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Abstract
In this paper, we study efficient approximate sampling for probability distribu-
tions known up to normalization constants. We specifically focus on a problem
class arising in Bayesian inference for large-scale inverse problems in science
and engineering applications. The computational challenges we address with
the proposed methodology are: (i) the need for repeated evaluations of expens-
ive forward models; (ii) the potential existence of multiple modes; and (iii)
the fact that gradient of, or adjoint solver for, the forward model might not
be feasible. While existing Bayesian inference methods meet some of these
challenges individually, we propose a framework that tackles all three system-
atically. Our approach builds upon the Fisher–Rao gradient flow in probability
space, yielding a dynamical system for probability densities that converges
towards the target distribution at a uniform exponential rate. This rapid conver-
gence is advantageous for the computational burden outlined in (i). We apply
Gaussian mixture approximations with operator splitting techniques to sim-
ulate the flow numerically; the resulting approximation can capture multiple
modes thus addressing (ii). Furthermore, we employ the Kalman methodology
to facilitate a derivative-free update of these Gaussian components and their
respective weights, addressing the issue in (iii). The proposed methodology
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results in an efficient derivative-free posterior approximation method, flex-
ible enough to handle multi-modal distributions: Gaussian Mixture Kalman
Inversion (GMKI). The effectiveness of GMKI is demonstrated both theoret-
ically and numerically in several experiments with multimodal target distribu-
tions, including proof-of-concept and two-dimensional examples, as well as
a large-scale application: recovering the Navier–Stokes initial condition from
solution data at positive times.

Keywords: Bayesian inverse problems, sampling, derivative-free methods,
multimodal, kalman methodology, fisher–rao gradient flow, gaussian mixtures

1. Introduction

In this paper, we introduce the posterior approximation method called Gaussian Mixture
Kalman Inversion (GMKI), designed for solution of partial differential equation (PDE) inverse
problems for which forwardmodel evaluation is expensive, derivative/adjoint calculations can-
not be used and multiple modes are present. In section 1.1 we give the context, followed in
section 1.2 with details of our guiding motivations. Section 1.3 describes the key ingredients
of the algorithm and section 1.4 the contributions. In section 1.5 we give a detailed literature
review and in section 1.6 we describe the organization of the paper.

1.1. Context

Sampling a target probability distribution known up to normalization constants is a classical
problem in science and engineering. In this paper, we focus specifically on targets resulting
fromBayesian inverse problems [1, 2] involving recovery of unknown parameter θ ∈ RNθ from
noisy observation y ∈ RNy , through forward model

y= G (θ)+ η. (1)

Here, G denotes the forward mapping which, for the problems we focus on, is nonlinear
and requires solution of a PDE to evaluate. The observational noise η is here assumed to
be Gaussian: η ∼N (0,Ση). By assigning a Gaussian prior N (r0,Σ0) to the unknown θ, the
Bayesian framework leads to the posterior distribution

ρpost (θ)∝ exp(−ΦR (θ)) , (2a)

ΦR (θ) = Φ(θ)+
1
2
‖Σ− 1

2
0 (θ− r0)‖2, (2b)

Φ(θ) =
1
2
‖Σ− 1

2
η (y−G (θ))‖2. (2c)

HereΦ is the negative log likelihood. Minimization ofΦR is a nonlinear least-squares prob-
lem which defines the maximum a posterior (MAP) point estimator for the Bayesian inverse
problem. It is the goal of this paper to develop an efficient method for approximating ρpost
defined by ΦR in the specific setting which we now outline.

1.2. Guiding motivations

We give more detail concerning the motivations behind the specific posterior approximation
method developed here. Firstly we note that an appropriate unit of cost in solution of Bayesian
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inverse problems is the evaluation of G as this will be required multiple times for methods such
as Markov chain Monte Carlo (MCMC) [3] and SMC [4, 5]; when evaluation of G requires
running large scale PDE solvers fast convergence is paramount. Secondly, we note that mul-
tiple modes, caused by multiple minimizers of ΦR, cause many methods to become slow [6],
expending multiple steps in one mode before moving to another [7, 8]; in addition, many
Gaussian approximation based methods are unable to capture multiple modes. Nevertheless,
exploring all these modes is necessary since missing one could lead to detrimental effects on
engineering or science predictions; thirdly we note that the gradient ofΦR may not be available
or even feasible. This might be because the computational models are only given as a black
box (e.g. in global climate model calibration [9, 10]), the numerical methods are not differenti-
able (e.g. in the embedded boundary method [11–14] and adaptive mesh refinement [15, 16]),
or because of inherently discontinuous physics (i.e. in fracture [17] or cloud modeling [18,
19]). In this paper, we address these three challenges by combining, respectively, Fisher–Rao
gradient flows, Gaussian mixture approximations, and Kalman methodology. The resulting
posterior approximation method, GMKI, is fast due to the uniform exponential convergence
of Fisher–Rao gradient flows, can capture multiple modes since Gaussian mixture approxim-
ations are employed, and is derivative-free thanks to the systematic Kalman methodology.

1.3. Key ingredients of GMKI

In sampling, it is widely accepted practice to construct a dynamical system for a density that
gradually evolves to the posterior distribution, or its approximation, after a specified finite time
or at infinite time. Numerical approximation of this dynamics, using either particle or para-
metric methods, leads to practical algorithms. These include sequential Monte Carlo (SMC,
specified finite time) [4], and MCMC (infinite time) [3] that are commonly used in Bayesian
inference. In recent years, gradient flows in the probability space have become a popular choice
of dynamical systems [20–22]; their study presents the opportunity to profoundly influence our
understanding and development of sampling algorithms.

In general, the convergence rates of different gradient flows can vary significantly. In this
paper, we focus on the Fisher–Rao gradient flow of the Kullback–Leibler (KL) divergence
[22–24]:

∂ρt
∂t

= ρt (logρpost − logρt)− ρtEρt [logρpost − logρt] . (3)

The Fisher–Rao gradient flow converges to its steady state, ρpost, exponentially fast, with a
rate of O(e−t); see proposition 1, [22, theorem 4.1], and also [23–25]. This convergence rate
is uniform and independent of ρpost, in particular its log-Sobolev constant, which typically
determines the convergence rates of other gradient flows, such as the Wasserstein gradient
flow. It is worth noting that the log-Sobolev constant may behave poorly when the posterior
distribution ρpost is highly anisotropic or multimodal [7, 8]. Thus, we consider equation (3) as
a desirable flow for sampling general distributions.

We introduce numerical approximations of equation (3) to construct practical algorithms.
Particle methods represent the current density ρt by a (possibly weighted) sum of Dirac meas-
ures evaluated at an ensemble of particles. The flow equation (3) can then be realized as a
birth-death dynamics of these particles [23, 24]. However, the birth-death rate depends on the
density, so it is necessary to constantly reconstruct ρt from the empirical particle distribu-
tion. In [23, 24], kernel density estimators have been applied for the reconstruction, but their
performance may be affected when the dimension of the problem becomes large. Moreover,
birth-death dynamics alone cannot change the support of the distribution, so additional steps
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need to be added to explore the space [23, 24, 26]; such exploration steps change the dynamics
and may also lead to challenges in high dimensional problems.

Parametric methods, which reduce the gradient flow into some parametric density space,
constitute another common choice of numerical approximation. One way to do this is to project
the flow equation (3) into the Gaussian space [27–29], via a moment closure approach. The
resulting system for the mean and covariance is given by [22]:

dmt

dt
= CtEρat

[∇θ logρpost]
dCt
dt

= Ct+CtEρat
[∇θ∇θ logρpost]Ct, (4)

where ρt in equation (3) is approximated by a Gaussian ρat =N (mt,Ct) in equation (4); here
at = (mt,Ct) is the unknown parameter.We note that onemay also derive the above flow by nat-
ural gradient methods in variational inference [30–32]; see discussions in [22]. Theoretically,
it has been shown in [22] that equation (4) converges exponentially fast to the best Gaussian
approximation of ρpost in the KL divergence sense, when ρpost is log-concave. Therefore, by
simulating equation (4), we get a Gaussian approximation of the posterior; this can be done
through direct time integration or ensemble methods.

More generally, for multimodal problems, Gaussian mixture approximations have been
studied in the literature under the variational inference framework [29, 33, 34]. These
approaches require the evaluation of the gradient and sometimes even the Hessian matrix of
logρpost, as shown in equation (4), which are not directly feasible for the type of problems
which are our focus in this paper.

On the other hand, Kalman methodology has emerged as an effective methodology for
sampling for both filter and inverse problems [35–42]. Similar to the parametric methods dis-
cussed above, it relies on Gaussian approximations; however, it additionally utilizes the struc-
ture of the problem, i.e. the least-squares form of the posterior as described in equation (2).
Notably, the Kalman methodology can lead to derivative-free algorithms such as the Ensemble
Kalman Filter, Unscented Kalman Filter, and Ensemble Kalman Inversion (EKI), all defined
in [42]. Moreover, the recent work on EKI and its variants in [43] can be interpreted as apply-
ing Kalman-type approximations to the Fisher–Rao gradient flow equation (3), although this
gradient structure was not explicitly pointed out in the original paper. The effectiveness of this
method has been demonstrated on large-scale inverse problems in science and engineering,
with up to hundreds of dimensions. However, since only Gaussian approximations are used,
the method may not be suitable for multimodal posterior distributions.

1.4. Contributions

The primary focus of this paper is to extend the Kalman methodology in [43] to Gaussian
mixture approximations of the Fisher–Rao gradient flow. This leads to GMKI, a derivative-
free posterior approximation method that converges fast and captures multiple modes for the
challenging inversion problems studied here. We make the following contributions:

(i) We propose an operator splitting approach to integrate the Fisher–Rao gradient flow in
time, which leads to an exploration step that explores the space freely and an exploitation
step that harnesses the data and prior information. We prove the resulting exploration-
exploitation scheme converges exponentially fast to the target distribution at the discrete
time level (section 2).

(ii) We demonstrate a connection between the continuous time limit of the pre-existing
algorithm in [43] and Gaussian variational inference (section 3).
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(iii) We apply Gaussian mixture approximations to the exploration-exploitation scheme. We
utilize the Kalman methodology to update the weights and locations of the mixtures.
This leads to our derivative-free algorithm, GMKI, for sampling multimodal distributions
(section 4).

(iv) We analyze GMKI by deriving the continuous time limit of the dynamics. Based on
the continuous dynamics, we study its exploration effects, establish its affine invariant
property, connect the methodology to variational inference with Gaussian mixtures, and
investigate the convergence properties (section 5).

(v) We demonstrate, on one/two-dimensional model problems as well as a high-dimensional
application (recovering the Navier–Stokes initial condition from solution data at positive
times), that GMKI is able to capture multiple modes in approximately O(10) iterations,
making it a promising approach for solving large scale Bayesian inverse problems. Our
code is accessible online (section 6).

1.5. Literature review

The review of relevant literature concerns SMC and MCMC, variational inference, gradient
flows and Kalman methodology.

1.5.1. SMC and MCMC. SMC [44] and MCMC [3] are common approaches used in
Bayesian inference for sampling posteriors. They lead to dynamical systems of densities that
progressively converge to the target distribution. For SMC, the dynamical system operates
over finite time intervals so converges fast in the density level, but numerical approximations
of the dynamical system can be challenging, with difficulties such as weight collapses. Such
issues are more pronounced in the case of multimodal posteriors, requiring a substantial num-
ber of particles and a good initialization for SMC to succeed, due to its lack of exploration.
Approximation of the finite-time dynamics in SMC via transport of measures has also been
investigated [45–47]. The Fisher–Rao gradient flow used in this paper can be seen as an infin-
ite time extension of SMC dynamics that allows efficient exploration while converging expo-
nentially fast in the density level. MCMC approaches typically require O(104) model runs,
or more, for the type of PDE-based inversion arising in this paper; thus they are too costly.
Moreover, most MCMC approaches are based on local moves and face significant challenges
in the multimodal scenario.

1.5.2. Variational Inference. Variational inference [48–50] addresses the sampling prob-
lem equation (2) using optimization, typically with a lower computational cost compared to
MCMC. The objective function, often chosen to be the KL divergence between the target
distribution and a variational distribution, is minimized to get a closest approximate distribu-
tion within the variational distribution family. Gaussian distributions and Gaussian mixtures
are often used as the variational distribution [33, 51–53]. The concept of natural gradients
[28, 30–33] has been widely used to derive efficient optimization algorithms for variational
inference. These algorithms typically require evaluations of gradient information for the log
density. We also note that the Gaussian and Gaussian mixture ansatz has been used in conjunc-
tion with the Dirac–Frenkel variational principle to solve time-dependent PDEs of wave func-
tions and probability densities [54, 55]. When the PDE is the Fisher–Rao gradient flow, these
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methods can recover the parameter dynamics obtained by natural gradient flow in variational
inference [56].

1.5.3. Fisher–RaoGradient Flow. The Fisher–Rao gradient flow plays a key role in the design
of sampling algorithms studied in this paper. There is a vast literature on the use of gradi-
ent flows of the KL divergence in the density space, employing different metric tensors, for
sampling. We specifically focus on the Fisher–Rao metric, introduced by C.R. Rao [57], to
derive the gradient flow equation (3), as it is the only metric, up to scaling, invariant under
any diffeomorphism of the parameter space [58–60]. This invariance leads to a gradient flow
converging at a rate independent of the target distribution. In practice, the Fisher–Rao gradient
flow and its simulation by birth-death processes have been used in SMC samplers to reduce the
variance of particle weights [4] and accelerate Langevin sampling [23, 24, 26] and statistical
learning [61]. Kernel approximation of the flow has also been considered [46, 62]. Gaussian
approximation of the Fisher–Rao gradient flow is studied in [27], with close connections to
natural gradient methods in variational inference.

1.5.4. Kalman methodology. The Kalman methodology encompasses a general class of
approaches for solving filtering and inverse problems. They are based on replacing the
Bayesian inference step in a filter, which may be viewed as governed by a prior to pos-
terior map, by an approximate transport map which is exact for Gaussians; inverse problems
are solved by linking them to a filter. Ensemble Kalman methods give rise to derivative-free
algorithms, and are appropriate for solving filtering and inverse problems in which the desired
probability distribution is close to Gaussian [35, 43, 63–65].

Beyond Gaussian approximations, a strand of research has extended Kalman filters to oper-
ate on Gaussian mixtures [66–73]. These methods model both prior and posterior distributions
using Gaussian mixture distributions, leveraging a componentwise application of the Kalman
methodology for each Gaussian component. Various techniques, such as recluster analysis
and resampling techniques [74–78], as well as localization techniques [79–81], have been
developed to enhance the robustness of these approaches. Nevertheless, existing methods in
this category are tailored to transform a Gaussian mixture prior into a Gaussian mixture pos-
terior; they can be understood as a Gaussian mixture approximation of the dynamics in SMC.
The resulting methods lack full exploration of the space of possible solutions. In contrast,
GMKI incorporates gradient flows, resulting in theoretical advantages manifest in its analysis.
In practice, GMKI’s exploration component enables effective traversal of the solution space,
leading to robust performance without weight collapse.

1.6. Organization

The paper is organized as follows. In section 2, we introduce the Fisher–Rao gradient flow
and the exploration-exploitation scheme for discretizing the flow in time. In section 3, the
Gaussian approximation approach for spatial approximation is reviewed. In section 4, the pro-
posed GMKI approach is presented, which relies on the Gaussian mixture approximation and
Kalman methodology. In section 5, the continuous time dynamics of the GMKI approach is
derived and analyzed. In section 6, numerical experiments are provided. We make concluding
remarks in section 7.
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2. Fisher–Rao gradient flow

In the following two subsections, we (i) briefly describe the Fisher–Rao gradient flow in the
time-continuous settings; and (ii) introduce our operator splitting approach for simulating this
flow in practice.

2.1. Continuous flow

In this paper we focus on the gradient flow arising from using the KL divergence

KL [ρ‖ρpost] =
ˆ
ρ log

(
ρ

ρpost

)
dθ = Eρ [logρ− logρpost] (5)

as the energy functional, along with the Fisher–Rao metric tensor MFR(ρ)−1ψ = ρψ; the res-
ulting gradient flow has the form (see [22, section 4.1])

∂ρt
∂t

=−MFR (ρt)
−1 δKL [ρt‖ρpost]

δρ

= ρt (logρpost − logρt)− ρtEρt [logρpost − logρt] . (6)

We have the following uniform exponential convergence result for this flow ([22, theorem 4.1];
see also related results in [23–25, 82]):

Proposition 1. Let ρt satisfy equation (6). Assume there exist constants K,B> 0 such that the
initial density ρ0 satisfies

e−K(1+|θ|2) ⩽ ρ0 (θ)

ρpost (θ)
⩽ eK(1+|θ|2), (7)

and ρ0,ρpost have bounded second moments

ˆ
|θ|2ρ0 (θ)dθ ⩽ B,

ˆ
|θ|2ρpost (θ)dθ ⩽ B. (8)

Then, for any t⩾ log
(
(1+B)K

)
,

KL [ρt‖ρpost]⩽ (2+B+ eB)Ke−t. (9)

Accurate numerical simulation of equation (6) thus has the potential to exhibit uniform
exponential convergence across a wide range of targets ρpost.

2.2. Time-stepping via operator splitting

As a first step towards the derivation of an algorithm, we apply operator splitting to
equation (6). Abusing notation we let ρn denote our approximation of ρtn at time t= tn = n∆t,
where ∆t denotes the time step, and solve sequentially

∂ρ̂t
∂t

=−ρ̂t (log ρ̂t−Eρ̂t [log ρ̂t]) , ρ̂tn = ρn, tn ⩽ t⩽ tn+1, (10)

and
∂ρ̌t
∂t

= ρ̌t (logρpost −Eρ̌t [logρpost]) , ρ̌tn = ρ̂tn+1 , tn ⩽ t⩽ tn+1. (11)

7



Inverse Problems 40 (2024) 125001 Y Chen et al

The map ρn 7→ ρn+1 is then defined by setting ρn+1 = ρ̌tn+1 . Further abusing notation we write
ρ̂tn+1 = ρ̂n+1 and ρ̌tn+1 = ρ̌n+1. Note that all of ρn, ρ̂n+1 and ρ̌n+1 are functions of θ. Both
equations (10) and (11) admit explicit solutions and we may write

ρ̂n+1 (θ)∝ ρn (θ)
e−∆t

, (12a)

ρ̌n+1 (θ)∝ ρ̂n+1 (θ)ρpost (θ)
∆t
. (12b)

Furthermore, using the first order approximation e−∆t ≈ 1−∆t and the explicit formula (2)
for ρpost, we obtain the following time-stepping scheme:

ρ̂n+1 (θ)∝ ρn (θ)
1−∆t

, (13a)

ρn+1 (θ)∝ ρ̂n+1 (θ)ρpost (θ)
∆t ∝ ρ̂n+1 (θ)e

−∆tΦR(θ). (13b)

It is worth mentioning that the first order approximation corrects the bias introduced by
the operator splitting, ensuring that ρpost remains the fixed point of this time-stepping scheme.
Moreover, the step (13a) and equation (10) can be interpreted as the Fisher–Rao gradient flow
of the negative entropy termEρ[logρ], which tends to increase entropy by expanding the distri-
bution to explore the state space. In contrast, equation (13b) multiplies the current distribution
by the ‘posterior function’ to exploit the data and prior information, concentrating towards
regions of high posterior density. It is worth noting that the exploration-exploitation concept
distinguishes the present approach from SMC [4] and other homotopy based approaches for
sampling [83], which instead rely on the updating rule

ρn+1 (θ)∝ ρn (θ)e
−∆tΦ(θ)

to deform the prior into the posterior in one unit time. The iteration equation (13) is first pro-
posed as the basis for sampling algorithms in [43] as a methodology to remedy the ensemble
collapse of EKI in long time asymptotics; however, the connection to gradient flows is not
pointed out. We note that the iteration equation (13) also connects to the tempering (or
annealing) approaches that are commonly used in the Monte Carlo literature [84–86]. Finally
equation (13) can also be interpreted as an entropic mirror descent algorithm in optimization
[87].

The exploration-exploitation time-stepping scheme equation (13) inherits the convergence
property of the continuous flow; see proposition 2. The proof can be found in appendix A.

Proposition 2. Under the assumptions in proposition 1, let ρn solve equation (13), then for
any n⩾ | log((1+B)K)log(1−∆t) |, it holds that

KL [ρn‖ρpost]⩽ (2+B+ eB)K(1−∆t)n . (14)

3. Gaussian approximation and Kalman methodology

In this section, we discuss the Gaussian approximation of the scheme equation (13) through
the Kalman methodology. In doing so we review the necessary techniques and pave the way
for constructing our Gaussian mixture approximations in the next section.

In [43], the authors used Gaussian distributions to approximate the evolution of densities
defined by equation (13). More precisely, assume ρn =N (mn,Cn). Then, the first exploration
step equation (13a) leads to

ρ̂n+1 =N
(
m̂n+1, Ĉn+1

)
=N

(
mn,

1
1−∆t

Cn

)
. (15)
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The distribution still remains Gaussian. However, the second exploitation step equation (13b)
will map out of the space of Gaussian densities, unless ΦR is quadratic. In [43], the Kalman
methodology is employed to approximate equation (13b), which is similar to the analysis step
in the Kalman filter. More precisely, the methodology starts with the following artificial inverse
problem:

x= F (θ)+ ν, (16)

where we have

x=

[
y
r0

]
F (θ) =

[
G (θ)
θ

]
Σν =

[
Ση 0
0 Σ0

]
. (17)

Here, we set the prior on θ as ρ̂n+1(θ), and the observation noise ν ∼N (0, 1
∆tΣν). Following

Bayes rule, the posterior distribution of the artificial inverse problem is

ρ(θ|x) = ρ̂n+1 (θ)ρ(x|θ)
ρ(x)

∝ ρ̂n+1 (θ)e
−∆tΦR(θ) = ρn+1 (θ) , (18)

which matches the output of the step equation (13b). Here we used the fact that equation (2)
can be rewritten as

ΦR (θ) =
1
2
‖Σ− 1

2
ν (x−F (θ))‖2. (19)

The Kalman methodology for approximating the posterior ρ(θ|x) may now be adopted. One
first forms a Gaussian approximation of the joint distribution of θ and F(θ)+ ν, via standard
moment matching, yielding

ρG (θ,F (θ)+ ν)∼N

([
θ
x

]
;

[
m̂n+1

x̂n+1

]
,

[
Ĉn+1 Ĉθx

n+1

ĈθxT
n+1 Ĉxxn+1

])
, (20)

where m̂n+1, Ĉn+1 are as specified previously, and

x̂n+1 = E [F (θ)] , Ĉθx
n+1 = Cov [θ,F (θ)] ,

Ĉxxn+1 = Cov [F (θ)+ ν] = Cov [F (θ)]+
1
∆t

Σν .
(21)

In the above, the expectation and covariance are taken over θ ∼ ρ̂n+1. These integrals can be
computed using Monte Carlo methods or quadrature rules.

Then, one can condition the joint Gaussian distribution equation (20) on the event F(θ)+
ν = x, to get a Gaussian approximation of the posterior ρ(θ|x). In detail, using the Gaussian
conditioning formula, one obtains

ρn+1 (θ)≈ ρG (θ|F (θ)+ ν = x) =N (θ;mn+1,Cn+1) , (22a)

where

mn+1 = m̂n+1 + Ĉθx
n+1

(
Ĉxxn+1

)−1
(x− x̂n+1) , (23a)

Cn+1 = Ĉn+1 − Ĉθx
n+1

(
Ĉxxn+1

)−1(
Ĉθx
n+1

)T
. (23b)

Combining the two updates equations (15) and (23) leads to a Gaussian approximation
scheme for solving the discrete Fisher–Rao gradient flow equation (13). The scheme is based
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on the Kalman methodology and is derivative free. Some theoretical and numerical studies of
this scheme can be found in [43].

Remark 1. We can connect the Gaussian approximation based on the Kalman methodology
and the approximation equation (4) obtained by Gaussian variational inference. To do so we
consider the continuous time limit of equation (23), calculated in [43, equation (A.2)], as

dmt

dt
= Ĉθx

t Σ−1
ν (x− x̂t) ,

dCt
dt

= Ct− Ĉθx
t Σ−1

ν

(
Ĉθx
t

)T
, (24)

where x̂t = Eρt [F(θ)], Ĉθx
t = Eρt

[(
θ−m

)
⊗
(
F(θ)−EF(θ)

)]
and the expectation is taken

with respect to the distribution ρt(θ) =N (θ;mt,Ct). We can view equation (24) as a derivative-
free approximation of equation (4) through the statistical linearization [42, section 4.3.2]
approach. More precisely, by Stein’s identity which utilizes the integration by parts formula
for Gaussian measures, we have the relation Eρt [∇θF(θ)] = C−1

t Ĉθx
t . Statistical linearization

makes the approximation ∇θF(θ)≈ C−1
t Ĉθx

t for all θ; the approximation is exact when F is
linear. Based on it, we can approximate the right hand side in the equation of the mean in
equation (4) as follows:

CtEρt [∇θ logρpost] = CtEρt

[
∇θF (θ)Σ−1

ν (x−F (θ))
]
≈ Ĉθx

t Σ−1
ν (x− x̂t) , (25)

where in the first identity we used the fact ρpost ∝ exp(− 1
2‖Σ

−1/2
ν (F(θ)− x)‖2), and we used

the statistical linearization approximation in the last derivation.
The stochastic linearization essentially approximates∇θF(θ) by a constant vector (which

is why the term linearization is used); under this approximation, the Hessian ∇θ∇θF(θ) is
zero6. Based on this fact, we obtain, for the equation of the covariance in equation (4), that

Ct−CtEρt [∇θ∇θ logρpost]Ct ≈ Ct−CtEρt

[
∇θF (θ)Σ−1

ν ∇θF (θ)
T
]
Ct

≈ Ct− Ĉθx
t Σ−1

ν

(
Ĉθx
t

)T
.

(26)

Thus, we recover equation (24). In this sense, we can understand the Kalman methodology
in the continuous limit as applying a statistical linearization approximation to the dynamics
obtained in variational inference.

4. GMKI

In this section, we study the use of Gaussian mixture models to approximate the evolution
ρn 7→ ρn+1 defined by equation (13). We assume that at step n the distribution has the form of
a K-component Gaussian mixture:

ρn (θ) =
K∑
k=1

wn,kN (θ;mn,k,Cn,k) ,

where wn,k ⩾ 0,
∑K

k=1wn,k = 1. It remains to specify updates of the weights and Gaussian
components, through the map defined by equation (13). In the two subsequent subsections, we
consider steps (13a) and (13b) respectively.

6 We can also interpret this step through the Gauss–Newton approximation.
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4.1. The exploration step

The first step equation (13a), ρ̂n+1(θ)∝ ρn(θ)
1−∆t, is not closed in the space of K-component

Gaussian mixtures. Thus, we choose to approximate ρ̂n+1 by a new Gaussian mixture model

ρ̂n+1 ≈ ρ̂GMn+1 =
K∑
k=1

ŵn+1,kN
(
θ; m̂n+1,k, Ĉn+1,k

)
.

Note that ρn(θ)1−∆t = ρn(θ)
−∆tρn(θ). We will determine the parameters of the new

Gaussian mixture model by applying Gaussian moment matching7 to each component
ρn(θ)

−∆twn,kN (θ;mn,k,Cn,k) in ρn(θ)−∆tρn(θ). More specifically, we first rewrite the power
of a Gaussian mixture as follows:

ρ̂n+1 (θ)∝

(
K∑
k=1

wn,kN (θ;mn,k,Cn,k)

)1−∆t

=
K∑
k=1

wn,kN (θ;mn,k,Cn,k)

(
K∑
i=1

wn,iN (θ;mn,i,Cn,i)

)−∆t


=

K∑
k=1

[
fn,k (θ)N

(
θ;mn,k,

Cn,k
1−∆t

)]
,

where

fn,k (θ) =
(2π)

∆tNθ
2

(1−∆t)
Nθ
2

w1−∆t
n,k det(Cn,k)

∆t
2

(
wn,kN (θ;mn,k,Cn,k)∑K
i=1wn,iN (θ;mn,i,Cn,i)

)∆t

.

We approximate each component above by a Gaussian distribution:

fn,k (θ)N
(
θ;mn,k,

Cn,k
1−∆t

)
≈ ŵn+1,kN

(
θ; m̂n+1,k, Ĉn+1,k

)
, (27)

where we set

ŵn+1,k =

ˆ
fn,k (θ)N

(
θ;mn,k,

Cn,k
1−∆t

)
dθ, (28a)

m̂n+1,k =
1

ŵn+1,k

ˆ
θfn,k (θ)N

(
θ;mn,k,

Cn,k
1−∆t

)
dθ, (28b)

Ĉn+1,k =
1

ŵn+1,k

ˆ
(θ− m̂n+1,k)(θ− m̂n+1,k)

T fn,k (θ)N
(
θ;mn,k,

Cn,k
1−∆t

)
dθ. (28c)

Here, we determine ŵn+1,k, m̂n+1,k, and Ĉn+1,k by moment matching of both sides in
equation (27). These integrals can be evaluated by Monte Carlo method or quadrature rules.
Then, we normalize {ŵn+1,k}k=Kk=1 so that their summation is 1. The updates (28) determine
ρ̂GMn+1.

7 Such approximation along with our exploitation step will connect our GMKI to Gaussian mixture variational infer-
ence (GMVI) and natural gradient; see remark 2.
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4.2. The exploitation step

The second step equation (13b) leads to

ρn+1 (θ)∝ ρ̂GMn+1 (θ)e
−∆tΦR(θ)

∝
K∑
k=1

ŵn+1,kN
(
θ; m̂n+1,k, Ĉn+1,k

)
e−∆tΦR(θ).

Now, the goal is to approximate the above ρn+1 by a K-component Gaussian mixture∑K
k=1wn+1,kN (θ;mn+1,k,Cn+1,k). We adopt the Kalman methodology described in section 3,

to update each Gaussian component individually such that

ŵn+1,kN
(
θ; m̂n+1,k, Ĉn+1,k

)
e−∆tΦR(θ) ≈ wn+1,kN (θ;mn+1,k,Cn+1,k) . (29)

More precisely, following (23), for each 1⩽ k⩽ K, we obtain themean and covariance updates
as

mn+1,k = m̂n+1,k+ Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1
(x− x̂n+1,k) ,

Cn+1,k = Ĉn+1,k− Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1(
Ĉθx
n+1,k

)T
,

(30)

where

x̂n+1,k = E [F (θ)] Ĉθx
n+1,k = Cov [θ,F (θ)] Ĉxxn+1,k = Cov [F (θ)]+

1
∆t

Σν ,

with θ ∼N (θ; m̂n+1,k, Ĉn+1,k). The weight wn+1,k is estimated by matching equation (29) via
integration

wn+1,k = ŵn+1,k

ˆ
N
(
θ; m̂n+1,k, Ĉn+1,k

)
e−∆tΦR(θ)dθ. (31)

Equations (28), (30) and (31) define our GMKI algorithm, which leads to an iteration of
Gaussian mixture approximations of equation (13) without using derivatives. As mentioned
in section 3, the updates involve Gaussian integration equation (28), (30), (31), which can
be approximated via Monte Carlo or quadrature rules. In this paper, we use the Monte Carlo
method to approximate equation (28); these integrations do not require the forward evaluations
so are inexpensive. Furthermore, we use the modified unscented transform detailed in [43,
definition 1] to approximate equations (30) and (31), which requires (2Nθ + 1)K forward eval-
uations; these evaluations can be computed in parallel. The detailed algorithm is presented in
appendix B.

5. Theoretical analysis

In this section, theoretical studies of our GMKI methodology are presented, through a continu-
ous time analysis. In section 5.1, we discuss the exploration effect of the first step equation (28)
of our GMKI. In section 5.2, we investigate the convergence properties of our GMKI method
in scenarios where the posterior follows a Gaussian distribution, as well as in cases where it
corresponds to a Gaussian mixture with well-separated Gaussian components. The analysis
of the continuous time limit also allows us to connect GMKI with other variational inference
approaches based on Gaussian mixtures. A schematic of properties of GMKI is also shown in

12
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Figure 1. Schematic of properties of GMKI. TheGrey curve represents the posterior dis-
tribution. Blue curves represent Gaussian components of the Gaussian mixture approx-
imation. From left to right: Gaussian components can exhibit exponential convergence
toward their respective Gaussian modes if these modes are well separated (see propos-
ition 7); the repulsion between distinct Gaussian components in the iteration of GMKI
helps explore the space and capture multiple modes (see section 5.1); when multiple
Gaussian components converge towards a single Gaussian mode in the posterior distri-
bution, they can provide a good approximation of the Gaussianmode (see proposition 6);
GMKI can capture multiple modes even when these modes are intertwined (see numer-
ical examples in section 6.1).

figure 1. In section 5.3, we discuss the affine invariance property of our GMKI. We summarize
the conclusions of the theoretical studies in section 5.4.

5.1. Exploration effect

In the derivation of GMKI, the first step equation (28) is designed to approximate the explor-
ation phase of the Fisher–Rao gradient flow equation (13a). In this subsection, we investigate
whether the exploration effect still persists with the approximation made by GMKI. In fact,
equation (28) tends to expand the distribution for exploration in the following two ways: (1)
repulsion between Gaussian components; and (2) by an increase of the entropy. The repulsion
effect can be understood through the following continuous time limit analysis. In this analysis
we abuse notation, replacing the subscript n in the discrete iterations by t, which equals n∆t
in the continuous limit of the means, covariances and weights of the the Gaussian mixture.

Proposition 3. The continuous time limit (∆t→ 0) of the exploration step equation (28) is

ṁt,k =−
ˆ

N (θ;mt,k,Ct,k)(θ−mt,k) logρt (θ)dθ, (32a)

Ċt,k =−
ˆ

N (θ;mt,k,Ct,k)
(
(θ−mt,k)(θ−mt,k)

T−Ct,k
)
logρt (θ)dθ, (32b)

ẇt,k =−wt,k
ˆ

[N (θ;mt,k,Ct,k)− ρt (θ)] logρt (θ)dθ. (32c)

Here ρt(θ) =
∑K

k=1wt,kN (θ;mt,k,Ct,k).

The proof is in C.1. The continuous time limit of the evolution equation of the mean
equation (32a) suggests that, if K⩾ 2, mt,k will move towards the direction where ρt is small.

13
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Indeed, let us consider a specific scenario where Nθ = 1, K= 2 and mt,1 < mt,2, In this case,
we have that

ṁt,1 =−
ˆ

(θ−mt,1)N (θ;mt,1,Ct,1) logρt (θ)dθ

=−
ˆ
θ>mt,1∪θ<mt,1

(θ−mt,1)N (θ;mt,1,Ct,1) logρt (θ)dθ

=−
ˆ
θ>mt,1

(θ−mt,1)N (θ;mt,1,Ct,1)(logρt (θ)− logρt (2mt,1 − θ))dθ

< 0,

(33)

where the third equality results from the change of variable θ→ 2mt,1 − θ. And the last
inequality is due to the fact that

logρt (θ)− logρt (2mt,1 − θ) = log
wt,1N (θ;mt,1,Ct,1)+wt,2N (θ;mt,2,Ct,2)

wt,1N (θ;mt,1,Ct,1)+wt,2N (2mt,1 − θ;mt,2,Ct,2)
.

The right hand side is non-negative, since when θ > mt,1, we have |mt,2 − 2mt,1 + θ|= (mt,2 −
mt,1)+ (θ−mt,1)> |mt,2 − θ| and henceN (2mt,1 − θ;mt,2,Ct,2)<N (θ;mt,2,Ct,2). Similarly,
we can also establish that ṁt,2 > 0. Hence these two Gaussian means are repulsed.

We can also understand the exploration effect through the increase of the entropy; see pro-
position 4. The proof can be found in C.2.

Proposition 4. The entropy of the Gaussian mixture

ρt (θ) =
K∑
k=1

wt,kN (θ;mt,k,Ct,k)

obtained from equation (32) is non-decreasing; indeed:

d
dt

ˆ
−ρt logρtdθ =

K∑
k=1

(
ẇ2
t,k

wt,k
+wt,kṁ

T
t,kC

−1
t,k ṁt,k+

wt,k
2
tr
[
ĊTt,kC

−1
t,k Ċt,kC

−1
t,k

])
⩾ 0. (34)

5.2. Convergence analysis

To provide insights for the convergence of GMKI, we consider its continuous limit in time.
Similar to equation (32), the continuous time limit of our GMKI is given in proposition 5. The
proof is in C.3.

Proposition 5. The continuous time limit (∆t→ 0) of the proposedGMKI defines the evolving
Gaussian mixture measure

ρt (θ) =
K∑
k=1

wt,kN (θ;mt,k,Ct,k)

where

ṁt,k =−Ct,k

ˆ
N (θ;mt,k,Ct,k)∇θ logρt (θ)dθ+ Ĉθx

t,kΣ
−1
ν (x− x̂t,k) , (35a)

Ċt,k =−Ct,k

(ˆ
N (θ;mt,k,Ct,k)∇θ∇θ logρt (θ)dθ

)
Ct,k− Ĉθx

t,kΣ
−1
ν ĈTt,k, (35b)

ẇt,k =−wt,k

ˆ
[N (θ;mt,k,Ct,k)− ρt (θ)] [logρt (θ)+ΦR (θ)]dθ. (35c)
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Here

x̂t,k = E [F (θ)] , Ĉθx
t,k = Cov [θ,F (θ)] , with θ ∼N (mt,k,Ct,k) . (36)

Remark 2. We can also connect the continuous limit in proposition 5 with the classical vari-
ational inference approach based on Gaussian mixtures. In fact, equation (35) can be obtained
by combining natural gradient methods in the Gaussian mixture context and derivative-free
Kalman approximation (similar to remark 1); see appendix C.8.

To gain insight into the convergence properties of the continuous flow, we first study
equation (35) for the Gaussian posterior case; the proof can be found in C.4.

Proposition 6 (linear inverse problems). Assume G(θ) = G · θ is linear, and the posterior is
Gaussian with the form

ΦR (θ) =
1
2
(θ−mpost)

TC−1
post (θ−mpost) .

Then, the KL divergence between the Gaussian mixture

ρt (θ) =
K∑
k=1

wt,kN (θ;mt,k,Ct,k)

obtained from equation (35) and ρpost is non-increasing:

d
dt
KL [ρt‖ρpost] =−

K∑
k=1

(
ẇ2
t,k

wt,k
+wt,kṁ

T
t,kC

−1
postṁt,k+

wt,k
2
tr
[
ĊTt,kC

−1
t,k Ċt,kC

−1
t,k

])
⩽ 0. (37)

Furthermore, the mean and Fisher information matrix of stationary points ρ∞(θ) =∑
kw∞,kN (θ;m∞,k,C∞,k) satisfy that

K∑
k=1

w∞,km∞,k = mpost, FIM [ρ∞] =

ˆ
∇θρ∞∇θρ

T
∞

ρ∞
dθ = C−1

post. (38)

Remark 3. Proposition 6 shows that, if the posterior is Gaussian, then the KL divergence of the
GMKI is non-increasing in time. Furthermore, the Gaussianmixture converges to a distribution
ρ∞ from which the correct Gaussian statistics can be extracted. Nevertheless, from our current
proof, it is not yet known whether ρ∞ converge to ρpost. We leave this question for future study.

Finally, we provide some formal analysis for the convergence of our GMKI in scenarios
where the posterior distribution is close to Gaussian mixture with the same number of com-
ponents, namely

ρpost (θ)∝ exp(−ΦR (θ))∝∼

K∑
k=1

w∗
kN (θ;m∗

k ,C
∗
k ) with inf

1⩽k⩽K
w∗
k > 0.

For simplicity, we assume these Gaussian components are well separated. It is technical to give
a precise definition of the well-separatedness of different Gaussian components; our argument
here is purely formal and serves to provide insights for the behavior of GMKI. Suppose the
kth Gaussian componentN (θ;mk(0),Ck(0)) in GMKI is close to its corresponding mode (e.g.
the kth mode) of ρpost while becoming well separated from other Gaussian components. In
such case, we may simplify the continuous time limit equation (35) by neglecting the inter-
action between different Gaussian components. The simplified continuous time dynamics and
its property are presented in proposition 7, with derivations in appendix C.5.
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Proposition 7. Consider the simplified continuous time dynamics

ṁt,k = Ct,k (C
∗
k )

−1
(m∗

k −mt,k) , (39a)

Ċt,k = Ct,k−Ct,k (C
∗
k )

−1Ct,k, (39b)

ẇt,k = wt,k

(
logw∗

k − logwt,k−
K∑
i=1

wt,i (logw
∗
i − logwt,i)

)
. (39c)

Then, mt,k, Ct,k, and wt,k will converge to m∗
k , C

∗
k , and w

∗
k exponentially fast.

The proof of proposition 7 can be found in appendix C.6.

5.3. Affine invariance

Sampling methods are said to be affine invariant if the algorithm is unchanged under any
invertible affine mapping. It is a consequence of such a property that convergence rates across
all Gaussians with positive covariance are the same.More generally affine invariant algorithms
can be highly effective for highly anisotropic distributions [88, 89]. This effectiveness stems
from their consistent behavior across all coordinate systems related by affine transformations.
Specifically, the convergence properties of these methods can be understood by examining the
optimal coordinate system, which minimizes anisotropy to the fullest extent, across all affine
transformations. With this in mind, the following is of interest in relation to GMKI:

Proposition 8. The continuous time limit in proposition 5 is affine invariant. Specifically, for
any invertible affine mapping φ : θ→ θ̃ = Aθ+ b, and define corresponding scalar, vector,
and matrix transformations

w̃t,k = wt,k m̃t,k = Amt,k+ b C̃t,k = ACt,kA
T,

and function transformations

F̃
(
θ̃
)
= F

(
A−1

(
θ̃− b

))
Φ̃R

(
θ̃
)
=ΦR

(
A−1

(
θ̃− b

))
.

The evolution equations of w̃t,k, m̃t,k and C̃t,k remain the same, retaining the structure of the
GMKI evolutions in equation (35).

The proof of proposition 8 can be found in appendix C.7.

5.4. Summary of theoretical analyses

Combining insights from propositions 3, 6 to 8, we anticipate that the repulsion between dis-
tinct Gaussian components will enable the proposed methodology GMKI to capture possible
modes of the posterior distribution more effectively. Moreover, the algorithm will converge
efficiently to modes of the posterior when these modes are well separated. Finally, we note
that the affine invariance property of the GMKI shows that it will be effective for the approx-
imation of certain highly anisotropic distributions.

6. Numerical study

In this section, we present numerical studies regarding the proposed GMKI algorithm. We
focus on posterior distributions of unknown parameters or fields arising in inverse problems
that may exhibit multiple modes. Three types of model problems are considered:
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(i) A one-dimensional bimodal problem: we use this problem as a proof-of-concept example.
Our result demonstrates that the convergence rate remains unchanged nomatter how over-
lapped the two modes are. This implies the independence of the convergence rate regard-
ing potential barriers.

(ii) A two-dimensional bimodal problem: we use this benchmark problem, introduced in [65,
90], to compare GMKI with other sampling methods such as the Langevin dynamics and
birth death process [24]. Our result shows that GMKI is not only more accurate but also
more cost-effective for this specific problem.

(iii) A high-dimensional bimodal problem: we consider the inverse problem of recovering the
initial velocity field of the Navier–Stokes flow. The problem is designed to have a sym-
metry which induces two modes in the posterior. We show that GMKI can capture both
modes efficiently; this indicates GMKI’s potential for addressing multimodal problems
in large-scale and high-dimensional applications.

Regarding the parameter of the GMKI algorithm (B), we will specify in detail the number
of mixtures K in each problem. For all experiments, we use the time-step size ∆t= 0.5 and
adopt J= 1000 points for the Monte Carlo estimation of equation (28).

6.1. One-dimensional bimodal problem

We first consider the following 1D bimodal inverse problem, associated with a forward model

y= G (θ)+ η with y= 1, G (θ) = θ2.

We assume the prior is ρprior ∼N (3,22) and consider different noise levels:

Case A: η ∼N
(
0,0.22

)
;

Case B: η ∼N
(
0,0.52

)
;

Case C: η ∼N
(
0,1.02

)
;

Case D: η ∼N
(
0,1.52

)
.

Note that the overlap between these two modes is larger when the noise strength is larger. For
case A, the two modes are well separated, and for case D, the two modes are nearly mingled.

We apply GMKI with K= 1, 2, and 3 modes, which are randomly initialized according to
the prior distribution; we assign them equal weights. In each iteration, the GMKI algorithm
requires 3, 6, and 9 forward evaluations, respectively. The reference posterior distribution is
obtained by evaluating the unnormalized posterior on a uniform grid and then normalizing it.

The results for different cases are reported from figure 2. Each row first shows the reference
posterior and posteriors approximated by GMKI at the 30th iteration, using different mode
numbers K= 1, 2, 3 from left to right. And the fourth figure shows the convergence in terms
of the total variation (TV) distance. When K= 1, we can only capture one mode, and this of
course will not be weighted correctly since it will have weight one by construction; whenK= 2
or 3, we can capture both modes. It is worth mentioning that GMKI converges in fewer than 30
iterations. The convergence behavior appears independent of the potential barrier. For case A,
where the twomodes are well separated, the approximated posteriors by GMKIwithK= 2 or 3
match verywell with the reference. This observation justifies our formal analysis in proposition
7. For cases B,C,D, we observe that GMKI is capable of capturing both modes, however, some
discrepancy will arise in the region where the modes overlap. These discrepancies persist when
increasing the mode number in GMKI from K= 2 to K= 3.
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Figure 2. The one-dimensional bimodal problem withΣη values of 0.22 (top), 0.52 (top
middle), 1.02 (bottom middle), and 1.52 (bottom). Each panel displays the reference
posterior distribution (grey square lines) and posterior distributions estimated by the
GMKI (blue lines) at the 30th iteration with mode number K= 1, 2, 3 (from left to
right) with mean mk (colored) and initial mean (black) of each Gaussian component
marked. The fourth figure shows the total variation distance between the reference pos-
terior distribution and the posterior distributions estimated by the GMKI with mode
number K= 1, 2, 3.

6.2. Two-dimensional bimodal problem

In this subsection, we consider the 2D bimodal inverse problem from [90, 91], associated with
the forward model

y= G (θ)+ η with y= 4.2297, G (θ) =
(
θ(1) − θ(2)

)2
.

18



Inverse Problems 40 (2024) 125001 Y Chen et al

Figure 3. Two-dimensional bimodal problem with ρprior ∼N (0, I). From left to right:
reference posterior distribution (left), posterior distributions estimated by 3-modal
GMKI (middle left) at the 30th iteration (means mk (colored) and initial means (black)
are marked), BDLS-KL [24] (middle right) at the 1000th iteration, and total variation
distance between the reference posterior distribution and the posterior distributions
estimated by the GMKI (right).

Figure 4. Two-dimensional bimodal problem with ρprior ∼N ([0.5,0]T, I). From left
to right: reference posterior distribution (left), posterior distributions estimated by 3-
modal GMKI (middle left) at the 30th iteration (means mk (colored) and initial means
(black) are marked), BDLS-KL [24] (middle right) at the 1000th iteration, and total vari-
ation distance between the reference posterior distribution and the posterior distributions
estimated by the GMKI (right).

Here θ = [θ(1),θ(2)]
T. We assume the noise distribution is η ∼N (0, I) and consider two dif-

ferent prior distributions:

Case A: ρprior ∼N (0, I) ;

Case B: ρprior ∼N
(
[0.5,0]T , I

)
.

For case A, the two modes are symmetric with respect to the line θ(1) − θ(2) = 0, while for
case B, the two modes are not symmetric.

We apply GMKI with K= 3 modes, which are randomly initialized based on the prior dis-
tribution and we assign these components with equal weights. In each iteration, the algorithm
requires (2Nθ + 1)K= 15 forward evaluations. The reference posterior distribution is obtained
by evaluating the unnormalized posterior on a uniform grid and then normalizing it. For both
case A and case B, the estimated posterior distributions obtained by the GMKI are presented
in figures 3 and 4. We observe a strong correspondence with the reference, where in GMKI,
mode 1 converges to one target mode, while mode 2 and mode 3 converge to another target
mode. Moreover, the evolution of the TV distance indicates rapid convergence.

As a comparison, the derivative-free affine-invariant Langevin dynamics (dfALDI) [64,
65] and derivative-free Bayesian inversion using multiscale dynamics [90] with 106 iterations
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have been used for sampling the posterior distribution for case A. Their results are repor-
ted in [90, figure 5], where dfALDI fails while multiscale dynamics can capture both modes
but with wrong weights. The local preconditioner, which involves employing local empirical
covariance with distance-dependent weights as introduced in [91], gives rise to an alternative
derivative-free affine-invariant Langevin dynamics sampling approach. That approach notably
enhances the sampling results in these scenarios. Moreover, for both case A and case B, we
apply the BDLS-KL algorithm proposed in [24], which is a gradient-based sampler relying
on the birth-death dynamics with kernel density estimators to approximate the Wasserstein–
Fisher–Rao gradient flow. For the implementation of BDLS-KL, we use ∆t= 10−2, T = 10,
ensemble size J= 103, and the RBF kernel k(x,x ′) = exp( 1h‖x− x ′‖2) with the bandwidth
h=med2/ logJ adopted from [92]; here med2 is the squared median of the pairwise Euclidean
distance between the current particles. The results are shown in figures 3 and 4. For both
cases, GMKI is not only more cost-effective but also more accurate compared to these exist-
ing approaches. Moreover, to study the behavior of GMKI in higher-modal problems, a two-
dimensional four-modal problem is presented in appendix D, leading to a similar conclusion.

6.3. High-dimensional bimodal problem: Navier Stokes problem

Finally, we study the problem of recovering the initial vorticity field ω0 of a fluid flow from
measurements at later times. The flow is described by the 2DNavier–Stokes equation on a peri-
odic domain D= [0,2π]× [0,2π], which can be written in the vorticity-streamfunction ω−ψ
formulation:

∂ω

∂t
+(v ·∇)ω− ν∆ω =∇× f,

ω =−∆ψ
1

4π2

ˆ
ψ = 0 v=

[
∂ψ

∂x2
,− ∂ψ

∂x1

]T
+ vb.

(40)

Here v denotes the velocity vector, ν= 0.01 denotes the viscosity, vb = [0,2π]T denotes the
non-zero mean background velocity, and f(x) = [0,cos(4x(1))]T denotes the external forcing.

The problem is built to be spatially symmetric with respect to x(1) = π. The source of the
fluid is chosen such that

∇× f
([
x(1),x(2)

]T)
=−∇× f

([
2π− x(1),x(2)

]T)
.

The observations in the inverse problem are chosen as the difference of pointwise measure-
ments of the vorticity value ω(·)

ω
([
x(1),x(2)

]T)−ω
([

2π − x(1),x(2)
]T)

at 56 equidistant points in the left domain (see figure 5), at T = 0.25 and T = 0.5, corrupted
with observation error η ∼N (0,0.12I). Under this set-up, bothω0([x(1),x(2)]T) and−ω0([2π−
x(1),x(2)]T) will lead to the same measurements. Thus the inverse problem will be at least bi-
modal.

We assume the prior of ω0(x,θ) is a Gaussian field with covariance operator C= (−∆)−2,
subject to periodic boundary conditions, on the space of mean zero functions. The correspond-
ing KL expansion of the initial vorticity field is given by

ω0 (x,θ) =
∑
l∈K

θc(l)
√
λlψ

c
l (x)+ θs(l)

√
λlψ

s
l (x) , (41)
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Figure 5. The vorticity field ω at T = 0.25 and T = 0.5 and observations
ω([x(1),x(2)]

T)−ω([2π − x(1),x(2)]T) at 56 equidistant points (solid black dots).
Their mirroring points are marked (empty black dots).

Figure 6. The true initial vorticity field ω0(x;θref), and recovered initial vorticity fields
ω0(x;mk) obtained by GMKI.

where L= {(lx, ly)|lx+ ly > 0or (lx+ ly = 0and lx > 0)}, and the eigenpairs are of the form

ψcl (x) =
cos(l · x)√

2π
ψsl (x) =

sin(l · x)√
2π

λl =
1
|l|4

,

and θc(l),θ
s
(l) ∼N (0,2π2). The KL expansion equation (41) can be rewritten as a sum over

positive integers rather than a lattice:

ω0 (x,θ) =
∞∑
l=1

θ(l)
√
λlψl (x) , (42)

where the eigenvalues λl are in descending order. We truncate the expansion to the first 128
terms and generate the true vorticity field ω0(x;θref) with θref ∈ R128; we aim to recover the
parameter based on observation data.

We employ GMKI with K= 3 modes, which are randomly initialized based on prior distri-
bution with equal weights. Since we have 3 modes and Nθ = 128, in each iteration, we require
(2Nθ + 1)K= 771 forward evaluations. We depict the true initial vorticity field ω0(x;θref), its
mirrored field (the mirroring of the velocity field induces the antisymmetry in the vorticity
field) and the three recovered initial vorticity fields ω0(x;mk) obtained by GMKI at the 50th
iteration in figure 6. Mode 1 captures the mirroring field of ω0(x;θref) and mode 2 and mode 3
capture ω0(x;θref). Figure 7 presents the relative errors of the vorticity field, the optimization
errorsΦR(mn,k), the Frobenius norm ‖Cn,k‖F and the Gaussian mixture weights wn,k (from left
to right). It shows that our GMKI converges in fewer than 50 iterations. Figure 8 displays the
marginals of the estimated posterior distributions associated with the first 16 theta coefficients
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Figure 7. Navier–Stokes flow problem: the relative errors of the initial vorticity field, the
optimization errors ΦR(mn,k), the Frobenius norm ∥Cn,k∥F, and the Gaussian mixture
weights wn,k (from left to right) for different modes.

Figure 8. Navier–Stokes flow problem: the true Karhunen–Loeve expansion paramet-
ers θ(i) (black crosses), and mean estimations of θ(i) for each modes (circles) and the
associated marginal distributions obtained GMKI at the 50th iteration.

obtained by GMKI. The marginal distributions exhibit clear bimodality, and the approximate
posteriors have a high probability covering the true coefficients.

7. Conclusion

In this paper, we have presented a new framework for solving Bayesian inverse problems. The
framework is based on the Fisher–Rao gradient flow. Within this framework, we introduce a
novel approach, GMKI, which leverages Gaussian mixtures and Kalman’s methodology for
numerical approximations of the the flow. GMKI is particularly useful when the posterior
distribution has multiple modes and when the derivative of the forward model is not available
or computationally expensive.

We derive the continuous time dynamics of the GMKI, showing its connection to GMVI,
and studying its exploration effects and convergence properties. Our numerical experiments
showcase GMKI’s capability in approximating posterior distributions with multiple modes.
GMKI outperforms many existing Bayesian inference methods in terms of efficiency and
accuracy.

There can be numerous avenues for future research. On the algorithmic side, it is of interest
to refine the approximations employed by GMKI in regions where the mixture compon-
ents overlap significantly; see the experimental results in section 6.1. Moreover, although the
Kalman methodology achieves a derivative-free implementation, it may suffer from degen-
eracy issues when the modes of the distribution concentrate on a low dimensional manifold;
for a demonstration see appendix E. Therefore, improving the derivative-free methodology in
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such a scenario is important for enhancing GMKI. On the theoretical side, a thorough analysis
of the convergence of GMKI for general target distribution could offer valuable insights for
its practical application.
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Appendix A. Convergence of the exploration-exploitation scheme for the
Fisher–Rao gradient flow

Proof of proposition 2. The solution of the Fisher–Rao gradient flow equation (3) has an
analytical solution

ρt (θ) =
1
Zt
ρ0 (θ)

e−t

ρpost (θ)
1−e−t

,
ρt (θ)

ρpost (θ)
=

1
Zt

(
ρ0 (θ)

ρpost (θ)

)e−t

. (A.1)

where Zt is the normalization constant. The update equation (13) leads to

ρn (θ) =
1
Zn
ρ0 (θ)

(1−∆t)n
ρpost (θ)

1−(1−∆t)n
,

ρn (θ)

ρpost (θ)
=

1
Zn

(
ρ0 (θ)

ρpost (θ)

)(1−∆t)n

, (A.2)

where Zn is the normalization constant. By comparing equation (A.2) and equation (A.1), we
have

ρn (θ) = ρt (θ) for t=−n log(1−∆t) .

Bringing t=−n log(1−∆t) into equation (9) leads to

KL [ρn‖ρpost] = KL
[
ρ−n log(1−∆t)‖ρ

]
⩽ (2+B+ eB)K(1−∆t)n , (A.3)

when −n log(1−∆t)⩾ log((1+B)K).
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Appendix B. Gaussian mixture Kalman inversion algorithm

The detailed algorithm is presented in algorithm 1. There are four hyperparameters: the number
of mixturesK, the time-step size∆t, the number of particles J for Monte Carlo integration, and
the number of iterations N. Increasing K enhances the expressiveness of the Gaussian mixture
model but also increases computational cost. Therefore, we recommend choosing K based on
available computational resources and prior knowledge of the number of target modes. Once
all modes are captured, there is no need to increase K further. A larger J improves the accuracy
of integration approximations, but it also increases computational cost. In the experiments, we
adopt J= 1000. The time step ∆t lies within the range (0, 1). While a larger ∆t accelerates
convergence, it may also cause numerical instability. However, we found that∆t= 0.5 strikes
a good balance between stability and efficiency. All of these parameters can be chosen adapt-
ively, which we plan to explore in future work. Moreover, in our implementation, we store
logw instead of w, and hence w will never actually reach zero. Additionally, for efficiency, we
avoid zero weights by setting a lower bound (e.g. 10−10) for w.

Appendix C. Theoretical studies about GMKI

C.1. Proof of proposition 3

Update equation equation (28) and the normalization of weights {ŵn+1,k}k can be combined
and rewritten as

ŵn+1,k =
wn,k
´
N (θ;mn,k,Cn,k)ρ−∆t

n dθ´
ρ1−∆t
n dθ

, (C.1a)

m̂n+1,k =

´
θN (θ;mn,k,Cn,k)ρ−∆t

n dθ´
N (θ;mn,k,Cn,k)ρ

−∆t
n dθ

, (C.1b)

Ĉn+1,k =

´
(θ− m̂n+1,k)(θ− m̂n+1,k)

TN (θ;mn,k,Cn,k)ρ−∆t
n dθ´

N (θ;mn,k,Cn,k)ρ
−∆t
n dθ

. (C.1c)

Now we derive the continuous time limit of the exploration step; we ignore the hat notation
for simplicity.

ŵn+1,k−wn,k
∆t

= wn,k

´
[N (θ;mn,k,Cn,k)− ρn]ρ

−∆t
n dθ

∆t
´
ρ1−∆t
n dθ

= wn,k

´
[N (θ;mn,k,Cn,k)− ρn] (1−∆t logρn)dθ

∆t
+O (∆t)

=−wn,k
ˆ

[N (θ;mn,k,Cn,k)− ρn] logρndθ+O (∆t) ,

(C.2)

where in the second identity, we used ρ−∆t
n = e−∆t logρn = 1−∆t logρn+O(∆2). Therefore

the continuous limit can be written as

ẇt,k =−wt,k
ˆ

[N (θ;mt,k,Ct,k)− ρt (θ)] logρt (θ)dθ .
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Algorithm 1. Gaussian mixture Kalman inversion.

Input: initial guess {w0,k,m0,k,C0,k}Kk=1, time-step size ∆t, number of iterations N,
number of particles J for Monte Carlo, forward model F
Output: final solution {wN,k,mN,k,CN,k}Kk=1

for n← 0 to N− 1 do
for k← 1 to K do

Sample {θj}Jj=1 ∼N (θ;mn,k,
Cn,k
1−∆t ), first step update

ŵn+1,k =
1
J

∑J
j=1 fn,k

(
θj
)

m̂n+1,k =
1

ŵn+1,kJ

∑J
j=1 θ

jfn,k
(
θj
)

Ĉn+1,k =
1

ŵn+1,k(J−1)

∑J
j=1

(
θj− m̂n+1,k

)(
θj− m̂n+1,k

)T
fn,k

(
θj
)

end for
Normalize ŵn+1,k :=

ŵn+1,k∑K
k=1 ŵn+1,k

for k← 1 to K do ▷Apply modified unscented transform [43, equation (37)]
Generate sigma-points (a=max{ 18 ,

1
2Nθ
})

θ0k = m̂n+1,k

θjk = m̂n+1,k+
1√
2a

[√
Ĉn+1,k

]
j

(1⩽ j⩽ Nθ)

θ
j+Nθ
k = m̂n+1,k− 1√

2a

[√
Ĉn+1,k

]
j

(1⩽ j⩽ Nθ)

Approximate the mean and covariance

x̂n+1,k := F
(
θ0k
)

Ĉθx
n+1,k :=

∑2Nθ
j=1 a

(
θjk− m̂n+1,k

)(
F
(
θjk

)
− x̂n+1,k

)T
Ĉxxn+1,k :=

∑2Nθ
j=1 a

(
F
(
θjk

)
− x̂n+1,k

)(
F
(
θjk

)
− x̂n+1,k

)T
+ 1

∆tΣν

Second step update

mn+1,k = m̂n+1,k+ Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1
(x− x̂n+1,k)

Cn+1,k = Ĉn+1,k− Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1
ĈθxT
n+1,k

wn+1,k = ŵn+1,ke
−∆tΦR(θ0

k)

end for
Normalize wn+1,k :=

wn+1,k∑K
k=1 wn+1,k

end for

Similarly, for mn,k we have

m̂n+1,k−mn,k

∆t
=

´
(θ−mn,k)N (θ;mn,k,Cn,k)ρ−∆t

n dθ

∆t
´
N (θ;mn,k,Cn,k)ρ

−∆t
n dθ

=

´
(θ−mn,k)N (θ;mn,k,Cn,k)(1−∆t logρn)dθ

∆t
+O (∆t)

=−
ˆ

N (θ;mn,k,Cn,k)(θ−mn,k) logρn (θ)dθ+O (∆t)

=−Cn,k
ˆ

N (θ;mn,k,Cn,k)∇θ logρn (θ)dθ+O (∆t) ,

(C.3)
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where in the last identity, we used integration by parts; it is also known as the Stein’s identity.
Thus the continuous limit is

ṁt,k =−
ˆ

N (θ;mt,k,Ct,k)(θ−mt,k) logρt (θ)dθ.

Finally, for Cn,k, we have

Ĉn+1,k−Cn,k
∆t

=

´ [
(θ− m̂n+1,k)(θ− m̂n+1,k)

T−Cn,k
]
N (θ;mn,k,Cn,k)ρ−∆t

n dθ

∆t
´
N (θ;mn,k,Cn,k)ρ

−∆t
n dθ

=

´ [
(θ− m̂n+1,k)(θ− m̂n+1,k)

T−Cn,k
]
N (θ;mn,k,Cn,k)(1−∆t logρn)dθ

∆t
´
N (θ;mn,k,Cn,k)(1−∆t logρn)dθ

+O (∆t)

=

´ [
(θ− m̂n+1,k)(θ− m̂n+1,k)

T−Cn,k
]
N (θ;mn,k,Cn,k)(1−∆t logρn)dθ

∆t
+O (∆t)

=−
ˆ [

(θ−mn,k)(θ−mn,k)
T−Cn,k

]
N (θ;mn,k,Cn,k) logρndθ+O (∆t)

=−Cn,k
ˆ

N (θ;mn,k,Cn,k)∇θ∇θ logρndθCn,k+O (∆t) , (C.4)

where in the fourth identity, we used equation (C.3) m̂n+1,k = mn,k+O(∆t). And in the last
identity, we used integration by parts. Finally, this leads to the desired continuous limit stated
in the proposition.

C.2. Proof of proposition 4

The evolution equation of the entropy of ρt is

d
dt

ˆ
−ρt logρtdθ

=−
ˆ

dρt
dt

logρtdθ

=−
∑
k

ẇt,k

ˆ
N (θ;mt,k,Ct,k) logρtdθ

−
∑
k

wkṁ
T
t,kC

−1
t,k

ˆ
(θ−mt,k)N (θ;mt,k,Ct,k) logρtdθ

−
∑
k

wt,k
2

tr

[
ĊTt,k

ˆ (
C−1
t,k (θ−mt,k)(θ−mt,k)

TC−1
t,k −C−1

t,k

)
N (θ;mt,k,Ct,k) logρtdθ

]

=
∑
k

(
ẇ2
t,k

wt,k
+wt,kṁ

T
t,kC

−1
t,k ṁt,k+

wt,k
2

tr
[
Ċt,kC

−1
t,k Ċt,kC

−1
t,k

])
. (C.5)

Here we have used the fact
´ dρt

dt dθ = 0 in the first identity. And in the second identity we used
the fact that

∑
k ẇt,k = 0 and used the continuous time limit equations equation (32).
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C.3. Proof of proposition 5

Combining proposition 3 and equation (30) leads to the following

mn+1,k−mn,k

∆t
=
m̂n+1,k−mn,k

∆t
+
Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1
(x− x̂n+1,k)

∆t

=−Cn,k
ˆ

N (θ;mn,k,Cn,k)∇θ logρn (θ)dθ+ Ĉθx
n,kΣ

−1
ν (x− x̂n,k)+O (∆t) .

× Cn+1,k−Cn,k
∆t

=
Ĉn+1,k−Cn,k

∆t
−
Ĉθx
n+1,k

(
Ĉxxn+1,k

)−1
ĈθxT
n+1,k

∆t

=−Cn,k
ˆ

N (θ;mn,k,Cn,k)∇θ∇θ logρn (θ)dθCn,k− Ĉθx
n,kΣ

−1
ν ĈθxT

n,k +O (∆t) .

(C.6)

Using the above formula, we obtain the continuous limit. For the weights, we have

wn+1,k =
ŵn+1,k

´
N
(
θ; m̂n+1,k, Ĉn+1,k

)
e−∆tΦR(θ)dθ´

ρ̂n+1e−∆tΦR(θ)dθ
. (C.7a)

Therefore,

wn+1,k−wn,k
∆t

=
wn+1,k− ŵn+1,k

∆t
+
ŵn+1,k−wn,k

∆t

= ŵn+1,k

´ [
N
(
θ; m̂n+1,k, Ĉn+1,k

)
− ρ̂n+1

]
e−∆tΦRdθ

∆t
´
ρ̂n+1e−∆tΦRdθ

+
ŵn+1,k−wn,k

∆t
+O (∆t)

= ŵn+1,k

´ [
N
(
θ; m̂n+1,k, Ĉn+1,k

)
− ρ̂n+1

]
(1−∆tΦR)dθ

∆t

+
ŵn+1,k−wn,k

∆t
+O (∆t)

=−wn,k
ˆ

[N (θ;mn,k,Cn,k)− ρn] (logρn+ΦR)dθ+O (∆t) ,

(C.8)

from which we readily obtain the continuous limit for the equation of the weights. Here in the
last step we used the result in C.1.

C.4. Proof of proposition 6

Under the Gaussian posterior assumption (i.e.ΦR is quadratic) and based on the formula in (25)
and (26), we get

Ĉθx
t,kΣ

−1
ν (x− x̂t,k) =−Ct,k

ˆ
N (θ;mt,k,Ct,k)∇θΦRdθ, (C.9)

Ĉθx
t,kΣ

−1
ν ĈTt,k = Ct,k

(ˆ
N (θ;mt,k,Ct,k)∇θ∇θΦRdθ

)
CTt,k. (C.10)
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Bringing equation (C.9) into the continuous time dynamics equation (35) and using integration
by parts (also known as Stein’s identities) leads to

ṁt,k =−Ct,k

ˆ
N (θ;mt,k,Ct,k)∇θ (logρt+ΦR)dθ

=−
ˆ

N (θ;mt,k,Ct,k)(θ−mt,k)(logρt+ΦR)dθ, (C.11a)

Ċt,k =−
ˆ

N (θ;mt,k,Ct,k)∇θ∇θ (logρt+ΦR)dθ

=−
ˆ

N (θ;mt,k,Ct,k)
(
(θ−mt,k)(θ−mt,k)

T−Ct,k
)
(logρt+ΦR)dθ, (C.11b)

ẇt,k =−wt,k

ˆ
[N (θ;mt,k,Ct,k)− ρt] [logρt+ΦR]dθ. (C.11c)

The evolution equation of the KL divergence between ρt and ρpost is then

d
dt
KL [ρt‖ρpost] =

d
dt

ˆ
ρt log

(
ρt
ρpost

)
dθ =

ˆ
dρt
dt

(logρt+ΦR)dθ

=
∑
k

ẇt,k

ˆ
N (θ;mt,k,Ct,k)(logρt+ΦR)dθ

+
∑
k

wkṁ
T
t,kC

−1
t,k

ˆ
(θ−mt,k)N (θ;mt,k,Ct,k)(logρt+ΦR)dθ

+
∑
k

wt,k
2

tr

[
ĊTt,k

ˆ (
C−1
t,k (θ−mt,k)(θ−mt,k)

TC−1
t,k −C−1

t,k

)
×N (θ;mt,k,Ct,k)(logρt+ΦR)dθ]

=−
∑
k

(
ẇ2
t,k

wt,k
+wt,kṁ

T
t,kC

−1
t,k ṁt,k+

wt,k
2

tr
[
Ċt,kC

−1
t,k Ċt,kC

−1
t,k

])
.

(C.12)

Here in the last identity, we used the equation of the continuous time dynamics in (C.11) to
simplify the formula.

Consider any stationary point ρ∞ =
∑

kwk,∞N (θ;mk,∞,Ck,∞) with nonzero wk,∞. The
stationary point condition for the mean mk,∞ (C.11a) is

ˆ
N (θ;mk,∞,Ck,∞)∇θ logρ∞dθ =−C−1

post (mk,∞ −mpost) , (C.13)

where we used that
´
N (θ;m∞,k,C∞,k)∇θΦRdθ = C−1

post(mk,∞ −mpost). The stationary point
condition for the covariance Ck,∞ (C.11b) is

ˆ
N (θ;mk,∞,Ck,∞)∇θ∇θ logρ∞dθ =−C−1

post, (C.14)

where we used that
´
N (θ;m∞,k,C∞,k)∇θ∇θΦRdθ = C−1

post. Multiplying equations (C.13)
and (C.14) by wk,∞ and summing the results yields
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mpost −
∑
k

wk,∞mk,∞ = Cpost

ˆ ∑
k

wk,∞N (θ;mk,∞,Ck,∞)∇θ logρ∞dθ = 0,

C−1
post =−

ˆ ∑
wk,∞N (θ;mk,∞,Ck,∞)∇θ∇θ logρ∞dθ = FIM [ρ∞] .

(C.15)

C.5. Derivation of the simplified continuous time dynamics equation (39)

In this section, we formally derive equation (39), assuming these Gaussian components in ρpost
are well separated. When θ is close to m∗

k , one may make the following approximation

ΦR (θ) = logρpost (θ)≈− logN (θ,m∗
k ,C

∗
k )− log(w∗

k ) . (C.16)

Combining the definition of ΦR in equation (19) with equation (C.16) leads to that

−1
2
(x−F (θ))

T
Σ−1

ν (x−F (θ))≈−1
2
(θ−m∗

k )
TC∗−1

k (θ−m∗
k )+ constant. (C.17)

This implies that F(θ) is approximately locally linear around m= m∗
k with F(θ)≈ Fkθ+ c,

such that FTkΣ
−1
ν Fk = C∗−1

k and C∗
kF

T
kΣ

−1
ν (x− c) = m∗

k . Based on the above derivation, when
the kth component N (θ;mt,k,Ct,k) in the Gaussian mixture approximation is concentrating
around m∗

k , the expectation and covariance in the continuous time limit of the proposed
GMKI (36) can be approximated as

x̂t,k = E [F (θ)]≈ E [Fkθ+ c] = Fkmt,k+ c, (C.18a)

Ĉθx
t,k = Cov [θ,F (θ)]≈ E [(θ−mt,k)⊗ (Fk (θ−mt,k))] = Ct,kF

T
k . (C.18b)

Here the expectation are taken with respect to N (θ;mt,k,Ct,k).
Now we will simplify equation (35) by neglecting the interaction between well separated

Gaussian components to obtain equation (39). For the mean evolution equation (35a), we have

ṁt,k ≈−Ct,k
ˆ

N (θ;mt,k,Ct,k)∇θ log(wkN (θ;mt,k,Ct,k))dθ+ Ĉθx
t,kΣ

−1
ν (x− x̂t,k)

= Ĉθx
t,kΣ

−1
ν (x− x̂t,k)

≈ Ct,k (C
∗
k )

−1
(m∗

k −mt,k) .

(C.19)

The first approximation is obtained by substituting logρt with log(wkN (θ;mt,k,Ct,k)), due to
the well separateness assumption; the resulting integral is zero so leads to the second identity.
The third approximation is obtained by using equation (C.18) and the relation FTkΣ

−1
ν Fk =

C∗−1

k and C∗
kF

T
kΣ

−1
ν (x− c) = m∗

k .
For the covariance evolution equation (35b), similarly we have

Ċt,k ≈−Ct,k
(ˆ

N (θ;mt,k,Ct,k)∇θ∇θ log(wkN (θ;mt,k,Ct,k))dθ

)
Ct,k− Ĉθx

t,kΣ
−1
ν ĈTt,k

= Ct,k− Ĉθx
t,kΣ

−1
ν ĈTt,k

= Ct,k−Ct,k (C
∗
k )

−1Ct,k. (C.20)

The first approximation is obtained by substituting logρt with log(wkN (θ;mt,k,Ct,k)). The
third approximation is obtained by using equation (C.18).
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Finally, for the weight evolution equation (35c), using the formula ρt(θ) =∑
i

´
wt,iN (θ;mt,i,Ct,i), we get

ẇt,k =−wt,k
ˆ

N (θ;mt,k,Ct,k) logρt (θ)dθ+wt,k
∑
i

ˆ
wt,iN (θ;mt,i,Ct,i) logρt (θ)dθ

−wt,k

ˆ
N (θ;mt,k,Ct,k)ΦR (θ)dθ+wt,k

∑
i

ˆ
wt,iN (θ;mt,i,Ct,i)ΦR (θ)dθ

≈−wt,k
ˆ

N (θ;mt,k,Ct,k) log [wt,kN (θ;mt,k,Ct,k)]dθ

+wt,k
∑
i

ˆ
wt,iN (θ;mt,i,Ct,i) log [wt,iN (θ;mt,i,Ct,i)]dθ

+wt,k

ˆ
N (θ;mt,k,Ct,k)(logN (θ,m∗

k ,C
∗
k )+ log(w∗

k ))dθ

−wt,k
∑
i

ˆ
wt,iN (θ;mt,i,Ct,i)(logN (θ,m∗

i ,C
∗
i )+ log(w∗

i ))dθ

= wt,k

(
logw∗

k − logwt,k−
∑
i

wt,i (logw
∗
i − logwt,i)

)
.

(C.21)

The first approximation is obtained by substituting logρt with log(wkN (θ;mt,k,Ct,k)) and using
equation (C.16) for approximating ΦR(θ). Combining equations (C.19)–C.21) leads to the
simplified continuous time dynamics equation (39).

C.6. Proof of proposition 7

The mean, covariance and weight evolution equations (39a)–(39c) admit analytical solutions

mt,k = m∗
k + e−t

((
1− e−t

)
C∗−1

k + e−tCk (0)
−1
)−1

Ck (0)
−1

(mk (0)−m∗
k ) , (C.22a)

C−1
t,k = C∗−1

k + e−t
(
Ck (0)

−1 −C∗−1

k

)
, (C.22b)

wk =
w∗
k

(
wk(0)
w∗
k

)e−t

∑
i w

∗
i

(
wi(0)
w∗
i

)e−t . (C.22c)

They will converge to m∗
k , C

∗
k and w

∗
k exponentially fast.

C.7. Proof of proposition 8

Consider any invertible affine mapping φ : θ→ θ̃ = Aθ+ b, and define corresponding vector
and matrix transformations

m̃t,k = Amt,k+ b C̃t,k = ACt,kA
T,

density transformations

ρ̃
(
θ̃
)
= φ♯ρ(θ) = ρ

(
A−1

(
θ̃− b

))
|A|−1 N

(
θ̃; m̃t,k, C̃t,k

)
=N (θ;mt,k,Ct,k) |A|−1,
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function transformations

F̃
(
θ̃
)
= F

(
A−1

(
θ̃− b

))
Φ̃R

(
θ̃
)
=ΦR

(
A−1

(
θ̃− b

))
,

and their related expectation and covariance

x̃t,k = E
[
F̃
(
θ̃
)]
, C̃θx

t,k = Cov
[
θ̃, F̃

(
θ̃
)]
, with θ̃ ∼N

(
m̃t,k, C̃t,k

)
,

then we have

∇θ̃ log ρ̃
(
θ̃
)
= A−T∇θ logρ(θ) ∇θ̃∇θ̃ log ρ̃

(
θ̃
)
= A−T∇θ logρ(θ)A

−1

x̃t,k = x̂t,k C̃θx
t,k = AĈθx

t,k.
(C.23)

The evolution equations of m̃t,k, C̃t,k, wt,k in equation (35) can be rewritten as

˙̃mt,k =−ACt,k

ˆ
N (θ;mt,k,Ct,k)∇θ logρt (θ)dθ+AĈθx

t,kΣ
−1
ν (x− x̂t,k) ,

=− C̃t,k

ˆ
N
(
θ̃; m̃t,k, C̃t,k

)
∇θ̃ log ρ̃t

(
θ̃
)
dθ̃+ C̃θx

t,kΣ
−1
ν (x− x̃t,k) ,

˙̃Ct,k =−ACt,k

(ˆ
N (θ;mt,k,Ct,k)∇θ∇θ logρt (θ)dθ

)
Ct,kA

T−AĈθx
t,kΣ

−1
ν ĈθxT

t,k A
T,

=− C̃t,k

(ˆ
N
(
θ̃; m̃t,k, C̃t,k

)
∇θ̃∇θ̃ log ρ̃t

(
θ̃
)
dθ̃

)
C̃t,k− C̃θx

t,kΣ
−1
ν C̃θxT

t,k ,

ẇt,k =−wt,k

ˆ
[N (θ;mt,k,Ct,k)− ρt (θ)] [logρt (θ)+ΦR (θ)]dθ

=−wt,k

ˆ [
N
(
θ̃; m̃t,k, C̃t,k

)
− ρ̃t

(
θ̃
)][

log ρ̃t
(
θ̃
)
+Φ̃R

(
θ̃
)]

dθ̃.

Hence the continuous time limit equation equation (35) of GMKI is affine invariant.

C.8. Connections between the GMKI approach and GMVI

GMVI seeks to identify a minimizer of KL[ρGM‖ρpost], where

ρGM (θ;a) =
K∑
k=1

wkN (θ;mk,Ck)

is a K-component Gaussian mixture, parameterized by their means, covariances and weights
denoted by

a := [m1, . . .,mk, . . .,mK,C1.. . .,Ck, . . .,CK,w1, . . .,wk, . . .,wK] .

The derivatives of the KL divergence with respect to a are

∂KL
[
ρGM (·;a)‖ρpost

]
∂mk

= wk

ˆ
N (θ;mk,Ck)

(
∇θ logρ

GM −∇θ logρpost
)
dθ, (C.24a)

∂KL
[
ρGM (·;a)‖ρpost

]
∂Ck

=
wk
2

ˆ
N (θ;mk,Ck)

(
∇θ∇θ logρ

GM −∇θ∇θ logρpost
)
dθ,

(C.24b)
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∂KL
[
ρGM (·;a)‖ρpost

]
∂wk

=

ˆ
N (θ;mk,Ck)

(
log

ρGM

ρpost
+ 1

)
dθ. (C.24c)

The algorithm of natural gradient descent uses the finite dimensional version of the Fisher–
Rao metric tensor in the parameter space, also known as the Fisher information matrix with
the form

FI(a) =
ˆ

∇aρ
GM (θ;a)⊗∇aρ

GM (θ;a)
ρGM (θ;a)

dθ (C.25)

as the preconditioner for gradient descent. Here, wewrite down its continuous limit, namely the
natural gradient flow. To do so, we use the perspective of proximal point method and consider

an+1 =argminaKL
[
ρGM (·;a)‖ρpost

]
+

1
2∆t

〈
a− an,FI(an)(a− an)

〉
, (C.26a)

subject to
K∑
k=1

wn+1,k = 1. (C.26b)

By using the formula of derivatives in equation (C.24), the Lagrangian multiplier to handle
the constraint in the above optimization, and taking∆t→ 0, we arrive at the following natural
gradient flowṁk

Ċk
ẇk

= (FI(a))−1

 −wk
´
N (θ;mk,Ck)

(
∇θ logρGM −∇θ logρpost

)
dθ

−wk
2

´
N (θ;mk,Ck)

(
∇θ∇θ logρGM −∇θ∇θ logρpost

)
dθ

−
´ (

N (θ;mk,Ck)− ρGM
)
log
(

ρGM

ρpost

)
dθ

 . (C.27)

Computation of FI(a) is costly. For better efficiency, diagonal approximations of the Fisher
information matrix have been used in the literature [33], which leads to

FI(a)≈ diag
(
w1C

−1
1 , . . .,wkC

−1
k , . . .,wKC

−1
K ,w1X1, . . .,wkXk, . . .,wKXK,

× 1
w1
, . . .,

1
wk
, . . .,

1
wK

)
. (C.28)

where each Xk is a 4th order tensor satisfying

XkY=
1
4
C−1
k

(
Y+YT

)
C−1
k , ∀ Y ∈ RNθ×Nθ . (C.29)

Bringing the approximated Fisher information matrix equation (C.28) into the natural gradient
flow equation (C.27) leads to the following equation:

ṁk =−Ck
ˆ

N (θ;mk,Ck)
(
∇θ logρ

GM −∇θ logρpost
)
dθ,

Ċk =−Ck
(ˆ

N (θ;mk,Ck)
(
∇θ∇θ logρ

GM −∇θ∇θ logρpost
)
dθ

)
Ck,

ẇk =−wk
ˆ (

N (θ;mk,Ck)− ρGM
)
log

(
ρGM

ρpost

)
dθ.

(C.30)

This is the natural gradient flow with diagonal approximations of the Fisher information mat-
rix; its discretization is the approximate natural gradient descent algorithm that has been used
in the literature.
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By comparing equation (C.30) with the continuous-time limit of our GMKI as presented
in equation (35), we observe that our GMKI can be seen as a derivative-free approximation
of the approximate natural gradient descent. The approximation is made through stochastic
linearization, for∇θ logρpost and∇θ∇θ logρpost, based on the Kalman methodology explained
in remark 1.

For completeness, in the following part, we present a derivation of the diagonal approxima-
tions of the Fisher information matrix (C.28). LetNk denoteN (θ;mk,Ck) and δk,i be the indic-
ator function which is zero if and only if k= i. We can get equation (C.28) by only keeping the
diagonal blocks of FI(a) and approximating the diagonals under the assumptions that different
Gaussian components are well separated. More precisely, for the diagonal block regarding the
weight {wk}, we haveˆ

∇wkρ
GM ⊗∇wiρ

GM

ρGM
dθ =

ˆ
NkNi

ρGM
dθ ≈ δk,i

ˆ
NkNk

wkNk
dθ =

δk,i
wk
. (C.31)

Here we substitute ρGM by wkNk during its integration with Nk. We note that we will keep
using this approximation multiple times in the following derivations.

For the diagonal block regarding the mean mk, we have

ˆ
∇mkρ

GM ⊗∇miρ
GM

ρGM
dθ =

ˆ
wkwiNkNiC

−1
k (θ−mk)(θ−mi)

TC−1
i

ρGM
dθ

≈ δk,i

ˆ
w2
kN 2

k C
−1
k (θ−mk)(θ−mk)

TC−1
k

wkNk
dθ

= δk,iwkC
−1
k . (C.32)

For the diagonal block regarding the covariance Ck, we have

ˆ
∇Ckρ

GM⊗∇Ciρ
GM

ρGM
dθ

=

ˆ wkwiNkNi

(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C

−1
k

)
⊗
(
C−1
i (θ−mi)(θ−mi)

TC−1
i −C

−1
i

)
4ρGM

dθ

≈ δk,i

ˆ w2
kN 2

k

(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C

−1
k

)
⊗
(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C

−1
k

)
4wkNk

dθ

=
δk,i
4

ˆ
wkNk

(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C

−1
k

)
⊗
(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C

−1
k

)
dθ.

(C.33)

It is worth noting that equation (C.33) is a 4th order tensor. To gain a more detailed under-
standing of this term, let us denote

Xk : =
1
4

ˆ
Nk

(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C−1

k

)
⊗
(
C−1
k (θ−mk)(θ−mk)

TC−1
k −C−1

k

)
dθ

=
1
4

ˆ
N (y;0, I)C−1/2

k

(
yyT− I

)
C−1/2
k ⊗C−1/2

k

(
yyT− I

)
C−1/2
k dy

where y= C−1/2
k (θ−mk) .

(C.34)
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We can show that Xk satisfies equation (C.29). To do so note that the (ij, lm) entry of Xk has
the form

Xk [ij, lm] =
1
4

∑
r,s,p,q

C−1/2
k [i,r]C−1/2

k [j,s]C−1/2
k [l,p]C−1/2

k [m,q]

×
ˆ

(yrys− δr,s)(ypyq− δp,q)N (y;0, I)dy

=
1
4

∑
r,s,p,q

C−1/2
k [i,r]C−1/2

k [j,s]C−1/2
k [l,p]C−1/2

k [m,q] (δr,pδs,q+ δr,qδs,p)

=
1
4

(
C−1
k [i, l]C−1

k [j,m] +C−1
k [i,m]C−1

k [j, l]
)
.

Therefore,

(XkY)ij =
∑
l,m

Xk [ij, lm]Y [l,m]

=
1
4

∑
l,m

(
C−1
k [i, l]Y [l,m]C−1

k [j,m] +C−1
k [i,m]Y [l,m]C−1

k [j, l]
)

=
1
4

(
C−1
k YC−1

k +C−1
k YTC−1

k

)
ij
.

(C.35)

The proof is complete.

Appendix D. Two-dimensional four-modal problem

In this subsection, we consider a 2D four-modal inverse problem, associated with the forward
model

y= G (θ)+ η with y=

[
4.2297
4.2297

]
, G (θ) =

[(
θ(1) − θ(2)

)2(
θ(1) + θ(2)

)2
]
.

Here θ = [θ(1),θ(2)]
T. We assume the noise distribution is η ∼N (0, I) and consider the prior

distribution ρprior ∼N ([0.5,0]T, I). The reference posterior distribution has four modes with
varying weights. We apply GMKI with K= 3 and 6 modes, randomly initialized based on
the prior distribution, and assign equal weights to these components. The estimated posterior
distributions obtained by GMKI at the 30th iteration, along with the convergence in terms
of TV distance, are shown in figure D1. When K= 3 only three target modes are captured;
when K= 6, all target modes are captured, and the approximation error becomes significantly
smaller.

Appendix E. Limitation of the GMKI

There can be multimodal problems with many modes concentrating on a low dimensional
manifold. GMKI may fail in such a case. To illustrate, we consider the posterior distribution

exp(−ΦR(θ)) in R2, where ΦR(θ) =
(1−θ2

(1)−θ2
(2))

2

2σ2
η

and ση = 0.3. Clearly the mass is distrib-

uted along the unit circle, as depicted on the left side of figure E1. We sample this density with
GMKI and GMVI, described in equation (C.30). Note that GMKI can be seen as a derivat-
ive free approximation of GMVI so this study is for the purpose of understanding the effect
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Figure D1. Two-dimensional four-modal problem. From left to right: reference posterior
distribution (left), posterior distributions estimated by 3 and 6-modal GMKI (middle)
at the 30th iteration (means mk (colored) and initial means (black) are marked), and
total variation distance between the reference posterior distribution and the posterior
distributions estimated by the GMKI (right).

Figure E1. Circle shape posterior: reference posterior distribution (left), posterior dis-
tribution obtained by 10-modal GMKI (middle), posterior distribution obtained by 10-
modal GMVI (right). Means mk of Gaussian components are marked. In the middle,
the color appears lighter because the distribution is concentrated along a thin, elongated
line, resulting in a visually diluted effect.

of the derivative free approximation step. We and initialize both methods with 10 Gaussian
components with means randomly sampled from N (0, I) and the same identity covariance I.

The sampling results obtained by GMKI at the 30th iteration are presented in the middle of
figure E1. While the means of these Gaussian components migrate towards the unit circle, the
covariance associated with each Gaussian component are elongated in the tangent direction.
Consequently, the overall approximation of the target distribution is inaccurate. The covari-
ance of these Gaussian components bear resemblance to those seen in the Laplace approxim-
ation. Indeed, the Laplace approximation at any maximum a posteriori (MAP) of the target
distribution has the form N (θ;m,H†); here, m= [m(1),m(2)] lies on the unit circle and

H=−∇θ∇θΦR (θ) |θ=m =
4
σ2
η

[
m(2)

(1) m(1)m(2)

m(1)m(2) m2
(2)

]
. (E.1)

It is worth mentioning thatH exhibits singularity, particularly along the tangent direction of the
unit circle. Hence the Laplace approximation is degenerate and concentrates on the tangential
line of the unit circle at m.

To further explore this issue, we turn to use the algorithm for GMVI. This approach requires
the evaluation of the gradient and Hessian of logρpost. We approximate these Gaussian integ-
rations in equation (C.30) using the modified unscented transform, as detailed in [43, equation
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(37)].Moreover we employ a time-step of∆t= 0.01, which leads to a stable numerical scheme
in our implementation. The outcome of GMVI at the 1000th iteration is depicted in the right
of figure E1. The result matches the reference well. Since the main difference between GMVI
equation (C.30) and the continuous time dynamics of GMKI is the derivative-free Kalman
approximation for the gradient terms ∇θ logρpost and ∇θ∇θ logρpost, we understand that the
Kalman approximation step leads to the failure of GMKI for sampling the above distribution.
It is the goal of future study to investigate other derivative free approximations that can cir-
cumvent this failure.
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