
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{N}\mathrm{U}\mathrm{M}\mathrm{E}\mathrm{R}. \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}

\mathrm{V}\mathrm{o}\mathrm{l}. 62, \mathrm{N}\mathrm{o}. 6, \mathrm{p}\mathrm{p}. 2549--2587

THE MEAN-FIELD ENSEMBLE KALMAN FILTER:
NEAR-GAUSSIAN SETTING\ast 

J. A. CARRILLO\dagger , F. HOFFMANN\ddagger , A. M. STUART\ddagger , AND U. VAES\S 

Abstract. The ensemble Kalman filter is widely used in applications because, for high-
dimensional filtering problems, it has a robustness that is not shared, for example, by the parti-
cle filter; in particular, it does not suffer from weight collapse. However, there is no theory which
quantifies its accuracy as an approximation of the true filtering distribution, except in the Gaussian
setting. To address this issue, we provide the first analysis of the accuracy of the ensemble Kalman
filter beyond the Gaussian setting. We prove two types of results: The first type comprises a stability
estimate controlling the error made by the ensemble Kalman filter in terms of the difference between
the true filtering distribution and a nearby Gaussian, and the second type uses this stability result
to show that, in a neighborhood of Gaussian problems, the ensemble Kalman filter makes a small
error in comparison with the true filtering distribution. Our analysis is developed for the mean-field
ensemble Kalman filter. We rewrite the update equations for this filter and for the true filtering
distribution in terms of maps on probability measures. We introduce a weighted total variation
metric to estimate the distance between the two filters, and we prove various stability estimates for
the maps defining the evolution of the two filters in this metric. Using these stability estimates, we
prove results of the first and second types in the weighted total variation metric. We also provide a
generalization of these results to the Gaussian projected filter, which can be viewed as a mean-field
description of the unscented Kalman filter.
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1. Introduction.

1.1. Context. This paper is concerned with the study of partially and noisily
observed dynamical systems. Filtering refers to the sequential updating of the prob-
ability distribution of the state of the (possibly stochastic) dynamical system, given
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2550 CARRILLO, HOFFMANN, STUART, AND VAES

partial noisy observations [3, 44, 53]. The Kalman filter, introduced in 1960, provides
an explicit solution to this problem in the setting of linear dynamical systems, linear
observations, and additive Gaussian noise [39]; the desired probability distribution
is Gaussian, and the Kalman filter provides explicit update formulae for the mean
and covariance. The extended Kalman filter is a linearization-based methodology
which was developed in the 1960s and 1970s to apply to situations beyond the linear-
Gaussian setting [37]. It is, however, not practical in high dimensions because of the
need to compute and sequentially update large covariance matrices [30]. To address
this issue, the ensemble Kalman filter was introduced in 1994 [25], using ensemble-
based low-rank approximations of the covariances, and is a method well adapted to
high-dimensional problems. The unscented Kalman filter, introduced in 1997, pro-
vides an alternative approach to nonlinear and non-Gaussian problems [38], using
quadrature to approximate covariance matrices, and is well adapted to problems of
moderate dimension. The particle filter [21] is a provably convergent methodology for
approximating the filtering distribution [11, 52]. However, it does not scale well to
high-dimensional problems [4, 58]; this motivates the increasing adoption of ensemble
Kalman methods.

Over the past two decades, ensemble Kalman filters have found widespread use
in the geophysical sciences, are starting to be used in other application domains,
and have been developed as a general purpose tool for solving inverse problems; for
reviews of such developments, see [9, 26, 27]. Despite widespread and growing adop-
tion, theory quantifying the accuracy of the ensemble Kalman filter, in relation to
the true filtering distribution, is limited. Two exceptions are the important contribu-
tions [45, 47], which concern accuracy in the large particle limit in the setting where
the underlying filtering problem is Gaussian. However, there is no proof that the
ensemble Kalman methodology can accurately approximate the desired filtering dis-
tribution beyond the Gaussian setting. Indeed, in general, the methodology does not
correctly reproduce the filtering distribution; for examples and analysis in the setting
of filtering and Bayesian inverse problems, see [1, 45] and [23], respectively. The aim
of our work is to address this issue by proving accuracy of the ensemble Kalman filter
beyond the Gaussian setting; specifically, our analysis applies when the true filtering
distribution is close to Gaussian after appropriate lifting to the joint space of state
and data. We perform the analysis for the mean-field ensemble Kalman filter, focus-
ing on quantifying the effect of the Gaussian approximation underlying the ensemble
Kalman filter. We also study the Gaussian projected filter; this filter can be seen
as a mean-field version of the unscented Kalman filter. Both the ensemble and the
unscented Kalman mean-field models are defined in [9].

The three primary contributions of our paper are (i) to establish finite time sta-
bility estimates in an appropriate weighted TV metric which enables control of first-
and second-order moments for various nonlinear maps required to define the nonlin-
ear Markov processes determining filter evolution, (ii) to use these results to establish
stability estimates controlling the error made by the mean-field ensemble Kalman
filter in terms of the difference between the true filtering distribution and a nearby
Gaussian, and (iii) to deploy these estimates to prove closeness of the mean-field en-
semble Kalman filters and the true filtering distribution in the near-Gaussian setting.
These results are also established for the mean-field unscented Kalman filter. As
well as making the three primary contributions, the work suggests many questions
for further analysis, and the numerical analysis framework we deploy (``consistency
plus stability implies convergence"") is a natural one in which to pursue these ques-
tions. In particular, we assume bounded vector fields and discuss only finite time
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2551

error; overcoming these assumptions requires new ideas and is outside the scope of
this first paper.

Although our study of the accuracy of ensemble Kalman filters beyond the Gauss-
ian setting is new, there exists a growing body of literature analyzing ensemble Kalman
methods from different perspectives. In the context of long-time behavior, the papers
[41, 63, 16, 13] focus primarily on the accuracy of the filter in approximating the
true trajectory over long time intervals; in contrast, the papers [31, 40] demonstrate
a mechanism for filter divergence, an obstacle to obtaining accuracy. Localization
is widely used in practice and important to consider for an overall understanding of
ensemble Kalman filter performance; see [62, 64]. For analysis of filters in high di-
mensions, see [59, 46]. For continuous-time and mean-field limits, see [42, 43, 24]. In
the context of inverse problems, see [36, 56, 57, 35, 34].

1.2. Overview of paper. In subsection 1.3, which follows, we define useful no-
tation employed throughout the paper. Then, in subsection 1.4, we define the filtering
problem as employed throughout the paper, building on this notation. Section 2 in-
troduces the mean-field ensemble Kalman filter and proves our main approximation
theorem in the near-Gaussian setting; the theorem is based on a stability estimate
which transfers distance between the true filter and its Gaussian projection into the
distance between the true filter and the ensemble Kalman filter. In section 3, we
define and then state and prove related theory for the Gaussian projected filter. Al-
though we provide theorems of a type not seen before for nonlinear Kalman filters
and new methods of analysis to derive them, our work leads to many substantial open
problems; we conclude in section 4 by highlighting those we have identified as being of
particular value to advancing the field. The reader may wish to study the concluding
section 4, in conjunction with our setup in section 2, to understand the specific prob-
lem formulation for our main theorems and to appreciate the substantial challenges
to be met in order to build on and go beyond our theorems. The key auxiliary results
underpinning the proof of our main theorems are given in Appendices B and C; these
rely on technical results presented in Appendix A.

1.3. Notation. The Euclidean vector norm is denoted by | \bullet | , and the corre-
sponding operator norm on matrices is denoted by \| \bullet \| . For a symmetric positive
definite matrix S\in Rn\times n, the notation | \bullet | S refers to the weighted norm | S - 1/2\bullet | . For
a function m : Rn \rightarrow R and r \geqslant 0, we let BL\infty (m,r) denote the L\infty ball of radius
r, centered at m, and let | \bullet | C0,1 denote the C0,1 seminorm, namely, the Lipschitz
constant.

We use symbol \bot \bot to denote independence of two random variables. For m\in Rn

and \Sigma \in Rn\times n, the notation \scrN (m,\Sigma ) denotes the Gaussian distribution with mean
m and covariance C. The notation \scrP (Rn) denotes the set of probability measures
over Rn, and \scrP p(Rn) is the set of probability measures over Rn with finite moments
up to order p. The notation \scrP c(R

n) is the set of probability measures over Rn with
continuous density with respect to the Lebesgue measure, and the notation \scrG (Rn)
denotes the set of Gaussian probability measures over Rn. We also introduce the
Gaussian projection operator G : \scrP 2(Rn)\rightarrow \scrG (Rn) given by

G\mu =\scrN 
\bigl( 
\scrM (\mu ),\scrC (\mu )

\bigr) 
.

We observe [5] that

G\mu = argmin
\nu \in \scrG 

KL(\mu \| \nu ),
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2552 CARRILLO, HOFFMANN, STUART, AND VAES

where KL(\mu \| \nu ) is the Kullback--Leibler (KL) divergence of \mu from \nu , defined in (B.30).
Note that G defines a nonlinear mapping. We refer to G as a projection because of
its characterization as finding the closest point to \mu with respect to the KL(\mu \| \bullet ) di-
vergence. Throughout this paper, all probability measures have continuous Lebesgue
density because of our assumptions concerning the noise structure in the dynam-
ics model and the data acquisition model. Thus, we abuse notation by using the
same symbols for probability measures and their densities. For a probability measure
\mu \in \scrP (Rn), the notation \mu (u) for u\in Rn refers to the Lebesgue density of \mu evaluated
at u, whereas \mu [f ] for a function f : Rn \rightarrow R is a shorthand notation for

\int 
Rn fd\mu .

The notations \scrM (\mu ) and \scrC (\mu ) denote, respectively, the mean and covariance
under \mu :

\scrM (\mu ) = \mu [u], \scrC (\mu ) = \mu [(u - \scrM (\mu ))\otimes (u - \scrM (\mu ))] .

The notation \scrP R(R
n) for R\geqslant 1 refers to the subset of \scrP (Rn) of probability measures

whose first and second moments satisfy the bound

| \scrM (\mu )| \leqslant R,
1

R2
In \preccurlyeq \scrC (\mu )\preccurlyeq R2In.(1.1)

Here In denotes the identity matrix in Rn\times n, and \preccurlyeq is the partial ordering defined
by the convex cone of positive semidefinite matrices. Similarly, \scrG R(R

n) is the subset
of \scrG (Rn) of probability measures satisfying (1.1).

For a probability measure \pi \in \scrP (Rd \times RK) associated with random variable
(u, y) \in Rd \times RK , we use the notation \scrM u(\pi ) \in Rd, \scrM y(\pi ) \in RK for the means
of the marginal distributions and the notation \scrC uu(\pi ) \in Rd\times d, \scrC uy(\pi ) \in Rd\times K , and
\scrC yy(\pi )\in RK\times K for the blocks of the covariance matrix \scrC (\pi ). That is to say,

\scrM (\pi ) =

\biggl( 
\scrM u(\pi )
\scrM y(\pi )

\biggr) 
, \scrC (\pi ) =

\biggl( 
\scrC uu(\pi ) \scrC uy(\pi )
\scrC uy(\pi )T \scrC yy(\pi )

\biggr) 
.

Throughout this work, we employ the following weighted total variation distance.

Definition 1.1. Let g : Rn \rightarrow [1,\infty ) be given by g(v) = 1 + | v| 2. We define the
weighted total variation metric dg : \scrP 2(Rn)\times \scrP 2(Rn)\rightarrow R by

dg(\mu 1, \mu 2) = sup
| f | \leqslant g

\bigm| \bigm| \mu 1[f ] - \mu 2[f ]
\bigm| \bigm| ,

where the supremum is over all functions f : Rn \rightarrow R which are bounded from above
by g pointwise and in absolute value.

Metrics of this type have been employed previously in the literature. See, for
example, the early reference [49], where a weighted total variation metric is used for
stuyding ergodicity for Markov chains, and the reference [48], where a similar metric
is employed in the context of perturbation of Markov chains. See also [33], where a
direct proof of Harris's ergodic theorem relying on appropriate weighted total variation
norms is given, as well as [68, Theorem 6.15], which states that Wasserstein distances
can be controlled by weighted total variation metrics. There are other dual metrics
on probability measures commonly employed in the literature, such as the so-called
maximum mean discrepancy, which is based on a dual formulation in a reproducing
kernel Hilbert space; see, e.g., [61].

Remark 1.2. If \mu 1, \mu 2 have Lebesgue densities \rho 1, \rho 2, then the weighted metric in
Definition 1.1 satisfies
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2553

dg(\mu 1, \mu 2) =

\int 
g(v) | \rho 1(v) - \rho 2(v)| dv.

Unlike the usual total variation distance, this weighted total variation metric enables
control of the differences | \scrM (\mu 1) - \scrM (\mu 2)| and \| \scrC (\mu 1) - \scrC (\mu 2)\| ; several lemmas used
to prove our main results rely on this control. More precisely, it is possible to show
that for all \mu 1, \mu 2 \in \scrP (Rn) with finite second moments, it holds that\bigm| \bigm| \scrM (\mu 1) - \scrM (\mu 2)

\bigm| \bigm| \leqslant 1

2
dg(\mu 1, \mu 2),\bigm\| \bigm\| \scrC (\mu 1) - \scrC (\mu 2)

\bigm\| \bigm\| \leqslant \biggl( 1 + 1

2
| \scrM (\mu 1) +\scrM (\mu 2)| 

\biggr) 
dg(\mu 1, \mu 2).

This is the content of Lemma B.4, proved in Appendix B.

1.4. Filtering distribution. We consider a general setting in subsection 1.4.1
and provide details for the Gaussian setting in particular in subsection 1.4.2.

1.4.1. General case. We consider the following stochastic dynamics and data
model:

uj+1 =\Psi (uj) + \xi j , \xi j \sim \scrN (0,\Sigma ),(1.2a)

yj+1 = h(uj+1) + \eta j+1, \eta j+1 \sim \scrN (0,\Gamma ).(1.2b)

Here \{ uj\} j\in J0,JK is the unknown state, evolving in Rd, and \{ yj\} j\in J0,JK are the

observations, evolving in RK . We assume throughout the paper that the covariance
matrices \Sigma ,\Gamma are positive definite, that the function h : Rd \rightarrow RK is continuous, that
the initial state is distributed according to a Gaussian distribution u0 \sim \scrN (m0,C0),
and that the following independence assumption is satisfied:

u0 \bot \bot \xi 0 \bot \bot \cdot \cdot \cdot \bot \bot \xi J \bot \bot \eta 1 \bot \bot \cdot \cdot \cdot \bot \bot \eta J+1.(1.3)

The objective of probabilistic filtering is to sequentially estimate the conditional dis-
tribution of the unknown state given the data as new data arrive. The true filter-
ing distribution \mu j is the conditional distribution of the state uj given a realization

Y \dagger 
j = \{ y\dagger 1, . . . , y

\dagger 
j\} of the data process up to step j. Data Yj may be thought of as

arising from a realization of (1.2), but the case of model misspecification, where Yj
does not necessarily arise from (1.2), is also of interest.

It is well known [44, 53] that the true filtering distribution evolves according to

\mu j+1 = LjP\mu j ,(1.4)

where P and Lj are maps on probability measures, referred to, respectively, as the
prediction and analysis steps in the data assimilation community [3]. The operator
P : \scrP (Rn) \rightarrow \scrP (Rn) is linear and defined by the Markov kernel associated with the
stochastic dynamics (1.2a). Its action on a probability measure with Lebesgue density
\mu reads as

P\mu (u) =
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
\mu (v)dv.(1.5)

The operator Lj : \scrP (Rn) \rightarrow \scrP (Rn) is a nonlinear map which formalizes the incor-

poration of the new datum y\dagger j+1 using Bayes's theorem. Its action on a probability

measure in \scrP (Rd) with Lebesgue density \mu reads as
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2554 CARRILLO, HOFFMANN, STUART, AND VAES

Lj\mu (u) =

exp

\biggl( 
 - 1

2

\bigm| \bigm| y\dagger j+1  - h(u)
\bigm| \bigm| 2
\Gamma 

\biggr) 
\mu (u)\int 

Rd

exp

\biggl( 
 - 1

2

\bigm| \bigm| y\dagger j+1  - h(U)
\bigm| \bigm| 2
\Gamma 

\biggr) 
\mu (U)dU

.(1.6)

The operator Lj effects a reweighting of the measure to which it applies, with more
weight assigned to the state values that are consistent with the observation. It is
convenient in this work to decompose the analysis map Lj into the composition BjQ.
The action of the operator Q : \scrP (Rd) \rightarrow \scrP (Rd \times RK) on a probability measure in
\scrP (Rd) with Lebesgue density \mu is given by

Q\mu (u, y) =
1\sqrt{} 

(2\pi )K det\Gamma 
exp

\biggl( 
 - 1

2

\bigm| \bigm| y - h(u)
\bigm| \bigm| 2
\Gamma 

\biggr) 
\mu (u).(1.7)

On the other hand, the action of Bj : \scrP c(R
d\times RK)\rightarrow \scrP (Rd) on a probability measure

with continuous Lebesgue density \mu is given by

Bj\mu (u) =
\mu (u, y\dagger j+1)\int 

Rd

\mu (U,y\dagger j+1)dU

.(1.8)

The operator Q maps a probability measure with density \mu into the density associated
with the joint random variable

\bigl( 
U,h(U) + \eta 

\bigr) 
, where U \sim \mu is independent of \eta \sim 

\scrN (0,\Gamma ). The operator Bj performs conditioning on the data y\dagger j+1. Map Q is linear,
while Bj is nonlinear. We may thus write (1.4) in the form

\mu j+1 =BjQP\mu j .(1.9)

We note that for any \mu \in \scrP (Rd), the measure QP\mu \in \scrP c(R
d \times RK) has continuous

Lebesgue density, and so the iteration (1.9) is well defined.

1.4.2. Gaussian case. Now consider the setting in which \Psi (\bullet ) =M\bullet and h(\bullet ) =
H\bullet for matrices M \in Rd\times d and H \in RK\times d. In this case, the filtering distribution is
Gaussian: \mu j =\scrN (mj ,Cj). The Kalman filter [39] gives explicit evolution equations
for the pair (mj ,Cj) \in Rd \times Rd\times d. To write these down, it is helpful to note that\widehat \mu j+1 := P\mu j is also Gaussian: \widehat \mu j+1 =\scrN (\widehat mj , \widehat Cj).

Then (\mu j+1, \widehat \mu j+1) are determined from \mu j by the update formulae

\widehat mj+1 =Mmj ,(1.10a) \widehat Cj+1 =MCjM
T +\Sigma ,(1.10b)

mj+1 = \widehat mj+1 + \widehat Cj+1H
T
\Bigl( 
H\widehat Cj+1H

T +\Gamma 
\Bigr)  - 1 \Bigl( 

y\dagger j+1  - H\widehat mj+1

\Bigr) 
,(1.10c)

Cj+1 = \widehat Cj+1  - \widehat Cj+1H
T
\Bigl( 
H\widehat Cj+1H

T +\Gamma 
\Bigr)  - 1

H\widehat Cj+1,(1.10d)

where \{ y\dagger j\} is the observation. Recall that this observation may be thought of as
arising from a realization of (1.2) but, in the case of model misspecification, may be
derived from a different source.

2. The ensemble Kalman filter. Following from expository discussion of the
Gaussian case in subsection 2.1, in subsection 2.2, we define the specific version of the
mean-field ensemble Kalman filter that we analyze here; other versions may be found
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2555

in [9] and will be amenable to similar analyses. In subsection 2.3, we prove our main
stability theorem, showing that the error between the true filter and its Gaussian
projection may be used to control the error between the true filter and the ensemble
Kalman filter. In subsection 2.4, we prove a corollary to this theorem, establishing
that the mean-field ensemble Kalman filter accurately approximates the true filter for
a specific class of non-Gaussian problems.

2.1. The algorithm: Gaussian case. To motivate the mean-field ensemble
Kalman filter, we first consider the Gaussian case and introduce the stochastic dy-
namical system\widehat vj+1 =Mvj + \xi j , \xi j \sim \scrN (0,\Sigma ),(2.1a) \widehat yj+1 =H\widehat vj+1 + \eta j+1, \eta j+1 \sim \scrN (0,\Gamma ),(2.1b)

vj+1 = \widehat vj+1 + \widehat Cj+1H
\top (H\widehat Cj+1H

\top +\Gamma ) - 1(y\dagger j+1  - \widehat yj+1).(2.1c)

Here \widehat Cj+1 denotes the covariance of \widehat vj+1. A simple calculation reveals that if

v0 \sim \scrN (m0,C0), then in fact \widehat vj+1 \sim \scrN (\widehat mj+1, \widehat Cj+1) and vj+1 \sim \scrN (mj+1,Cj+1),
where the means and covariances are given by the Kalman filter (1.10). Note that
(2.1) constitutes a mean-field stochastic dynamical system because (2.1c) requires
knowledge of \widehat Cj+1, which depends on the law \mu j of vj . The law of this mean-field
stochastic dynamical system is thus equal to the law of the Kalman filter. The analysis
in [45, 47] is concerned with studying particle approximations of this Gaussian mean-
field stochastic dynamical system and convergence to the mean-field limit in the limit
of infinite particles. In contrast, our work concerns the study of mean-field stochastic
dynamical systems but goes beyond the Gaussian setting. To this end, the next sub-
section defines the mean-field ensemble Kalman filter in the general, non-Gaussian
setting.

2.2. The algorithm: General case. The ensemble Kalman filter may be de-
rived as a particle approximation of various mean-field limits [9]. The specific mean-
field ensemble Kalman filter that we study in this paper reads as\widehat uj+1 =\Psi (uj) + \xi j , \xi j \sim \scrN (0,\Sigma ),(2.2a) \widehat yj+1 = h(\widehat uj+1) + \eta j+1, \eta j+1 \sim \scrN (0,\Gamma ),(2.2b)

uj+1 = \widehat uj+1 + \scrC uy
\bigl( \widehat \pi K

j+1

\bigr) 
\scrC yy

\bigl( \widehat \pi K
j+1

\bigr)  - 1 \bigl( 
y\dagger j+1  - \widehat yj+1

\bigr) 
,(2.2c)

where \widehat \pi K
j+1 = Law(\widehat uj+1, \widehat yj+1) and independence of the noise terms (1.3) is still as-

sumed to hold. The covariance matrices \Gamma ,\Sigma are still assumed to be positive definite,
so \scrC yy(\widehat \pi K

j+1)\succ 0, and the algorithm is well defined. See subsection 1.3 for the defini-
tion of the covariance matrices that appear in (2.2c).

Remark 2.1. The mean-field ensemble Kalman filter algorithm may be derived
as the best linear unbiased estimator (BLUE) of the predicted state, given the data;
see [9].

Let us denote by \mu K
j the law of uj . In order to rewrite the evolution of \mu K

j in
terms of maps on probability measures, let us introduce

\scrP 2
\succ 0

\Bigl( 
Rd \times RK

\Bigr) 
:=
\Bigl\{ 
\pi \in \scrP 2

\Bigl( 
Rd \times RK

\Bigr) 
: \scrC yy(\pi )\succ 0

\Bigr\} 
.

Then, for a given y\dagger j+1, we denote by Tj : \scrP 2
\succ 0(R

d \times RK)\rightarrow \scrP 2(Rd) the map defined
by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

31
.2

15
.1

01
.1

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2556 CARRILLO, HOFFMANN, STUART, AND VAES

Tj\pi =T (\bullet ,\bullet ;\pi , y\dagger j+1)\sharp \pi .(2.3)

Here the subscript \sharp denotes the pushforward, and for any given \pi \in \scrP (Rd\times RK) and
z \in RK , the map T is affine in its first two arguments and given by

T (\bullet ,\bullet ;\pi , z) : Rd \times RK \rightarrow Rd,

(u, y) \mapsto \rightarrow u+ \scrC uy(\pi )\scrC yy(\pi ) - 1
\bigl( 
z  - y

\bigr) 
.(2.4)

As demonstrated in [9], with this notation, the evolution of the probability measure
\mu K
j may be written in compact form as

\mu K
j+1 =TjQP\mu 

K
j .(2.5)

We now discuss the preceding map in relation to (1.9). The specific affine map T
used in (2.2c) is determined by the measure \widehat \pi K

j+1 (here equal to QP\mu K
j ) and the data

y\dagger j+1. That the law of uj in (2.2) evolves according to (2.5) follows from the following
observations:

\bullet If uj \sim \mu K
j , then \widehat uj+1 \sim P\mu K

j by definition of P.
\bullet Given the definition (1.7) of the operator Q, the random vector (\widehat uj+1, \widehat yj+1)

is distributed according to \widehat \pi K
j+1 =QP\mu K

j .
\bullet Equation (2.2c) then implies that uj+1 \sim TjQP\mu 

K
j .

As we show in Lemma B.5, the operator Tj coincides with the conditioning oper-
ator Bj over the subset \scrG (Rd\times RK)\subset \scrP (Rd\times RK) of Gaussian probability measures.
Therefore, in the particular case where \mu 0 is Gaussian, which is a standing assumption
in this paper, and the operators \Psi and h are linear, the mean-field ensemble Kalman
filter (2.5) reproduces the exact filtering distribution (1.9), which is then the Kalman
filter itself; indeed, this is what we show in subsection 2.1. In the next section, we
provide error bounds between (1.9) and (2.5) when \Psi and h are not assumed to be
linear.

Our theorems in subsections 2.3 and 2.4 concern relationships between the true
filter (1.9) and the mean-field ensemble Kalman filter (2.5). We study the setting in
which \Psi and h are not assumed to be linear, so that the true filter is not Gaussian,
in subsection 2.3, and then we study small perturbations away from the Gaussian
setting that arise when the vector fields \Psi and h are close to constant in subsection
2.4. We recall that BL\infty (m,r) denotes the L\infty ball of radius r, centered at m. The
theorems hold under the following set of assumptions.

Assumption A. The following assumptions hold on the data \{ y\dagger j\} , the vector fields
(\Psi , h), and the covariances (\Sigma ,\Gamma ):
(H1) Fix positive integer J. The data Y \dagger = \{ y\dagger j\} Jj=1 lie in set By \subset RKJ defined,

for some \kappa y > 0, by

By :=

\biggl\{ 
Y \dagger \in RKJ : max

j\in J0,JK
| y\dagger j | \leqslant \kappa y

\biggr\} 
.

(H2) The function \Psi satisfies \Psi (\bullet )\in B\Psi :=BL\infty (0, \kappa \Psi ) for some \kappa \Psi > 0.
(H3) The function h is continuous and satisfies h(\bullet ) \in Bh := BL\infty (0, \kappa h) for some

\kappa h > 0.
(H4) The covariance matrices \Sigma and \Gamma appearing in (2.2) are positive definite:

\Sigma \succcurlyeq \sigma Id and \Gamma \succcurlyeq \gamma IK for positive \sigma and \gamma .
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2557

2.3. Stability theorem: Ensemble Kalman filter. Roughly speaking, our
main result states that if the true filtering distributions (\mu j)j\in J1,JK are close to Gauss-
ian after appropriate lifting to the state/data space, then the distribution \mu K

j given by
the mean-field ensemble Kalman filter (2.5) is close to the true filtering distribution
\mu j given by (1.9) for all j \in J0, JK. Recall that | \bullet | C0,1 denotes the C0,1 seminorm,
namely, the Lipschitz constant.

Theorem 2.2 (stability for the mean-field ensemble Kalman filter). As-
sume that the probability measures (\mu j)j\in J1,JK and (\mu K

j )j\in J1,JK are obtained, respec-
tively, from the dynamical systems (1.9) and (2.5), initialized at the same Gaussian
probability measure \mu 0 = \mu K

0 \in \scrG (Rd). That is,

\mu j+1 =BjQP\mu j , \mu K
j+1 =TjQP\mu 

K
j .

If Assumption A holds and | h| C0,1 \leqslant \ell h < \infty , then there exists C = C(J,\kappa y, \kappa \Psi , \kappa h,
\ell h,\Sigma ,\Gamma ) such that

dg(\mu 
K
J , \mu J)\leqslant C max

j\in J0,J - 1K
dg(QP\mu j ,GQP\mu j).

Remark 2.3. The constant C in the stability estimate is uniform across realizations
of the data from By. Indeed, since h is assumed bounded, the bound \kappa y on the data
will hold with probability exponentially close to 11 for \kappa y \gg 1 when there is no model
misspecification. Relaxing the assumptions of bounded \Psi and h, for example, to the
setting of linear plus bounded functions is technically challenging and will be left for
future work. Likewise, relaxing positivity assumptions on the noise leads to substantial
technical obstacles, deferred for future work. And, finally, relaxing the assumption
that J is finite will require further structural assumptions on the long-time behavior
of the filter and is also deferred for future work.

Remark 2.4. The stability theorem shows that the error made by the ensemble
Kalman filter is controlled by the difference between the true filter, lifted to the joint
space of state and observations, and its Gaussian projection. To interpret the result,
it is thus important to have intuition about what it means for a measure to be close to
its Gaussian projection in the dg metric. To this end, note that by Remark 1.2, it is
necessary that the means and covariances of the measure and its Gaussian projection
are close for the measures to be close in the dg metric. This is automatically satisfied
for the difference between a measure and its Gaussian projection by construction.
Since closeness in dg requires the expectations of all functions growing no faster than
quadratic to be close, a useful rule of thumb for practitioners is that the quantity
dg(QP\mu j ,GQP\mu j) is small when matching first and second moments allows control
of all quadratically bounded functions. This will happen, for example, when \Psi and
h are small nonlinear perturbations of affine functions, and hence it will happen
when \Psi and h are small nonlinear perturbations of either linear functions or constant
functions. For technical reasons (see previous remark), this paper excludes the case of
linearly growing functions, but we do study small perturbations of constant functions
in Corollary 2.5. There is also reason to expect the filtering distribution to be close
to Gaussian when the data volume is high or noise is small and some version of
observability applies. Then central limit theorems for inverse problems, such as the
Bernstein von Mises theorem, may in the future be developed to quantify this assertion
[66]. For work pointing in this direction but in the infinite-dimensional case where
Bernstein von Mises--type results are harder to establish, see [50].

1With respect to the noise realization leading to the data.
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2558 CARRILLO, HOFFMANN, STUART, AND VAES

The proof presented hereafter relies on a number of auxiliary results, which are
summarized below and proved in Appendix B:

1. For any probability measure \mu , the first moments of the probability measures
P\mu and QP\mu are bounded from above, and their second moments are bounded
both from above and from below. The constants in these bounds depend only
on the parameters \kappa \Psi , \kappa h, \Sigma , and \Gamma . See Lemmas B.1 and B.2.

2. For any Gaussian measure \mu \in \scrG (Rd \times RK), it holds that Bj\mu = Tj\mu . See
Lemma B.5 and also [9].

3. The map P is globally Lipschitz on \scrP (Rd) for the metric dg, with a Lipschitz
constant LP depending only on the parameters \kappa \Psi and \Sigma . See Lemma B.7.

4. The map Q is globally Lipschitz on \scrP (Rd) for the metric dg, with a Lipschitz
constant LQ depending only on the parameters \kappa h and \Gamma . See Lemma B.8.

5. The map Bj satisfies for any \pi \in Im(QP)\subset \scrP (Rd \times RK) the bound

\forall j \in J0, JK, dg(BjG\pi ,Bj\pi )\leqslant CBdg(G\pi ,\pi ),

where CB =CB(\kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma ). This statement concerns the stability of the
Bj operator between a measure and its Gaussian approximation. See Lemma
B.9.

6. The map Tj satisfies the following bound: For all R \geqslant 1, it holds for all
probability measures \pi \in \scrP R(R

d \times RK) and p\in Im(QP)\subset \scrP (Rd \times RK) that

\forall j \in J0, JK, dg(Tj\pi ,Tjp)\leqslant LT dg(\pi ,p)

for a constant LT =LT(R,\kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma ). This statement may be viewed as
a local Lipschitz continuity result in the case where the second argument of
dg is restricted to the range of QP. See Lemma B.10.

Proof of Theorem 2.2. In what follows, we refer to the preceding itemized list to
clarify the proof. For notational simplicity, it is helpful to define the following measure
of the difference between the true filtering distribution and its Gaussian projection:

\varepsilon := max
j\in J0,J - 1K

dg(QP\mu j ,GQP\mu j).(2.6)

Assume throughout the following that j \in J0, J - 1K. The main idea of the proof results
from the following use of the triangle inequality:

dg(\mu 
K
j+1, \mu j+1) = dg

\bigl( 
TjQP\mu 

K
j ,BjQP\mu j

\bigr) 
(2.7a)

\leqslant dg
\bigl( 
TjQP\mu 

K
j ,TjQP\mu j

\bigr) 
+ dg (TjQP\mu j ,TjGQP\mu j) + dg (BjGQP\mu j ,BjQP\mu j) .

(2.7b)

We have used the fact that the second argument of the second term on the right-hand
side indeed coincides with the first argument of the third term because TjGQP\mu j =
BjGQP\mu j by item 2 (Lemma B.5.) By item 1 (Lemma B.2), there is a constant R\geqslant 1,
depending on the covariance matrices \Sigma , \Gamma and the bounds \kappa \Psi and \kappa h from Assump-
tion A, such that Im(QP)\subset \scrP R(R

d \times RK). By items 3, 4, and 6 (Lemmas B.7, B.8,
and B.10), the first term in (2.7b) satisfies

dg
\bigl( 
TjQP\mu 

K
j ,TjQP\mu j

\bigr) 
\leqslant LT(R)LQLPdg

\bigl( 
\mu K
j , \mu j

\bigr) 
,(2.8)

where, for conciseness, we omitted the dependence of the constants on \kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma .
Equation (2.8) establishes that the composition of maps TjQP is globally Lipschitz
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2559

over \scrP (Rd). Since GQP\mu j \in \scrG R(R
d \times RK) by definition of R, the second term in

(2.7b) may be bounded using item 6 (Lemma B.10) and the definition in (2.6) of \varepsilon :

dg (TjQP\mu j ,TjGQP\mu j)\leqslant LT(R)dg (QP\mu j ,GQP\mu j)\leqslant LT(R)\varepsilon .

Finally, the third term in (2.7b) can be bounded using item 5 (Lemma B.9) and the
definition in (2.6) of \varepsilon :

dg (BjGQP\mu j ,BjQP\mu j)\leqslant CBdg (GQP\mu j ,QP\mu j)\leqslant CB\varepsilon .

Therefore, letting \ell =LT(R)LQLP, we have shown that

dg(\mu 
K
j+1, \mu j+1)\leqslant \ell dg(\mu 

K
j , \mu j) +

\bigl( 
LT(R) +CB

\bigr) 
\varepsilon ,

and the conclusion follows from the discrete Gronwall lemma since \mu 0 = \mu K
0 .

2.4. Approximation theorem: Ensemble Kalman filter. Theorem 2.2
shows that the ensemble Kalman filter error can be made arbitarily small if the true
filter is arbitarily close to its Gaussian projection in state-observation space. This
``closeness to Gaussian"" assumption can be satisfied in our setting of bounded vector
fields by considering small perturbations of constant vector fields and is the content
of the following corollary. The result provides a first step in the analysis of the ac-
curacy of the ensemble Kalman filter as an approximation of the true filter; desirable
generalizations of what we prove here are discussed in the conclusions in section 4.

Corollary 2.5 (accuracy for the mean-field ensemble Kalman filter).
Let (\Sigma ,\Gamma ) satisfy Assumption (H4). Suppose that \Psi 0 : R

d \rightarrow Rd and h0 : R
d \rightarrow RK are

functions taking constant values, and denote by B\Psi 0,h0(r) the set of all functions (\Psi , h)
satisfying \Psi \in BL\infty (\Psi 0, r), h\in BL\infty (h0, r), and Assumptions (H2) and (H3). Assume
also that | h| C0,1 \leqslant \ell h <\infty , and denote by (\mu j)j\in J1,JK and (\mu K

j )j\in J1,JK the probability
measures obtained, respectively, from the dynamical systems (1.9) and (2.5), initialized
at the same Gaussian probability measure \mu 0 = \mu K

0 \in \scrG (Rd). That is,

\mu j+1 =BjQP\mu j , \mu K
j+1 =TjQP\mu 

K
j .

Then for any \epsilon > 0, there exists \delta > 0 such that

sup
Y \dagger \in By

sup
(\Psi ,h)\in B\Psi 0,h0

(\delta )

dg(\mu 
K
J , \mu J)\leqslant \epsilon .

Proof. The result follows from Theorem 2.2 and Proposition C.2 in
Appendix C.

3. Generalization: Gaussian projected filter. We generalize the main result
to the Gaussian projected filter defined in [9]. This algorithm may be viewed as a
mean-field version of the unscented Kalman filter [38]. Using a similar approach to
that adopted in the previous section, we prove a similar stability theorem and accuracy
corollary. The Gaussian projected filter is defined by the iteration

\mu G
j+1 =BjGQP\mu 

G
j .(3.1)

This iteration is obtained from (1.9) by inserting a projection onto Gaussians before
the conditioning step Bj . Because conditioning of Gaussians on linear observations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

31
.2

15
.1

01
.1

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2560 CARRILLO, HOFFMANN, STUART, AND VAES

preserves Gaussianity, the preceding map generates sequence of measures \{ \mu G
j \} in

\scrG (Rd).

Remark 3.1. As shown in Lemma B.6, the evolution (3.1) may also be rewritten
in the form

\mu G
j+1 =GTjQP\mu 

G
j .(3.2)

This shows that the Gaussian projected filter may also be obtained from the mean-
field ensemble Kalman filter (2.5) by adding a Gaussian projection step after the
conditioning.

Like (2.5), the filter (3.1) reproduces the true filtering distributions when \Psi and
h are linear, assuming that \mu 0 is Gaussian. The following theorem quantifies the
closeness of the Gaussian projected filter to the true filtering distribution when the
linearity assumption on \Psi and h is relaxed.

Theorem 3.2 (stability for the Gaussian projected filter). Assume that
the probability measures (\mu j)j\in J1,JK and (\mu K

j )j\in J1,JK are obtained, respectively, from
the dynamical systems (1.9) and (3.1), initialized at the same Gaussian probability
measure \mu 0 = \mu G

0 . That is,

\mu j+1 =BjQP\mu j , \mu G
j+1 =BjGQP\mu 

G
j .

If Assumption A holds, then there exists C =C(J,\kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma ) such that

dg(\mu 
G
J , \mu J)\leqslant C max

j\in J0,J - 1K
dg(QP\mu j ,GQP\mu j).

The proof of this error estimate relies on the auxiliary results Lemmas B.2 and
B.7--B.9 already discussed as well as the following two additional results:

\bullet The map G is locally Lipschitz for the metric dg in the sense that for any
R \geqslant 1, this map is Lipschitz continuous over the set \scrP R(R

d) given in (1.1).
The associated Lipschitz constant is denoted by LG =LG(R) and diverges as
R\rightarrow \infty . This result is proved in Lemma B.12, which relies on an auxiliary
result shown in Lemma B.11 on the distance between Gaussians in the dg
metric.

\bullet The map Bj is locally Lipschitz for the metric dg over Gaussians in the sense
that for any R \geqslant 1 and any j \in J0, J  - 1K, this map is Lipschitz continuous
over \scrG R(R

d \times RK). The associated Lipschitz constant is denoted by LB =
LB(R,\kappa y). See Lemma B.15.

Proof. We obtain by the triangle inequality that

dg(\mu 
G
j+1, \mu j+1) = dg(BjGQP\mu 

G
j ,BjQP\mu j)

\leqslant dg(BjGQP\mu 
G
j ,BjGQP\mu j) + dg(BjGQP\mu j ,BjQP\mu j).

It follows from Lemmas B.2, B.7, B.8, B.12, and B.15 that the composition of maps
BjGQP is globally Lipschitz continuous on \scrP (Rd) with a constant \ell = \ell (R,\kappa y, \kappa \Psi ,
\kappa h,\Sigma ,\Gamma ), where R = R(\kappa \Psi , \kappa h,\Sigma ,\Gamma ) is a positive constant such that Im(QP) \subset 
\scrP R(R

d \times RK). Therefore, the first term on the right-hand side may be bounded
by

dg(BjGQP\mu 
G
j ,BjQP\mu j)\leqslant \ell dg(\mu 

G
j , \mu j).
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2561

For notational simplicity, we again let \varepsilon be as in (2.6). Using Lemma B.9 and the
definition of \varepsilon , the second term may be bounded from above by

dg(BjGQP\mu j ,BjQP\mu j)\leqslant CB dg(GQP\mu j ,QP\mu j)\leqslant CB \varepsilon ,

where CB =CB(\kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma ) is the constant from Lemma B.9. The proof can then
be concluded in the same way as that of Theorem 2.2.

Corollary 3.3 (accuracy for the Gaussian projected filter). Let (\Sigma ,\Gamma )
satisfy Assumption (H4). Suppose that \Psi 0 : R

d \rightarrow Rd and h0 : R
d \rightarrow RK are func-

tions taking constant values, and denote by B\Psi 0,h0
(r) the set of all functions (\Psi , h)

satisfying \Psi \in BL\infty (\Psi 0, r), h \in BL\infty (h0, r) and items (H2) and (H3). Assume that
the probability measures (\mu j)j\in J1,JK and (\mu K

j )j\in J1,JK are obtained, respectively, from
the dynamical systems (1.9) and (3.1) and initialized at the same Gaussian probability
measure \mu 0 = \mu K

0 \in \scrG (Rd). That is,

\mu j+1 =BjQP\mu j , \mu G
j+1 =BjGQP\mu 

G
j .

Then for any \epsilon > 0, there exists \delta > 0 such that

sup
Y \dagger \in By

sup
(\Psi ,h)\in B\Psi 0,h0

(\delta )

dg(\mu 
G
J , \mu J)\leqslant \epsilon .

4. Discussion and future directions. We have provided the first analysis
of the error incurred by ensemble Kalman filters as approximations of true filtering
distribution beyond the linear-Gaussian setting. We have employed an appropriate
weighted TV metric and obtained new stability estimates in this metric in order to
establish the approximation results. Our framing of the problem is motivated by the
framing of the analysis of the particle filter contained in [52, section 1], a system-
atization of the original proof of convergence of the particle filter appearing in [14].
Although it introduces new methodology and theoretical results for nonlinear Kalman
filters, our work leaves open numerous avenues for further analysis; we now highlight
those that we identify as particularly important. These remaining open problems are
substantial, but the framework we map out in this paper is an appropriate one in
which to address them:

(i) Our theorems concern the mean-field limit of the ensemble Kalman filter; it
is of interest to study finite particle approximations of the mean-field limit
along the lines of the work in [45, 7] and analogous continuous-time analyses in
[18, 19, 20]. Analysis of mean-field limits of interacting particle systems is an
established field; interfacing the natural metrics employed for such analyses
(Wasserstein) with those employed here (weighted TV) will be required.

(ii) We have made boundedness assumptions on \Psi (\bullet ) and h(\bullet ) in this paper.
Developing proofs which relax these assumptions, allowing consideration of
small nonlinear perturbations of the Kalman filter setting, for example, will
be very valuable.

(iii) Our error bounds are for a finite number of steps and, as is typical of fi-
nite time error estimates that employ a ``consistency plus stability implies
convergence"" approach, lead to error constants which grow exponentially
with the time horizon. The literature on analysis of numerical methods for
nonautonomous dynamical systems demonstrates that going beyond finite
time error estimates that grow in time is, in general, not possible [60]; in
that context, generalizing to long-time estimates requires assumptions on the
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2562 CARRILLO, HOFFMANN, STUART, AND VAES

long-term stability or even ergodicity of the dynamical system. Such long-
term stability issues are widely studied for the true filtering distribution; see
[51, 15, 67, 65, 12, 54], for example. They are complicated by the fact that the
nonlinear evolution equation for the filtering distribution is nonautonomous
due to the observation signal. In the context of the ensemble Kalman filter,
such stability estimates are used in the paper [16], which identifies linear and
Gaussian filtering problems in which it is possible to generalize the large par-
ticle asymptotic analyses of [45, 47]. There is also analysis of the ensemble
Kalman filter for nonlinear non-Gaussian problems, such as the data assim-
ilation problem for the Navier--Stokes equation, but this work concerns only
accuracy of state estimation, not the entire filtering distribution [41, 6].

(iv) We have assumed a model for evolution of the state which employs additive
Gaussian noise. Generalizing to a general Markov chain would be valuable.
Relatedly, it is of interest to relax the assumption of including noise in the
dynamical system for the state to allow for deterministic dynamics.

(v) We have studied a (widely used) version of the ensemble Kalman filter which
employs a specific transport map to approximate the conditioning step in the
filter. Other transport maps are also used in practice, such as that leading to
the ensemble square root filter; as outlined in [9, section 2]. Analyzing these
other methods would be of great interest.

(vi) Filtering can be used to solve inverse problems, as outlined in [9, section 4];
in particular, some of these methods rely on filtering over the infinite time
horizon, the analysis of which will require new ideas, such as in [22].

(vii) Continuous-time versions of our analysis would be of interest, as would their
relationship to the Kushner--Stratonovich equation [11]; the paper [16], which
studies mean-field limits of the ensemble Kalman--Bucy filter, may be impor-
tant in this context. Furthermore, study of the ensemble Kalman sampler
[28, 29, 10] for inverse problems would be of interest.

(viii) The papers [45] and [20] propose the reweighting of ensemble Kalman methods
to make them unbiased; further analysis of this idea and the development of
new methods that can carry this out in a derivative-free fashion would be of
interest.

(ix) Ensemble Kalman filters in practice employ very small numbers of ensemble
members and use covariance (spatial) localization when the unknown states
are fields; developing analyses which account for low rank approximations
and localization would be a valuable step for the field. Furthermore, it would
also be of interest to study the problem of quantization of measures [32] in
the context of filtering; however, this is a very hard problem even in simple
low-dimensional settings [8], and studying it for the evolution of the filtering
distribution will require substantial new ideas.

(x) Particle filters suffer from a curse of dimensionality on certain families of
high-dimensional problems [4, 58]. Studying ensemble Kalman methods to
determine whether they ameliorate this issue in the near-Gaussian setting
would be of interest. There are a variety of different models that can be
employed to characterize families of high-dimensional filtering problems [55],
and such structural assumptions will undoubtedly affect the results that might
be obtained for ensemble Kalman methods.

(xi) Exploiting small noise or large data limits to establish that the error (2.6) is
small and then using this fact to analyze the error in the ensemble Kalman
filter would be of great interest.
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Appendix A. Auxiliary results. We begin by presenting an elementary result
used throughout the article.

Lemma A.1. Suppose that X is a random variable with values in Rd and finite
second moment, and let m :=E[X]. Then

E
\Bigl[ 
(X  - m)(X  - m)T

\Bigr] 
=E

\bigl[ 
XXT

\bigr] 
 - mmT(A.1)

and

\forall a\in Rd, E
\Bigl[ 
(X  - a)(X  - a)T

\Bigr] 
\succcurlyeq E

\Bigl[ 
(X  - m)(X  - m)T

\Bigr] 
.(A.2)

Proof. We have

E
\Bigl[ 
(X  - a)(X  - a)T

\Bigr] 
=E

\Bigl[ \bigl( 
(X  - m) + (m - a)

\bigr) \bigl( 
(X  - m) + (m - a)

\bigr) T\Bigr] 
=E

\Bigl[ 
(X  - m)(X  - m)T

\Bigr] 
+ (m - a)(m - a)T.

Taking a= 0, we obtain (A.1). In addition, since the second term in the last expression
is positive semidefinite, the inequality (A.2) follows.

The following lemma is very similar to [2, Lemma 3.1]; the only difference is that
the weight on the left-hand side is given by 1 + | u| 2 instead of u2. We give the proof
for completeness.

Lemma A.2 (generalized Pinsker inequality). Let g(u) = 1 + | u| 2, and assume
that \mu 1, \mu 2 are probability measures over Rd satisfying \mu 1[g

2] <\infty and \mu 2[g
2] <\infty .

Then, if \mu 1 \ll \mu 2,

dg(\mu 1, \mu 2)
2 \leqslant 2

\bigl( 
\mu 1

\bigl[ 
g2
\bigr] 
+ \mu 2

\bigl[ 
g2
\bigr] \bigr) 
KL(\mu 1\| \mu 2).

Proof. Denote the density by f := d\mu 1

d\mu 2
, noting that this is nonnegative. Applying

Taylor's formula to the function \ell : u \mapsto \rightarrow u logu around u= 1, we deduce that

\forall u\geqslant 0, u logu\geqslant (u - 1) +
1

2

\biggl( 
min
v\in I

\ell \prime \prime (v)

\biggr) 
(u - 1)2 = (u - 1) +

(u - 1)2

2max\{ 1, u\} 
,

where I = [min\{ 1, u\} ,max\{ 1, u\} ]. Therefore,

KL(\mu 1\| \mu 2) =

\int 
Rd

(f log f)(u)\mu 2(du)

\geqslant 
\int 
Rd

(f(u) - 1)\mu 2(du) +
1

2

\int 
Rd

| f(u) - 1| 2

max\{ 1, f(u)\} 
\mu 2(du).

Let \theta (u) = max\{ 1, f(u)\} . The first term on the right-hand side is zero, and so we
have that

dg(\mu 1, \mu 2)
2 =

\biggl( \int 
Rd

g(u) | f(u) - 1| \mu 2(du)

\biggr) 2

\leqslant 
\int 
Rd

| g(u)| 2\theta (u)\mu 2(du)

\int 
Rd

| f(u) - 1| 2

\theta (u)
\mu 2(du)

\leqslant 
\int 
Rd

| g(u)| 2
\bigl( 
f(u) + 1

\bigr) 
\mu 2(du) 2KL(\mu 1\| \mu 2)

= 2
\Bigl( 
\mu 1

\bigl[ 
g2
\bigr] 
+ \mu 2

\bigl[ 
g2
\bigr] \Bigr) 

KL(\mu 1\| \mu 2),

which concludes the proof.
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2564 CARRILLO, HOFFMANN, STUART, AND VAES

Lemma A.3. For all d \in N+ and \alpha > 0, there is C > 0 such that for all
x0, x1,m0,m1 \in Rd and all symmetric positive definite matrices S0, S1 \in Rd\times d satis-
fying

S0 \succcurlyeq 
1

\alpha 
Id, S1 \succcurlyeq 

1

\alpha 
Id,

it holds that

(2\pi )
d
2

\bigm| \bigm| g0(x0) - g1(x1)
\bigm| \bigm| \leqslant \alpha 

1+d
2

\surd 
e

| x1  - x0  - m1 +m0| +
\alpha 1+ d

2

e
\| S1  - S0\| 

+ \alpha d
\bigm| \bigm| \bigm| \sqrt{} detS1  - 

\sqrt{} 
detS0

\bigm| \bigm| \bigm| .(A.3)

Here g0 and g1 denote the densities of \scrN (m0, S0) and \scrN (m1, S1), respectively.

Proof. For s\in [0,1], let xs = (1 - s)x0+ sx1 as well as ms = (1 - s)m0+ sm1 and
Ss = (1 - s)S0 + sS1. Let us also introduce the nonnormalized densities

\widetilde g0 = exp

\biggl( 
 - 1

2

\bigm| \bigm| x - m0

\bigm| \bigm| 2
S0

\biggr) 
, \widetilde g1 = exp

\biggl( 
 - 1

2

\bigm| \bigm| x - m1

\bigm| \bigm| 2
S1

\biggr) 
,

and let \lambda (s) := exp( - 1
2

\bigm| \bigm| xs  - ms

\bigm| \bigm| 2
Ss
). It holds that

\widetilde g1(x1) - \widetilde g0(x0) = \int 1

0

d\lambda 

ds
(s)ds= - 

\int 1

0

\Bigl[ 
(x1  - x0  - m1 +m0)

TS - 1
s (xs  - ms)

 - 1

2
(xs  - ms)

TS - 1
s (S1  - S0)S

 - 1
s (xs  - ms)

\Bigr] 
\lambda (s)ds.

Therefore, using that maxz\in R| ze - z2

2 | = 1\surd 
e
and maxz\in R| z2e - z2

2 | = 2
e , we deduce that

\bigm| \bigm| \widetilde g1(x1) - \widetilde g0(x0)\bigm| \bigm| \leqslant \int 1

0

\Bigl[ 
| x1  - x0  - m1 +m0| Ss | xs  - ms| Ss

+
1

2

\bigm\| \bigm\| \bigm\| S - 1
2

s (S1  - S0)S
 - 1

2
s

\bigm\| \bigm\| \bigm\| | xs  - ms| 2Ss

\Bigr] 
\lambda (s)ds

\leqslant 

\sqrt{} 
\alpha 

e
| x1  - x0  - m1 +m0| +

\alpha 

e
\| S1  - S0\| .

Applying the triangle inequality

\bigm| \bigm| g0(x0) - g1(x1)
\bigm| \bigm| \leqslant \bigm| \bigm| \widetilde g0(x0) - \widetilde g1(x1)\bigm| \bigm| \sqrt{} 

(2\pi )d detS0

+

\bigm| \bigm| \bigm| \bigm| \bigm| 1\sqrt{} 
(2\pi )d detS0

 - 1\sqrt{} 
(2\pi )d detS1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \widetilde g1(x1)\bigm| \bigm| ,
we obtain (A.3), which concludes the proof.

Lemma A.4. Denote by g(\bullet ;m,S) the Lebesgue density of \scrN (m,S) and by \scrS K
\alpha 

the set of symmetric K \times K matrices M satisfying

1

\alpha 
IK \preccurlyeq M\preccurlyeq \alpha IK .(A.4)

Then, for all \alpha \geqslant 1, there exists L\alpha > 0 such that for all parameters (c1,m1,S1) \in 
R\times RK \times \scrS K

\alpha and (c2,m2,S2)\in R\times RK \times \scrS K
\alpha ,

\| h\| \infty \leqslant L\alpha \| h\| 1, h(y) = c1g(y;m1,S1) - c2g(y;m2,S2).(A.5)
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2565

Remark A.5. When c2 = 0, (A.5) may be viewed as an inverse inequality. It then
simply states that the L\infty norm of the density of a normal random variable is bounded
from above by the L1 norm uniformly for all densities from the set of Gaussians with
a covariance matrix satisfying (A.4).

Proof. For conciseness, let g1(\bullet ) = g(\bullet ;m1,S1) and g2(\bullet ) = g(\bullet ;m2,S2).
Step 1. Simplification. It is sufficient to prove the statement for c1 = c2 = 1.

Indeed, suppose that there is \widetilde L\alpha > 0 such that

\forall (m1,S1)\in RK \times \scrS K
\alpha , \forall (m2,S2)\in RK \times \scrS K

\alpha , \| g1  - g2\| \infty \leqslant \widetilde L\alpha \| g1  - g2\| 1.
(A.6)

Then, by the triangle inequality, it holds that\bigm\| \bigm\| c1g1  - c2g2
\bigm\| \bigm\| 
\infty \leqslant | c1| 

\bigm\| \bigm\| g1  - g2
\bigm\| \bigm\| 
\infty + | c1  - c2| 

\bigm\| \bigm\| g2\bigm\| \bigm\| \infty 
\leqslant | c1| \widetilde L\alpha 

\bigm\| \bigm\| g1  - g2
\bigm\| \bigm\| 
1
+ | c1  - c2| 

\bigm\| \bigm\| g2\bigm\| \bigm\| \infty 
\leqslant \widetilde L\alpha 

\bigm\| \bigm\| c1g1  - c2g2
\bigm\| \bigm\| 
1
+ | c2  - c1| 

\bigm\| \bigm\| g2\bigm\| \bigm\| 1 + | c2  - c1| 
\bigm\| \bigm\| g2\bigm\| \bigm\| \infty .

By Jensen's inequality, it holds that

| c1  - c2| =
\bigm| \bigm| \bigm| \bigm| \int 

Rd

c1g1(x) - c2g2(x)dx

\bigm| \bigm| \bigm| \bigm| \leqslant \bigm\| \bigm\| c1g1  - c2g2
\bigm\| \bigm\| 
1
,

and so we deduce that

\bigm\| \bigm\| c1g1  - c2g2
\bigm\| \bigm\| 
\infty \leqslant 

\bigm\| \bigm\| c1g1  - c2g2
\bigm\| \bigm\| 
1

\Biggl( \widetilde L\alpha + 1+

\sqrt{} 
\alpha K

(2\pi )K

\Biggr) 
.

Furthermore, since both sides of the inequality (A.6) are invariant under translation,
it is sufficient to consider the case where m2 = 0, which we do from now on. Finally,
note that

g1(y) - g2(y) =
1\surd 

detS2

\biggl( 
g

\biggl( \sqrt{} 
S - 1
2 y;

\sqrt{} 
S - 1
2 m1,

\sqrt{} 
S - 1
2 S1

\sqrt{} 
S - 1
2

\biggr) 
 - g
\biggl( \sqrt{} 

S - 1
2 y; 0, IK

\biggr) \biggr) 
,

and so we can also assume without loss of generality that S2 = IK . Indeed, assume
that the inequality (A.6) is satisfied in this particular case with a constant \widehat L\alpha . Since

1

\alpha 2
IK \preccurlyeq 

1

\alpha \| S2\| 
IK \preccurlyeq 

\sqrt{} 
S - 1
2 S1

\sqrt{} 
S - 1
2 \preccurlyeq \alpha \| S - 1

2 \| IK \preccurlyeq \alpha 2IK ,

we deduce that if (S1,S2)\in \scrS K
\alpha \times SK

\alpha for some \alpha > 0, then\biggl( \sqrt{} 
S - 1
2 S1

\sqrt{} 
S - 1
2 , IK

\biggr) 
\in \scrS K

\alpha 2 \times \scrS K
\alpha 2 .

Therefore, using the change of variable y \mapsto \rightarrow 
\sqrt{} 

S - 1
2 y together with (A.6) in the partic-

ular case S2 = IK , we obtain that
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2566 CARRILLO, HOFFMANN, STUART, AND VAES

\| g(\bullet ;m1,S1) - g(\bullet ; 0,S2)\| \infty 

=
1\surd 

detS2

\bigm\| \bigm\| \bigm\| \bigm\| g\biggl( \bullet ;\sqrt{} S - 1
2 m1,

\sqrt{} 
S - 1
2 S1

\sqrt{} 
S - 1
2

\biggr) 
 - g (\bullet ; 0, IK)

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leqslant 
\widehat L\alpha 2\surd 
detS2

\bigm\| \bigm\| \bigm\| \bigm\| g\biggl( \bullet ;\sqrt{} S - 1
2 m1,

\sqrt{} 
S - 1
2 S1

\sqrt{} 
S - 1
2

\biggr) 
 - g (\bullet ; 0, IK)

\bigm\| \bigm\| \bigm\| \bigm\| 
1

=
\widehat L\alpha 2\surd 
detS2

\| g(\bullet ;m1,S1) - g(\bullet ; 0,S2)\| 1 \leqslant \alpha 
K
2 \widehat L\alpha 2 \| g(\bullet ;m1,S1) - g(\bullet ; 0,S2)\| 1 ,

and so the bound (A.6) is valid in general with \widetilde L\alpha = \alpha 
K
2 \widehat L\alpha 2 .

Step 2. Proof of the simplified statement. It remains to show that there exists
for all \alpha > 0 a constant \widehat L\alpha such that the following inequality holds for all (m,S) \in 
RK \times \scrS K

\alpha :

\| h\| \infty \leqslant \widehat L\alpha \| h\| 1, h(y) = g(y;m,S) - g(y; 0, IK).(A.7)

To this end, fix \alpha > 0, fix \varepsilon \in (0,1), and assume first that \| S - IK\| \geqslant \varepsilon . By the lower
bound on the total variation distance between Gaussians in [17, Proposition 2.2], we
have that

1

2
\| h\| 1 \geqslant 1 - 

detS1/4 det I
1/4
K

det
\bigl( 
S+IK

2

\bigr) 1/2 exp

\Biggl( 
 - 1

8
mT

\biggl( 
S+ IK

2

\biggr)  - 1

m

\Biggr) 
.

In particular, it holds that

1

2
\| h\| 1 \geqslant 1 - 

detS1/4 det I
1/4
K

det
\bigl( 
S+IK

2

\bigr) 1/2 = 1 - 
K\prod 
i=1

\sqrt{} \surd 
\lambda i

\lambda i+1
2

\geqslant 1 - 

\sqrt{} 
2
\surd 
1 + \varepsilon 

2 + \varepsilon 
,(A.8)

where (\lambda i)
K
i=1 are the eigenvalues of S. In the last inequality, we used that, since all the

terms in the product are bounded from above by 1 by the arithmetic mean-geometric
mean inequality and since at least one eigenvalue is not in the interval (1 - \varepsilon ,1 + \varepsilon )
given that \| S - IK\| \geqslant \varepsilon , it holds that

K\prod 
i=1

\sqrt{} \surd 
\lambda i

\lambda i+1
2

\leqslant max
| \lambda  - 1| \geqslant \varepsilon 

\sqrt{} \surd 
\lambda 

\lambda +1
2

=

\sqrt{} 
2
\surd 
1 + \varepsilon 

2 + \varepsilon 
.

On the other hand, since S \succcurlyeq 1
\alpha IK , it holds that detS \geqslant 1

\alpha K , and so

\| h\| \infty \leqslant 2
\Bigl( \alpha 
2\pi 

\Bigr) K
2

.(A.9)

Combining (A.8) and (A.9) gives that

\| h\| 1 \geqslant C1\| h\| \infty , C1 :=

\left(  1 - 

\sqrt{} 
2
\surd 
1 + \varepsilon 

2 + \varepsilon 

\right)  \biggl( 2\pi 

\alpha 

\biggr) K
2

.

Consider now the case where \| S  - IK\| \leqslant \varepsilon . Since S \mapsto \rightarrow 
\surd 
detS is Lipschitz

continuous over the set of symmetric positive definite matrices S such that \| S - IK\| \leqslant 
\varepsilon , with a Lipschitz constant we denote by c\varepsilon , it holds by Lemma A.3 that
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2567

\| h\| \infty \leqslant (2\pi ) - 
K
2

\Biggl( 
\alpha 

1+K
2

\surd 
e

| m| + \alpha 1+K
2

e
\| S - IK\| + \alpha K

\bigm| \bigm| \bigm| \surd detS  - 
\sqrt{} 

det IK

\bigm| \bigm| \bigm| \Biggr) 

\leqslant (2\pi ) - 
K
2

\Biggl( 
\alpha 

1+K
2

\surd 
e

| m| +

\Biggl( 
\alpha 1+K

2

e
+ c\varepsilon \alpha 

K

\Biggr) 
\| S - IK\| 

\Biggr) 
.

In view of (A.9), this implies that there exists a constant C depending only on (\varepsilon ,\alpha ,K)
such that

\| h\| \infty \leqslant C
\Bigl( 
min

\bigl\{ 
| m| ,1

\bigr\} 
+ \| S - IK\| 

\Bigr) 
.(A.10)

On the other hand, since the characteristic function of \scrN (m,S) is given by u \mapsto \rightarrow 
eim

Tu - 1
2u

TSu, it holds by definition of the characteristic function that

\forall u\in RK , eim
Tu - 1

2u
TSu  - e - 

| u| 2
2 =

\int 
RK

eiu
Txh(x)dx.

Therefore, it holds that

\| h\| 1 \geqslant sup
| u| \leqslant 1

\bigm| \bigm| \bigm| \bigm| eimTu - 1
2u

TSu  - e - 
| u| 2
2

\bigm| \bigm| \bigm| \bigm| = sup
| u| \leqslant 1

\bigm| \bigm| \bigm| \bigm| e - 1
2u

TSu  - e - imTu - | u| 2
2

\bigm| \bigm| \bigm| \bigm| .
It is clear from elementary geometry in the complex plane that

\forall u\in RK ,

\bigm| \bigm| \bigm| \bigm| e - 1
2u

TSu  - e - imTu - | u| 2
2

\bigm| \bigm| \bigm| \bigm| 
\geqslant max

\biggl\{ \bigm| \bigm| sin(mTu)
\bigm| \bigm| e - | u| 2

2 ,

\bigm| \bigm| \bigm| \bigm| e - 1
2u

TSu  - e - 
| u| 2
2

\bigm| \bigm| \bigm| \bigm| \biggr\} ,
and so we have

\| h\| 1 \geqslant max

\Biggl\{ 
sup
| u| \leqslant 1

\bigm| \bigm| sin(mTu)
\bigm| \bigm| e - | u| 2

2 , sup
| u| \leqslant 1

\bigm| \bigm| \bigm| \bigm| e - 1
2u

TSu  - e - 
| u| 2
2

\bigm| \bigm| \bigm| \bigm| 
\Biggr\} 

\geqslant max

\Biggl\{ 
e - 

1
2 sup
| u| \leqslant 1

\bigm| \bigm| sin(mTu)
\bigm| \bigm| , e - 1

2
sup
| u| \leqslant 1

\bigm| \bigm| uT(S - IK)u
\bigm| \bigm| \Biggr\} 

=max

\Biggl\{ 
e - 

1
2 sup
| u| \leqslant 1

\bigm| \bigm| sin(mTu)
\bigm| \bigm| , e - 1

2
\| S - IK\| 

\Biggr\} 
.

In the second inequality, we used that uTSu\leqslant 1 + \varepsilon \leqslant 2 for all | u| \leqslant 1, together with
the elementary inequality

\bigm| \bigm| ea  - eb
\bigm| \bigm| \geqslant emin\{ a,b\} | a  - b| . To conclude, considering the

particular value

u=
m

| m| max
\Bigl\{ 
1, 4| m| 

\pi 

\Bigr\} ,
we obtain that

sup
| u| \leqslant 1

\bigm| \bigm| sin(mTu)
\bigm| \bigm| \geqslant sin

\Bigl( 
min

\Bigl\{ 
| m| , \pi 

4

\Bigr\} \Bigr) 
=

\int min\{ | m| ,\pi 4 \} 

0

cos(t)dt\geqslant cos
\Bigl( \pi 
4

\Bigr) 
min

\Bigl\{ 
| m| , \pi 

4

\Bigr\} 
.
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2568 CARRILLO, HOFFMANN, STUART, AND VAES

Thus, using that max\{ A,B\} \geqslant A
2 + B

2 , we obtain

\| h\| 1 \geqslant max

\biggl\{ 
e - 

1
2 cos

\Bigl( \pi 
4

\Bigr) 
min

\Bigl\{ 
| m| , \pi 

4

\Bigr\} 
,
e - 1

2
\| S - IK\| 

\biggr\} 
\geqslant 

1

2
min

\Bigl\{ 
e - 

1
2 cos

\Bigl( \pi 
4

\Bigr) \pi 
4
,
e - 1

2

\Bigr\} \Bigl( 
min\{ | m| ,1\} + \| S - IK\| 

\Bigr) 
.(A.11)

Combining (A.11) with (A.10) leads to \| h\| 1 \geqslant C2\| h\| \infty , which concludes the proof
of the case \| S  - IK\| \leqslant \varepsilon . Consequently, the statement (A.7) holds in general with
constant \widehat L\alpha =min\{ C1,C2\}  - 1.

Lemma A.6. Let P and Q denote the operators on probability measures given,
respectively, in (1.5) and (1.7). Suppose that Assumption A is satisfied and that
| h| C0,1 \leqslant \ell h <\infty . Then there is L = L(\kappa \Psi , \kappa h, \ell h,\Sigma ,\Gamma ) such that for all (u1, u2, y) \in 
Rd \times Rd \times RK and all \mu \in \scrP (Rd), the density of p=QP\mu satisfies

| p(u1, y) - p(u2, y)| \leqslant L| u1  - u2| exp
\biggl( 
 - 1

4

\Bigl( 
min

\Bigl\{ 
| u1| 2\Sigma , | u2| 2\Sigma 

\Bigr\} 
+ | y| 2\Gamma 

\Bigr) \biggr) 
.(A.12)

Proof. Throughout this proof, C denotes a constant whose value is irrelevant in
the context, depends only on \kappa \Psi , \kappa h, \ell h,\Sigma ,\Gamma , and may change from line to line. Since

the function g(x) := e - x2

has derivative  - 2xe - x2

and since | xe - x2 | \leqslant e - 
2x2

3 for all
x\in R, it holds for all (a, b)\in R2 that there is \xi between | a| and | b| such that\bigm| \bigm| \bigm| e - a2

 - e - b2
\bigm| \bigm| \bigm| = | b - a| | g\prime (\xi )| \leqslant 2| b - a| 

\Bigl( 
e - 

2a2

3 + e - 
2b2

3

\Bigr) 
.(A.13)

Using this inequality with a2 = 1
2 | u1  - \Psi (v)| 2\Sigma and b2 = 1

2 | u2  - \Psi (v)| 2\Sigma , and then using

the triangle inequality, we deduce that for all (u1, u2, v)\in Rd \times Rd \times Rd,\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

2
| u1  - \Psi (v)| 2\Sigma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| u2  - \Psi (v)| 2\Sigma 

\biggr) \bigm| \bigm| \bigm| \bigm| 
\leqslant C| u2  - u1| \Sigma 

\biggl( 
exp

\biggl( 
 - 1

3
| u1  - \Psi (v)| 2\Sigma 

\biggr) 
+ exp

\biggl( 
 - 1

3
| u2  - \Psi (v)| 2\Sigma 

\biggr) \biggr) 
.

Integrating out the v variable with respect to \mu and using the equivalence of norms,
we obtain that

| P\mu (u1) - P\mu (u2)| \leqslant C| u1  - u2| 
\int 
Rd

exp

\biggl( 
 - 1

3
| u1  - \Psi (v)| 2\Sigma 

\biggr) 
\mu (dv)

+C| u1  - u2| 
\int 
Rd

exp

\biggl( 
 - 1

3
| u2  - \Psi (v)| 2\Sigma 

\biggr) 
\mu (dv).

By Young's inequality, it holds for all \delta > 0 that

\forall (a, b)\in Rd \times Rd, | a - b| 2\Sigma \geqslant 
1

1 + \delta 
| a| 2\Sigma  - 1

\delta 
| b| 2\Sigma .(A.14)

Using this inequality with \delta = 1
3 together with the assumption that \Psi is bounded, we

deduce that
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2569

| P\mu (u1) - P\mu (u2)| \leqslant C| u1  - u2| 
\int 
Rd

exp

\biggl( 
 - 1

4
| u1| 2\Sigma 

\biggr) 
\mu (dv)(A.15)

+C| u1  - u2| 
\int 
Rd

exp

\biggl( 
 - 1

4
| u2| 2\Sigma 

\biggr) 
\mu (dv)

\leqslant 2C| u1  - u2| exp
\biggl( 
 - 1

4
min

\Bigl\{ 
| u1| 2\Sigma , | u2| 2\Sigma 

\Bigr\} \biggr) 
.

Next, letting hs = (1  - s)h(u1) + sh(u2) and using a reasoning similar to that
in the proof of Lemma A.3, we obtain the following inequalities, which hold for all
(u1, u2, y)\in Rd \times Rd \times RK :\bigm| \bigm| \bigm| \scrN \bigl( h(u1),\Gamma \bigr) (y) - \scrN 

\bigl( 
h(u2),\Gamma 

\bigr) 
(y)
\bigm| \bigm| \bigm| (A.16)

\leqslant | h(u2) - h(u1)| \Gamma 
\int 1

0

| hs  - y| \Gamma exp
\biggl( 
 - 1

2
| hs  - y| 2\Gamma 

\biggr) 
ds

\leqslant C| u2  - u1| exp
\biggl( 
 - 1

4
| y| 2\Gamma 

\biggr) 
,

where we used the Lipschitz continuity of h, together with (A.14) and the boundedness
of h, in the last inequality. In order to conclude the proof, using the definition of P,
we calculate that

p(u1, y) - p(u2, y) = P\mu (u1)\scrN 
\bigl( 
h(u1),\Gamma 

\bigr) 
(y) - P\mu (u2)\scrN 

\bigl( 
h(u2),\Gamma 

\bigr) 
(y)

=
\bigl( 
P\mu (u1) - P\mu (u2)

\bigr) 
\scrN 
\bigl( 
h(u1),\Gamma 

\bigr) 
(y)

+ P\mu (u2)
\Bigl( 
\scrN 
\bigl( 
h(u1),\Gamma 

\bigr) 
 - \scrN 

\bigl( 
h(u2),\Gamma 

\bigr) 
(y)
\Bigr) 
.

The first and second terms on the right-hand side can be bounded by using (A.15)
and (A.16), respectively, leading to (A.12).

Appendix B. Technical results for Theorems 2.2 and 3.2. We show mo-
ment bounds in Appendix B.1, and we prove that Tj\mu =Bj\mu for any Gaussian prob-
ability measure \mu in Appendix B.2. Finally, we prove the stability results used in the
proofs of Theorems 2.2 and 3.2 in Appendices B.3 and B.4, respectively.

B.1. Moment bounds.

Lemma B.1 (moment bounds). Let \mu denote a probability measure on Rd. Under
Assumption A, it holds that\bigm| \bigm| \scrM (P\mu )

\bigm| \bigm| \leqslant \kappa \Psi , \Sigma \preccurlyeq \scrC (P\mu )\preccurlyeq \kappa 2\Psi Id +\Sigma .(B.1)

Proof. From the definition of P in (1.5), we have that

\scrM (P\mu ) =

\int 
Rd

uP\mu (u)du=
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

\int 
Rd

u exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
\mu (dv)du

=

\int 
Rd

\Psi (v)\mu (dv),

where the last equality is obtained by changing the order of integration using Fubini's
theorem. Using the first item in Assumption A, we then deduce the first inequality in
(B.1). For the second inequality in (B.1), we first note the following inequality, which
holds for any m,v \in Rd by Lemma A.1:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

9/
24

 to
 1

31
.2

15
.1

01
.1

33
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2570 CARRILLO, HOFFMANN, STUART, AND VAES\int 
Rd

(u - m)\otimes (u - m) exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
du

\succcurlyeq 
\int 
Rd

\bigl( 
u - \Psi (v)

\bigr) 
\otimes 
\bigl( 
u - \Psi (v)

\bigr) 
exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
du.(B.2)

The result follows by using the fact that \Psi (v) is the mean under Gaussian\scrN 
\bigl( 
\Psi (v),\Sigma 

\bigr) 
.

Now choose m to be the mean under measure P\mu , and note that by conditioning on
v and using (B.2),

\scrC (P\mu ) =
\int 
Rd

(u - m)\otimes (u - m)P\mu (u)du

=
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

\biggl( \int 
Rd

(u - m)\otimes (u - m) exp
\Bigl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\Bigr) 
du

\biggr) 
\mu (dv)

\succcurlyeq 
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

\biggl( \int 
Rd

\bigl( 
u - \Psi (v)

\bigr) 
\otimes 
\bigl( 
u - \Psi (v)

\bigr) 
exp
\Bigl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\Bigr) 
du

\biggr) 
\mu (dv)

=

\int 
Rd

\Sigma \mu (dv) =\Sigma ,

and so \scrC (P\mu )\succcurlyeq \Sigma . On the other hand, using Lemma A.1 again together with the fact
that by the Cauchy--Schwarz inequality aaT \preccurlyeq (aTa)Id for any vector a\in Rd, we have

\scrC (P\mu )\preccurlyeq 
\int 
Rd

u\otimes uP\mu (u)du

=
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

\int 
Rd

u\otimes u exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
\mu (dv)du

=

\int 
Rd

\bigl( 
\Psi (v)\otimes \Psi (v) +\Sigma 

\bigr) 
\mu (dv)\preccurlyeq \kappa 2\Psi Id +\Sigma ,(B.3)

which concludes the proof.

It is possible, by using a similar reasoning, to obtain bounds on the moments of
QP\mu .

Lemma B.2. Let \mu denote a probability measure on Rd. Under Assumption A, it
holds that \bigm| \bigm| \scrM (QP\mu )

\bigm| \bigm| \leqslant \sqrt{} \kappa 2\Psi + \kappa 2h(B.4)

and

min

\biggl\{ 
\gamma \sigma 

2\kappa 2h + \gamma 
,
\gamma 

2

\biggr\} 
Id+K \preccurlyeq \scrC (QP\mu )\preccurlyeq 

\biggl( 
2\kappa 2\Psi Id + 2\Sigma 0d\times K

0K\times d 2\kappa 2hIK +\Gamma 

\biggr) 
.(B.5)

Proof. The inequality (B.4) follows immediately from Assumption A and the fact
that

\scrM (QP\mu ) =

\biggl( 
\scrM (P\mu )
P\mu [h]

\biggr) 
.(B.6)
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2571

For inequality (B.5), let \phi : Rd \rightarrow Rd+K denote the map \phi (u) =
\bigl( 
u,h(u)

\bigr) 
, and let \phi \sharp 

denote the associated pushforward map on measures. A calculation gives

\scrC (QP\mu ) = \scrC (\phi \sharp P\mu ) +
\biggl( 
0d\times d 0d\times K

0K\times d \Gamma 

\biggr) 
=

\biggl( 
\scrC uu(\phi \sharp P\mu ) \scrC uy(\phi \sharp P\mu )
\scrC yu(\phi \sharp P\mu ) \scrC yy(\phi \sharp P\mu ) + \Gamma 

\biggr) 
.(B.7)

For any (a, b)\in Rd \times RK , it holds that

2

\biggl( 
aaT 0d\times K

0K\times d bbT

\biggr) 
 - 
\biggl( 
a
b

\biggr) 
\otimes 
\biggl( 
a
b

\biggr) 
=

\biggl( 
a
 - b

\biggr) 
\otimes 
\biggl( 
a
 - b

\biggr) 
\succcurlyeq 0(d+K)\times (d+K).

Therefore, we obtain \biggl( 
a
b

\biggr) 
\otimes 
\biggl( 
a
b

\biggr) 
\preccurlyeq 2

\biggl( 
aaT 0d\times K

0K\times d bbT

\biggr) 
,

which enables to deduce, using Lemma B.1 and Assumption A, that

\scrC (\phi \sharp P\mu )\preccurlyeq 
\int 
Rd

\biggl( 
u

h(u)

\biggr) 
\otimes 
\biggl( 

u
h(u)

\biggr) 
P\mu (u)du

\preccurlyeq 2

\int 
Rd

\biggl( 
uuT 0d\times K

0K\times d h(u)h(u)T

\biggr) 
P\mu (u)du\preccurlyeq 2

\biggl( 
\kappa 2\Psi Id +\Sigma 0d\times K

0K\times d \kappa 2hIK

\biggr) 
,(B.8)

where we used (B.3) in the last inequality. Combined with (B.7), this inequality
leads to the upper bound (B.5). For the lower bound, note that by the Cauchy--
Schwarz inequality, it holds for any probability measure \pi \in \scrP (Rd \times RK) and all
(a, b)\in Rd \times RK that\bigm| \bigm| aT\scrC uy(\pi )b

\bigm| \bigm| = \int 
Rd\times RK

\bigl( 
aT
\bigl( 
u - \scrM u(\pi )

\bigr) \bigr) \bigl( 
bT
\bigl( 
y - \scrM y(\pi )

\bigr) \bigr) 
\pi (dudy)

\leqslant 
\sqrt{} 
aT\scrC uu(\pi )a

\sqrt{} 
bT\scrC yy(\pi )b.

Therefore, by Young's inequality, it holds for all \varepsilon \in (0,1) and for all (a, b)\in Rd\times RK

that \biggl( 
a
b

\biggr) T

\scrC (\phi \sharp P\mu )
\biggl( 
a
b

\biggr) 
\geqslant (1 - \varepsilon )aT\scrC uu(\phi \sharp P\mu )a - 

\biggl( 
1

\varepsilon 
 - 1

\biggr) 
bT\scrC yy(\phi \sharp P\mu )b

\geqslant (1 - \varepsilon )aT\Sigma a - 
\biggl( 
1

\varepsilon 
 - 1

\biggr) 
\kappa 2h| b| 2,

where we employed (B.1) and the bound \scrC yy(\phi \sharp P\mu ) \preccurlyeq \kappa 2HIK in the last inequality.
Using (B.7), we deduce that\biggl( 

a
b

\biggr) T

\scrC (QP\mu )
\biggl( 
a
b

\biggr) 
\geqslant (1 - \varepsilon )aT\Sigma a - 

\biggl( 
1

\varepsilon 
 - 1

\biggr) 
\kappa 2h | b| 

2
+ bT\Gamma b

\geqslant (1 - \varepsilon )\sigma | a| 2 +
\biggl( 
\gamma  - 

\biggl( 
1

\varepsilon 
 - 1

\biggr) 
\kappa 2h

\biggr) 
| b| 2.(B.9)

Letting \varepsilon be such that the coefficient of | b| 2 is \gamma /2, we finally obtain\biggl( 
a
b

\biggr) T

\scrC (QP\mu )
\biggl( 
a
b

\biggr) 
\geqslant 

\gamma \sigma 

2\kappa 2h + \gamma 
| a| 2 + \gamma 

2
| b| 2,(B.10)

which concludes the proof.
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2572 CARRILLO, HOFFMANN, STUART, AND VAES

Remark B.3. A bound sharper than (B.10) can be obtained by letting \varepsilon be such
that the coefficients of | a| 2 and | b| 2 are equal in (B.9), but this is not necessary for
our purposes.

Lemma B.4. For \mu 1, \mu 2 \in \scrP (Rn) with finite second moments, it holds that\bigm| \bigm| \scrM (\mu 1) - \scrM (\mu 2)
\bigm| \bigm| \leqslant 1

2
dg(\mu 1, \mu 2),\bigm\| \bigm\| \scrC (\mu 1) - \scrC (\mu 2)

\bigm\| \bigm\| \leqslant \biggl( 1 + 1

2
| \scrM (\mu 1) +\scrM (\mu 2)| 

\biggr) 
dg(\mu 1, \mu 2).

Proof. Let mi =\scrM (\mu i) and \Sigma i = \scrC (\mu i) for i = 1,2. Notice that | 2aTu| \leqslant g(u) if
| a| = 1, so

| m1  - m2| = sup
| a| =1

\bigm| \bigm| aT\bigl( m1  - m2

\bigr) \bigm| \bigm| = sup
| a| =1

\bigm| \bigm| \mu 1

\bigl[ 
aTu

\bigr] 
 - \mu 2

\bigl[ 
aTu

\bigr] \bigm| \bigm| \leqslant 1

2
dg(\mu 1, \mu 2),(B.11)

where the supremum is over the unit sphere in Rn, centered at the origin and in the
Euclidean distance. Similarly,

\| \Sigma 1  - \Sigma 2\| = sup
| a| =1

\bigm| \bigm| aT\Sigma 1a - aT\Sigma 2a
\bigm| \bigm| 

\leqslant sup
| a| =1

\Bigl\{ \bigm| \bigm| \mu 1

\bigl[ 
| aTu| 2

\bigr] 
 - \mu 2

\bigl[ 
| aTu| 2

\bigr] \bigm| \bigm| + \bigm| \bigm| \bigm| \mu 1

\bigl[ 
aTu

\bigr] 2  - \mu 2

\bigl[ 
aTu

\bigr] 2\bigm| \bigm| \bigm| \Bigr\} 
\leqslant dg(\mu 1, \mu 2) + sup

| a| =1

\bigm| \bigm| \mu 1

\bigl[ 
aTu

\bigr] 
+ \mu 2

\bigl[ 
aTu

\bigr] \bigm| \bigm| \bigm| \bigm| \mu 1

\bigl[ 
aTu

\bigr] 
 - \mu 2

\bigl[ 
aTu

\bigr] \bigm| \bigm| 
\leqslant 

\biggl( 
1 +

1

2
| m1 +m2| 

\biggr) 
dg(\mu 1, \mu 2),(B.12)

which concludes the proof.

B.2. Action of T\bfitj on Gaussians.

Lemma B.5 (BjG = TjG). Fix y\dagger j+1 \in RK . Let \pi be a Gaussian measure over

Rd \times RK with mean and covariance given by

m=

\biggl( 
mu

my

\biggr) 
, S=

\biggl( 
Suu Suy
STuy Syy

\biggr) 
.

Recall the pushforward of T defined in (2.3). Then the probability measure Bj\pi defined

in (1.8) coincides with the probability measure Tj\pi =T (\bullet ,\bullet ;\pi , y\dagger j+1)\sharp \pi .

Proof. For conciseness, we denote y\dagger = y\dagger j+1. Using the well-known formula for
the conditional distribution of a normal random variable, we have that

Bj\pi =\scrN 
\bigl( 
mu + SuyS

 - 1
yy (y

\dagger  - my), Suu  - SuyS
 - 1
yy S

T
uy

\bigr) 
.(B.13)

Since Tj is the pushforward under an affine map, it maps Gaussian distributions in
\scrP (Rd \times RK) to Gaussian distributions in \scrP (Rd) and so is sufficient to check that
the first and second moments of Bj\pi and Tj\pi coincide. By definition of Tj in (2.3),
we have that U + SuyS

 - 1
yy (y

\dagger  - Y ) \sim Tj\pi if (U,Y ) \sim \pi . It follows immediately that
the mean under Tj\pi coincides with that under the conditional distribution (B.13).
Employing the expression for the mean under Tj\pi , we then obtain that the covariance
under Tj\pi is given by

\scrC (Tj\pi ) =E(U,Y )\sim \pi 

\biggl[ \Bigl( 
U  - mu + SuyS

 - 1
yy

\bigl( 
my  - Y

\bigr) \Bigr) 
\otimes 
\Bigl( 
U  - mu + SuyS

 - 1
yy

\bigl( 
my  - Y

\bigr) \Bigr) \biggr] 
.
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2573

Developing this expression, we obtain

\scrC (Tj\pi ) =E(U,Y )\sim \pi 

\biggl[ 
(U  - mu)(U  - mu)

T + (U  - mu)
\bigl( 
my  - Y

\bigr) T
S - 1
yy S

T
uy

+ SuyS
 - 1
yy

\bigl( 
my  - Y

\bigr) 
(U  - mu)

T + SuyS
 - 1
yy

\bigl( 
my  - Y

\bigr) \bigl( 
my  - Y

\bigr) T
S - 1
yy S

T
uy

\biggr] 
= Suu  - SuyS

 - 1
yy S

T
uy  - SuyS

 - 1
yy S

T
uy + SuyS

 - 1
yy S

T
uy = Suu  - SuyS

 - 1
yy S

T
uy,

which indeed coincides with the covariance of Bj\pi in (B.13).

Lemma B.6. The maps (3.1) and (3.2) are equivalent.

Proof. The equivalence follows from Lemma B.5 and the operator equality TjG=
GTj , with both sides viewed as operators from \scrP (Rd\times RK) to \scrP (Rd). Since Tj maps
Gaussians to Gaussians, the image of both operators is contained in the set \scrG (Rd) of
Gaussian distributions. It is therefore sufficient to check that for any \pi \in \scrP (Rd\times RK),
the probability measures TjG\pi and GTj\pi have the same first and second moments.
We saw in the proof of Lemma B.5 that the first and second moments of Tjp, for any
p \in \scrP (Rd \times RK), depend only on the first and second moments of p. Therefore, the
first and second moments of Tj\pi and TjG\pi coincide since the operator G leaves the
first and second moments invariant, and the conclusion follows.

B.3. Stability results.

Lemma B.7 (the map P is globally Lischitz). Under Assumption A, it holds for
all \mu \in \scrP (Rd) that

dg(P\mu ,P\nu )\leqslant 
\Bigl( 
1 + \kappa 2\Psi + tr(\Sigma )

\Bigr) 
dg(\mu ,\nu ).

Proof. By definition (1.5) of P, it holds that

P\mu (u) =

\int 
Rd

exp
\Bigl( 
 - 1

2 | u - \Psi (v)| 2\Sigma 
\Bigr) 

\sqrt{} 
(2\pi )d det\Sigma 

\mu (dv) =:

\int 
Rd

p(v,u)\mu (dv).

Take any f : Rd \rightarrow R such that | f | \leqslant g, where g(u) = 1+ | u| 2. Since \Psi is bounded by
assumption,

| b(v)| :=
\bigm| \bigm| \bigm| \bigm| \int 

Rd

f(u)p(v,u)du

\bigm| \bigm| \bigm| \bigm| \leqslant \int 
Rd

g(u)p(v,u)du

= 1+ | \Psi (v)| 2 + tr(\Sigma )\leqslant 1 + \kappa 2\Psi + tr(\Sigma ).

Therefore, using Fubini's theorem, we have\bigm| \bigm| \bigm| P\mu [f ] - P\nu [f ]
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 

Rd

\biggl( \int 
Rd

f(u)p(v,u)du

\biggr) \bigl( 
\mu (dv) - \nu (dv)

\bigr) \bigm| \bigm| \bigm| \bigm| 
=
\bigm| \bigm| \bigm| \mu [b] - \nu [b]

\bigm| \bigm| \bigm| \leqslant \Bigl( 1 + \kappa 2\Psi + tr(\Sigma )
\Bigr) 
dg(\mu ,\nu ),

which concludes the proof.

Lemma B.8 (the map Q is globally Lipschitz). Under Assumption A, it holds for
any \mu ,\nu \in \scrP (Rd) that

dg(Q\mu ,Q\nu )\leqslant 
\Bigl( 
1 + \kappa 2h + tr(\Gamma )

\Bigr) 
dg(\mu ,\nu ).(B.14)
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2574 CARRILLO, HOFFMANN, STUART, AND VAES

Proof. Let us take f : Rd\times RK \rightarrow R such that | f | \leqslant g and introduce the operator
\Pi given by

\Pi f(u) =

\int 
RK

f(u, y)\scrN 
\bigl( 
h(u),\Gamma 

\bigr) 
(dy).

Clearly, | \Pi f(u)| \leqslant \Pi g(u), and it holds that

\Pi g(u) =

\int 
RK

\bigl( 
1 + | u| 2 + | y| 2

\bigr) 
\scrN 
\bigl( 
h(u),\Gamma 

\bigr) 
(dy) = 1+ | u| 2 +

\int 
RK

| y| 2\scrN 
\bigl( 
h(u),\Gamma 

\bigr) 
(dy)

= 1+ | u| 2 +
\bigm| \bigm| h(u)\bigm| \bigm| 2 + tr(\Gamma )\leqslant 

\Bigl( 
1 + \kappa 2h + tr(\Gamma )

\Bigr) \bigl( 
1 + | u| 2

\bigr) 
.

Therefore, \bigm| \bigm| \bigm| Q\mu [f ] - Q\nu [f ]
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \mu [\Pi f ] - \nu [\Pi f ]

\bigm| \bigm| \bigm| \leqslant \Bigl( 1 + \kappa 2h + tr(\Gamma )
\Bigr) 
dg(\mu ,\nu ),

and we obtain (B.14).

Lemma B.9. Under Assumption A, there exists CB = CB(\kappa y, \kappa \Psi , \kappa h,\Sigma ,\Gamma ) such
that for any probability measure \mu \in \scrP (Rd), it holds that

\forall j \in J0, JK, dg(BjGQP\mu ,BjQP\mu )\leqslant CBdg(GQP\mu ,QP\mu ).

Proof. For conciseness, we denote y\dagger = y\dagger j+1. Let us introduce the y-marginal
densities

\alpha \mu (y) :=

\int 
Rd

GQP\mu (u, y)du , \beta \mu (y) :=

\int 
Rd

QP\mu (u, y)du .

Then

dg(BjGQP\mu ,BjQP\mu ) =

\int 
Rd

\bigl( 
1 + | u| 2

\bigr) \bigm| \bigm| \bigm| \bigm| GQP\mu (u, y\dagger )\alpha \mu (y\dagger )
 - QP\mu (u, y\dagger )

\beta \mu (y\dagger )

\bigm| \bigm| \bigm| \bigm| du
\leqslant 

1

\alpha \mu (y\dagger )

\int 
Rd

\bigl( 
1 + | u| 2

\bigr) \bigm| \bigm| GQP\mu (u, y\dagger ) - QP\mu (u, y\dagger )
\bigm| \bigm| du

+

\bigm| \bigm| \bigm| \bigm| \alpha \mu (y
\dagger ) - \beta \mu (y

\dagger )

\alpha \mu (y\dagger )\beta \mu (y\dagger )

\bigm| \bigm| \bigm| \bigm| \int 
Rd

\bigl( 
1 + | u| 2

\bigr) 
QP\mu (u, y\dagger )du.(B.15)

Step 1: Bounding \alpha \mu (y
\dagger ) and \beta \mu (y

\dagger ) from below. The marginal distribution \alpha \mu (\bullet )
is Gaussian with covariance matrix

\Gamma + P\mu 
\bigl[ 
h(\bullet )\otimes h(\bullet )

\bigr] 
 - P\mu 

\bigl[ 
h(\bullet )

\bigr] 
\otimes P\mu 

\bigl[ 
h(\bullet )

\bigr] 
,(B.16)

which is bounded from below by \Gamma and from above by \Gamma +\kappa 2hIK in view of Assumption
A. (We again use the fact that aaT \preccurlyeq (aTa)Id for any vector a \in Rd by the Cauchy--
Schwarz inequality.) Assumption A also implies that the mean of \alpha \mu is bounded from
above in norm by \kappa h. Therefore, it holds that

\forall y \in RK , \alpha \mu (y)\geqslant 
exp
\Bigl( 
 - 1

2 (| y| + \kappa h)
2
\bigm\| \bigm\| \Gamma  - 1

\bigm\| \bigm\| \Bigr) \sqrt{} 
(2\pi )K det(\Gamma + \kappa 2hIK)

.(B.17)
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2575

The function \beta \mu can be bounded from below independently of \mu in a similar manner.
Indeed, it holds under Assumption A that for all y \in RK ,

\beta \mu (y) =

\int 
Rd

QP\mu (u, y)du=

\int 
Rd

exp
\Bigl( 
 - 1

2

\bigl( 
y - h(u)

\bigr) T
\Gamma  - 1

\bigl( 
y - h(u)

\bigr) \Bigr) \sqrt{} 
(2\pi )K det(\Gamma )

P\mu (u)du

\geqslant 
exp
\Bigl( 
 - 1

2 (| y| + \kappa h)
2
\bigm\| \bigm\| \Gamma  - 1

\bigm\| \bigm\| \Bigr) \sqrt{} 
(2\pi )K det(\Gamma )

.(B.18)

Step 2: Bounding the first term in (B.15). For fixed u \in Rd, the functions y \mapsto \rightarrow 
QP\mu (u, y) and y \mapsto \rightarrow GQP\mu (u, y) are Gaussians up to constant factors. The covariance
matrix of the former is \Gamma , and using the formula for the covariance of the conditional
distribution of a Gaussian, we calculate that the covariance of the latter is given by

\scrC yy(QP\mu ) - \scrC yu(QP\mu )\scrC uu(QP\mu ) - 1\scrC uy(QP\mu ).(B.19)

Since \scrC yu(QP\mu )\scrC uu(QP\mu ) - 1\scrC uy(QP\mu ) is positive semidefinite, it follows from Lemma
B.2 that the matrix (B.19) is bounded from above by 2\kappa 2hIK + \Gamma . Then, using the
same notation as in (B.7), we obtain that

\scrC yy(QP\mu ) - \scrC yu(QP\mu )\scrC uu(QP\mu ) - 1\scrC uy(QP\mu )

= \Gamma +
\Bigl( 
\scrC yy(\phi \sharp P\mu ) - \scrC yu(\phi \sharp P\mu )\scrC uu(\phi \sharp P\mu )

 - 1\scrC uy(\phi \sharp P\mu )
\Bigr) 
\succcurlyeq \Gamma ,(B.20)

where the inequality holds because, being the Schur complement of the block
\scrC uu(\phi \sharp P\mu ) of the matrix \scrC (\phi \sharp P\mu ), the bracketed term is positive semidefinite. There-
fore, the matrix (B.19) is bounded from below by \Gamma , and so the integral in the first
term of (B.15) may be bounded from above by using Lemma A.4 in Appendix A with
parameter \alpha = \alpha (\kappa h,\Gamma ), which gives\int 

Rd

\bigl( 
1 + | u| 2

\bigr) 
| GQP\mu (u, y) - QP\mu (u, y)| du

\leqslant C

\int 
RK

\int 
Rd

\bigl( 
1 + | u| 2

\bigr) \bigm| \bigm| GQP\mu (u, y) - QP\mu (u, y)
\bigm| \bigm| dudy

\leqslant C

\int 
RK

\int 
Rd

\bigl( 
1 + | u| 2 + | y| 2

\bigr) \bigm| \bigm| GQP\mu (u, y) - QP\mu (u, y)
\bigm| \bigm| dudy

=Cdg(GQP\mu ,QP\mu )(B.21)

for an appropriate constant C depending only on \Gamma and \kappa h.
Step 3: Bounding the second term in (B.15). By (B.21), we have

\bigm| \bigm| \alpha \mu (y) - \beta \mu (y)
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 

Rd

GQP\mu (u, y) - QP\mu (u, y)du

\bigm| \bigm| \bigm| \bigm| 
\leqslant 
\int 
Rd

\bigl( 
1 + | u| 2

\bigr) \bigm| \bigm| GQP\mu (u, y) - QP\mu (u, y)
\bigm| \bigm| du\leqslant Cdg(GQP\mu ,QP\mu ).

On the other hand, since y \mapsto \rightarrow QP\mu (u, y)/P\mu (u) is a Gaussian density with covariance

\Gamma , which is bounded uniformly from above by
\bigl( 
(2\pi )K det(\Gamma )

\bigr)  - 1/2
, it holds that
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2576 CARRILLO, HOFFMANN, STUART, AND VAES\int 
Rd

\bigl( 
1 + | u| 2

\bigr) 
QP\mu (u, y)du= \beta \mu (y) +

\int 
Rd

| u| 2QP\mu (u, y)du

\leqslant \beta \mu (y) +

\int 
Rd

| u| 2P\mu (u)\sqrt{} 
(2\pi )K det(\Gamma )

du

= \beta \mu (y) +
tr
\bigl( 
\scrC (P\mu )

\bigr) 
+ | \scrM (P\mu )| 2\sqrt{} 

(2\pi )K det(\Gamma )
.

By Lemma B.1, the first and second moments of P\mu are bounded from above by a
constant depending only on \kappa \Psi and \Sigma .

Step 4: Concluding the proof. Combining the above inequalities, we deduce that

dg(BjGQP\mu ,BjQP\mu )\leqslant 
C(\kappa \Psi , \kappa h,\Sigma ,\Gamma )

\alpha \mu (y
\dagger 
j+1)

\Biggl( 
1 +

1

\beta \mu (y
\dagger 
j+1)

\Biggr) 
dg(GQP\mu ,QP\mu ).

Using (B.17) and (B.18) together with the uniform bound \kappa y on the data (Assumption
A) gives the conclusion.

To conclude this section, we show a stability result for Tj .

Lemma B.10 (stability result for the mean-field map Tj). Suppose that As-
sumption A is satisfied and that | h| C0,1 \leqslant \ell h < \infty . Then, for all R \geqslant 1, there is
LT =LT(R,\kappa y, \kappa \Psi , \kappa h, \ell h,\Sigma ,\Gamma ) such that for all \pi \in \scrP R(R

d \times RK) and \mu \in \scrP (Rd), it
holds that

\forall j \in J1, JK, dg(Tj\pi ,Tjp)\leqslant LT dg(\pi ,p), p :=QP\mu .

Proof. By Lemma B.2, the probability measure QP\mu belongs to \scrP \widetilde R(Rd \times RK)

for some \widetilde R\geqslant 1. Let us introduce

r=max
\Bigl\{ 
R, \widetilde R,\kappa y\Bigr\} 

and denote by T \pi and T p the affine maps corresponding to evaluation of covariance
information at \pi and p=QP\mu . Specifically,

T \pi (u, y) = u+A\pi (y
\dagger  - y), A\pi :=KuyK

 - 1
yy ,

T p(u, y) = u+Ap(y
\dagger  - y), Ap := SuyS

 - 1
yy ,

where K= \scrC (\pi ), S= \scrC (p), and y\dagger = y\dagger j+1. By the triangle inequality, we have

dg(Tj\pi ,Tjp)\leqslant dg(T
\pi 
\sharp \pi ,T

\pi 
\sharp p) + dg(T

\pi 
\sharp p,T

p
\sharp p).(B.22)

Before separately bounding each term on the right-hand side, we obtain simple in-
equalities that will be helpful later in the proof. It holds that

\| A\pi \| \leqslant \| Kuy\| \| K - 1
yy \| \leqslant \| K\| \| K - 1\| \leqslant r4(B.23)

and similarly for Ap. Here we used that the matrix norm (induced by the Euclidean
vector norm) of any submatrix is bounded from above by the norm of the original
matrix. Using this bound again, we obtain, assuming that r > 1 without any loss of
generality,
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2577

\| A\pi  - Ap\| = \| KuyK
 - 1
yy  - SuyS

 - 1
yy \| \leqslant \| (Kuy  - Suy)K

 - 1
yy \| + \| Suy

\bigl( 
K - 1

yy  - S - 1
yy

\bigr) 
\| 

\leqslant r2
\Bigl( 
\| Kuy  - Suy\| + \| K - 1

yy  - S - 1
yy \| 
\Bigr) 

= r2
\Bigl( 
\| Kuy  - Suy\| + \| K - 1

yy (Syy  - Kyy)S
 - 1
yy \| 
\Bigr) 

\leqslant r2
\Bigl( 
\| Kuy  - Suy\| + \| K - 1

yy \| \| Syy  - Kyy\| \| S - 1
yy \| 
\Bigr) 

\leqslant 2r6\| K - S\| \leqslant 2r6(1 + 2r)dg(\pi ,p),(B.24)

where we used in the last line the inequality (B.12) from Lemma B.4.
Bounding the first term in (B.22). Let f : Rd \rightarrow R denote a function satisfying

| f | \leqslant g. It follows from the definition of the pushforward measure that\bigm| \bigm| T \pi 
\sharp \pi [f ] - T \pi 

\sharp p[f ]
\bigm| \bigm| = \bigm| \bigm| \pi [f \circ T \pi ] - p[f \circ T \pi ]

\bigm| \bigm| .
For all (u, y)\in Rd \times RK , it holds that\bigm| \bigm| f \circ T \pi (u, y)

\bigm| \bigm| = \bigm| \bigm| \bigm| f\Bigl( u+A\pi 

\bigl( 
y\dagger  - y

\bigr) \Bigr) \bigm| \bigm| \bigm| \leqslant g
\Bigl( 
u+A\pi 

\bigl( 
y\dagger  - y

\bigr) \Bigr) 
= 1+

\bigm| \bigm| u+A\pi (y
\dagger  - y)

\bigm| \bigm| 2 \leqslant 1 + 3| u| 2 + 3| A\pi y
\dagger | 2 + 3| A\pi y| 2

\leqslant 3
\bigl( 
1 + | A\pi y

\dagger | 2
\bigr) 
max

\bigl\{ 
1,\| A\pi \| 2

\bigr\} 
g(u, y).

Therefore, using (B.23), we deduce that

dg(T
\pi 
\sharp \pi ,T

\pi 
\sharp p)\leqslant 3

\bigl( 
1 + r10

\bigr) 
r8 dg(\pi ,p).(B.25)

Bounding the second term in (B.22). Let f : Rd \rightarrow R again denote a function
satisfying the inequality | f | \leqslant g, with g(u) = 1+ | u| 2. It holds that\bigm| \bigm| \bigm| T \pi 

\sharp p[f ] - T p
\sharp p[f ]

\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| p[f \circ T \pi ] - p[f \circ T p]
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| p[f \circ T \pi  - f \circ T p]

\bigm| \bigm| \bigm| .
The right-hand side may be rewritten more explicitly as\bigm| \bigm| \bigm| p[f \circ T \pi  - f \circ T p]

\bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int 
RK

\int 
Rd

f
\bigl( 
u+A\pi 

\bigl( 
y\dagger  - y

\bigr) \bigr) 
 - f

\bigl( 
u+Ap

\bigl( 
y\dagger  - y

\bigr) \bigr) 
p(u, y)dudy

\bigm| \bigm| \bigm| \bigm| .
We apply a change of variable in order rewrite the integral in this identity as\int 

RK

\int 
Rd

\bigl( 
f(u+A\pi z) - f(u+Apz)

\bigr) 
p(u, y\dagger  - z)dudz

=

\int 
RK

\int 
Rd

f(v)
\Bigl( 
p(v - A\pi z, y

\dagger  - z) - p(v - Apz, y
\dagger  - z)

\Bigr) 
dv dz.(B.26)

It follows from the technical Lemma A.6 proved in Appendix A that\bigm| \bigm| \bigm| p(v - A\pi z, y
\dagger  - z) - p(v - Apz, y

\dagger  - z)
\bigm| \bigm| \bigm| 

\leqslant C| A\pi z  - Apz| exp
\biggl( 
 - 1

4

\Bigl( \bigm| \bigm| y\dagger  - z
\bigm| \bigm| 2
\Gamma 
+min

\Bigl\{ 
| v - A\pi z| 2K , | v - Apz| 2K

\Bigr\} \Bigr) \biggr) 
.
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2578 CARRILLO, HOFFMANN, STUART, AND VAES

Using this inequality, we first bound the inner integral in (B.26) for fixed z \in RK .
Keeping only the terms that depend on v, we obtain that\int 

Rd

| f(v)| exp
\biggl( 
 - 1

4
min

\Bigl\{ 
| v - A\pi z| 2K , | v - Apz| 2K

\Bigr\} \biggr) 
dv

=

\int 
Rd

| f(v)| max

\biggl\{ 
exp

\biggl( 
 - 1

4
| v - A\pi z| 2K

\biggr) 
, exp

\biggl( 
 - 1

4
| v - Apz| 2K

\biggr) \biggr\} 
dv

\leqslant 
\int 
Rd

| f(v)| exp
\biggl( 
 - 1

4
| v - A\pi z| 2K

\biggr) 
dv+

\int 
Rd

| f(v)| exp
\biggl( 
 - 1

4
| v - Apz| 2K

\biggr) 
dv.

Since | f(v)| \leqslant 1 + | v| 2, it is clear that this expression is bounded from above by

C
\Bigl( 
1 + | A\pi z| 2 + | Apz| 2

\Bigr) 
\leqslant Cr8

\bigl( 
1 + | z| 2

\bigr) 
,

where we used (B.23) in the last inequality. The remaining integral in the z direction
can be bounded similarly,

dg(T
\pi 
\sharp p,T

p
\sharp p)\leqslant Cr8

\int 
RK

\bigl( 
1 + | z| 2

\bigr) 
| A\pi z  - Apz| exp

\biggl( 
 - 1

4

\Bigl( \bigm| \bigm| y\dagger  - z
\bigm| \bigm| 2
\Gamma 

\Bigr) \biggr) 
dz

\leqslant Cr11\| A\pi  - Ap\| \leqslant Cr18dg(\pi ,p),(B.27)

where we used the bound (B.24) in the last inequality. Combining (B.25) and (B.27),
we deduce the statement.

B.4. Additional stability results for the Gaussian projected filter. Next,
we show the local Lipschitz continuity of the Gaussian projection map G. To this end,
we begin by proving the following result. (The proof uses an approach similar to that
employed in [17] for obtaining an upper bound on the distance between Gaussians in
the usual total variation metric.)

Lemma B.11. Let \mu 1 = \scrN (m1,\Sigma 1) and \mu 2 = \scrN (m2,\Sigma 2) with \Sigma 1,\Sigma 2 \in Rn\times n

symmetric and positive definite. It holds that

dg
\bigl( 
\mu 1, \mu 2

\bigr) 
\leqslant 
\sqrt{} 
\mu 1 [g2] + \mu 2 [g2]

\bigl( 
3
\bigm\| \bigm\| \Sigma  - 1

2 \Sigma 1  - In
\bigm\| \bigm\| 
F
+ | m1  - m2| \Sigma 2

\bigr) 
,(B.28)

where \| \bullet \| F is the Frobenius matrix norm.

Proof. We denote by (\lambda i)1\leqslant i\leqslant n the eigenvalues of \Sigma  - 1
1 \Sigma 2. Being the product of

two symmetric positive definite matrices, \Sigma  - 1
1 \Sigma 2 is real diagonalizable with real and

positive eigenvalues. We note that

dg(\mu 1, \mu 2)\leqslant \mu 1[g] + \mu 2[g]\leqslant 
\sqrt{} 
\mu 1[g2] +

\sqrt{} 
\mu 2[g2]\leqslant 

\surd 
2
\sqrt{} 
\mu 1[g2] + \mu 2[g2].

Now assume that max\{ \lambda j : 1 \leqslant j \leqslant n\} \geqslant 2. In this case, there is integer k such that
\lambda k \geqslant 2, and so

3\| \Sigma  - 1
2 \Sigma 1  - In\| F = 3

\sqrt{}    n\sum 
i=1

| \lambda  - 1
i  - 1| 2 \geqslant 3

\bigm| \bigm| \lambda  - 1
k  - 1

\bigm| \bigm| \geqslant 3

2
\geqslant 
\surd 
2.

Combining the previous two inequalities proves (B.28) in the case where

max\{ \lambda j : 1\leqslant j \leqslant n\} \geqslant 2.
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2579

We assume from now on that 0 < \lambda i < 2 for all i \in J1, nK. Employing the same
reasoning as in [2, Lemma 3.1], we can prove

dg(\mu 1, \mu 2)
2 \leqslant 2

\Bigl( 
\mu 1

\bigl[ 
g2
\bigr] 
+ \mu 2

\bigl[ 
g2
\bigr] \Bigr) 

KL(\mu 2\| \mu 1),(B.29)

where KL(\mu 2\| \mu 1) is the Kullback--Leibler (KL) divergence of \mu 2 from \mu 1, given by

KL(\mu 1\| \mu 2) :=

\int 
Rd

d\mu 1

d\mu 2
log

\biggl( 
d\mu 1

d\mu 2

\biggr) 
d\mu 2.(B.30)

The proof of the inequality (B.29) is presented in Lemma A.2 in Appendix A for
completeness. The KL divergence between two Gaussians has a closed expression,
which we rewrite in terms of the function f1(x) := x - 1  - 1 + logx:

KL(\mu 2\| \mu 1) =
1

2

\bigl( 
tr(\Sigma  - 1

2 \Sigma 1  - In) + (m1  - m2)
T\Sigma  - 1

2 (m1  - m2) - log det(\Sigma  - 1
2 \Sigma 1)

\bigr) 
=

1

2

\Biggl( 
n\sum 

i=1

(\lambda  - 1
i  - 1) + (m1  - m2)

T\Sigma  - 1
2 (m1  - m2) +

n\sum 
i=1

log\lambda i

\Biggr) 

=
1

2

\Biggl( 
n\sum 

i=1

f1(\lambda i) + | m1  - m2| 2\Sigma 2

\Biggr) 
.

The function f1 is pointwise bounded from above by f2(x) := (1 - x - 1)2 for x\in (0,2).
To see this, consider the function \varphi (x) = f2(x) - f1(x). It suffices to note that \varphi (1) = 0
and

\varphi \prime (x) = - 1

x

\biggl( 
1 - 1

x

\biggr) \biggl( 
1 - 2

x

\biggr) 
.

Since \varphi \prime (x)< 0 for x \in (0,1) and \varphi \prime (x)> 0 for x \in (1,2), the desired upper bound on
f1(x) by f2(x) for x\in (0,2) follows. Therefore, since

n\sum 
i=1

f1(\lambda i)\leqslant 
n\sum 

i=1

f2(\lambda i) = \| \Sigma  - 1
2 \Sigma 1  - In\| 2F,

we have

KL(\mu 2\| \mu 1)\leqslant 
1

2

\Bigl( 
\| \Sigma  - 1

2 \Sigma 1  - In\| 2F + | m1  - m2| 2\Sigma 2

\Bigr) 
\leqslant 

1

2

\Bigl( 
\| \Sigma  - 1

2 \Sigma 1  - In\| F + | m1  - m2| \Sigma 2

\Bigr) 2
.

Consequently, we deduce from (B.29) that

dg(\mu 1, \mu 2)\leqslant 
\sqrt{} 
\mu 1

\bigl[ 
g2
\bigr] 
+ \mu 2

\bigl[ 
g2
\bigr] \Bigl( 

\| \Sigma  - 1
2 \Sigma 1  - In\| F + | m1  - m2| \Sigma 2

\Bigr) 
,

which concludes the proof.

Lemma B.12. For all R \geqslant 1, there is LG = LG(R,n) such that for all \mu 1, \mu 2 \in 
\scrP R(R

n), the following inequality holds:

dg(G\mu 1,G\mu 2)\leqslant LG(R,n)dg(\mu 1, \mu 2).(B.31)
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2580 CARRILLO, HOFFMANN, STUART, AND VAES

Before proving this lemma, we make two remarks on the form of the result.

Remark B.13. Lemmas B.7 and B.8 on the Lipschitz continuity of P and Q do not
depend on the specific choice of the function g in Definition 1.1; they hold true also
for the usual total variation distance. In contrast, in the proof of Lemma B.12, the
specific choice of g is used in order to control differences between moments by means
of dg(\bullet ,\bullet ).

Remark B.14. A simple example shows that the constant LG(R,n) in (B.31)
is divergent in the limit R \rightarrow \infty , indicating that the Gaussian projection operator
G is not globally Lipschitz continuous. Specifically, take \varepsilon \leqslant 1

2 , and consider the
probability distributions

\mu 1 =\scrN (0, \varepsilon ), \mu 2 = \varepsilon \delta  - 1 + (1 - 2\varepsilon )\mu 1 + \varepsilon \delta 1.

By definition of dg, it follows that

dg(\mu 1, \mu 2)\leqslant \varepsilon g( - 1) + 2\varepsilon \mu 1[g] + \varepsilon g(1)

= 2\varepsilon + 2\varepsilon (1 + \varepsilon ) + 2\varepsilon \leqslant 8\varepsilon .(B.32)

On the other hand, G\mu 2 =\scrN 
\bigl( 
0,2\varepsilon + (1 - 2\varepsilon )\varepsilon 

\bigr) 
, and the variance of this Gaussian is

bounded from below by 3\varepsilon  - 2\varepsilon 2 \geqslant 2\varepsilon . Consequently, it holds that

dg(G\mu 1,G\mu 2)\geqslant d1(G\mu 1,G\mu 2)\geqslant d1
\bigl( 
\scrN (0, \varepsilon ),\scrN (0,2\varepsilon )

\bigr) 
= d1

\bigl( 
\scrN (0,1),\scrN (0,2)

\bigr) 
,

where d1 is the usual total variation metric. The right-hand side of this inequality
does not depend on \varepsilon , and so

dg(G\mu 1,G\mu 2)

dg(\mu 1, \mu 2)
 -  -  - \rightarrow 
\varepsilon \rightarrow 0

\infty .

This proves that G is not globally Lipschitz.

Proof of Lemma B.12. Let mi = \scrM (\mu i) and \Sigma i = \scrC (\mu i) for i = 1,2. By Lemma
B.4, it holds that

| m1  - m2| \Sigma 2 \leqslant 
1

2

\sqrt{} 
\| \Sigma  - 1

2 \| dg(\mu 1, \mu 2).

In addition, also using Lemma B.4 and the facts that \| A\| F \leqslant 
\surd 
n\| A\| and \| AB\| \leqslant 

\| A\| \| B\| for any matrices A,B \in Rn\times n,

\| \Sigma  - 1
2 \Sigma 1  - In\| F \leqslant 

\surd 
n\| \Sigma  - 1

2 \| 
\biggl( 
1 +

1

2
| m1 +m2| 

\biggr) 
dg(\mu 1, \mu 2).

Lemma B.11 then gives

dg(G\mu 1,G\mu 2)\leqslant 
\sqrt{} 
G\mu 1 [g2] +G\mu 2 [g2]

\biggl( 
3
\surd 
n

\biggl( 
1 +

1

2
| m1 +m2| 

\biggr) 
\bigm\| \bigm\| \Sigma  - 1

2

\bigm\| \bigm\| + 1

2

\sqrt{} \bigm\| \bigm\| \Sigma  - 1
2

\bigm\| \bigm\| \biggr) dg(\mu 1, \mu 2)

\leqslant 
\sqrt{} 
G\mu 1[g2] +G\mu 2[g2]

\biggl( 
3
\surd 
n

\biggl( 
1 +

1

2
| m1 +m2| 

\biggr) 
+ 1

\biggr) 
\bigl( 
1 +

\bigm\| \bigm\| \Sigma  - 1
2

\bigm\| \bigm\| \bigr) dg(\mu 1, \mu 2).
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2581

Clearly, G\mu i

\bigl[ 
g2
\bigr] 
\leqslant C

\bigl( 
1+| mi| 4+\| \Sigma i\| 2

\bigr) 
for our choice of g for an appropriate constant

C, and so we conclude by use of Young's inequality that

dg(G\mu 1,G\mu 2)\leqslant C
\Bigl( 
1 + | m1| 3 + | m2| 3 + \| \Sigma 1\| 3/2 + \| \Sigma 2\| 3/2

\Bigr) \bigl( 
1 +

\bigm\| \bigm\| \Sigma  - 1
2

\bigm\| \bigm\| \bigr) dg(\mu 1, \mu 2)

for another constant C depending only on n; this completes the proof.

We end the subsection by showing local Lipschitz continuity of the conditioning
operator Bj over the set \scrG (Rd \times RK).

Lemma B.15. For all R\geqslant 1, there exists a constant LB =LB(R,\kappa y) such that for
all Gaussian probability measures \pi ,p\in \scrG R(R

d \times RK),

\forall j \in J0, J  - 1K, dg
\bigl( 
Bj\pi ,Bjp

\bigr) 
\leqslant LB(R,\kappa y)dg

\bigl( 
\pi ,p
\bigr) 
.(B.33)

Proof. Let \pi = \scrN (\tau ,\Upsilon ) and p = \scrN (t,U). We use the shorthand notation y\dagger =
y\dagger j+1. It is well known that if Z \sim \scrN (\tau ,\Upsilon ) for a vector \tau \in Rd+K and a matrix

\Upsilon \in R(d+K)\times (d+K), then the conditional distribution of Zu given that Zy = y\dagger is
given by

Zu| Zy = y\dagger \sim \scrN 
\bigl( 
\tau u +\Upsilon uy\Upsilon 

 - 1
yy (y

\dagger  - \tau y),\Upsilon uu  - \Upsilon uy\Upsilon 
 - 1
yy \Upsilon yu

\bigr) 
.(B.34)

Denoting Bj\pi =\scrN (\lambda ,\Delta ) and Bjp=\scrN (\ell ,D), we have

\lambda  - \ell = \tau u  - tu +\Upsilon uy\Upsilon 
 - 1
yy (y

\dagger  - \tau y) - UuyU
 - 1
yy (y

\dagger  - ty)

= \tau u  - tu + (\Upsilon uy  - Uuy)\Upsilon 
 - 1
yy (y

\dagger  - \tau y)

+UuyU
 - 1
yy (Uyy  - \Upsilon yy)\Upsilon 

 - 1
yy (y

\dagger  - \tau y) - UuyU
 - 1
yy (\tau y  - ty).

Since the 2-norm of any submatrix is bounded from above by the 2-norm of the matrix
that contains it, we deduce that\bigm| \bigm| \lambda  - \ell 

\bigm| \bigm| \leqslant 2R4 | \tau  - t| + 2R6(R+ \kappa y)\| \Upsilon  - U\| .

Similarly, \| \Delta  - D\| = \| \Upsilon uu  - Uuu  - \Upsilon uy\Upsilon 
 - 1
yy \Upsilon yu + UuyU

 - 1
yy Uyu\| \leqslant 4R8\| \Upsilon  - U\| . By

Schur decomposition, it holds that

\biggl( 
Uuu Uuy

UT
uy Uyy

\biggr) 
=

\biggl( 
Id UuyU

 - 1
yy

0 IK

\biggr) \biggl( 
Uuu  - UuyU

 - 1
yy U

T
uy 0

0 Uyy

\biggr) \biggl( 
Id 0

U - 1
yy U

T
uy IK

\biggr) 
.

(B.35)

Since D=Uuu  - UuyU
 - 1
yy U

T
uy, we have by the Courant--Fischer theorem

\lambda min(U) =min

\biggl\{ 
xTUx

xTx
: x\in Rd+K \setminus \{ 0\} 

\biggr\} 
\leqslant min

\biggl\{ 
xTUx

xTx
: x=

\biggl( 
u

 - U - 1
yy U

T
uyu

\biggr) 
and u\in Rd \setminus \{ 0\} 

\Bigr\} 
=min

\biggl\{ 
uTDu

xTx
: x=

\biggl( 
u

 - U - 1
yy U

T
uyu

\biggr) 
and u\in Rd \setminus \{ 0\} 

\biggr\} 
\leqslant min

\biggl\{ 
uTDu

uTu
: u\in Rd \setminus \{ 0\} 

\biggr\} 
= \lambda min(D).
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2582 CARRILLO, HOFFMANN, STUART, AND VAES

Therefore, \| D - 1\| \leqslant \| U - 1\| \leqslant R2. Using Lemma B.11, we then have

dg(Bj\pi ,Bjp)\leqslant 
\sqrt{} 
Bj\pi [g2] +Bjp[g2]

\bigl( 
3\| D - 1\Delta  - Id\| F + | \lambda  - \ell | D

\bigr) 
\leqslant 
\sqrt{} 

Bj\pi [g2] +Bjp[g2]
\Bigl( 
3
\surd 
d\| \Delta  - D\| + | \lambda  - \ell | 

\Bigr) \bigl( 
1 + \| D - 1\| 

\bigr) 
\leqslant C(R,\kappa y)

\bigl( 
\| \Upsilon  - U\| + | \tau  - t| 

\bigr) 
for an appropriate constant C depending on R and \kappa y. By Lemma B.4, it holds that

\| \Upsilon  - U\| +
\bigm| \bigm| \tau  - t

\bigm| \bigm| \leqslant \biggl( 3

2
+

1

2
| \tau + t| 

\biggr) 
dg(\pi ,p),

enabling us to conclude.

Appendix C Technical results for Corollaries 2.5 and 3.3.

Lemma C.1. Suppose that \Psi : Rd \rightarrow Rd and h : Rd \rightarrow RK are functions such that
Assumption A is satisfied, and let (\Psi n)n\in N and (hn)n\in N be sequences of operators
such that

\Psi n
L\infty (Rd) -  -  -  -  - \rightarrow 
n\rightarrow \infty 

\Psi and hn
L\infty (Rd) -  -  -  -  - \rightarrow 
n\rightarrow \infty 

h.

Let Pn and Qn denote the maps (1.5) and (1.7) associated with the functions \Psi n and
hn, and assume that they too satisfy Assumption A. Then

sup
\mu \in \scrP (Rd)

dg(P\mu ,Pn\mu ) -  -  -  - \rightarrow 
n\rightarrow \infty 

0 and sup
\mu \in \scrP R(Rd)

dg(Q\mu ,Qn\mu ) -  -  -  - \rightarrow 
n\rightarrow \infty 

0(C.1)

for all R\geqslant 1 for the second statement.

Proof. For all \mu \in \scrP (Rd), the probability measures P\mu and Pn\mu have Lebesgue
densities. By the definition in (1.5) of P and Remark 1.2, it holds that

dg(P\mu ,Pn\mu ) =
1\sqrt{} 

(2\pi )d det\Sigma 

\int 
Rd

g(u)

\bigm| \bigm| \bigm| \bigm| \int 
Rd

\Delta n(u, v)\mu (dv)

\bigm| \bigm| \bigm| \bigm| du,
where

\Delta n(u, v) := exp

\biggl( 
 - 1

2
| u - \Psi (v)| 2\Sigma 

\biggr) 
 - exp

\biggl( 
 - 1

2
| u - \Psi n(v)| 2\Sigma 

\biggr) 
.

Letting \psi s(v) = (1 - s)\Psi (v)+s\Psi n(v) and using the same reasoning as in Lemma A.3,
we obtain that\bigm| \bigm| \Delta n(u, v)

\bigm| \bigm| \leqslant \bigm| \bigm| \Psi (v) - \Psi n(v)
\bigm| \bigm| 
\Sigma 

\int 1

0

\bigm| \bigm| u - \psi s

\bigm| \bigm| 
\Sigma 
exp

\biggl( 
 - 1

2

\bigm| \bigm| u - \psi s

\bigm| \bigm| 2
\Sigma 

\biggr) 
ds

\leqslant 
\bigm| \bigm| \Psi (v) - \Psi n(v)

\bigm| \bigm| 
\Sigma 

\int 1

0

\Bigl( 
| u| \Sigma + | \psi s| \Sigma 

\Bigr) 
exp

\biggl( 
 - 1

3

\bigm| \bigm| u\bigm| \bigm| 2
\Sigma 
+
\bigm| \bigm| \psi s

\bigm| \bigm| 2
\Sigma 

\biggr) 
ds(C.2a)

\leqslant C
\bigm| \bigm| \Psi (v) - \Psi n(v)

\bigm| \bigm| 
\Sigma 
exp

\biggl( 
 - 1

4

\bigm| \bigm| u\bigm| \bigm| 2
\Sigma 

\biggr) 
.(C.2b)

In (C.2a), we used that by Young's inequality, it holds for all \delta > 0 that

| u - \psi s| 2\Sigma \geqslant 
1

1 + \delta 
| u| 2\Sigma  - 1

\delta 
| \psi s| 2\Sigma .
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THE ENSEMBLE KALMAN FILTER: NEAR-GAUSSIAN SETTING 2583

Then, in (C.2b), we used the bound \| \psi s\| L\infty \leqslant \kappa \Psi , which holds for all s \in [0,1] by
Assumption (H2). The first limit in (C.1) then follows immediately.

For the second limit in (C.1), fix \mu \in \scrP R(R
d), and note that by definition (1.7)

of Q,

dg(Q\mu ,Qn\mu )\leqslant 
1\sqrt{} 

(2\pi )K det\Gamma 

\int 
Rd\times RK

\bigl( 
1 + | u| 2 + | y| 2

\bigr) \bigm| \bigm| \bigm| \widetilde \Delta n(u, y)
\bigm| \bigm| \bigm| \mu (du)dy

\leqslant 
1\sqrt{} 

(2\pi )K det\Gamma 

\int 
Rd

\bigl( 
1 + | u| 2

\bigr) \biggl( \int 
RK

\bigl( 
1 + | y| 2

\bigr) \bigm| \bigm| \widetilde \Delta n(u, y)
\bigm| \bigm| dy\biggr) \mu (du),(C.3)

where we introduced

\widetilde \Delta n(u, y) := exp

\biggl( 
 - 1

2

\bigm| \bigm| y - h(u)
\bigm| \bigm| 2
\Gamma 

\biggr) 
 - exp

\biggl( 
 - 1

2

\bigm| \bigm| y - hn(u)
\bigm| \bigm| 2
\Gamma 

\biggr) 
.

Using the same strategy as above, we obtain that

\forall (u, y)\in Rd \times RK ,
\bigm| \bigm| \widetilde \Delta n(u, y)

\bigm| \bigm| \leqslant C
\bigm| \bigm| h(u) - hn(u)

\bigm| \bigm| 
\Gamma 
exp

\biggl( 
 - 1

4

\bigm| \bigm| y\bigm| \bigm| 2
\Gamma 

\biggr) 
.

Substituting in (C.3) gives the second limit in (C.1).

Proposition C.2. Suppose that \Psi : Rd \rightarrow Rd and h : Rd \rightarrow RK are functions
taking constant values, and let (\Psi n)n\in N and (hn)n\in N be sequences of functions such
that

\Psi n
L\infty (Rd) -  -  -  -  - \rightarrow 
n\rightarrow \infty 

\Psi and hn
L\infty (Rd) -  -  -  -  - \rightarrow 
n\rightarrow \infty 

h.

Let Pn and Qn denote the maps (1.5) and (1.7) (associated with the functions \Psi n and
hn), and assume that they too satisfy Assumption A. Denote by (\mu n

j )j\in J1,JK the true
filtering distribution associated with functions \Psi n, hn. Then, with the same notation
as in Lemma C.1, it holds that

lim
n\rightarrow \infty 

max
j\in J0,J - 1K

dg(GQnPn\mu 
n
j ,QnPn\mu 

n
j ) = 0.

Proof. The conclusion follows from the stronger statement that

lim
n\rightarrow \infty 

sup
\mu \in \scrP (Rd)

dg(GQnPn\mu ,QnPn\mu ) = 0.

Indeed, fix \mu \in \scrP (Rd). By the triangle inequality, we have that

dg(GQnPn\mu ,QnPn\mu )\leqslant dg(GQnPn\mu ,GQP\mu ) + dg(GQP\mu ,QP\mu ) + dg(QP\mu ,QnPn\mu ).
(C.4)

Since \Psi and h are constant, the probability measure QP\mu is a Gaussian distribution
independent of \mu , and so the second term on the right-hand side is zero. For the third
term, we have using Lemma B.8 that

dg(QP\mu ,QnPn\mu )\leqslant dg(QP\mu ,QnP\mu ) + dg(QnP\mu ,QnPn\mu )

\leqslant dg(Q\nu ,Qn\nu ) +
\Bigl( 
1 + \kappa 2hn

+ tr(\Gamma )
\Bigr) 
dg(P\mu ,Pn\mu ), \nu := P\mu .

Noting that \nu := P\mu is a fixed Gaussian measure independent of \mu and using Lemma
C.1, we deduce that both terms on the right-hand side tend to 0 in the limit n\rightarrow \infty 
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2584 CARRILLO, HOFFMANN, STUART, AND VAES

uniformly in \mu \in \scrP (Rd). It remains to show that the first term in (C.4) also tends to
0 as n\rightarrow \infty uniformly in \mu \in \scrP (Rd). In view of the moment bounds in Lemma B.2,
there exist R\geqslant 1 and N \in N such that

\forall n\geqslant N, \forall \mu \in \scrP (Rd), QnPn\mu \in \scrP R(R
d) and QP\mu \in \scrP R(R

d).

Therefore, by the local Lipschitz continuity of G established in Lemma B.12 and the
uniform-in-\mu convergence to 0 of the third term in (C.4) that we already proved, it
holds that

sup
\mu \in \scrP (Rd)

dg(GQnPn\mu ,GQP\mu ) -  -  -  - \rightarrow 
n\rightarrow \infty 

0,

which concludes the proof.
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