
Modeling Groundwater Levels in California's Central Valley
by Hierarchical Gaussian Process and Neural Network
Regression
Anshuman Pradhan1 , Kyra H. Adams2 , Venkat Chandrasekaran1, Zhen Liu2 ,
John T. Reager2 , Andrew M. Stuart1, and Michael J. Turmon2

1Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA, 2Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract Modeling groundwater levels continuously across California's Central Valley (CV) hydrological
system is challenging due to low‐quality well data which is sparsely and noisily sampled across time and space.
The lack of consistent well data makes it difficult to evaluate the impact of 2017 and 2019 wet years on CV
groundwater following a severe drought during 2012–2015. A novel machine learning method is formulated for
modeling groundwater levels by learning from a 3D lithological texture model of the CV aquifer. The proposed
formulation performs multivariate regression by combining Gaussian processes (GP) and deep neural networks
(DNN). The hierarchical modeling approach constitutes training the DNN to learn a lithologically informed
latent space where non‐parametric regression with GP is performed. We demonstrate the efficacy of GP‐DNN
regression for modeling non‐stationary features in the well data with fast and reliable uncertainty quantification,
as validated to be statistically consistent with the empirical data distribution from 90 blind wells across CV. We
show how the model predictions may be used to supplement hydrological understanding of aquifer responses in
basins with irregular well data. Our results indicate that on average the 2017 and 2019 wet years in California
were largely ineffective in replenishing the groundwater loss caused during previous drought years.

Plain Language Summary Building a reliable model of groundwater level depths in California's
Central Valley (CV) aquifer system is essential for groundwater management and decision‐making. However,
publicly available water level well data are sparse, irregular, and noisy, resulting in large uncertainties in
groundwater modeling efforts. We mathematically formulate a novel machine learning approach, termed the
Gaussian process and deep neural network (GP‐DNN) regression, to constrain the uncertainties on groundwater
levels in CV with input information from a model of the aquifer lithology. The machine learning model uses
DNNs to extract useful features from the aquifer lithological model. Subsequently, GP regression approach
conducts interpolation in the lithological feature space to predict water levels at every location in the CV along
with rigorous estimates of modeling and data uncertainty. The model uncertainty predictions were validated to
be reliable by statistically comparing results at 90 wells in the study area that were kept blind during the
modeling process. We show how proposed machine learning method may be used to overcome common data
limitations in hydrological basins and improve understanding of aquifer response to groundwater recharge and
drought recovery.

1. Introduction
With climate change causing frequent periods of intense droughts in many parts of the world, the need for
sustainably managing groundwater resources has never been greater. A prime example is California's Central
Valley (CV) aquifer system. The CV, supporting a 20 billion dollar per year agricultural industry (Faunt
et al., 2016), has been severely strained by recent droughts, depleting groundwater levels and diminishing surface
water availability. One of the key variables impacting decisions in groundwater management is understanding
how water levels in the underlying aquifer system vary through processes of groundwater recharge and discharge,
such as precipitation and agricultural pumping. A key challenge in the CV is the absence of water level mea-
surements that are regularly sampled across space and time. Publicly available groundwater level databases often
do not include data from privately owned wells in the valley (D. Johnson & Belitz, 2015; Kim et al., 2021).
Available measurements are often noisy and sampled with large temporal gaps (see Section 3 for additional
discussion). These factors impede developing a comprehensive understanding of how CV hydrogeology and
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groundwater processes such as recharge, depletion, and aquifer subsidence are interlinked, rendering decision‐
making for water resources management difficult.

A traditional approach to comprehensively understanding subsurface water levels is to model the groundwater
level or hydraulic head of the aquifer as the response of a physics‐based groundwater flow model (Faunt 2009;
Harbaugh, 2005; Todd & Mays, 2005). 3D simulation of groundwater flow requires a conceptual model of the
aquifer and quantification of rock hydraulic and storage properties. Since subsurface properties are not observed
exhaustively, it becomes necessary to derive them inversely to be able to perform flow simulation. In addition to
head measurements at wells, remote sensing (Chaussard et al., 2014, Z. Liu et al., 2019) and hydrogeophysical
data may be used in the inversion process (Binley et al., 2015; Kang et al., 2021; Smith & Knight, 2019). Given
the sparse and noisy nature of available water data in CV, it is highly desirable to quantify any uncertainty
associated with the modeling process. If the prior estimates of uncertainty are modeled by probability distribu-
tions, the Bayesian inversion paradigm may then be employed to condition the prior uncertainty to observed data
(Stuart, 2010; Tarantola, 2005). A large source of uncertainty for subsurface property inversion relates to the
model parameterization (Caers, 2011), for instance specifying the structure of faults and the stratigraphy of
aquifer confining units, as well as the spatial distribution of lithofacies and intra‐facies aquifer property
variability.

Over the past few decades, research developments in the geostatistics literature have led to the development of
several sophisticated models for spatial heterogeneity associated with subsurface reservoirs, including covariance
based, training image based, object‐based, surface‐based and process‐mimicking models (Caers, 2005; Deutsch &
Journel, 1998; Mariethoz & Caers, 2014; Pyrcz & Deutsch, 2014). Covariance‐based models include variants of
kriging or Gaussian process regression method, which enforce constraints on the two‐point correlations or second
order statistics in the modeling domain. Constraining just the spatial covariance model has been often found to be
limited in replicating the complex geological heterogeneity associated with common geological settings, for
instance a fluvial aquifer system containing channelized sand lithofacies (Feyen & Caers, 2006; Linde
et al., 2015). To address these challenges, several methods for modeling higher‐order spatial correlations have
been developed, a few of which were listed previously. However, such models often rely on techniques from
computer‐vision to stitch together complex spatial patterns or drop geological objects into a modeling grid, and
are not amenable for conditioning to dense geophysical or remote‐sensing data (Bertoncello, 2011; Prad-
han, 2020), unlike kriging‐based approaches. Stochastic search methods, such as Markov Chain Monte‐Carlo
(MCMC), are often necessitated for model inversion with uncertainty quantification (Hermans et al., 2015;
Keating et al., 2013; Laloy et al., 2013; Mariethoz et al., 2010). Stochastic search methods are known for their
computational complexity, especially when optimizing for 3D aquifer models with millions of grid cells.

Given the several limitations associated with subsurface modeling, we adopt a data‐driven approach to
groundwater modeling and uncertainty quantification. In many cases, the final groundwater management de-
cisions are not directly dependent on the earth model itself, but rather on some summary statistics or trends of
groundwater variability. For instance, water level long‐term and seasonal variability trends may be used to un-
derstand aquifer response to groundwater recharge and discharge (Neely et al., 2021; Riel et al., 2018), aiding
groundwater budgeting efforts during dry years. In this paper, we seek to estimate these trends continuously
across CV using sparse well data. We propose a novel methodology combining Gaussian process (GP) regression
and deep neural networks (DNN) to achieve this objective. Gaussian process regression, also known as kriging,
was introduced almost 70 years ago by Krige (1951), with subsequent theoretical development made by Math-
eron (1962). Since then, kriging and its several variants have seen widespread usage in geosciences and spatial
statistics (Cressie, 1993; Goovaerts, 1997; Journel & Huijbregts, 1978). Our primary motivation for employing
the GP regression methodology is that it allows fast and easy derivation of uncertainty estimates. However, a
fundamental limitation of kriging is its assumption of spatial stationarity across the modeling domain. This limits
the ability to model non‐stationary data, for instance data with varying spatial length‐scales across different
regions.

In geostatistics literature, non‐stationarity has been handled with techniques such as kriging with locally varying
mean, universal kriging and intrinsic random functions (de Marsily, 1987). Kriging has received emerging in-
terest in the machine learning literature where it is more commonly known as GP regression (Rasmussen &
Williams, 2006). This has led to the development of several sophisticated mathematical formulations for handling
non‐stationary data with GPs. Two broad categories of developments may be identified. In the first category, the

Supervision: Venkat Chandrasekaran,
Andrew M. Stuart
Validation: Anshuman Pradhan, Kyra
H. Adams, Zhen Liu, John T. Reager,
Michael J. Turmon
Visualization: Anshuman Pradhan
Writing – original draft:
Anshuman Pradhan
Writing – review & editing:
Anshuman Pradhan, Kyra H. Adams,
Venkat Chandrasekaran, Zhen Liu, John
T. Reager, Andrew M. Stuart, Michael
J. Turmon

JGR: Machine Learning and Computation 10.1029/2024JH000322

PRADHAN ET AL. 2 of 34

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000322 by C
alifornia Inst of T

echnology, W
iley O

nline L
ibrary on [29/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://agupubs.onlinelibrary.wiley.com/action/rightsLink?doi=10.1029%2F2024JH000322&mode=


non‐stationarity challenge is addressed by construction of hierarchical formulations of covariance kernels.
Paciorek (2003) propose to model non‐stationary data by GPs whose covariance function depends on another GP.
Damianou and Lawrence (2013) proposed the methodology known as deep Gaussian processes, where each GP
layer with stationary covariance, is composed from another stationary GP. Dunlop et al. (2018) extend
Paciorek (2003)'s work on multiple hierarchical layers of covariance functions and propose to handle non‐
stationarity by iteratively modifying the length‐scales of covariance functions. In Roininen et al. (2019)'s pa-
per, the hierarchy is built using the stochastic partial differential equation representation of GP (Lindgren
et al., 2011). While these complex kernels have some shown promising results, they lack the representational
capabilities in high dimensions that has become commonplace in machine learning with DNNs (Bradshaw
et al., 2017). The other category involves applying standard GP regression in a latent space obtained by defor-
mation of the input feature space such that the assumptions of stationarity hold in this latent space. P. D. Sampson
and Guttorp (1992) proposed obtaining the latent space by warping the geographical coordinate space. Specif-
ically, multidimensional scaling (MDS) of the training data was conducted such that empirical estimates of the
variogram were preserved during MDS, and subsequently spline mappings were used to derive a smooth latent
field in the MDS space. In contrast to two step modeling of the latent space, Schmidt and O’Hagan (2003)
proposed a fully Bayesian approach that involves performing the spatial deformation by Gaussian process priors.
However, their approach requires expensive MCMC algorithms to sample the posterior. P. Sampson et al. (2001)
provide a review of some of the original works involving warping of the input space. Recently, there has been a
resurgence of interest in this approach, especially on modeling the latent space by DNNs. Calandra et al. (2016)
and Wilson et al. (2016) perform GP regression in the latent space learned with neural networks, referring to their
approaches as manifold GP regression and deep kernel learning respectively. Bradshaw et al. (2017) apply the GP
hybrid DNN model to image classification task. It was demonstrated how deep neural networks boosted the
capability of GP to model non‐stationary, discontinuous and noisy data. Note that the above approaches were
formulated in the univariate regression or classification setting.

In this paper, we extend the above formulation to regression in the multivariate setting with geospatially and
hydrogeologically indexed data. By hydrogeological indexing, we refer to the lithological data that were also used
as input features to the model in addition to geospatial coordinates. We establish a two‐level model hierarchy with
a DNN below a GP layer, trained end‐to‐end. As shown in Section 3, proposed model is able to handle the non‐
stationary, sparse and noisy well data by learning to appropriately scale the coordinates of the latent space. The
model allows analytical derivation of the posterior uncertainty and fast generation of posterior samples. The
intended novel contributions of this paper are as follows.

1. We extend the formulation of manifold GP regression or deep kernel learning to handle geospatially and
hydrogeologically indexed data with multivariate prediction variables. The novel methodology is simply
referred to as GP‐DNN regression.

2. We formulate a novel cross‐validation technique using chi‐square quantile‐quantile plots for evaluating
generalization capability of GP‐based regression models.

3. We present a real world case study of groundwater level modeling in CV by GP‐DNN regression. Specifically,
we assume a linear model for seasonal and long‐term variability of groundwater levels and demonstrate how
the machine learning methodology may be used with this groundwater model, and irregular data sets to yield
statistically valid uncertainty estimates without detailed physics‐based modeling.

A theoretical description of the proposed methodology, followed by the real world case study from California's
CV is presented next. The application is focused around modeling long‐term and seasonal trends in groundwater
levels in CV from 2015 to 2020. We also provide interpretations and visualizations of the latent space learned by
the DNN, explicitly demonstrating how it handles non‐stationarity and uncertainty. We present hydrological
interpretations of the seasonal and long‐term trends of water levels in CV, especially in the context of drought and
recovery to illustrate how this method may be applied to real‐life understanding of hydrologic data. Finally, we
discuss future work, both in terms of how the methodology maybe extended to handle more complicated real‐
world data noise scenarios as well how the CV groundwater model may be made more rigorous by employing
the methods presented in this paper.
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2. Methodology

Let D∈R2 denote the 2D geospatial domain of the area of interest. Let x ∈D denote the vector for spatial co-
ordinates, t denote time and u denote the true water level depths. Noisy observations of water levels,
{(xi, tj, uobs (xi, tj)); i∈ {1, …, m}, j∈ {1, …, ni}} are available at m discrete water well locations, each with an
irregular number of ni samples across time. In this paper, the variables of interest are long‐term and seasonal trends
of water level fluctuations. In Section 3, we model water levels u(x, t) at any x by combining linear and sinusoidal
time‐seriesmodels quantifying the long‐term and seasonalwater level fluctuations respectively. Note that wemake
the simplifying assumption that water levels vary only across 2D space x as discussed in Sections 3.2.1 and 3.2.2.
The prediction variables consist of the temporal model parameters, that is, intercept and slope parameters of the
linearmodel, and amplitude and phase parameters of the sinusoidalmodel at all x ∈D. The preceding four temporal
model parameters at each spatial location are denoted as y ∈Rd; d = 4. The formulation we present below thus
applies to multivariate prediction variables. Given observations of u at wells, noisy estimates {y(xi); i = 1, …, m}
of the prediction variables may be obtained by linear regression at well locations as discussed in Section 3.2.1. The
goal is to recover the true underlying signal of the prediction variables at any x.

The proposed approach of this paper is to model the prediction variables as multivariate Gaussian random
processes. A random process is defined as an indexed collection of random vectors. A specific advantage of the
GP formulation is that given a set of irregularly sampled observations, the posterior predictive distribution at any
query index may be derived analytically. In many cases, prediction variables y wont be normally distributed. A
normal score histogram transformation (see Section 3.2.1) may be applied in that case and the GP formulation is
specified on the normally transformed variables.

2.1. Spatial GP Regression and Limitations

Consider the baseline case when the GP a(x) : R2 → Rd is indexed over geospatial coordinates x. Specifically,

a(x) ∼ GP(0, k(x, x′)), (1)

with zero mean and covariance kernel k : R2 × R2 → Rd×d . The covariance kernel k(x, x′) encapsulates the prior
assumptions on the spatial heterogeneity of the random process by quantifying the similarity between two input
locations x and x′. Given the above a‐priori Gaussian assumptions and well observations, the posterior predictive
distribution at any query location x∗ may be derived by multivariate Gaussian process (GP) regression, also
known as cokriging. Cokriging is a very mature methodology for spatial interpolation and regression (see ref-
erences in Section 1). Several variants of the basic kriging approach have been proposed such as simple cokriging,
ordinary cokriging and universal cokriging distinguished by how the mean of the GP is specified. In this paper, we
work with the simple cokriging approach in which the mean is specified to be a constant across D as shown in
Equation 1.

The main limitations associated with the cokriging approach are as follows:

1. In typical geological settings, repeated measurements of prediction variables at two distinct locations
{y(x), y(x′)} are seldom available to make inferences about the form of k(x, x′) . Therefore, a decision of
spatial stationarity over D is made by assuming k(x, x′) depends only on the distances between the input
locations as k(

⃦
⃦x − x′‖2), where, ‖.‖2 denotes ℓ2 norm (Goovaerts, 1997). Note that under the above as-

sumptions, the covariance kernel will be invariant to spatial translations. Thus, any two locations separated by
identical distances will be assigned identical covariances. Since hydrological and hydrogeological data
commonly exhibit significantly varying spatial correlation scales across the hydrological basin, stationary
kernels may lead to overly smooth or rough processes, limiting the predictive ability of the model.

2. As defined later, standard covariance kernels model a range of influence through their length‐scale parameters.
In other words, posterior predictive uncertainty at a test location beyond the range of influence of any well
location will be large. Thus, regression overDwill lead to large posterior predictive uncertainty if the observed
data is sparsely sampled, which is the case with CV well data.

A potential solution is to perform the GP regression in an extended feature space x̂ = [x, x̌]T , x̌ ∈Rn, with T
being the transpose operator. For modeling groundwater levels, x̌ could pertain to the aquifer hydrogeology, for
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example, the depth and lithologic composition of aquifer stratigraphies (see Section 3.2.2 for context within the
CV hydrological basin). The requirement is that x̌ must be known for every x ∈D such that random process may
be indexed in the combined geospatial and hydrogeological space x̂ as a( x̂) . Indexing a(.) over x̂ will address the
training data sparsity limitation when testing coordinates have more similarity to the training data coordinates in
x̂‐space versus x‐space. However, note that this does not explicitly bypass the stationarity assumption since the
true a( x̂) may also exhibit non‐stationary behavior over x̂. To handle this, we propose using the GP‐DNN
formulation which learns to appropriately re‐configure the distances between the random process index.

2.2. Multivariate Regression by Hierarchical GP‐DNN

Asmotivated in Section 1, several authors have proposed to handle non‐stationary data by modeling a latent space
that is able to accommodate the assumptions of stationarity,

x̃ = ϕ( x̂; θ), (2)

where x̃ ∈Rp denotes the latent feature space and ϕ : Rn+2 → Rp is a feature projection map to be inferred by
machine learning. The dimensionality of input feature space is n + 2 since it also includes the 2‐dimensional
geospatial coordinates. In the proposed GP‐DNN hierarchical model, ϕ(.; θ) is taken to be a deep neural
network with learnable parameters θ. The Gaussian random process predictive prior will be indexed over the
latent feature space,

a( x̃) ∼ GP (0, k( x̃, x̃′)), (3)

where k : Rp × Rp → Rd×d is the covariance kernel. Note that the usage of the term predictive indicates proba-
bility distributions defined over the prediction variables. We show next how the GP prior predictive distribution
may be conditioned to data observations to derive the posterior predictive distribution.

2.2.1. The Generative Model and Conditioning to Training Data

In the following, subscripts τ and ∗ are used to denote training and test data for machine learning. Let yτ denote the
dm × 1 vector constituting noisy observations of the true signal a( x̃) corresponding to well locations and X̃τ is the
dm × p latent feature matrix, which is computed from the original dm × (n + 2) input feature matrix X̂τ using the
DNN. d is the dimensionality of the prediction variable and m is the number of training samples. Since a( x̃) is
assumed to be a GP, its' realizations corresponding to the well locations, denoted by the vector aτ, will be
distributed according to a multivariate Gaussian distribution. We assume that realizations of aτ are subsequently
corrupted by Gaussian noise yielding the noisy measurements yτ. To summarize, the generative model for the well
data is specified as,

X̃τ = ϕ( X̂τ), aτ|X̃τ ∼N (0, K̃ττ), and yτ|aτ ∼N(aτ, Σn), (4)

where N(., .) denotes the multivariate Gaussian distribution and K̃ττ is the dm × dm covariance matrix (see
Section 2.2.2 for details). Note that operator ϕ(.; θ), in the first equality above, operates on each row of matrix X̂τ
and we have abused notation for brevity. The covariance matrix for the noise distribution is specified as
Σn = diag( [σn1 , …, σnd ]

T
), where σni = [σ2ni , …, σ2ni ]

T is a m × 1 vector specifying identical observational noise
variance σ2ni for each prediction variable a(x)i. The covariance kernel parameters, noise levels and DNN archi-
tectural variables are treated as hyper‐parameters of the model, to be tuned by cross‐validation as described in
Section 3.3 (see Table C2 for a complete list of hyper‐parameters). Parameters θ of the DNN are trained as
discussed in Section 2.2.3.

Let a∗ denote the realization of a( x̂) at test location x̂∗. The posterior predictive distribution of a∗ is obtained by
conditioning the prior predictive distribution to the noisy observations. The joint prior distribution of yτ and a∗,
given the training and test locations, may be specified as
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[
yτ
a∗
]
⃒
⃒X̂τ, x̂∗ ∼N

⎛

⎜
⎜
⎝0,

⎡

⎢
⎢
⎣

K̃ττ + Σn K̃τ∗

K̃∗τ K̃∗∗)

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ (5)

(Rasmussen &Williams, 2006), where, K̃ττ is the covariance matrix for the training locations, K̃∗τ and K̃τ∗ contain
the covariances between the training and test locations, while K̃∗∗ is the covariance matrix for test locations. Since
the joint distribution of yτ and a∗ is a Gaussian distribution, the distribution of a∗, conditioned on the training
observations and the training and test features, is also a Gaussian distribution derived as

a∗| yτ, X̂τ, x̂∗ ∼N(K̃∗τ[K̃ττ + Σn]
− 1

yτ, K̃∗∗ − K̃∗τ[K̃ττ + Σn]
− 1
K̃τ∗). (6)

Here, K̃∗τ[K̃ττ + Σn]
− 1

yτ is the cokriging estimate of the posterior predictive mean and

K̃∗∗ − K̃∗τ[K̃ττ + Σn]
− 1
K̃τ∗ is the posterior predictive covariance.

2.2.2. The Multivariate Kernel

The assumption of covariance kernel stationarity is made in the latent space by taking

k( x̃, x̃′) = k(
⃦
⃦ x̃ − x̃′

⃦
⃦
2), ∀ x̃, x̃′. (7)

By definition, the covariance kernel should be a symmetric, positive definite function (Paciorek, 2003). Several
valid covariance functions have been studied in the geostatistical and ML literature such as the squared expo-
nential and the Matérn kernel. To ensure kernel validity in the multivariate regression setting, we employ the
linear model of coregionalization (De Iaco et al., 2003; Journel & Huijbregts, 1978) which models all the
components of the multivariate process as linear combinations of the same underlying permissible random
processes. This states that the kernel, when specified as

k( x̃, x̃′) =∑
i
Ki
amp k

i
valid (

⃦
⃦ x̃ − x̃′

⃦
⃦
2), (8)

will be a valid positive semi‐definite kernel if Ki
amp is a d × d positive semi‐definite matrix and

kivalid : R
p × Rp → R is a permissible positive semi‐definite kernel for each i. Ki

amp contains the variance and
covariance scaling factors for the prediction variables. If each component of a(.) is normalized to have unit
variance, then the diagonal elements of Ki

amp will have unit magnitude and off‐diagonal elements specify the
correlation coefficient for each variable pair. In this paper, we choose i = 1 and kvalid to be the Matérn kernel
kν=2.5Matérn : R

p × Rp → R, where ν is the Matérn parameter controlling the roughness of the kernel. The Matérn
kernel allows greater control on the roughness of the random process through the ν parameter (Stein, 1999) and
ν = 2.5 is a common choice for machine learning applications (Rasmussen & Williams, 2006). Appendix A
contains additional details on how the covariance matrices are constructed from the Matérn kernel.

2.2.3. GP‐DNN End‐To‐End Training

DNN parameters θ will be trained end‐to‐end along with the GP layer by maximization of the data likelihood
distribution as described below. The dimensionality p of the latent feature space x̃ and the DNN architectural
parameters, such as the number of hidden layers and the number of neurons in each hidden layer are treated as
hyper‐parameters, to be tuned by cross‐validation. From Equation 4, it follows that the training data likelihood

yτ|X̂τ; θ ∼N(0, K̃ττ + Σn). (9)
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Since the Gaussian likelihood has an analytical expression, parameters θ may be estimated by minimizing the
negative of log‐likelihood

log p( yτ|X̂τ; θ) = −
1
2
yTτ [K̃ττ + Σn]

− 1
yτ −

1
2
log |K̃ττ + Σn| + constant (10)

(Bradshaw et al., 2017; Calandra et al., 2016; Rasmussen & Williams, 2006; Wilson et al., 2016). Taking de-
rivatives of log p( yτ|X̂τ) w.r.t the parameter θk, we obtain

∂
∂θk

p(yτ|X̂τ; θ) =
1
2
yTτ [K̃ττ + Σn]

− 1∂K̃ττ

∂θk
[K̃ττ + Σn]

− 1
yτ

−
1
2
tr([K̃ττ + Σn]

− 1∂K̃ττ

∂θk
).

(11)

In the equality above, we used identities for derivative of inverse matrix, ∂K− 1∂θ = − K− 1 ∂K∂θK
− 1, and the derivative of

matrix log determinant ∂log|K|∂θ = tr(K− 1 ∂K∂θ ) . Given that the k
ν=2.5
Matérn(.) is a differentiable function w.r.t to its inputs,

the entries of ∂K̃ττ∂θk
may be analytically derived by the back‐propagation algorithm Bishop (2006). Parameters θ

may then be trained by typical stochastic gradient descent algorithms commonly employed to train deep learning
networks (Algorithm 1). Additional details on training and hyper‐parameter tuning are provided in Section C2 in
Appendix C.

Algorithm 1. Algorithm for Training of the GP-DNN Hierarchical Model.
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2.2.4. Cross‐Validation Statistics for GP Based Regression

The generalization power of GP regression models will be assessed with a test set constituting of randomly
sampled well locations that will be held out and kept blind during model training and hyper‐parameter tuning.
These wells will be referred to as blind wells in our study. Following is a discussion of two specific cross‐
validation statistics evaluated on the test set, (a) likelihood under the posterior predictive distribution, and (b)
deviation of the chi‐square plot from the identity function, that are used to compare the GP regression model
performance in Section 3.3.

2.2.4.1. Posterior Predictive Likelihood

Let X̂∗ be the dm∗ × (n + 2) be the feature matrix and y∗ be the dm∗ × 1 vector containing observations of the
prediction variables computed from the test set. Following from Equation 6, the negative log‐likelihood of the
Gaussian posterior predictive distribution on test set prediction variables given the training set and test feature
matrix

− log p( y∗|X̂τ, yτ, X̂∗) =
1
2
[y∗ − μ]TK− 1 [y∗ − μ] +

1
2
log|K| +

dm∗

2
log 2 π, (12)

where, μ = K̃∗τ[K̃ττ + Σn]
− 1

yτ and K = K̃∗∗ − K̃∗τ[K̃ττ + Σn]
− 1
K̃τ∗ are the cokriging estimates of the posterior

predictive mean and covariance. The first term in the R.H.S. of Equation 12 may be interpreted as half of the
squared Mahalanobis distance (Mahalanobis, 1936)

M2
D ( y∗; μ, K) = [y∗ − μ]TK− 1 [y∗ − μ]. (13)

Given mean μ and covariance matrix K, Mahalanobis distance computes the statistically standardized distance of
y∗ from the mean. The inverse covariance matrix K− 1 serves the purpose of standardizing each coordinate ofRdm∗

by corresponding variance and removing inter‐coordinate correlations as estimated by the posterior predictive
distribution (Etherington, 2019). TheMahalanobis distance thus acts as an indicator of the fit of the test data under
the estimated posterior predictive distribution. The second and third terms in the R.H.S. of Equation 12 relate to
the normalization constant of the multivariate Gaussian probability density and consequently the volume under
the multivariate density function. For a given dimensionality of the output space, 12log|K| could be interpreted in
terms of the predictive model complexity. |K| is the generalization of variance in multivariate settings
(Wilks, 1932), and thus a larger value for |K| implies a more complex model that will be able to explain larger
variability in the data. In other words, rewarding lower values of the negative log‐likelihood statistic encourages
simpler models that fit the data better.

2.2.4.2. Chi‐Square Quantile‐Quantile Plots for GP

Going beyond the data likelihood, we propose to employ quantile‐quantile (Q‐Q) plots to assess the goodness of
fit of the predicted uncertainty intervals to the test data. The Q‐Q plot is a standard statistical tool for evaluating
whether empirical data belong to a specified theoretical probability distribution through a graphical comparison of
the empirical quantiles to their theoretical counterparts (Gnanadesikan & Wilk, 1968). While it is generally
difficult to generalize Q‐Q plots to multivariate data (Easton & McCulloch, 1990), multivariate normality can be
tested using the chi‐square plot (R. A. Johnson & Wichern, 2007, see Section 4.6). We show how the chi‐square
plot approach may be extended to multivariate GPs. For notational simplicity, we present the results considering
spatial GP regression but it is straightforward to extend the treatment to GP‐DNN. Consider a randomly selected
set of feature coordinates {x1, x2, …, xm∗} from D where noisy observations {y1, y2, …, ym∗

} of d‐variate pre-
diction variables are available. The objective is to determine the accuracy of the hypothesis that each observation
yi is a sample from the corresponding predictive posterior distribution in the set

{N (μ1, K1), N (μ2, K2), …, N (μm∗, Km∗)},
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where N (μi, Ki) is distribution of a(xi)|Xτ, yτ, xi as estimated using Equation 6 ∀ xi ∈ {x1, x2, …, xm∗} . As
proved by R. A. Johnson and Wichern (2007, see Result 4.7),

y ∼N(μ, K) ⇒ M2
D( y; μ, K) ∼ X2

d, (14)

where X2
d is the chi‐square distribution having d degrees of freedom, withM2

D(.) being estimated by Equation 13.
It directly follows from this result that if the test locations were sampled independently and the GP regression
robustly estimated the associated posterior predictive means and covariance matrices, the set

{M2
D ( y1; μ1, K1)}, M2

D ( y2; μ2, K2), …, M2
D ( ym∗

; μm∗
, Km∗)}

will be expected to contain roughly independent samples of X2
d. The chi‐square Q‐Q plot is a scatter plot of the

empirical quantiles of the standardized Mahalanobis distances and theoretical quantiles of the chi‐square dis-
tribution. The quantiles and corresponding cumulative probability values of the empirical data distribution are
derived from the ordered set of sample distances

{M2
D ( yi; μi, Ki)(1)≤M2

D ( yj; μ, Kj)(2)≤…≤M2
D ( yk; μk, Kk)(m∗)

}.

The cumulative probability of the empirical quantile is subsequently mapped to the corresponding theoretical
quantile of X2

d. If the empirical data distribution is representative of the theoretical distribution, within effects of
limited sample availability at all test locations and theoretical simplifications of the real data noise, the Q‐Q pairs
will roughly plot along the identity line. Deviations of the Q‐Q scatter trend from the identity line can thus be used
for cross‐validation of the posterior predictive uncertainty estimates.

3. Application to Central Valley (CV)
Our study area is Central Valley covering approximately 20,000 square miles in central California (Figure 1).
Groundwater pumping is a primary source of water support for its vast agricultural system (Bertoldi et al., 1991;
Faunt, 2009; Williamson et al., 1989). For convenience of discussion, the study area is typically divided into the

Figure 1. Extent of CV outlined in black with groundwater subbasins. (left) Sacramento and San Joaqin Valley areas have
been colored by purple and red. Mapped extent of the Corcoran clay is shown in lime green. (right) Nomenclature of the CV's
groundwater subbasins.
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northern Sacramento valley (SV) and southern San Joaquin valley (SJV). The CV groundwater basin has been
delineated into several subbasins based on factors such as hydrogeologic barriers or institutional boundaries
(California Department of Water Resources, 2003), which have been overlain on the CV map shown in Figure 1.
The sediments of the underlying aquifer system were derived from the surrounding Sierra Nevada and the Coast
Ranges. Defining stratigraphic units in the CV aquifer system has generally been difficult due to absence of
distinct lithologic changes (Faunt, 2009). The SV sediments have been determined to constitute of coarse‐grained
alluvial sediments interbedded with localized fine‐grained sediments attributed to low‐energy drainage basins. In
the SJV, the hydrogeologic makeup is described in terms of an upper semi‐confined and lower confined aquifer
zone, separated by a confining unit. Three intermixing hydrogeologic units, namely Coast Ranges alluvium,
Sierran alluvial deposits, and flood‐basin deposits, form the constituents of the upper semi‐confined aquifer zone
(Laudon &Belitz, 1991). Fine‐grained alluvium, predominantly derived from the Coast Ranges, are present in the
form of spatially discontinuous lenticular shapes, comprising approximately half of the volumetric fill. In contrast
to the SV, within the SJV there is a distinct and spatially continuous confining unit dividing the upper and lower
aquifers consisting of low‐permeability clay deposits known as the Corcoran Clay. The spatial extent of the
Corcoran clay is well‐mapped (Figure 1) as described in Section 3.1.

While the general hydrogeologic characteristics of the CV has been well‐studied, physically modeling ground-
water flow in the CV encounters large uncertainty resulting from the regional and local stratigraphic variations of
the hydraulic and storage properties required in flow modeling studies. We undertake a machine learning
approach to address this spatial uncertainty. Specifically, our approach involves the Gaussian process method-
ology formulated in Section 2 to model groundwater level long‐term and seasonal variability trends using
hydrogeologic features.

3.1. Available Data

We describe below the well and lithological texture data sets available to us in the study area. Note that while the
proposed methodology will work on irregular, non‐discretized data, we perform discretization of the well data for
ease of analysis with the lithologic texture data which is available in gridded manner. We choose a 1 square mile
spatial resolution for every cell in the modeling grid over CV to correspond with that of the sediment texture data.

1. Water level data: We use water level time series data across the CV as compiled and processed by Kim
et al. (2021) using groundwater well data sets obtained from the California Department of Water Resources
(DWR) and United States Geological Survey (USGS). The data set consists of measurements from approx-
imately 4,500 wells across our study area. Well screen depth information is not available. We discarded
approximately half of the wells for having too few samples (less than 8) along time axis. A few wells were
ignored as they clearly contained outlier samples. The well data were spatially aggregated into the modeling
grid over the CV. Many grid cells, post aggregation, contained multiple individual wells, which should not be
co‐mingled within the time series. Additionally, there were cases where two different time‐series were pre-
sented from two different data sources for one co‐located grid cell, leading to confusion which measurement
was to be considered for this study. To work around this issue and to apply a uniform standard across the
modeling grid of study, the most temporally robust well record within each grid cell was selected. After spatial
aggregation at the modeling grid resolution, data is available at approximately 1,750 spatial locations
(Figure 2). Temporally, the data was available till August 2020 and we considered a rough 5 year period
starting from March 2015 for this study. The well time series data was averaged at biweekly intervals. This
resulted in well data aggregated into the spatio‐temporal grid having 400, 220, and 132 cells along latitude,
longitude and time axes respectively. Figure 2 shows the time series data at three wells. The footprint of the
dry‐wet seasonal cycle on the water levels can be clearly observed in the top plot. The best fitting long‐term
and seasonal trend (red line) to the well data is discussed further in Section 3.2.1.

2. Lithological texture data: Information on subsurface hydrogeology in the form of volumetric proportion of
coarse and fine grained sediments (commonly referred to as lithological texture) is available on a uniformly
discretized grid across the CV, as modeled in previous work by Marcelli et al. (2022). The authors generated
the texture model by 3D kriging of texture observations derived from approximately 8,500 drillers logs. To
address the challenges of non‐stationarity in kriging, the authors divided the study area areally and vertically
into several modeling domains. Kriging was performed separately across each groundwater subbasin (see
Figure 1) and aggregated vertically into 13 layers. The stratigraphy of the 3D model is largely determined by
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the structure of the Corcoran Clay, represented by layers 6–8 in the model. The remainder of the layers are
divided between the upper semi‐confined and lower confined aquifers.

3.2. Training Data Set Generation

The objective is to estimate the posterior predictive distribution a∗| yτ, X̂τ, x̂∗ as specified in Equation 6 for all x∗,
in the CV grid. We randomly distributed available wells into training, validation and test sets of sizes 1,550, 100,
and 100 wells respectively. We also consider a robust test set of 90 wells, which is created by removing 10 outlier
wells from the original test set using the outlier detection scheme described in Section 3.3. For each evaluation set,
we created target variables and input features as discussed below.

3.2.1. Prediction Variables

We seek to predict quantitative metrics of groundwater level fluctuation during the 2015–2020 study period. As
discussed in Section 1, it is useful to model the seasonal and long‐term water level fluctuation trends over time. In
this paper, we assume that measured CV water level depths vary in 2D only as a function of spatial latitude and
longitude coordinates x and time t. Additionally, we assume that water level time series data from 2015 to 2020 at
each x may be decomposed as a linear model for the long‐term signal and a sinusoidal model for the seasonal
signal. Mathematically, water level at x varies through t as

u(x, t) = a1(x) + a2(x)t + a3(x)sin(
2πt
λ
+ a4(x)) (15)

where, a1(x), a2(x), a3(x) and a4(x) denote the intercept, slope, amplitude and phase parameters respectively.
Note that the simplifying assumption of 2D variability of water levels is made to facilitate initial evaluation of the
efficacy of GP‐DNNmethodology for hydrological modeling. Extending proposed methodology for rigorous 3D‐
modeling of groundwater levels, where vertical connectivities between all 13 aquifer model layers are accounted
for, is left as future work. We also chose to make the simplifying assumption of a single long‐term and seasonal
model across 2015–2020 as the well data is very sparsely sampled along time at several well locations (see well
data frequency in Figure 2) and complex models may overfit to the data. However, note that the proposed methods
can easily be extended to other complicated temporal models, for instance the B‐spline integrated with multi‐
period sinusoidal model considered by Riel et al. (2018).

The long‐term and seasonal parameter fields are estimated independently at each well by solving a linear
regression problem with the corresponding time series data (see Appendix B). Figure 2 shows the modeled water
level signal along with observed data at three well locations, while Figure 3 shows the estimated parameters at all

Figure 2. (left) Well locations colored by the frequency of data samples. Wells shown in the right plot are highlighted with
black crosses. (right) Water levels measurements at three wells are shown in blue circles. Best fitting long term and seasonal
trend line, estimated using Equation 15, is overlain in red on well data.
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wells. The results indicate that in March 2015 (start of our analysis period), water levels were relatively deeper in
the SJV as compared to the SV. During the next 5 years, wells exhibit both long‐term decline and uplifts of water
levels, with largest uplifts observed in the wells of the Westside subbasin and Kern county. The seasonal
amplitude signal generally has high magnitudes in the southern SJV. A common feature across the long‐term and
seasonal trend parameters is the smoother variability in the northern two‐thirds of the valley, with greater spatial
heterogeneity in the southern San Joaquin basin, likely a manifestation of the underlying hydrogeologic het-
erogeneity as discussed in Section 3.4. Another complicating factor is data sparsity since most wells in the
southern SJV contain <15 samples (Figure 2). Thus, the linear regression trend estimates are expected to be
noisier. The GPmethodology accounts for this noise through the estimated noise‐level matrix Σn (see Equation 4).
As discussed in Section 3.4, the hierarchical GP‐DNN model correctly identifies this data uncertainty by pre-
dicting wider uncertainty intervals in the southern SJV.

It should be noted that trend data at wells cannot be expected to be Gaussian in nature, for instance, water levels
depths cannot assume negative magnitudes and are skewed toward positive values. Thus, the GP methodology is
not directly amenable to the water level data. A simple yet effective approach to handle this issue is to perform a
normal score transform (Journel & Huijbregts, 1978), which transforms the sample data histogram of each
prediction variable into the standard Gaussian distribution. In this paper, the GP regression is performed on the
transformed normal variables and the regression outputs, as shown in Section 3.4, were obtained by subsequent
back‐transformation to replicate the original well data sample histogram.

Figure 3. Water level long‐term and seasonal model parameters fitted by linear regression on well time series data.
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3.2.2. Feature Variables

We consider the following features as input to the GP regression as discussed below.

1. Geospatial coordinates x: The baseline features we consider are the latitude and longitude coordinates. The
baseline GP regression employs only x as features as discussed earlier, while GP regression in extended feature
space uses x and additional features as discussed below.

2. Hydrogeological features x̌: Amongst the several factors that groundwater flow depends on, geologic vari-
ability of the underlying aquifer plays a crucial role. Hydraulic head evolves in 3D inside an aquifer and can be
physically described through the 3D groundwater flow equation (Harbaugh, 2005),

∂
∂x
(Kxx

∂h
∂x
) +

∂
∂y
(Kyy

∂h
∂y
) +

∂
∂z
(Kzz

∂h
∂z
) +W = Ss

∂h
∂t

, (16)

where h is the hydraulic head, x, y, z denote the spatial dimensions, t denotes time, Ss is the specific storage
coefficient, Kxx, Kyy, Kzz represent hydraulic conductivity along the spatial dimensions andW represents the flow
source/sink term. For unconfined aquifers, specific yield is used as the storage coefficient. While the general
groundwater flow equation presented above calculate hydraulic head in all three spatial directions, we use a 2D
assumption for groundwater level variation (see Section 3.2.1). For subsurface rocks, the hydraulic and storage
properties will vary depending on several factors, including the lithologies, lithological composition and
microstructure (structural arrangement of the sediments and pores) of the porous rock medium (Mavko
et al., 2009). In general, these properties may be measured by field well tests or laboratory tests on rock core
samples. For instance, hydraulic conductivity for a core sample may be measured by a permeameter as

K =
ΔV
Δt

Z
Ah

(17)

(Todd & Mays, 2005), where ΔV represents the volumetric flow of water in time Δt, Z is the thickness of the
sample, A is the area of the sample and h is the hydraulic head. Similarly, specific storage coefficient is defined as
the volume of water retained or released from a porous medium per unit volume of the aquifer per unit change in
h. While corresponding in situ measurements are irregularly available across the CV, the 3D lithological texture
model (Section 3.1) may be used as a proxy for the aquifer lithology (Faunt, 2009), hydraulic and storage
properties.

In our methodology, the GP‐DNN model will attempt to discover useful correlations between the observed water
levels and the texture features. Given the texture model, we assume that the aquifer system rocks consists of two
lithological end‐members, the coarse‐grained and fine‐grained lithologies. For each layer of the texture model, the
following features related to the depth and thickness of the lithologies are extracted. Thickness features were
specifically chosen since effective hydraulic or storage properties across a sediment column will depend on the
volumetric proportions of lithological end‐members (Equation 17).

(a) Coarse‐grained sediment thickness: For the ith layer, the thickness of coarse‐grained sediments at location x is
computed as

zcoarse,i(x) = fcoarse,i(x)zi(x), ∀ i,

where fcoarse,i(x) denotes the volumetric fraction of coarse grained sediments at location x and layer i and zi(x)
denotes the depth thickness of layer i. Directly using fcoarse,i as a feature may be misleading to the machine
learning model since the thickness of the layers may vary significantly across x. We expect zcoarse,i(x) to be
informative on effective volume of the coarse‐grained lithology for the layer at any given x.

(b) Fine‐grained sediment thickness: Assuming only two end‐member lithologies, we compute a similar
effective volume feature for the fine‐grained lithologies

zfine,i(x) = (1 − fcoarse,i(x)) zi(x), ∀ i.
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(c) Depths to layer tops: We also incorporate the depth to each layer top as a feature. Given that the properties of
the layers below the water levels will vary due to fluid presence in the pores, it is desirable that the neural
network is able to extract any potential correlations between the layer top depths and the water levels. Note
that the depths to layer tops of the texture model were available as measured from the mean sea level. To make
the datum equivalent to the water level depths which are measured from the surface and contain effects of
surface topography, surface elevations as obtained from the NASA Digital Elevation Model (NASA
JPL, 2020) were added to the layer depths at each grid location.

Figure 4 shows the layer top depths, coarse and fine grained sediment thicknesses for three texture model layers.
Note that we use a total of 39 hydrogeological features (3 for each of the 13 layers) in our analyses.

3.3. Training, Hyper‐Parameter Tuning and Cross‐Validation With Blind Wells

The baseline GP model and GP‐DNN models are regressed using a normalized training set containing pairs of
feature and prediction variables. The input features variables in the training set were normalized to have zero
mean and unit variance per feature category, that is, latitude, longitude, coarse sediment thickness, fine sediment
thickness and depths to layer tops. We underscore that for the hydrogeological features a single normalization is
applied across all the model layers per feature category to preserve inter‐layer feature correlations. The prediction
variables were normal score transformed as discussed in Section 3.2.1, hence also have zero mean and unit
variance in the training set. We briefly summarize the model training and hyper‐parameter tuning with detailed
description of the results presented in Appendix C. For the baseline case, the posterior predictive distribution can
be derived analytically and requires no explicit training. The GP‐DNNmodel contains a DNN in the bottom layer
of the hierarchy. The DNN architecture constitutes several hidden neural network layers, each of which consists
of a number of neurons with trainable weight and bias parameters θ, and a multivariate output layer. By hyper‐
parameter tuning as described below, the optimal DNN architecture was found to consist of 2 hidden layers with
33 neurons in each layer. The dimension of the output latent space p was tuned to be 12. A standard GP model is
finally regressed in the space of DNN outputs x̃. Training of the DNN parameters is performed end‐to‐end by
stochastic gradient descent (Algorithm 1).

The GP model requires specification of hyper‐parameters related to the anisotropic length‐scales of input vari-
ables (see section Appendix A), observational noise levels of the target variables and the amplitudes of the kernel
in Kamp. The GP‐DNNmodel additionally requires hyper‐parameters related to the DNN architecture, such as the
number of hidden layers, and to the training algorithm. Hyper‐parameter tuning is performed by finding the best
fit under cross‐validation. Three thousand sample sets of hyper‐parameters are generated by random sampling
over their range of variability. The negative log‐likelihood cross‐validation statistic (see Section 2.2.4) is eval-
uated on the validation set using the 3,000 hyper‐parameter sets, and the one that optimizes the statistic is chosen.
Table 1 compares the final log‐likelihood statistic for the two models considered across different evaluation sets.
Also shown is the root mean square error (RMSE) between the predicted posterior mean and prediction variables
y. The training set is the set of wells used for training of the GP‐DNNmodel parameters, while the validation set is
the set of wells used for hyper‐parameter tuning. The test set is kept blind completely and used only for final
validation. We also consider a robust test set by removing 10 outlier wells from the test set as described below.
Note that the validation statistics are computed on the normalized evaluation sets. Given that the DNN has a 1D
architecture and the GP posterior predictive distributions are computed analytically, end‐to‐end training of the
DNN model for each hyper‐parameter scenario takes about a minute to complete on a machine having 32 GB
random‐access memory (RAM) with a single 32 GB graphics processing unit (GPU). For effectively tuning larger
sized deep learning models, efficient hyper‐parameter tuning frameworks based on Bayesian optimization (Akiba
et al., 2019) may be considered.

While GP‐DNN exhibits slightly higher RMSE in the mean estimates, the GP‐DNN regression outperforms the
conventional GP regression in terms of the uncertainty estimates as evidenced by the higher likelihood of the well
data under the estimated posterior predictive distribution. In Table 1, we have decomposed the negative log‐
likelihood values according to the R.H.S. of Equation 12 to aid interpretability. As expected, the baseline GP
model offers simpler models and performs better in terms of model complexity as evidenced by the relatively
lower 1

2log|K| values. However, the GP‐DNN model performs significantly better in explaining the data
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variability as demonstrated by the significantly lower standardized Mahalanobis distances of the evaluation set
from the predicted probability density. We underscore that the objective of the paper is not to find the best mean
model, rather derive an informative predictive posterior that is able to robustly quantify the uncertainty due to the
real data irregularity and noise. We use chi‐square Q‐Q plots next to further bolster the claim that this is achieved
with the GP‐DNN posterior estimates.

In Figure 5, we compare chi‐square Q‐Q plots to determine the fidelity of the GP and GP‐DNN uncertainty
estimates toward explaining the uncertainty exhibited in the blind well test set T = {x∗1, x∗2, …, x∗m∗

} . Consider

Figure 4. Depth to layer tops (top row), coarse‐grained sediment thickness (middle row) and fine‐grained sediment thickness (bottom row) for three different texture
model layers. Top of layer 6 corresponds to top of Corcoran clay.
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the hypothetical scenario in which observations y(x∗i)∈Rd=4, ∀ x∗i∈ T , are true samples from the predictive
posterior distribution a(x∗i)|Xτ, yτ, x∗i (Equation 6). The Q‐Q plot would then result in an identity relation as
discussed in Section 2.2.4. We verify this claim in the left column of Figure 5 where the empirical quantiles on the
y‐axis are estimated using 100 random samples from a(x∗i)|Xτ, yτ, x∗i, ∀ x∗i∈ T . The Q‐Q plot shows an almost
perfect identity relation. In our problem setup, only one observation per x∗i is available. The effect of this limited
sample size is explored in the second column from left in Figure 5 where one sample per a(x∗i)|Xτ, yτ, x∗i is
utilized. The Q‐Q scatter plot shows minor deviations around the identity line, with appreciable deviations
generally observed for M2

D > 10, with the value 10 corresponding to the 96% quantile of X2
d=4 distribution. As

highlighted by R. A. Johnson and Wichern (2007), such Q‐Q deviations at tail ends of the distributions become
exacerbated due to limited sample size.

In the second column from right of Figure 5, the empirical quantiles on y‐axis are derived using the real ob-
servations {y(x∗i); ∀ x∗i∈ T } available at the blind test set wells. The GP‐DNN Q‐Q scatter points roughly plot
along the identity line for M2

D < 8, with the value 8 corresponding to the 90% quantile of X2
d=4 distribution. Few

clear outliers with respect to the predictive posterior are also observed. The deviation from the identity relation is
severe for the baseline GP Q‐Q plot. Note that many empirical samples of M2

D (33 out of 100 wells) even fall
above the 99.99% quantile of X2

d=4 distribution which corresponds a value of 23.5. This highlights that it is
extremely unlikely that these samples belong to the baseline GP predictive posterior. Two potential factors that
could be contributing to the lack of a clear one‐to‐one correspondence for the baseline GPmodel are (a) inaccurate
regression estimates for the posterior uncertainty, and (b) real data noise. With regards to the latter, certain
additional wells with suspect data were identified from the Q‐Q plot outliers. For instance, the well with
M2

D ≈ 40 (see the bottom plot on second column from right) has about 11 data samples indicating water levels
declined by 170 feet from 2015 to 2017, and regained back 170 feet from 2017 to 2019, leading to a fitted seasonal
oscillation amplitude value of 81 feet. This seems a clear data outlier considering the general distribution for
amplitudes observed in Figure 3. To minimize impacts of similar outlying data samples for the Q‐Q plot analysis,
we created an additional test set, termed the robust test set TR as described below.

We conducted an additional outlier detection exercise by utilizing the robust sample covariance based
Mahalanobis‐distance outlier detection as proposed by Rousseeuw and Van Driessen (1999). We underscore that
this outlier detection is solely based on the observed data samples and does not include any regression model
covariance estimates. Specifically, the sample mean and robust sample covariances are determined from the
observations of y available at all training, validation and test set wells. Subsequently, the Mahalanobis distance of
samples of y are computed using the sample mean and robust sample covariance matrix. Any test well observation
y which exceeds the outlier detection threshold, set to be the 99% quantile of X2

d=4, are flagged as outliers with
respect to the sample data distribution. Following this procedure, 10 test set wells were discarded for having data
outliers. In the rightmost column of Figure 5, we compare the Q‐Q plots of baseline GP and GP‐DNN models
obtained using TR. While the linearity of the Q‐Q trend slightly improved (compare R2 coefficient of determi-
nation for the fit of the data to the blue line), the baseline GP model still exhibits significant deviations from the
identity relation reinforcing the claim that baseline GP model yielded inaccurate posterior uncertainty estimates.

Table 1
Training and Cross‐Validation Statistics (Defined in Section 2.2.4) Computed on Different Normalized Evaluation Sets

Evaluation set

Baseline GP GP‐DNN

Posterior predictive − log‐likelihood
(12M

2
D +

1
2log|K| +

dm∗
2 log 2 π) RMSE

Posterior predictive − log‐likelihood
(12M

2
D +

1
2log|K| +

dm∗
2 log 2 π) RMSE

Training set (1,550
wells)

5211292.05 (5222822.08–17205.39 + 5675.36) 0.64 12217.34 (12009.6– 5467.62 + 5675.36) 0.45

Validation set (100
wells)

2784.99 (3017.2–599.79 + 367.58) 0.77 446.51 (256.65–177.72 + 367.58) 0.85

Test set (100 wells) 3058.42 (3302.32–611.48 + 367.58) 0.75 439.43 (259.16–187.31 + 367.58) 0.82

Robust test set (90
wells)

2024.80 (2245.71–551.73 + 330.82) 0.64 345.16 (189.99–175.65 + 330.82) 0.68
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For the GP‐DNN model, the R2 coefficient of the best linear fit to the Q‐Q trend is 98.67% indicating that the
shape of the empirical and theoretical distributions are practically identical. Approximate one‐to‐one corre-
spondence between empirical and theoretical distributions are observed up to the 90% quantile (≈ 8 for X2

d=4).
Noticeable mismatches between the empirical and theoretical quantities especially occur beyond the 90% quantile
of X2

d=4. Such deviations are expected given the limited sample size at each test location as well as due to the
simplified modeling assumptions made regarding the data noise, for example, spatially uniform noise variance.

3.4. Results

In this section, we will discuss estimated water level trends and associated uncertainties in the CV during 2015–
2020, as inferred by two GP regression models. We show that the mean field estimates from both models show
somewhat comparable spatial variability. However, the results interpretation will be primarily focused on the GP‐
DNN results since corresponding posterior predictive distribution is able to explain the held out test set with
higher log‐likelihood statistics and robust predictive posterior uncertainty estimates as discussed in the previous
section. The GP‐DNN model is able to model the uncertainty more reliably because of its ability to handle non‐
stationary data in the latent space as shown in Section 3.4.3.

3.4.1. Mean Groundwater Levels During 2015–2020

Mean water level trends predicted by the GP‐DNNmodel are shown in Figure 6. InMarch 2015, water levels were
predicted to be significantly shallower (upto 50 feet from surface) in the SV. The SJV, on the other hands shows
greater variability. Along the north‐western flank of the SJV (East Conta Costa, Tracy, Delta Mendota, and
western edges of Eastern San Joaquin, Modesto, Turlock and Merced subbasins), water levels within 50 feet from
surface are observed. Water levels deeper than 100 feet from surface are predicted along the eastern boundary and
southern half of the SJV. The deepest water levels (>200 feet) are observed across several isolated regions in the
Modesto, Turlock, Chowchilla, Madera, Westside, Kaweah, Tule and Kern counties. The spatial continuity of the
patterns manifested in well data (Figure 3) has been preserved in the estimated mean fields. Larger‐scale spatially
correlated structures are observed in the central SV and northern SJV, while rapidly varying spatial patterns (short
length‐scales) are observed in southern SJV area. In a previous study by Gualandi and Liu (2021), shallow aquifer

Figure 5. Chi‐square Q‐Q plots for testing GP (top row) versus GP‐DNN (bottom row) predictive posteriors. Empirical quantiles in the left and second from left columns
are derived using 100 and 1 random samples respectively from predictive distribution at each well location in the test set. Empirical quantiles in the second from right
and right columns are derived using real data in the test and robust test sets respectively. The R2 coefficient of determination of the best linear fit (blue line) is listed
on top.
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(aquifer layers above the clay confining unit) processes in the SJV were found to be contributing factors to these
short length‐scale variations in aquifer responses.

During 2015–2020, water levels have exhibited both positive and negative decline trends, with a large proportion
of the locations showing sustainable changes in groundwater levels. On average, 98% of locations in the CV grid
have had moderate fluctuations in the groundwater levels, ranging between ±12 feet during 2015–2020 (decline
rates ranging between ±0.1 ft/biweeks). 11% of the locations have witnessed uplifts exceeding 12 feet, while 1%
of the locations underwent declines exceeding 12 feet. While CV groundwater reservoirs continually experienced
groundwater loss during the 2012–2015 drought (P. W. Liu et al., 2022; Ojha et al., 2019), our results indicate
that, on average, there were few locations with large declines in groundwater (>25 feet) during 2015–2020. This
is likely due to the exceptionally wet years of 2017 and 2019 that have resulted in partial, localized recovery of
water levels as reported in several studies (California Department of Water Resources, 2017, 2019). However,
note that these short recharge periods have been interspersed with prolonged periods of drought, in what has been
termed as a megadrought, and current CV groundwater levels in general lie significantly below the pre‐2006
drought levels (P. W. Liu et al., 2022). Approximately 63% of the 11% CV locations that witnessed appre-
ciable uplifts in water levels include locations in the Tulare Lake hydrological basin (TLHB; includes Westside,
Kings, Kaweah, Tulare Lake, Tule and Kern county subbasins). These results align with the California

Figure 6. Mean of the posterior predictive distribution of water level long‐term and seasonal trend parameters predicted by
GP‐DNN regression. The plots, clockwise from top left, correspond to a1(x), a2(x), a4 (x) and a3 (x). For a2(x), blue indicates
rising water levels.
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Department of Water Resources (2019) report that shows several wells in the TLHB observed uplifts during
Spring 2016–Spring 2019, with 31% of the 624 wells logged ranging between 5 and 25 feet uplifts and 25%
exceeding 25 feet. Neely et al. (2021) also presented similar observations while studying groundwater depletion
related surface deformation with remote sensing data in CV. They observed strong surface uplift in Westside
during the 2017 wet year potentially due to the above average aquifer recharge in that year. We hypothesize two
possible reasons for these observed uplifts in water level mean fields.

1. Underlying hydrogeology: Using the sediment thickness features presented in Section 3.2.2, we observed that
the western flank of the TLHB contains some of the thickest coarse‐grained sediment columns in the semi‐
confined aquifer zone. Shown in Figure 7 are the total thickness of coarse and fine‐grained sediments in
the upper semi‐confined aquifer (layers 1–5 of the CV texture model). It may be observed that the thickness of
the semi‐confined coarse grained sediments in western TLHB ranges within ≈400–700 feet, significantly
larger than any other region of the CV. Thick fine‐grained sediments were also estimated to exist in western
and southern TLHB. Also plotted is the depth to top of layer six of the texture model, corresponding to the top
of the Corcoran Clay where it exists, from the GP‐DNN predicted mean water level. Comparing with Figure 6,
mean water levels in western TLHB are predicted to stay mostly between 50 and 400 feet below the surface
and 200–800 feet above the Corcoran Clay. Note that in comparison the mean water levels in the SV and
northern SJV exist at shallower depths (≈0–100 feet). Given that (a) the western TLHB semi‐confined aquifer
is a structural trough with thick coarse grained sediments and (b) coarse‐grained sediments have higher storage
and hydraulic conductivity, it is possible that the higher influx of water during wet years 2017 and 2019
resulted in preferential recharge of the western TLHB aquifers. This preferential recharge effect in western
TLHB has also been confirmed in independent component analyses of InSAR time series data conducted by
Gualandi and Liu (2021). As mentioned beforehand, modeling limitation of handling groundwater flow in 2D
would also likely introduce dimensionality issues, such as not considering vertical soil infiltration. Further,
other factors such as varying groundwater pumping rates, delayed pressure dissipation across the Corcoran
clay, structural barriers or pathways inside the stratigraphies considered in the CV texture model and the
spatial heterogeneity were also not considered in this study. Many of these variables are unknown or known
with large uncertainty in the CV, impeding building a robust physical 3D model for groundwater flow as
discussed earlier.

2. Data sparsity and noise: Well data from the TLHBwere particularly sparse as compared to the rest of the study
area (Figure 2), with nearly all of the wells having <15 samples during 2015–2020. Given that we assumed a

Figure 7. Total thickness of coarse (left) and fine grained sediments (middle) in the upper semi‐confined aquifer (texture model layers 1–5). (right) Depth thickness
between predicted March 2015 water level mean and the top the 6th layer. Extent of Corcoran clay is shown in red.
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single linear model for the long‐term signal over the 5 year period, data aliasing effects could have potentially
led to noisy estimates of the water level trends at wells in the TLHB.

Given the large uncertainty associated with the hydrogeology and well‐data, it is desirable to quantify prediction
uncertainty. In the next section, we discuss how the GP approach allows deriving the full posterior predictive
distribution and the ability to simulate equiprobable estimates of the water level trends.

Regarding the mean seasonal signal, 95% of the locations are predicted to have small (<10 feet) seasonal peak‐to‐
peak oscillations. In the SV, most of the larger oscillations are observed in Red Bluff, Corning, Vina, North Yuba,
South Yuba and Yolo subbasins. In the SJV, larger amplitude seasonal variability occur regionally in the
Modesto, Turlock, Chowchilla, Madera, Tule and Kern counties. Based on the phase delay field, timing of the
peak seasonal oscillations are predicted to occur between October to April at 93% of the CV locations. The peak
seasonal signal is controlled by various factors such as groundwater production, precipitation, snow runoff and
ease of surface water infiltration into the aquifer (Riel et al., 2018). The predicted mean October to April peak
generally correlates with wet months of the seasonal cycle and thus decreased groundwater production in the
valley. Note that accurately estimating the timing of the peak seasonal signal will be challenging given the well
data are very sparsely sampled. The GP‐DNN posterior estimates appropriately capture this modeling uncertainty
as discussed in Sections 3.3 and 3.4.2.

Figure 8. Mean of the posterior predictive distribution of water level long‐term and seasonal trend parameters predicted by
baseline GP regression.
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Figure 8 shows the mean fields predicted by the baseline GP regression approach. While the fields generally show
coarse correlation with the GP‐DNNmean (Figure 6), the model in general tends to predict stationary correlations
in the study area. This is immediately apparent in the March 2015 water levels in Westside and Tulare Lake
subbasins. The rough variability manifested in the well data (Figure 3) have been smoothed given a stationary
kernel is used to smooth the well data. Similar high amplitude artifacts in southern SJV are also observed in the
seasonal amplitude map. The GP‐DNN model, on the other hand, does not suffer from this stationary smoothing
limitation and is able to capture both large‐scale and fine‐scale variability in the data as shown previously.

3.4.2. Uncertainty and Non‐Stationarity in Groundwater Levels

Random realizations of March 2015 water levels from the GP‐DNN distribution prior to well data conditioning
(Equation 3) are shown in Figure 9. Non‐stationary spatial heterogeneity of the simulated patterns across the

Figure 9. Three random realizations of water levels in March 2015, sampled from the GP‐DNN prior (top row) and posterior (bottom row) predictive distributions.
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valley is immediately apparent. Starting from central SV (Colusa, Butte and Vina subbasins) till the northern
border of the SJV (Tracy and Eastern San Joaquin subbasins), large length‐scale structures were simulated.
Variability of water levels occurs along medium range structures in regions without the Corcoran clay confining
unit such as the eastern flanks of the Modesto, Turlock, Merced, Madera, Kings, Kaweah, Tule and Kern County
subbasins. On the other hand, regions located above the confining unit exhibit very fine length‐scale variations,
likely related to shallow semi‐confined aquifer responses. The prior predictive uncertainty was conditioned to
training data, yielding the posterior predictive distribution (Equation 6). Posterior predictive realizations are also
shown in Figure 9. Similar to the prior realizations, the GP‐DNN posterior predictive samples exhibit non‐
stationary spatial patterns across the modeling domain. The self‐consistency of the three posterior predictive
samples stands in contrast with the more highly variable samples drawn from the prior. This indicates that
conditioning is, in many places within the domain, effectively constraining the prior when Equation 6 is applied.

Figure 10 shows the sample standard deviation associated with March 2015 water level mean, computed using
500 random samples from the GP‐DNN posterior predictive distribution. The corresponding results for baseline
GP case are shown in Figure 11 for comparison. Result interpretation is mostly focused on GP‐DNN results as it
was shown previously that baseline GP model predictions are inaccurate (see cross‐validation in Section 3.3). We
observe tight uncertainty intervals in central to southern SV and in most areas in the north‐western SJV. Wider
uncertainty intervals are primarily predicted for locations overlying the clay confining unit and along the northern
and eastern domain boundaries. Note that the posterior predictive covariance (Equation 6) depends only on the
training covariance matrix K̃ττ, testing covariance matrix K̃∗∗ and the training‐testing covariance matrix K̃τ∗. From
Equation 7, it follows that the GP‐DNN uncertainty predictions are in accordance with distances from training and

Figure 10. (left) P10‐P90 uncertainty interval of March 2015 water level computed using 500 posterior predictive samples from GP‐DNN model. (right) GP‐DNN
predictions along three different longitude transects highlighted in magenta on the left plot. Black line: posterior predictive mean; gray: P10‐P90; red circles: well data.

Figure 11. (left) P10‐P90 uncertainty interval of March 2015 water level computed using 500 posterior predictive samples
from baseline GP model. (right) Baseline GP predictions along three different longitude transects highlighted in magenta on
the left plot. Black line: posterior predictive mean; gray: P10‐P90; red circles: well data.
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testing locations as mapped in the latent space. Locations above the Corcoran clay have significant differences in
the semi‐confined aquifer structural and lithological properties, thus leading to greater separation in the latent
space (see Section 3.4.3) and consequently larger uncertainty. We underscore that the well data itself shows very
rapid and noisy variability in this area (which could be due to hydrogeological heterogeneity, observational noise
and other factors as discussed in Section 3.4.1). As described previously, we have plotted the posterior predictive
mean and 500 samples along three longitude transects and overlain the well data. Visually, well data from the
northern CV show wider correlated patterns as compared to the south where the correlation falls off very rapidly
with distance. This is especially true of the bottom transect passing through Westside subbasin where we see
fluctuations ranging within ±300 feet roughly across a distance of 60 miles. The GP‐DNN model is able to
replicate this abrupt data variability within the modeling domain by latent space reconfiguration and does not
force the simulations to be overly smooth, which is a well‐documented limitation associated with kriging type
models for modeling geological heterogeneity (Linde et al., 2015). Figure 11 shows the effect of smoothed mean
estimates for the baseline GP model. Also, note that predicted uncertainty is driven by conditioning data prox-
imity as expected. However, a limitation with the GP‐DNN regression is that some of the posterior predictive
samples demonstrate very noisy variability in the regions above the Corcoran clay. In Section 4, we discuss this
issue in greater detail and propose ideas for future work. The linear model shown in Equation 15 may be used to
obtain a spatio‐temporally continuous mean water level and associated variance. Figure 12 compares the modeled
mean water level and P10‐P90 uncertainty intervals computed at four selected blind wells for the two regression
models under study. While the mean water level predictions are more or less similar, the uncertainty intervals may
vary significantly across the two wells. The GP modeling may lead to overly confident uncertainty estimates,
leading to the real data lying outside the predicted P10‐P90 intervals (see second well from top in Figure 12). By
predicting wider uncertainty intervals in some cases, the GP‐DNN model is able to appropriately capture the
uncertainty existing due to data unavailability and noise.

Figure 12. Modeled mean water level depths (red line), P10‐P90 uncertainty intervals computed using 500 posterior
predictive samples and observed data at four blind wells predicted using baseline GP (left column) and GP‐DNN (right
column) models.
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3.4.3. GP‐DNN Latent Space Interpretation

While deep learning models provide the flexibility to approximate very complex non‐linear relations, physically
explaining the model predictions, for instance understanding how the input features get propagated through the
model into outputs, has remained a challenge and is an active area of research (Samek et al., 2021). In this paper,
deep neural networks were used to transform the hydrogeological features into latent features. To explain the
latent space features, we perform dimension reduction of the latent space and present visual analyses of the
variability of aquifer and aquitard sediment thicknesses in the latent space as described in this section.

The dimensionality of the latent space, controlled by the number of output nodes of the DNN, was treated as a
hyper‐parameter and tuned to 12 by cross‐validation. In Figure 13, we show selected components of x̃ in map
format, that is, plotting them versus x. While it is not immediately straight‐forward to quantitatively interpret the
latent fields from a hydrogeological perspective, we put forth some qualitative observations. The footprint of the
Corcoran clay unit can be observed along the majority of the latent dimensions. Many of the displayed latent fields
show similar high amplitude patterns in the Westside, Tulare Lake and Kern County subbasins. We found that
these patterns exhibit a high correlation with the coarse and fine grained sediment thicknesses in the upper semi‐
confined aquifer. Similar high amplitude patterns may be observed for the sediment thicknesses in the upper semi‐
confined aquifer (Figure 7). High amplitude structures in x̃6 and x̃7 (for instance in North and South Yuba
subbasins) correspond with areas with thick clay columns in the lower semi‐confined aquifer zone. These

Figure 13. Selected components of the DNN output latent space x̃.
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observations generally indicate that the latent space reconfiguration was optimized to differentiate between lo-
cations based on their underlying lithological texture.

It is impossible to fully visualize and interpret how the latent space re‐configuration varies with the texture
properties in a 12‐dimensional output space. Hence, we employ dimension reduction of the latent feature space to
facilitate visual analysis. Specifically, we employ multidimensional scaling (MDS; Borg & Groenen, 1997),
which projects samples from an input feature space into a lower‐dimensional space while ensuring that the mutual
distances between samples in the original space are preserved. This property of MDS is especially desirable since
the covariance kernel is specified as a function of ‖ x̃ − x̃′‖2. MDS has been employed for visualization of spatial
subsurface uncertainty in several previous studies (Pradhan &Mukerji, 2020a, 2022; Scheidt & Caers, 2009). We
compress the sample locations from the x̃‐space into a two dimensional space by metric MDS. The distance
measure between samples x̃ and x̃′ is taken to be ‖ x̃ − x̃′‖2 which will be preserved during dimension reduction.
Figure 14 compares the mutual distances between the training well locations in the x‐space against the x̃‐space
after MDS. To support visual analysis, the x̃‐MDS and x‐MDS coordinates were separately normalized to have
zero mean and unit variance. Note that the relative configuration of the samples along the MDS coordinates is
representative with high accuracy of the relative configuration in the latent space. The correlation coefficient
between Euclidean distances in the input feature space and Euclidean distances in the MDS space was calculated
to be nearly 98%, indicating minimal loss of information during MDS. In subsequent discussion, references to the
input feature space and its corresponding MDS space are used interchangeably.

In Figure 14, the samples have been colored by their native hydrological valley and whether the Corocoran Clay
exists in the subsurface. It is immediately apparent that the DNN has learned to nicely separate based on the
underlying aquifer textures. In the geospatial domain, locations without the clay confining unit exist both in the
SV and eastern SJV. In the latent space, these sites have been gathered into a tight cluster. This explains the
corresponding tighter confidence intervals observed in Figure 10 (compare top longitude transect against the
bottom). Locations overlying the confining clay unit have been reconfigured with a distinct quasi‐linear trend
with a northwest to southeast orientation, with the semi‐confined fine grained sediment equivalent thickness
exhibiting a smooth gradation along this trend. The corresponding coarse grained sediment thicknesses also
exhibit a clear southwest‐northeast trending gradation (Figure 15), correlated with the scatter about the trend.
Note especially that the variance about the northwest to southeast quasi‐linear trend increases with in correlation

Figure 14. Training samples in compressed dimensions after MDS from x‐space (left) and x̃‐space (right).
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with fine grained (clayey) sediment thickness. This shows that the DNN has learned to differentiate between
locations based on their underlying equivalent coarse and fine grained sediment column heights. From first
principles, this is a natural expectation since two 1D aquifer columns with equal height, homogeneous sediment
type and properties, and same boundary conditions will result in equivalent pressure head profiles (Equation 16).
Greater the proportion of clay sediments in the aquifer column, the more heterogeneous the head profiles are
expected to be. Thus, the flexibility of the GP‐DNN formulation to distend and squash spatial distances facilitates
it to (a) yield uncertainty predictions that are texturally aware instead of being just geospatially aware, as is
typical in kriging‐type models, and (b) model non‐stationary spatial heterogeneity across the modeling domain.
As validated with the blind well test set in Section 3.3, this leads to reliable uncertainty quantification.

4. Discussion
In this section, we discuss limitations and advantages of the GP‐DNN regression model along with directions for
future research. It should be noted that the CV texture model was obtained by non‐stationary kriging of well data
and has uncertainty associated with it. This is especially true along the sub‐domain boundaries (for instance
mapped edge of the Corcoran clay) and deeper aquifer where the well texture data is scant leading to artifacts in
the model (Faunt, 2009). While we did not explicitly account for this uncertainty, we found empirically that the
DNN ignores noisy features and artifacts especially from the deeper sections of the texture model. To improve
reliability of the model predictions, additional robust features may be considered in the future. Such features could
include (a) hydrogeophysical data such as electromagnetic data (Kang et al., 2021) which may provide spatially
continuous information on aquifer structure and heterogeneity, (b) remote‐sensing data such as InSAR surface
deformation data which could inform on the sediment elastic/inelastic properties, (c) precipitation data, surface

Figure 15. Training wells in x̃‐MDS space colored by thickness of coarse‐grained sediments (top row) and fine‐grained
sediments (bottom row) in the shallow semi‐confined aquifer zone. Locations with and without the Corcoran clay have been
grayed out in the left and right columns respectively.
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water delivery data, and crop water use data which serve as proxies for groundwater source and sink flux. With
additional data, it might be necessary to consider other regression models that can handle different data structures.
For example, convolutional neural networks (CNNs; Krizhevsky et al., 2012) may be more suitable to learn from
spatial geophysical data compared to DNNs (Pradhan & Mukerji, 2020b, 2022). The approach of hierarchically
combining a regression model with GPs may in theory be extended to CNNs, with future effort required for
applicable model design.

As discussed earlier, 3D variability of water levels resulting from vertical connectivity of aquifer layers was not
considered and is a limitation of the current study. The proposed GP‐DNN methodology may be extended to
account for 3D effects, especially if well‐screen depths may be combined with water level data to map the well
observations as a function of latitude, longitude and depth. Notwithstanding the above limitation, one of the
primary advantages of the GP‐DNN model is the fast and analytical derivation of a statistically consistent pos-
terior uncertainty model on long‐term and seasonal groundwater trends informed by the lithological texture of the
underlying aquifer layers. Informative probability distributions on key decision variables are a staple component
for aiding decision making under uncertainty (Caers, 2011; Eidsvik et al., 2015). While the application was
demonstrated specifically for the CV, similar data and uncertainty challenges exist in other hydrological basins
where it should be possible to leverage latent space GPs for aiding uncertainty quantification.

It was shown earlier that the GP‐DNN model did not significantly reduce the prior predictive uncertainty in the
southern SJV. We identified two contributing factors that led to uninformative uncertainty quantification in this
region: (a) highly variable hydrogeological heterogeneity, and (b) sparse well data. In the absence of sufficient
information, the GP‐DNN model correctly indicated that predictions were not reliable by putting large error bars
on the posterior predictive mean in the southern SJV (Figure 10). A specific novelty of the GP‐DNNmodel is that
the uncertainty predictions are driven by the hydrogeological heterogeneity, in addition to spatial proximity of
data observations, as compared to the traditional kriging‐based approaches which only account for the latter. This
resulted in predictions of tight uncertainty intervals even with sparse well data in certain regions, for instance
compare data density in central to southern region of Solano subbasin (Figure 1) with the predicted uncertainty
intervals (Figure 10).

A limitation with GP‐DNN posterior predictive samples (Figure 9) is the apparent loss of spatial continuity in the
southern SJV, with large swings of the variables observed between spatially close locations. In addition to
gathering more data which will constrain the posterior predictive uncertainty as discussed above, we propose two
future improvement directions specific to the methodology. In the proposed GP‐DNN formulation, Gaussian
smoothing was performed in the latent space and not directly on the spatial coordinates. Potential loss of spatial
continuity may be prevented by enforcing spatial regularization directly. A simple trick to achieve this will be to

augment the latent space with spatial information. Specifically, the latent space may be specified as x̃ = ϕ(x̌; θ) ,

with the GP regression subsequently conducted in the augmented latent space [x, x̃]T . In this case, the kernel
length scales along the spatial and latent coordinates will need to be carefully tuned. The GP kernel will be
expected to suppress large deviations of water levels within the specified spatial length‐scales.

While the GP‐DNN model allows accounting for observational noise, it was assumed that the noise level is
spatially homogeneous across the valley. This assumption may be violated in southern SJV given that the density
of the well data samples is heavily skewed toward the northern part of the valley. This could potentially lead to
higher levels of noise during fitting of the trend parameters in Equation 15. This limitation may be addressed by
specifying the noise level to vary spatially with each location. Since the true noise level is unknown, the noise
level will have to be considered as a parameter of the model. Within the formulation presented in Section 2, it
should be possible to derive the gradients of the loss function with respect to the noise parameters and train them
end‐to‐end along with the neural network parameters. Spatially varying noise levels will provide the DNN
flexibility to locally adjust the distances between the training locations in the latent space and prevent overfitting
to any short correlations exhibited in the southern SJV data.

As discussed in Section 3.4.3, a common challenge associated with deep learning models is the difficulty
associated in physically understanding how the input features affect the model outputs. In this paper, we
approached model explainability by dimension reduction of the DNN estimated latent space and visualization of
lithogical features along the latent reduced dimensions. This was effective in understanding how the DNN was
effective in clustering together spatial locations with similar lithological characteristics. The reader is referred to
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the review paper by Samek et al. (2021) for an overview of other state‐of‐the‐art methods available for explaining
deep learning models such as interpretable local surrogate models, feature perturbation methods, and layer‐wise
relevance propagation. A general limitation of covariance based approaches is that they scale as O(n3) with the
number of training samples n. While this was not a computational bottleneck for our training data set of 1,550
wells, this might introduce significant computational burden for larger data sets. Addressing computational
challenges of covariance matrix based algorithms is a well studied research area. Rasmussen andWilliams (2006)
[Chapter 8] review several approximations methods that may be employed for applying GP‐DNN to larger data
sets.

5. Conclusions
A spatially continuous map of the groundwater level in CV is difficult to obtain due to the poor‐quality of well
data. In this paper, we proposed regression of sparse and noisy well data on features from a 3D lithological texture
model of the CV aquifer system. We formulated a novel multivariate regression methodology that hierarchically
leverages deep neural networks to morph the texture feature space into a latent space and Gaussian processes for
non‐parametric regression in the latent space. The proposed GP‐DNN model provides a robust extension to
traditional cokriging approach for modeling non‐stationary data and augmenting uncertainty quantification with
information from lithological features. We found that the GP‐DNN model successfully captures non‐stationary
effects in the data by distending and squashing input distances in the latent space. The DNN was shown to be
able to extract hydrogeologically explainable features from the data and the predictive uncertainty model was
cross‐validated to be statistically consistent with the empirical data distribution of 90 blind wells. Our results
indicate that during 2015–2020 water levels in CV did not show appreciable recovery from the 2012–2015
drought in California. While the 2017 and 2019 wet years resulted in small and localized recovery of water
levels, groundwater levels in August 2020 stayed mostly low in many areas of the valley. These results
demonstrate promising applications of latent‐space GP models to overcome data limitation challenges within
hydrology and also have implications for refining our understanding of hydrologic connectivity in the context of
groundwater recharge and drought recovery.

Appendix A: Construction of Covariance Matrices
The general anisotropic version of the stationary covariance kernel (Equation 7) is given as

k(x, x′) =∑
i
Ki
amp k

i
valid(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − x′)TL− 1(x − x′)
√

)

where x ∈Rn and L = diag([l21, l
2
2, …, l2n]

T
) is a diagonal matrix of the anisotropic length‐scales along the input

coordinates. The kernel length‐scale may be related to the more traditional semivariogram range r, which is
defined as the distance at which the semivariogram value reaches 95% of the semivariogram sill value (Goo-
vaerts, 1997) as l = r

3. Note that the length‐scales need to be specified for the baseline GP regression case. For
simplicity, we assumed unit length‐scales in the GP‐DNN regression as the DNN can be expected to implicitly
learn the scaling as part of the transformation ϕ(.).

The Matérn kernel used in Equation 8 is given as

kνMatérn(d) =
21− ν

Γ(ν)
(
̅̅̅̅̅
2ν

√
d)νKν(

̅̅̅̅̅
2ν

√
d),

where d is the scaled distance between two locations under evaluation, Kν is a modified Bessel function, and ν is a
roughness parameter. As a result of the linear model of coregionalization, the amplitude matrixKamp is required to
be positive semi‐definite. Kamp controls the variance of the components of the multivariate random process and
their correlation coefficients. We assumed each individual process to have unit variance and normalized the well
training data appropriately. The off‐diagonal elements of Kamp control the correlation coefficient between the
processes since
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ρai(x), aj(x) =
cov[ai(x), aj(x)]

σai(x)σaj(x)
= Ki, j

amp k
ν=2.5
Matérn(x, x) = Ki, j

amp,

where ρ denotes the correlation coefficient, cov[.] is the covariance operator and σ denotes standard deviation.

Given training data samples {(xτi, yτ1); i = 1, …, m} such that xτ ∈Rn and yτ ∈Rd, the 4m × 4m covariancematrix

Kττ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

K1, 1
ττ … K1, 4

ττ

⋮ ⋱ ⋮

K4, 1
ττ … K4, 4

ττ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (A1)

where,

Ki, j
ττ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ki, j (xτ1, xτ1) … ki, j (xτ1, xτm)

⋮ ⋱ ⋮

ki, j (xτm, xτ1) … ki, j (xτm, xτm)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, ∀ i, j = 1, …, d.

In the above,

ki, j (xτk, xτl) = Ki, j
amp k

ν=2.5
Matérn (xτk, xτl).

Appendix B: Time Series Linear Regression
The mathematical model capturing long‐term and seasonal trends in well water level time series data is given in
Equation 15. We derive how the parameters c may be estimated independently at each training location by linear
regression. Equation 15 can be re‐written as

u(x, t) = a1(x) + a2(x)t + a′3(x)sin(
2πt
λ
) + a′4(x)cos(

2πt
λ
), (B1)

where, a′3(x) = a3(x)cos(a4(x)) and a′4(x) = a3(x)sin(a4(x)) . Given data {(tj, uxτi , j); j = 1, …, ni} at the ith

well, Equation B1 may be used to specify the following system of linear equations

uτi = Xτiaτi, (B2)

where, uτi is the ni × 1 vector of water levels, Xτi is the ni × 4 feature matrix and aτi = [a1 (xτi ), a2 (xτi ), a′3 (xτi ),
a′4 (xτi )]

T is the trend parameter vector to be estimated. The least‐squares solution to Equation B2 is given as

aτi = (XTτi Xτi)
− 1XTτi uτi. (B3)

We solve Equation B3 independently at each well location to obtain estimates of the corresponding parameter
vector aτi. The seasonal amplitude a3 and phase delay a4, computed as

a3 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a′23 + a′24
√

and a4 = arctan2(a′3, a′4)

respectively.
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Appendix C: Training and Tuning of Regression Models
C1. Baseline GP Regression

In this case, the regression is performed in the geospatial coordinate space x. The posterior predictive distribution
may be analytically derived as shown in Equation 6. The list of hyper‐parameters is shown in Table C1. For each
hyper‐parameter, we specify a range of possible values it may assume. In general, available data at training wells
were used as a guide to specify the support of the hyper‐parameters. For instance, to estimate the ranges for
length‐scales l1 and l2 along latitude and longitude coordinates, empirical variogram analysis (Goovaerts, 1997)
with well data indicated that length‐scales ranged roughly between 5 and 15 miles. To account for the uncertainty
in the empirical estimates, we considered lower and upper bounds of 3 and 75 miles respectively. The other hyper‐
parameters considered are related to the covariance kernel specification, that is, Kamp and Σn. The diagonal el-
ements of the Matérn kernel amplitude matrix Kamp, defining the signal variances of ai, i = 1, …, 4, are taken to
be 1 given that we normalized all the training, validation and test data to have unit variance. Uncertainty in the
diagonal entries of the covariance matrix is modeled through the Σn described below. The off‐diagonal entries of
the Ki, j

amp, i≠ j, capture the correlation coefficients between the trend parameters (Appendix A). Note that there
are only six free off‐diagonal elements, since Kamp is required to be positive semi‐definite by definition. We
consider higher noise variances for a3 and a4 since estimating the sinusoidal phase parameter a′4 from the sparse
well time series will typically be more difficult than intercept, slope and sinusoidal amplitude, resulting in noisier
estimates of a3 and a4 from Equation B3. Hyper‐parameter values tuned by cross‐validation are shown in
Table C1.

C2. Hierarchical GP‐DNN Regression

In this case, the prior predictive distribution is specified using the hierarchical model posited in Equations 2 and 4.
The DNN in the bottom layer may be parameterized through several hidden layers, each of which constitutes of a
number of neurons with trainable weight and bias parameters θ to yield multivariate outputs. We treat the number
of hidden layers, neurons and outputs as hyper‐parameters taking values in the ranges shown in Table C2. At the
top‐level is a GP model, regressed in the space of DNN outputs x̃. The posterior predictive distribution on
prediction variables may then be derived as shown in Equation 12. Given above model specification, parameters θ
will be optimized by minimizing the negative log‐likelihood of the GP marginal distribution, and hyper‐
parameters tuned by cross validation with the negative log‐likelihood of the validation data under the GP pos-
terior predictive distribution. To limit overfitting, we considered dropout (Srivastava et al., 2014) and ℓ2‐regu-
larization, with dropout regularization found to be largely ineffective (Table C2). Based on cross‐validation, the
optimal DNN architecture was found to consist of two hidden layers with 33 neurons in each layer. The dimension

Table C1
Hyper‐Parameter Tuning Details for Baseline GP Regression

Hyper‐parameter Parameter range Tuned value

Length‐scale l1 [3 miles, 75 miles] 12.13 miles

Length‐scale l2 [3 miles, 75 miles] 7.11 miles

Noise variance σ2n1 [0.2, 0.5] 0.23

Noise variance of σ2n2 [0.2, 0.7] 0.61

Noise variance of σ2n3 [0.4, 0.98] 0.43

Noise variance of σ2n4 [0.4, 0.98] 0.70

Kernel amplitude K1, 2
amp [− 0.7, − 0.25] − 0.41

Kernel amplitude K1, 3
amp [0.01, 0.2] 0.16

Kernel amplitude K1, 4
amp [− 0.4, − 0.05] − 0.37

Kernel amplitude K2, 3
amp [− 0.15, 0.15] 0.10

Kernel amplitude K2, 4
amp [− 0.05, 0.15] − 0.02

Kernel amplitude K3, 4
amp [− 0.9, − 0.4] − 0.80
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of the latent space was tuned to be 12. In addition to the DNN hyper‐parameters, we also consider hyper‐
parameters related to the GPMátern kernel and data noise. For simplicity, we assumed unit length‐scales l ∈Rp×1.

The training procedure is shown in Algorithm 1. The training algorithm takes as inputs the training data feature
matrix X̂τ ∈Rm×(n+2), where m = 1550 is the number of training examples and n = 39 is the dimension of the
hydrogeological feature space, and the target vector yτ ∈R4m×1. In FigureC1,we show the variability of the training
set loss function across 100 training epochs. Note that the loss function in Equation 10 comprises of the data fit and
model complexity terms (see similar discussion for the posterior predictive distribution in Section 2.2.4.1). As the
training progresses, the DNN model parameters θ are expected to become increasingly complex to overfit to the
training data leading to larger values of the model complexity term. This is clearly observed in the increasing trend
of the loss function beyond the tenth epoch, driven by increasing model complexity term. To ensure that the DNN
model parameters may generalize to data sets other than the training set, we enforce early stopping of the training
based on the cross‐validationmetric of negative log‐likelihood of the predictive posterior distribution evaluated on
the validation set. In the right subplot of Figure C1, we show the behavior of validation set cross‐validation metric
across 100 training epochs. The best validationmetric is attained at the seventh epoch, hence theDNNparameters θ
from this epoch are employed for all subsequent model predictions.

Table C2
Hyper‐Parameter Tuning Details for GP‐DNN Regression

Hyper‐parameter Parameter range Tuned value

Number of hidden layers {1, 2, 3} 2

Number of neurons in hidden layers {30, 31, …, 130} 33

Number of DNN output nodes {1, 2, …, 30} 12

Use dropout {True, False} False

Learning rate for DNN training with Adam optimization algorithm [0.001, 0.5] 0.28

Weight of ℓ2‐regularization [0.001, 10] 2.91

Noise variance σ2n1 [0.2, 0.5] 0.28

Noise variance of σ2n2 [0.2, 0.7] 0.54

Noise variance of σ2n3 [0.4, 0.98] 0.93

Noise variance of σ2n4 [0.4, 0.98] 0.85

Kernel amplitude K1, 2
amp [− 0.7, − 0.25] − 0.42

Kernel amplitude K1, 3
amp [0.01, 0.2] 0.11

Kernel amplitude K1, 4
amp [− 0.4, − 0.05] − 0.28

Kernel amplitude K2, 3
amp [− 0.05, 0.15] − 0.06

Kernel amplitude K2, 4
amp [− 0.05, 0.15] 0.03

Kernel amplitude K3, 4
amp [− 0.9, − 0.4] − 0.47

Figure C1. GP‐DNN training history across 100 epochs. (left) Negative of marginal log‐likelihood loss function (R.H.S. of Equation 10 without the constant term)
evaluated on the training set is plotted along the y‐axis. (right) Negative of predictive posterior log‐likelihood evaluated on the validation set is plotted along the y‐axis.
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Data Availability Statement
The CV lithologic texture data is available via the United States Geological Survey data release at https://doi.org/
10.5066/P9IZRO3V (Marcelli et al., 2022), and the CV digital elevation model is available at https://doi.org/10.
5067/MEaSUREs/NASADEM/NASADEM_HGT.001 (NASA JPL, 2020). The CV well water level data is
attributed to Kim et al. (2021). The well data, processed as described in Section 3.1 along with the GP‐DNN
modeled water level trends and time series outputs, may be accessed through the Harvard Dataverse re-
pository at https://doi.org/10.7910/DVN/23TNJO with Creative Commons Attribution 4.0 International license
(Pradhan et al., 2024). Version v0.1.0 of Python software for GP‐DNN regression, written using open source
Tensorflow (TensorFlow Developers, 2023), NumPy (Harris et al., 2020) and Scipy (Virtanen et al., 2020) li-
braries, is preserved at https://doi.org/10.5281/zenodo.13855361, available via Creative Commons Attribution
4.0 International license (Pradhan, 2024). Normal score transformation method was performed using mGstat
geostatistical MATLAB toolbox (Hansen, 2022). All data analyses were performed using open source NumPy
and Scipy Python libraries, while data visualizations were conducted using open source Matplotlib Python library
(Caswell et al., 2021; Hunter, 2007) and its Basemap extension.
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