of 
rare events diminishes with the increase in Reynolds number in their 
turbulent flow case. It is possible that w e ha ve the same limitation 
as the ratio of the nucleation size to the dimensions of the fault 
decreases. 
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We used a model of a 2-D thrust fault in a 3-D medium governed 
by rate-and-state friction with ageing law for the evolution of state 
variable ( θ ). The model parameters are summarized in Table 1 . To 
simulate the forward model, we use the QDYN software, 2 which 
is an open-source code to simulate earthquake cycles (Luo et al. 
2017 ). We use the POD technique to reduce the dimensionality of 
the problem. This method is re vie wed in Appendix A . To solve 
the optimization problem we use the Bayesian optimization method 
(Brochu et al. 2010 ; Blanchard & Sapsis 2021 ) that is re vie wed in 
Appendix B . We used the open source code available on GitHub 3 

for solving the optimization problem. 
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A P P E N D I X  A :  P RO P E R  O RT H O G O NA L  

D E C O M P O S I T I O N  ( P O D ) :  M E T H O D  

A N D  R E S U LT  

In this section, we re vie w how to reduce the dimension of the data set 
consisting of slip rate and state variable using the POD method. We 
use this method to find critical pre-event state in a low-dimensional 
space instead of the high-dimensional function space. Another rea- 
son to use this method is because eq. ( 9 ) is an optimization problem 

constrained on the chaotic attractor of the system with the event pe- 
riod excluded. To solve the constraint optimization problem (eq. 9 ), 
one method (Farazmand & Sapsis 2017 ) is to exclude the extreme 
events from the chaotic attractor and approximate the remaining 
using the POD technique. Here, we exclude the event period from 

the data set to only approximate the interevent period. The method 
of approximating the chaotic attractor using POD modes is used in 
Figure A1. Convergence of the eigenvalues (left) and the ratio of a truncated sum 

Figure A2. The distribution of a i ( t) / 
√ 

λi in the data set of the interevent periods.
give insight for selecting proper r 0 in eq. ( 10 ). 
different fields. As an example, the work in (Blonigan et al. 2019 ) 
used 50 POD modes to approximate the chaotic attractor of a tur- 
bulent channel flow. One behavioral difference between our model 
of the earthquake cycle and the turbulent channel flow example is 
that the time stepping in our problem is adaptive due to the system’s 
multi-scale behavior; there are more sample data when the dynami- 
cal system is stif f. Howe ver, since we are removing the event period 
from the data, we only include the slow part of the system in our 
data set. 

In the following paragraphs, we describe the POD analysis on 
our data set of simulations. The data set comprises snapshots 
within the time span from the year 200 to 1200 excluding the 
event set ( E( V thresh ) ). We use the time snapshots of discretized 
states of the system ( θ and V ) which belong to a high but finite- 
dimensional space. After discretization, V : R 

N x ×N y × R 

+ → R 

+ 
of eigenvalues to the total sum of eigenvalues (right). 

 The vertical lines correspond to a i / 
√ 

λi = ±1 , ±2 , ±3 and are plotted to 
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nd θ : R 

N x ×N y × R 

+ → R 

+ . N x = 256 and N y = 32 are the num-
ers of grid points along the strike and depth respecti vel y. 

Since the evolution of the system is better realized in log 10 space,
e apply the POD on the log 10 of the data set. We define vectors
 1 ( t k ) and w 2 ( t k ) both in R 

N x N z for time t k as the vectorized form
f the logarithm of V and θ at time t k . 

 1 ( t k ) = log 10 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

V 1 , 1 

V 1 , 2 

. . . 
V 1 ,N x 

V 2 , 1 

V 2 , 2 

. . . 
V 2 ,N x 

. . . 
V N z , 1 

V N z , 2 

. . . 
V N z ,N x 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

t= t k 

(A1) 

 2 ( t k ) = log 10 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

θ1 , 1 

θ1 , 2 

. . . 
θ1 ,N x 

θ2 , 1 

θ2 , 2 

. . . 
θ2 ,N x 

. . . 
θN z , 1 

θN z , 2 

. . . 
θN z ,N x 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

t= t k 

(A2) 

here for example, by [ V i, j ] t k , we mean slip rate at i th element
long strike and j th element along the depth at k th snapshots in the
ata set. Then, we stack pairs of w 1 and w 2 to make a vector w: 

( t k ) = 

[
w 1 ( t k ) 
w 2 ( t k ) 

]
∈ R 

2 N x N z . (A3) 

e define w̄ = [ ̄w 

V , w̄ 

θ ] � as the average of w( t i ) for all snapshots
n the dataset, where the dataset consists of snapshots of the field
aptured with variable time stepping during the interevent period. 

¯  = 

1 

N d 

N d ∑ 

i= 1 
w( t i ) (A4) 

here N d is the total number of snapshots in the data set. w̄ 

V and
¯  θ are plotted in Fig. 3 . We define p( t k ) = w( t k ) − w̄ and then we
efine a matrix P ∈ R 

2 N x N z ×N d with the following entries: 

P = 

[
p ( t 1 ) p ( t 2 ) · · · p ( t N d ) 

] ∈ R 

2 N x N z ×N d . (A5) 

hen, we define the covariance matrix R as the following: 

R = 

1 

( N d − 1) 
P P 

T ∈ R 

2 N x N z ×2 N x N z (A6) 
ow, we can find the eigenvectors of matrix R: 

Rφ j = λ j φ j λ1 ≥ λ2 ≥ ... ≥ λ2 N x N z ≥ 0 . (A7) 

igen values sho w ho w well each eigen vector captures the original
ata in L 

2 sense. Eigen-vectors of matrix R can be found using
ingular Value Decomposition (SVD) of matrix P : 

P = ��
 

T (A8) 

here in general � ∈ R 

2 N x N y ×2 N x N y and 
 ∈ R 

N d ×N d are orthogonal
 �� 

T = I 2 N x N y ×2 N x N y and 
 
 

T = I N d ×N d ) and determine, through
olumns, the left and right singular vectors of P ; and diagonal
atrix � ∈ R 

2 N x N y ×N d has singular values on its diagonal (Taira
t al. 2017 ). We can write: 

R = 

1 

( N d − 1) 
P P 

T = 

1 

( N d − 1) 
�� 
 

� 
� 

� � 

� 

R� = 

1 

( N d − 1) 
�� � 

� (A9) 

ecause of the special form of � that will be discussed shortly, the
olumns of � (denoted here by φi and are plotted in Fig. 3 for i ≤ 4 )
re eigenvectors of matrix R that are ordered by the variance they
apture in data. Note that φi ∈ R 

2 N x N y and we can separate it into
igenvectors of the slip rate ( φV 

i ) and the state variable φθ
i : 

i = 

[
φV 

i 

φθ
i 

]
(A10) 

Assuming the number of time snapshots is much smaller than
he dimension of the problem N d � 2 N x N y , � has the following
orm: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

σ1 0 0 0 
0 σ2 0 0 
. . . 

. . . 
. . . 

. . . 
0 0 0 σN d 

0 0 0 0 
. . . 

. . . 
. . . 

. . . 
0 0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

2 N x N y ×N d 

(A11) 

hen, using eqs ( A7 ), ( A9 ), and ( A11 ), 1 
( N d −1) σ

2 
j = λ j . λ j corre-

ponds to the variance of the data along φ j . If λ j goes to zero very
ast, it suggests that we can explain the data set in a low-dimensional
ubspace consisting of a finite number of eigenfunctions. The ratio
 r 
j= 1 λ j / 

∑ N d 
j= 1 λ j shows the proportion of the variance of the data

hat are captured in the first r eigenfunctions. Based on Fig. A1 , the
rst 13 modes of the data capture almost 85 per cent of the data. 
Using this explanation, we can approximate the interevent period

 A \ E( V thresh ) ) by: 

log 10 ( A \ E( V thresh ) ) ≈
{ 

w = w̄ + 

N m ∑ 

i= 1 
a i φi 

∣∣∣ N m ∑ 

i= 1 

a 2 i 

λi 
≤ r 2 0 

} 

. (A12) 

where N m 

is the number of modes (eigenfunctions) that are con-
idered in the truncation. One can play with r 0 to enlarge the set.
or very large r 0 the approximation is not valid anymore. The value
f r 0 determines how much we let perturbation around the average
f the data set w̄ . As an example, taking N m 

= 1 and r 0 = 1 would
et perturbation around w̄ along φ1 with an amplitude equal to the
tandard deviation of the data set along that eigenvector ( 

√ 

λ1 ). 
Using the or thonor mality of φi ’s, we can find the projection of

ny w( t) onto φi using the following inner product: 

 i ( t) = 〈 w( t) − w̄ , φi 〉 (A13) 
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where a i ( t) is the projection of w( t) − w̄ onto eigenvector φi and 
<, > denotes the inner product. We can find a i ( t k ) for all of the 
time snapshots in the data set and plot the distribution of a i / 

√ 

λi 

(Fig. A2 ). We see that the distribution is close to the standard normal 
distribution. Looking at this figure gives us intuition about choosing 
a value for r 0 . For example, selecting r 0 to be large ( > 4 ), would 
lead to exploring low-probability regions. The dashed lines in the 
figure, correspond to a i / 

√ 

λi = 1 , 2 , 3 . 
Using the approximation in eq. ( A12 ), we reduce the dimension- 

ality of the system from R 

2 N x N z to R 

N m and approximate a compli- 
cated set ( A \ E( V thresh ) ) by a hyperellipse which is a straightfor- 
ward constraint for our optimization problem. With the mentioned 
approximation, and denoting w 

∗ = w̄ + 

∑ N m 
i= 1 a 

∗
i φi , we write an op- 

timization problem in the low dimensional R 

N m space which is an 
equi v alent approximate of eq. ( 9 ): 

A 

∗ = { a ∗| 
N m ∑ 

i= 1 

a ∗i 
2 

λi 
≤ r 2 0 , w 

∗ is a local maximizer of 

F (10 w 
∗
; �t, T ) , F (10 w 

∗
; �t, T ) > F 

∗
e } (A14) 

where a ∗ ∈ R 

N m whose i th element is a ∗i . eq. ( A14 ) ensures that the 
optimal solutions are not too far from the mean states ( ̄w ). 

To show the applicability of the POD model reduction outside the 
application of this paper, we also applied the method to a data set 
including all snapshots within the period of 200 years to 1200 years 
(without removing the event period). The result of this model reduc- 
tion is available in Movie S2. This video shows that we can capture 
all phases of earthquake cycles using a few POD modes. 

A P P E N D I X  B :  O P T I M I Z AT I O N  

Here we revisit optimal sampling in the framework of Bayesian op- 
timization as discussed in (Brochu et al. 2010 ) and is improved in 
(Blanchard & Sapsis 2021 ) for finding the precursors of extreme 
events. The optimization algorithm works by exploring the input 
space ( a = [ a 1 , ..., a N m ] ∈ R 

N m ) using a Gaussian surrogate model. 
Suppose that we want to solve the constrained optimization prob- 
lem of eq. ( 9 ) with the approximation in eq. ( 10 ). Without loss of 
generality, we study the minimization of the minus sign of the cost 
function ( G = −F ) instead of maximizing it. The cost function can 
be e v aluated using a forw ard simulation of a gi ven initial condition. 
Here we assume that the observation is contaminated by a small 
Gaussian noise with variance σ 2 

ε = 10 −4 . 

z = G ( a; T , �t) + ε ε ∼ N 

(
0 , σ 2 

ε

)
(B1) 

where ε is the observational noise, and T and �t are hyperpa- 
rameters of the cost function G that are determined before the opti- 
mization process. The iterative approach starts from some randomly 
sampled N i ni t points { a k ∈ R 

N m } N i ni t 
k= 1 that each of them corresponds 

to a point in the set defined in ( 10 ). Using the forward model of 
eq. ( B1 ) we find the input-output pair D 0 = { a k , z k } n i ni t 

k= 1 . a k ∈ R 

N m 

is the vector of POD coefficients with N m 

as the number of POD 

modes we have decided to consider, and z k comes from eq. ( B1 ). 
Using a Gaussian surrogate model, the expected value and variance 
of the process, condition on the input/output at each step i ( D i ) is 
gi ven b y the following equation: 

μ( a) = m 0 + k( a, A i ) K 

−1 
i ( z i − m 0 ) 

(B2) 

σ 2 ( a) = k( a , a ) − k( a, A i ) K 

−1 
i k( A i , a) 
where K i = k( A i , A i ) + σ 2 
ε I , A i = { a k } N i ni t + i 

k= 1 , and z i = { z k } N i ni t + i 
k= 1 .

We consider the Radial Basis Function (RBF) with Automatic Rel- 
e v ance Determination (ARD): 

k( a , a ′ ) = σ 2 
f exp ( −( a − a ′ ) T � 

−1 ( a − a ′ ) / 2) (B3) 

where � is a diagonal matrix containing the length scale for each di- 
mension. At each iteration, we construct a surrogate model (eq. B2 ). 
Then, the next point in the input space is found by minimizing an 
acquisition function ( g : R 

N m → R ). We use the Lower Confi- 
dence Bound (LCB) acquisition function which is defined as the 
following: 

g LC B ( a) = μ( a) − κσ ( a) (B4) 

where κ is a positive number that balances exploration and exploita- 
tion. For small κ , we do not consider uncertainties of the surrogate 
model and trust the mean of the conditional Gaussian process. For 
large κ , minimizing eq. ( B4 ) is equi v alent to finding a point that has 
the largest uncertainty. We use κ = 1 in this study. The algorithm is 
extracted from Ref (Blanchard & Sapsis 2021 ) and is summarized 
in Algorithm 1. We start the algorithm b y randoml y sampling 10 
initial points inside the hyper-ellipse (eq. 10 ) and then augmenting 
the input-output pairs by minimizing the acquisition function until 
the size of the input-output points reaches 200. To show the effec- 
tiveness of the algorithm in finding optimal solutions, we define the 
function c as the following: 

c( i) = − min 
1 ≤ j≤i 

min 
a 

μ( a | D j ) (B5) 

To find c( i) , we need to find the minimum of the Gaussian process 
in each iteration i and report the minimum over all 1 ≤ j ≤ i . The 
algorithm does not guarantee finding all of the local maxima. As a 
result, the algorithm is repeated for 30 trials with different randomly 
chosen initial points. The behaviour of c( i) for dif ferent v alues of 
r 0 is plotted in Fig. B1 (a). The solid line is the median of c( i) for 
different trials as a function of iteration and the shaded band shows 
half of the median absolute deviation. One of the optimal solutions 
is plotted in Fig. B1 (b,c). During the optimization process, we 
augment the set W 

∗ if the condition in eq. ( 11 ) is satisfied. 

Algorithm 1 Bayesian Optimization 

1: Input: Number of initial points n i ni t and number of iterations 
n i ter 

2: Initialize: Surrogate model on initial dataset D 0 = 

{ a ( k) , z ( k) } n i ni t 
k= 1 

3: for n=0 to n i ter do 
4: Select best next point a n + 1 by minimizing acquisition 

function constrained inside the hyperellipse (eq. (10)): 

a ( n + 1) = arg min ∑ N m 
i= 1 

a 2 i 
λi 

≤r 2 0 

g LC B ( a; Ḡ , D n ) 

5: Ev aluate objecti ve function G at a ( n + 1) and record z ( n + 1) 

6: If z ( n + 1) < −F 

∗
e augment the set W 

∗ (eq. (11)) 
7: Augment dataset D n + 1 = D n ∪ { a n + 1 , z n + 1 } 
8: Update surrogate model 
9: end for 
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Figure B1. Convergence of the optimization for dif ferent v alues of r 0 (a). log 10 ( V ) and log 10 θ of one of the optimal solutions with r 0 = 3 which leads to a 
magnitude 7.5. The optimal solution is highly heterogeneous and shows the effect of fav orab le stress heterogeneity in generating big events (b,c). The stress 
calculated from this optimal solution is plotted in Fig. 4 . 
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