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Abstract. Multiscale partial differential equations (PDEs) arise in various applications, and
several schemes have been developed to solve them efficiently. Homogenization theory is a power-
ful methodology that eliminates the small-scale dependence, resulting in simplified equations that
are computationally tractable while accurately predicting the macroscopic response. In the field
of continuum mechanics, homogenization is crucial for deriving constitutive laws that incorporate
microscale physics in order to formulate balance laws for the macroscopic quantities of interest. How-
ever, obtaining homogenized constitutive laws is often challenging as they do not in general have an
analytic form and can exhibit phenomena not present on the microscale. In response, data-driven
learning of the constitutive law has been proposed as appropriate for this task. However, a major
challenge in data-driven learning approaches for this problem has remained unexplored: the impact
of discontinuities and corner interfaces in the underlying material. These discontinuities in the co-
efficients affect the smoothness of the solutions of the underlying equations. Given the prevalence
of discontinuous materials in continuum mechanics applications, it is important to address the chal-
lenge of learning in this context, in particular, to develop underpinning theory that establishes the
reliability of data-driven methods in this scientific domain. The paper addresses this unexplored
challenge by investigating the learnability of homogenized constitutive laws for elliptic operators in
the presence of such complexities. Approximation theory is presented, and numerical experiments
are performed which validate the theory in the context of learning the solution operator defined by
the cell problem arising in homogenization for elliptic PDEs.
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1. Introduction. Homogenization theory is a well-established methodology that
aims to eliminate fast-scale dependence in partial differential equations (PDEs) to ob-
tain homogenized PDEs which produce a good approximate solution of the problem
with fast scales while being more computationally tractable. In continuum mechan-
ics, this methodology is of great practical importance as the constitutive laws derived
from physical principles are governed by material behavior at small scales, but the
quantities of interest are often relevant on larger scales. These homogenized consti-
tutive laws often do not have a closed analytic form and may have new features not
present in the microscale laws. Consequently, there has been a recent surge of interest
in employing data-driven methods to learn homogenized constitutive laws.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1845

The goal of this paper is to study the learnability of homogenized constitutive
laws in the context of one of the canonical model problems of homogenization, namely
the divergence form elliptic PDE. One significant challenge in applications of homog-
enization in material science arises from the presence of discontinuities and corner
interfaces in the underlying material. This leads to a lack of smoothness in the coeffi-
cients and solutions of the associated equations, a phenomenon extensively studied in
numerical methods for PDEs. Addressing this challenge in the context of learning re-
mains largely unexplored and is the focus of our work. We develop underlying theory
and provide accompanying numerical studies to address learnability in this context.

In subsection 1.1 we establish the mathematical framework and notation for the
problem of interest, state the three main contributions of the paper, and overview
the contents of each section of the paper. In subsection 1.2 we provide a detailed
literature review. Subsection 1.3 states the stability estimates that are key for the
approximation theory developed in the paper and discusses the remainder of the paper
in the context of these estimates.

1.1. Problem formulation. Consider the following linear multiscale elliptic
equation on a bounded domain \Omega \subset \BbbR d:

 - \nabla x \cdot (A\epsilon \nabla xu
\epsilon ) = f, x\in \Omega ,(1.1a)

u\epsilon = 0, x\in \partial \Omega .(1.1b)

Here A\epsilon (x) = A
\bigl( 
x
\epsilon 

\bigr) 
for A(\cdot ) which is 1-periodic and positive definite: A : \BbbT d \rightarrow 

\BbbR d\times d
sym,\succ 0, a condition which holds throughout this work. Assume further that f \in 

L2(\Omega ;\BbbR ) and has no microscale variation with respect to x/\epsilon .
Our focus is on linking this multiscale problem to the homogenized form of (1.1),

which is

 - \nabla x \cdot 
\bigl( 
A\nabla xu

\bigr) 
= f, x\in \Omega ,(1.2a)

u= 0, x\in \partial \Omega ,(1.2b)

where A is given by

A=

\int 
\BbbT d

\bigl( 
A(y) +A(y)\nabla \chi (y)T

\bigr) 
\sansd y,(1.3)

and \chi :\BbbT d \rightarrow \BbbR d solves the cell problem

 - \nabla \cdot (\nabla \chi A) =\nabla \cdot A, \chi is 1-periodic.(1.4)

All of the preceding PDEs are to be interpreted as holding in the weak sense. For
0< \epsilon \ll 1, the solution u\epsilon of (1.1) is approximated by the solution u of (1.2), and the
error converges to zero as \epsilon \rightarrow 0 in various topologies [5, 10, 54].

We assume that

\| A\| L\infty := sup
y\in \BbbT d

| A(y)| F <\infty ,

where | \cdot | F is the Frobenius norm. Hence A\in L\infty \bigl( \BbbT d;\BbbR d\times d
\bigr) 
and A\epsilon \in L\infty \bigl( \Omega ;\BbbR d\times d

\bigr) 
.

Similarly, for A\in L2(\BbbT d;\BbbR d\times d), we define

\| A\| 2L2 :=

\int 
\BbbT d

| A(y)| 2F \sansd y.
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1846 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

Also, for given \beta \geq \alpha > 0, we define the following subset of 1-periodic, positive-definite,
symmetric matrix fields in L\infty \bigl( \BbbT d;\BbbR d\times d

\bigr) 
by

\sansP \sansD \alpha ,\beta = \{ A\in L\infty (\BbbT d;\BbbR d\times d) : \forall (y, \xi )\in \BbbT d \times \BbbR d, \alpha | \xi | 2 \leq \langle \xi ,A(y)\xi \rangle \leq \beta | \xi | 2\} .

For open set \Omega \subset \BbbR d, we denote the variation of a function u\in L1
loc(\Omega ) by

V (u,\Omega )= sup

\Biggl\{ 
d\sum 

i=1

\int 
\Omega 

\partial \Phi i

\partial xi
u \sansd x : \Phi \in C\infty 

0 (\Omega ;\BbbR d), \| \Phi \| L\infty (\Omega ;\BbbR d) \leq 1

\Biggr\} 

and the set of functions of bounded variation on \BbbT d as

\sansB \sansV = \{ u\in L1(\BbbT d) : V (u,\BbbT d)<\infty \} .

For further information on \sansB \sansV , we refer to [36]. Finally, we often work in the Sobolev
space H1 restricted to spatially mean-zero periodic functions, denoted

\.H1 :=

\biggl\{ 
v \in W 1,2(\BbbT d)

\bigm| \bigm| \bigm| v is 1-periodic,

\int 
\BbbT d

v \sansd y= 0

\biggr\} 
;

the norm on this space is defined by

\| g\| \.H1 := \| \nabla g\| L2 .(1.5)

Numerically solving (1.1) is far more computationally expensive than solving the
homogenized equation (1.2), motivating the wish to find the homogenized coefficient
A defining (1.2). The difficult part of obtaining (1.2) is solving the cell problem
(1.4). Although explicit solutions exist in the one-dimensional setting for piecewise-
constant A [9] and in the two-dimensional setting where A is a layered material [54],
in general a closed form solution is not available and the cell problem must be solved
numerically. Note that in general the action of the divergence \nabla \cdot on terms involving
A in the cell problem necessitates the use of weak solutions for A /\in C1(\BbbT d,\BbbR d\times d); this
is a commonly occurring situation in applications such as those arising from porous
medium flow, or to vector-valued generalizations of the setting here to elasticity,
rendering the numerical solution nontrivial. For this reason, it is potentially valuable
to approximate the solution map

G : A \mapsto \rightarrow \chi ,(1.6)

defined by the cell problem, using a map defined by a neural operator (NO). More
generally it is foundational to the broader program of learning homogenized constitu-
tive models from data to thoroughly study this issue for the divergence form elliptic
equation as the insights gained will be important for understanding the learning of
more complex parameterized homogenized models, such as those arising in nonlinear
elasticity, viscoelasticity, and plasticity.

The full map from A to the homogenized tensor A is expressed by A \mapsto \rightarrow (\chi ,A) \mapsto \rightarrow A,
and one could instead learn the map

F :A \mapsto \rightarrow A.(1.7)

Since the map (\chi ,A) \mapsto \rightarrow A is defined by a quadrature, we focus on the approximation
of A \mapsto \rightarrow \chi and state equivalent results for the map A \mapsto \rightarrow A that emerge as consequences
of the approximation of \chi . In this paper we make the following contributions:
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1847

1. We state and prove universal approximation theorems for the map G defined
by (1.4) and (1.6), and map F defined by (1.3), (1.4), and (1.7).

2. We provide explicit examples of microstructures which satisfy the hypothe-
ses of our theorems; these include microstructures generated by probability
measures which generate discontinuous functions in \sansB \sansV .

3. We provide numerical experiments to demonstrate the ability of NOs to ap-
proximate the solution map on four different classes of material parameters
A, all covered by our theoretical setting.

In subsection 1.2 we provide an overview of the literature, followed in subsec-
tion 1.3 by a discussion of stability estimates for (1.4), with respect to variations in
A; these are at the heart of the analysis of universal approximation. The main body
of the text then commences with section 2, which characterizes the microstructures
of interest to us in the context of continuum mechanics. Section 3 states universal ap-
proximation theorems for G(\cdot ) and F (\cdot ), using the Fourier neural operator (FNO). In
section 4 we give numerical experiments illustrating the approximation of the map G
defined by (1.6) on microstructures of interest in continuum mechanics. Details of the
stability estimates, the proofs of universal approximation theorems, properties of the
microstructures, and details of numerical experiments are given in Appendices A, B, C,
and D, respectively.

1.2. Literature review. Homogenization aims to derive macroscopic equations
that describe the effective properties and behavior of solutions to problems at larger
scales given a system that exhibits behavior at (possibly multiple) smaller scales.
Although it is developed for the various cases of random, statistically stationary, and
periodic small-scale structures, we work here entirely in the periodic setting. The
underlying assumption of periodic homogenization theory is that the coefficient is
periodic in the small-scale variable and that the scale separation is large compared
to the macroscopic scales of interest. Convergence of the solution of the multiscale
problem to the homogenized solution is well-studied; see [3, 14]. We refer to the texts
[5, 10, 54] for more comprehensive citations to the literature. Homogenization has
found extensive application in the setting of continuum mechanics [23] where, for
many multiscale materials, the scale-separation assumption is natural. In this work,
we are motivated in part by learning constitutive models for solid materials, where
crystalline microstructure renders the material parameters discontinuous and may
include corner interfaces. This difficulty has been explored extensively in the context
of numerical methods for PDEs, particularly with adaptive finite element methods
[29, 11, 51, 53].

There is a significant body of work on the approximation theory associated with
parametrically dependent solutions of PDEs, including viewing these solutions as a
map between the function space of the parameter and the function space of the so-
lution, especially for problems possessing holomorphic regularity [16, 15, 13]. This
work could potentially be used to study the cell problem for homogenization that
is our focus here. However, there has been recent interest in taking a data-driven
approach to solving PDEs via machine learning because of its flexibility and ease of
implementation. A particular approach to learning solutions to PDEs is operator
learning, a machine learning methodology where the map to be learned is viewed as
an operator acting between infinite-dimensional function spaces rather than between
finite-dimensional spaces [8, 37, 44, 50, 33]. Determining whether, and then when,
operator learning models have advantages over classical numerical methods in solving
PDEs remains an active area of research [4]. The paper [47] makes a contribution

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1848 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

to this area, in the context of the divergence form elliptic PDE and the map from
coefficient to solution when the coefficient is analytic over its domain; the authors
prove that \epsilon error is achievable for a DeepONet [44] of size only polylogarithmic in \epsilon ,
leveraging the exponential convergence of spectral collocation methods for boundary
value problems with analytic solutions. However, in the setting of learning homoge-
nized constitutive laws in material science, discontinuous coefficients form a natural
focus and indeed form the focus of this paper. A few characteristics make operator
learning a promising option in this context. First, machine learning has been ground-
breaking in application settings with no clear underlying equations, such as computer
vision and language models [26, 12]. In constitutive modeling, though the microscale
constitutive laws are known, the homogenized equations are generally unknown and
can incorporate dependencies that are not present on the microscale, such as history
dependence, anisotropy, and slip-stick behavior [55, 7]. Thus, constitutive models lie
in a partially equation-free setting where data-driven methods could be useful. Sec-
ond, machine learned models as surrogates for expensive computation can be valuable
when the cost of producing data and training the model can be amortized over many
forward uses of the trained model. Since the same materials are often used for fab-
rication over long time periods, this can be a setting where the upfront cost of data
production and model training is justified.

Other work has already begun to explore the use of data-driven methods for
constitutive modeling; a general review of the problem and its challenges, in the
context of constitutive modeling of composite materials, may be found in [42]. Several
works use the popular framework of physics-informed machine learning to approach
the problem [21, 58, 45, 24]. In [1], physical constraints are enforced on the network
architecture while learning nonlinear elastic constitutive laws. In [38], the model is
given access to additional problem-specific physical knowledge. Similarly, the work of
[59] predicts the Cholesky factor of the tangent stiffness matrix from which the stress
may be calculated; this method enforces certain physical criteria. The paper [31]
studies approximation error and uncertainty quantification for this learning problem.
In [25], a derivative-free approach is taken to learning homogenized solutions where
regularity of the material coefficient is assumed. The work of [39] illustrates the
potential of operator learning methodology to model constitutive laws with history
dependence, such as those that arise in crystal plasticity. Finally, a number of further
works demonstrate empirically the potential of learning constitutive models, including
[48, 43, 61, 41].

However, the underlying theory behind operator learning for constitutive models
lags behind its empirical application. In [9], approximation theories are developed
to justify the use of a recurrent Markovian architecture that performs well in ap-
plication settings with history dependence. This architecture is further explored in
[40] with more complex microstructures. Universal approximation results are a first
step in developing theory for learning because they guarantee that there exists an
\epsilon -approximate operator within the operator approximation class, which is consistent
with an assumed true model underlying the data [33, 17, 35, 32]. In addition to uni-
versal approximation, further insight may be gained by seeking to quantify the data
or model size required to obtain a given level of accuracy; the papers [35, 32, 46] also
contain work in this direction, as do the papers [27, 52], which build on the analysis
developed in [16, 15, 13] referred to above. In our work we leverage an existing uni-
versal approximation theorem for FNOs, a particular practically useful architecture
from within the NO class [32]. We take two different approaches to proving approxi-
mation theorems based on separate PDE solution stability results in pursuit of a more

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1849

robust understanding of the learning problem. Since the field is in its infancy, it is
valuable to have different approaches to these analysis problems. Finally, we perform
numerical experiments on various microstructures to understand the practical effects
of nonsmooth PDE coefficients in learning solutions. We highlight the fact that in this
paper we do not tackle issues related to the nonconvex optimization problem at the
heart of training neural networks; we simply use state-of-the-art stochastic gradient
descent for training, noting that theory explaining its excellent empirical behavior is
lacking.

Throughout this paper we focus on (1.1), which describes a conductivity equation
in a heterogeneous medium; a natural generalization of interest is to the constitutive
law of linear elasticity, in which the solution is vector-valued and the coefficient is a
fourth order tensor. Though it is a linear elliptic equation, we echo the sentiment
of Blanc and Le Bris [10] with their warning, ``do not underestimate the difficulty of
equation (1.1)."" There are many effects to be understood in this setting, and resolv-
ing learning challenges is a key step toward understanding similar questions for the
learning of parametric dependence in more complex homogenized constitutive laws
where machine learning may prove particularly useful.

1.3. Stability estimates. At the heart of universal approximation theorems is
stability of the solution map (1.6), in particular continuity of the map for certain
classes of A. In this subsection, we present three key stability results that are used to
prove the approximation theorems in section 3. The proofs of the following stability
estimates may all be found in Appendix A.

A first strike at the stability of the solution map (1.6) is a modification of the
classic L\infty /H1 Lipschitz continuity result for dependence of the solution of elliptic
PDEs on the coefficient; here generalization is necessary because the coefficient also
appears on the right-hand side of the equation defining G(\cdot ).

Proposition 1.1. Consider the cell problem defined by (1.4). The following hold:
1. If A\in \sansP \sansD \alpha ,\beta , then (1.4) has a unique solution \chi \in \.H1(\BbbT d;\BbbR d) and

\| \chi \| \.H1(\BbbT d;\BbbR d) \leq 
\surd 
d\beta 

\alpha 
.

2. For \chi (1) and \chi (2) solutions to the cell problem in (1.4) associated with coeffi-
cients A(1),A(2) \in \sansP \sansD \alpha ,\beta , respectively, it follows that

\| \chi (2)  - \chi (1)\| \.H1(\BbbT d;\BbbR d) \leq 
\surd 
d

\alpha 

\biggl( 
1 +

\beta 

\alpha 

\biggr) 
\| A(1)  - A(2)\| L\infty (\BbbT d;\BbbR d\times d).(1.8)

However, this perturbation result is insufficient for approximation theory because
the space L\infty is not separable and it is not natural to develop approximation theory in
such spaces [19, Chapter 9]. While it is possible to define the problem on a separable
subspace of L\infty (see Lemma A.1), such spaces are not particularly useful in applica-
tions to micromechanics. Many natural models for realistic microstructures work with
classes of discontinuous functions in which the boundary of material discontinuity can
occur anywhere in the domain. Such functions cannot be contained in any separable
subspace of L\infty ; see Lemma A.2. To deal with this issue it is desirable to establish
continuity from Lq to \.H1 for some q \in [2,\infty ). To this end, we provide two additional
stability results. The first stability result gives continuity, but not Lipschitz continu-
ity, from L2 to \.H1. The second stability result gives Lipschitz continuity from Lq to
\.H1, some q \in (2,\infty ).
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1850 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

Proposition 1.2. Endow \sansP \sansD \alpha ,\beta with the L2(\BbbT d;\BbbR d\times d) induced topology and let
K \subset \sansP \sansD \alpha ,\beta be a closed set. Define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by A \mapsto \rightarrow \chi as
given by (1.4). Then there exists a bounded continuous mapping

\scrG \in C(L2(\BbbT d; \BbbR d\times d); \.H1(\BbbT d;\BbbR d))

such that \scrG (A) =G(A) for any A\in K.

The preceding L2 continuity proposition is used to prove the approximation re-
sults for the FNO in Theorems 3.3 and 3.4. While not necessary for the approximation
theory proofs, the following proposition on Lipschitz continuity from Lq to \.H1 estab-
lishes a more concrete bound on the approximation error, which allows for additional
analysis such as providing rough bounds on grid error as discussed in subsection 4.3.

Proposition 1.3. There exists q0 \in (2,\infty ) such that, for all q satisfying q \in 
(q0,\infty ], the following holds. Endow \sansP \sansD \alpha ,\beta with the Lq(\BbbT d;\BbbR d\times d) topology and let
K \subset \sansP \sansD \alpha ,\beta be a closed set. Define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by A \mapsto \rightarrow \chi as
given by (1.4). Then there exists a bounded Lipschitz-continuous mapping

\scrG : Lq(\BbbT d;\BbbR d\times d)\rightarrow \.H1(\BbbT d;\BbbR d)

such that \scrG (A) =G(A) for any A\in K.

Remark 1.4. Explicit upper bounds for q0 in Proposition 1.3 exist and are dis-
cussed in Remark A.14.

2. Microstructures. The main application area of this work is constitutive
modeling. In this section we describe various classes of microstructures that our theory
covers. In particular, we describe four classes of microstructures in two dimensions:

1. Smooth microstructures generated via truncated, rescaled log-normal random
fields.

2. Discontinuous microstructures with smooth interfaces generated by Lipschitz
star-shaped inclusions.

3. Discontinuous microstructures with square inclusions.
4. Voronoi crystal microstructures.

Visualizations of examples of these microstructures may be found in Figure 1. We
emphasize that all four examples lead to functions in \sansB \sansV , a fact that we exploit in
section 4 when showing that our abstract analysis from section 3 applies to them all.

Smooth microstructures. The smooth microstructures are generated by exponen-
tiating a rescaled Gaussian random field. A is symmetric and coercive everywhere
in the domain with a bounded eigenvalue ratio. Furthermore, the smooth function
A and its derivatives are Lipschitz. Our theory is developed specifically to analyze
nonsmooth microstructures, so this example is used mainly as a point of comparison.

Star inclusions. For the star inclusion microstructure, A is taken to be constant
inside and outside the star-shaped boundary. The boundary function is smooth and

Smooth Star Square Voronoi

Fig. 1. Microstructure examples.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1851

Lipschitz in each of its derivatives. A is positive and coercive in both regions with
a bounded eigenvalue ratio. This microstructure introduces discontinuities, but the
boundary remains smooth.

Square inclusions. For the square inclusion microstructure, A is taken to be con-
stant inside and outside the square boundary. Since we assume periodicity, without
loss of generality the square inclusion is centered. The size of the square inclusion
within the cell is varied between samples, as are the constant values of A. This mi-
crostructure builds on the complexity of the star inclusion microstructure by adding
corners to the inclusion boundary.

Voronoi interfaces. The Voronoi crystal microstructures are generated by assum-
ing a random Voronoi tessellation and letting A be piecewise-constant taking a single
value on each Voronoi cell. The values of A on the cells and locations of the cell centers
may be varied. This is the most complex microstructure among our examples and is
a primary motivation for this work as Voronoi tessellations are a common model for
crystal structure in materials.

3. Universal approximation results. In this section we state the two approx-
imation theorems for learning solution operators to the cell problem. Theorem 3.3
concerns learning the map A \rightarrow \chi in (1.4), and Theorem 3.4 concerns learning the
map A\rightarrow A described by the combination of (1.4) and (1.3). Theorems 3.3 and 3.4
are specific to learning an FNO, which is a subclass of the general NO. The proofs of
the theorems in this section may be found in Appendix B.

3.1. Definitions of neural operators. First, we define a general NO and the
FNO. The definitions are largely taken from [33], and we refer to this work for a more
in-depth understanding of these operators. In this work, we restrict the domain to
the torus.

Definition 3.1 (general neural operator). Let \scrA and \scrU be two Banach spaces
of real vector-valued functions over domain \BbbT d. Assume input functions a \in \scrA are
\BbbR da-valued while the output functions u \in \scrU are \BbbR du-valued. The NO architecture
\scrG \theta :\scrA \rightarrow \scrU is

\scrG \theta =\scrQ \circ \sansL T - 1 \circ \cdot \cdot \cdot \circ \sansL 0 \circ \scrP ,
vt+1 = \sansL tvt = \sigma t(Wtvt +\scrK tvt + bt), t= 0,1, . . . , T  - 1,

with v0 =\scrP (a), u=\scrQ (vT ) and \scrG \theta (a) = u. Here, \scrP :\BbbR da \rightarrow \BbbR dv0 is a local lifting map,
\scrQ : \BbbR dvT \rightarrow \BbbR du is a local projection map, and the \sigma t are fixed nonlinear activation
functions acting locally as maps \BbbR dvt+1 \rightarrow \BbbR dvt+1 in each layer (with all of \scrP , \scrQ and
the \sigma t viewed as operators acting pointwise, or pointwise almost everywhere, over the
domain \BbbT d), Wt \in \BbbR dvt+1

\times dvt are matrices, \scrK t : \{ vt : \BbbT d \rightarrow \BbbR dvt\} \rightarrow \{ vt+1 : \BbbT d \rightarrow 
\BbbR dvt+1\} are integral kernel operators, and bt :\BbbT d \rightarrow \BbbR dvt+1 are bias functions. For any
m\in \BbbN 0, the activation functions \sigma t are restricted to the set of continuous \BbbR \rightarrow \BbbR maps
which make real-valued, feed-forward neural networks dense in Cm(\BbbR d) on compact
sets for any fixed network depth.1 The integral kernel operators \scrK t are defined as

(\scrK tvt)(x) =

\int 
\BbbT d

\kappa t(x, y)vt(y) dy

with standard multilayered perceptrons (MLP) \kappa t : \BbbT d \times \BbbT d \rightarrow \BbbR dvt+1
\times dvt . We denote

by \theta the collection of parameters that specify \scrG \theta , which include the weights Wt, biases

1We note that all globally Lipschitz, nonpolynomial, Cm(\BbbR ) functions belong to this class.
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1852 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

bt, parameters of the kernels \kappa t, and parameters describing the lifting and projection
maps \scrP and \scrQ (usually also MLPs).

The FNO is a subclass of the NO.

Definition 3.2 (Fourier neural operator). The FNO inherits the structure and
definition of the NO in Definition 3.1, together with some specific design choices. We
fix dvt

= dv for all t, where dv is referred to as the number of channels, or model
width, of the FNO. We fix \sigma t = \sigma to be a globally Lipschitz, nonpolynomial, C\infty 

function.2 Finally, the kernel operators \scrK t are parameterized in the Fourier domain
in the following manner. Let

\psi k(x) = e2\pi i\langle k,x\rangle , x\in \BbbT d, k \in \BbbZ d,

denote the Fourier basis for L2(\BbbT d;\BbbC ) where i =
\surd 
 - 1 is the imaginary unit. Then,

for each t, the kernel operator \scrK t is parameterized by

(\scrK tvt)l(x) =
\sum 
k\in \BbbZ d

| k| \leq k\mathrm{m}\mathrm{a}\mathrm{x}

\left(  dv\sum 
j=1

P k
lj\langle \psi k, (vt)j\rangle L2(\BbbT d;\BbbC )

\right)  \psi k(x).

Here, l = 1, . . . , dv and each P k \in \BbbC dv\times dv constitute the learnable parameters of the
integral operator.

From the definition of the FNO, we note that parameterizing the kernels in the
Fourier domain allows for efficient computation using the FFT. We refer to [37, 33]
for additional details.

Finally we observe that in numerous applications, an example being learning of
the map A \mapsto \rightarrow \=A (1.3), (1.4), it is desirable to modify the FNO so that the output
space is simply a Euclidean space, and not a function space; this generalization is
explored in [30]. An alternative approach, exemplified by Theorem 3.4 in the next
subsection, is to allow the FNO output to be a function that may be evaluated at any
point in the domain to yield an approximation of the point in Euclidean space.

3.2. Main theorems. These two theorems guarantee the existence of an FNO
approximating the maps A \mapsto \rightarrow \chi and A \mapsto \rightarrow A and are based on the stability estimate
for continuity from L2 \rightarrow \.H1 obtained in Proposition 1.2. Both theorems are proved
in Appendix B.

Theorem 3.3. Let K \subset \sansP \sansD \alpha ,\beta and define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by
A \mapsto \rightarrow \chi as given by (1.4). Assume in addition that K is compact in L2(\BbbT d;\BbbR d\times d).
Then, for any \epsilon > 0, there exists an FNO \Psi :K\rightarrow \.H1(\BbbT d;\BbbR d) such that

sup
A\in K

\| G(A) - \Psi (A)\| \.H1 < \epsilon .

Theorem 3.4. Let K \subset \sansP \sansD \alpha ,\beta and define the mapping F :K \rightarrow \BbbR d\times d by A \mapsto \rightarrow \=A
as given by (1.3), (1.4). Assume in addition that K is compact in L2(\BbbT d;\BbbR d\times d). Then,
for any \epsilon > 0, there exists an FNO \Phi :K\rightarrow L\infty (\BbbT d;\BbbR d\times d) such that

sup
A\in K

sup
x\in \BbbT d

| F (A) - \Phi (A)(x)| F < \epsilon .

2In this work, in all numerical experiments we use the GeLU activation function as in [37].
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1853

The above approximation results can also be formulated to hold, on average, over
any probability measure with a finite second moment that is supported on \sansP \sansD \alpha ,\beta . In
particular, if we let \mu be such a probability measure, then there exists an FNO or an
NO \Psi such that

\BbbE A\sim \mu \| G(A) - \Psi (A)\| \.H1 < \epsilon .(3.1)

This follows by applying Theorem 18 from [32] in the respective proofs instead of
Theorem 5 from the same work. We do not carry out the full details here. While this
allows approximation over the noncompact set \sansP \sansD \alpha ,\beta , the error can only be controlled
on average instead of uniformly. In section 4, inputs are generated via probability mea-
sures supported on compact subsets of L2; thus both the approximation Theorem 3.3
and its analogue in the form (3.1) are relevant.

4. Numerical experiments. In this section, we show that it is possible to find
good operator approximations of the homogenization map (1.6), defined by (1.4), in
practice. We focus on use of the FNO and note that while Theorems 3.3 and 3.4
assert the existence of desirable operator approximations, they are not constructive
and do not come equipped with error estimates. We find approximations using stan-
dard empirical loss minimization techniques and, by means of numerical experiments,
quantify the complexity with respect to volume of data and with respect to size of
parametric approximation.

We work with the microstructures from section 2. In this context we note that
Theorems 3.3 and 3.4 apply. To demonstrate this it is necessary to establish that
the subsets of coefficient functions employed are compact in L2. We achieve this
by noting that all our sets of coefficient functions are contained in \sansP \sansD \alpha ,\beta \cap \sansB \sansV , as
defined in subsection 1.1. Then we use Lemma C.1 to establish compactness of these
subsets of coefficient functions in L2. The smooth microstructure example serves as a
comparison case for examining the impact of discontinuous coefficients on the learning
accuracy. The remaining three examples present different approximation theoretic
challenges including curved boundaries (star inclusions), corners (square inclusions),
and junctions of several domains (Voronoi).

The experiments are all conducted using an FNO with a fixed number T = 4 of
hidden layers. The two remaining parameters to vary are the channel width dv and
the number of Fourier modes kmax. For implementation details, see Appendix D. We
make the following observations based on the numerical experiments.

1. The effective A tensors computed from the model predicted solutions exhibit
relative error under 1\% for all examples; the effective A is computed from the
learned cell problem solution \chi using (1.3).

2. The error in the learned \chi is significantly higher along discontinuous material
boundaries and corner interfaces, as expected. However, the FNO operator
approximation is able to approximate the solution with reasonable relative
error even for the most complex case; this most complex case concerns the set
of input functions with varying Voronoi geometry and varying microstructural
properties within the domain.

3. In comparison with the smooth microstructure case, learning the map for the
Voronoi microstructure requires substantially more data to avoid training a
model which plateaus at a poor level of accuracy.

4. When compared with the smooth microstructure case, the error for the Voronoi
microstructure decreases more slowly with respect to increasing model width,
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1854 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

but shows more favorable response with respect to increasing the number of
Fourier modes.

5. Models trained at one discretization may be evaluated at different discretiza-
tions for both the smooth and Voronoi microstructures as is characteristic of
the FNO. The Voronoi microstructure exhibits, empirically, greater robust-
ness to changes in discretization.

We first describe implementation details of each of the microstructures in sub-
section 4.1. Then we show outcomes of the numerical experiments in subsection 4.2,
discussing them in subsection 4.3.

4.1. Microstructure implementation. For each microstructure, two positive
eigenvalues and three components of the two eigenvectors are randomly generated,
and the final eigenvector component is chosen to enforce symmetry. All eigenvalue
ratios are at most e2 by construction. In this manner, A is symmetric and coercive
and has a bounded eigenvalue ratio.

Smooth microstructures. The smooth microstructures are generated by exponen-
tiating a rescaled approximation of a Gaussian random field. The random field used
to generate the eigenvalues and three eigenvector components of A(x) is as follows:

\widehat \lambda i(x) = 4\sum 
k1,k2=1

\xi 
(1)
k1,k2

sin (2\pi k1x1) cos(2\pi k2x2) + \xi 
(2)
k1,k2

cos (2\pi k1x1) sin (2\pi k2x2) ,

\lambda i(x) = exp

\Biggl( \widehat \lambda i(x)
maxx\prime \in [0,1]2 | \widehat \lambda i(x\prime )| 

\Biggr) 
,

where \xi 
(j)
k1,k2

are independent and identically distributed (i.i.d.) normal Gaussian
random variables.

Star-shaped inclusions. The star-shaped inclusions are generated by defining a
random Lipschitz polar boundary function as

r(\theta ) = \sansa + \sansb 
5\sum 

k=1

\xi k sin(k\theta ),

where \xi k are i.i.d. uniform random variables U [ - 1,1], and \sansa and \sansb are constants that
guarantee 0< \epsilon < r < 0.5 - \epsilon for some fixed \epsilon > 0. Then A(x) is constant inside and
outside the boundary. We randomly sample eigenvalues for A on each domain via
\lambda i \sim U [e - 1, e]. The three components of the eigenvectors are i.i.d. normal random
variables.

Square inclusions. The radius of the square is randomly generated via

r= \sansa + \sansb \zeta ,

where \zeta is a uniform random variable on [0,1] and \sansa and \sansb are positive constants that
guarantee 0 < \epsilon < r < 0.5 - \epsilon for some fixed \epsilon > 0. The values of A on each of the
constant domains are chosen in the same manner as in the star-shaped inclusion case.

Voronoi interfaces. The Voronoi crystal microstructure has constant A on each
Voronoi cell and is chosen uniformly at random in the same manner as for the star in-
clusions. Voronoi tessellations are a common model for crystal structure in materials.
In one Voronoi example, we fix the geometry for all data, and in a second Voronoi
example we vary the geometry by randomly sampling five cell centers from a uniform
distribution on the unit square.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1855

4.2. Results. Each FNO model is trained using the empirical estimate of the
mean squared H1 norm:

Loss(\theta ) =
1

N

N\sum 
n=1

\Bigl( 
\| \chi (n)  - \widehat \chi (n)\| 2L2 + \| \nabla \chi (n)  - \nabla \widehat \chi (n)\| 2L2

\Bigr) 
,(4.1)

where n is the sample index, \chi is the true solution, and \widehat \chi is the FNO approximation of
the solution parameterized by \theta . In the analysis, we examine several different measures
of error, including the following relative H1 and relative W 1,10 errors:

Relative H1 Error (RHE)=
1

N

N\sum 
n=1

\Biggl( 
\| \chi (n)  - \widehat \chi (n)\| 2L2 + \| \nabla \chi (n)  - \nabla \widehat \chi (n)\| 2L2

\| \chi (n)\| 2L2 + \| \nabla \chi (n)\| 2L2

\Biggr) 1
2

,

(4.2a)

Relative W 1,10 Error (RWE)=
1

N

N\sum 
n=1

\Biggl( 
\| \chi (n)  - \widehat \chi (n)\| 10L10 + \| \nabla \chi (n)  - \nabla \widehat \chi (n)\| 10L10

\| \chi (n)\| 10L10 + \| \nabla \chi (n)\| 10L10

\Biggr) 1
10

.

(4.2b)

TheW 1,10 norm gives a sense of the higher errors that occur at interfaces, corners,
and functions. We could have used W 1,p for any p large enough.

Finally, we also look at error in A, which we scale by the difference between the
arithmetic and harmonic mean of A. Any effective A should have a norm in this
range; these are known in mechanics as Voigt--Reuss bounds and have a physical
interpretation as bounds obtained via energy principles by ignoring equilibrium for
the upper bound (arithmetic mean) and ignoring compatibility for the lower bound
(harmonic mean) [28]. The resulting error measure is given by

Relative A Error (RAE) =
\| A - \widehat A\| F
am  - ah

,(4.3)

where the arithmetic mean am and harmonic mean ah are given by

am =

\bigm\| \bigm\| \bigm\| \bigm\| \int 
\BbbT 2

A(x) \sansd x

\bigm\| \bigm\| \bigm\| \bigm\| 
F

,

ah =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( \int 

\BbbT 2

A - 1(x) \sansd x

\biggr)  - 1
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

.

We note that using am  - ah rather than \| A\| F as a scaling factor in (4.3) leads to a
larger error value, so achieving low error in this measure of distance is harder.

We train models on five different datasets. Visualizations of the median-error test
samples for each example may be viewed in Figure 2, and the numerical errors are
shown in Table 1. Each of these models is trained on 9500 data samples generated
using an FE solver on a triangular mesh with the solution interpolated to a 128\times 128
grid. Additional model details may be found in Appendix D.

We perform an experiment to test the discretization-robustness of the FNOmodel,
results of which are shown in Figure 3. The models are trained with data from
the resolution 128 \times 128 and evaluated on test data with different resolution. We
emphasize that evaluating the FNO on different resolution is trivial in implementation
by design.
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Fig. 2. Visualization of the trained models evaluated on test samples that gave median relative
H1 error for each microstructure. The microstructure inputs of each row correspond to those of
Figure 1. The first shows the true \chi 1, the second shows the FNO predicted \chi 1, and the third shows
the absolute value of the error between the true and predicted \chi 1. The fourth column shows the
2-norm of the gradient of the true \chi 1, and the fifth shows the 2-norm of the gradient of the predicted
\chi 1. The last column shows the 2-norm of the difference between the two gradients.

Table 1

3264128256512
Grid Size

10−2

10−1

100

M
ea
n
R
el
at
iv
e
H

1
E
rr
or

Voronoi

Smooth

Training Resolution

Fig. 3. Five sample
models trained on smooth
and Voronoi data at 128\times 128
grid resolution evaluated at
different resolutions.

Errors for each numerical experiment; five sample models are
trained for each microstructure. The expressions for the RHE (rel-
ative H1 error), RWE (relative W 1,10 error), and RAE (relative A
error) may be found in (4.2) and (4.3). The errors are evaluated
over a test set of size 500. All examples have varying geometry
except the second Voronoi example.

Microstructure Mean RHE Mean RWE Median RAE

Smooth 0.0062\pm 1 \cdot 10 - 4 0.0091\pm 1 \cdot 10 - 4 0.0007\pm 1 \cdot 10 - 5

Star 0.0313\pm 1 \cdot 10 - 4 0.1318\pm 5 \cdot 10 - 4 0.0014\pm 3 \cdot 10 - 5

Square 0.1012\pm 5 \cdot 10 - 4 0.2741\pm 2 \cdot 10 - 3 0.0047\pm 1 \cdot 10 - 4

Voronoi 0.0565\pm 4 \cdot 10 - 4 0.2129\pm 3 \cdot 10 - 3 0.0027\pm 8 \cdot 10 - 5

Voronoi

(fixed geometry)

0.0073\pm 3 \cdot 10 - 5 0.0140\pm 3 \cdot 10 - 4 0.0007\pm 2 \cdot 10 - 5

We also investigate the effects of the number of training data and the model
size on the error for the smooth and Voronoi microstructures; similar experiments,
for different operator learning problems, are presented in [18]. A plot of error versus
training data may be found in Figure 4, and plots of error versus the number of
Fourier modes for fixed total model size, as measured by (model width) \times (number
Fourier modes), may be found in Figure 5. Figure 5 addresses the question of how
to optimally distribute computational budget through different parameterizations to
achieve minimum error at given cost as measured by number of parameters; it should
be compared to similar experiments in [34].
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Fig. 4. A comparison
of test error for different
amounts of training data for
models trained on Voronoi
and smooth data. Five sample
models are used for each data
point.
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Fig. 5. Relative H1 error versus model size for the smooth and
Voronoi examples with varying geometry. The number of Fourier
modes in each direction and the model width were varied. Each line
indicates a constant product of modes\times width. Training data size
was fixed at 9500 samples, and five samples were used for each data
point.

4.3. Discussion. As can be seen from the data in Table 1, the microstructures
exhibiting discontinuities lead to higher model error than the smooth microstructure,
and the introduction of corner interfaces leads to further increase in error. The visu-
alizations of the median-error test samples in Figure 2 give some intuition; error is an
order of magnitude higher along discontinuous boundaries, which is most apparent
in the gradient. The true solution gradient often takes its most extreme values along
the discontinuities, and the RWE gives an indication of how well the model captures
the most extreme values in the solution. Unsurprisingly, this error is much higher
than the RHE, but we note that it is confined to a small area of the domain along
discontinuous boundaries and corner interfaces.

In the discretization-robustness experiment described in Figure 3, we observe
that the Voronoi model exhibits greater robustness to changes in discretization. We
hypothesize that, in the direction of decreasing resolution, the smaller error increase
for the Voronoi model, in comparison with the smooth model, could be due to the
piecewise-constant nature of the Voronoi microstructure on faces; improved resolution
here does not help. On the other hand, for larger grid sizes, increased resolution on
corners and discontinuities can help, which could explain the decrease in error from
grid edge size of 128 to 256 for the Voronoi model while the smooth model increases
in error. One could fine-tune the trained models with small amounts of data from
different resolutions, but we leave this transfer learning exploration to future work.

We also examine the effect of the number of training data samples and the FNO
size on model accuracy for the smooth and Voronoi microstructures. For data size
dependence, we observe in Figure 4 that for these two microstructures, the test error
scales \approx N - 0.65 and \approx N - 0.25, respectively, where N is the number of training data.
In theory, we do not expect to beat the Monte Carlo error decay of 1\surd 

N
[49]. We note

that this is comparable to the behavior during training over 400 epochs; the test error
for the smooth microstructure continues to decrease over the entire training periodic,
but the test error for the Voronoi microstructure plateaus by around 100 epochs. The
model size also presents a qualitatively different effect on error for the smooth and
Voronoi microstructures. In Figure 5, we see the trade-off between the number of
Fourier modes and the model width for approximately constant model size, measured
as the product of the width and number of modes. The Voronoi example benefits
from additional Fourier modes, whereas the smooth example worsens. On the other
hand, the smooth model benefits more from an increase in model width. We refer
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1858 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

to [18, 34] for in-depth numerical studies of errors, choice of hyperparameters, and
parameter distributions for FNO; here we highlight only the qualitative differences
between the model behavior for different microstructures.

We also note that a significant portion of the model error may be attributed
to grid ambiguity; with a 128 \times 128 grid, the FNO does not know where between
gridpoints a discontinuity may fall. This may be quantified empirically in the case
of the square microstructure. We perform an experiment in which we create data of
square microstructure inclusions whose boundary falls exactly on the gridpoints. One
dataset treats the boundary as open, and the other treats the boundary as closed;
the input grid points that fall on the boundary differ between the two datasets. We
quantify grid ambiguity error by the difference in the outputs of a model given both
the open square data and the closed square data. We find that the absolute H1 norm
of the difference between these two outputs is 0.041, which is slightly under twice the
absolute H1 norm of the output compared to the true solution, which has a value of
0.025. We hypothesize that the model learns to assume the boundary falls near the
middle of the grid square, which explains why the output difference between the two
datasets is roughly twice the true error. From a theory standpoint, one could bound
the Lipschitz constant of the FNO and compare it to the Lipschitz constant of the
true map described by Proposition 1.3. However, we leave the theoretical estimates
of error rates to future work.

Finally, we compare the error in the effective A defined in (1.3). This error is
scaled by a difference between the Frobenius norms of the arithmetic and harmonic
means of the true A because the Frobenius norm of the true A should fall within that
range. For this reason, in the case where the arithmetic and harmonic means are very
close, as is frequently the case for the square and star inclusions, it is not valuable to
learn the true A. On the other hand, the varying-geometry Voronoi microstructure
example on average has about 100 times greater difference between the arithmetic and
harmonic means, in comparison with the star and square microstructure examples.
This characteristic of the Voronoi microstructure further underscores the value of
learning in this setting.

5. Conclusions. In this work, we establish approximation theory for learning
the solution operator arising from the elliptic homogenization cell problem (1.4),
viewed as a mapping from the coefficient to the solution; the theory allows for dis-
continuous coefficients. We also perform numerical experiments that validate the
theory, explore qualitative differences between various microstructures, and quantify
error/cost trade-offs in the approximation. We provide two different stability results
for the underlying solutions that build understanding of the underlying map. These
stability results, when combined with existing universal approximation results for
neural operators, result in rigorous approximation theory for learning in this prob-
lem setting. On the empirical side we provide, and then study numerically, examples
of various microstructures that satisfy the conditions of the approximation theory.
We observe that model error is dominated by error along discontinuous and corner
interfaces, and that discontinuous microstructures give rise to qualitatively different
learning behavior. Finally, we remark that the learned effective properties are highly
accurate, especially in the case of the Voronoi microstructure that we regard as the
most complex. Since discontinuous microstructures arise naturally in solid mechanics,
understanding learning behavior in this context is an important prerequisite for using
machine learning for applications. In this area and others, numerous questions remain
which address the rigor necessary for use of machine learning in scientific applications.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1859

We have confined our studies to one of the canonical model problems of homog-
enization theory, the divergence form elliptic setting with periodic microstructure,
to obtain deeper understanding of the learning constitutive laws. One interesting
potential extension of this work is the setting in which the material coefficient A is
not periodic but random with respect to the microstructure. Another is where it is
only locally periodic and has dependence on the macroscale variable as well; thus
A\epsilon =A(x, x\epsilon ). In this case, the form of the cell problem (1.4) and homogenized coef-
ficient (1.3) remain the same, but A and \chi both have parametric dependence on x.
The approximation theory and the empirical learning problem would grow in com-
plexity in comparison to what is developed here, but the resulting methodology could
be useful and foundational for understanding more complex constitutive models in
which the force balance equation couples to other variables. Indeed, the need for
efficient learning of constitutive models is particularly pressing in complex settings
such as crystal plasticity. We anticipate that the potential use of machine learning to
determine parametric dependence of constitutive models defined by homogenization
will be for these more complex problems. The work described in this paper provides
an underpinning conceptual approach, foundational analysis, and set of numerical
experiments that serve to underpin more applied work in this field.

Appendix A. Proofs of stability estimates. In this section, we prove the
stability estimates stated in section 1.3. The following lemma is a modification of the
standard estimate for parametric dependence of elliptic equations on their coefficient.
We include it here for completeness.

Proposition 1.1. Consider the cell problem defined by (1.4). The following hold:
1. If A\in \sansP \sansD \alpha ,\beta , then (1.4) has a unique solution \chi \in \.H1(\BbbT d;\BbbR d) and

\| \chi \| \.H1(\BbbT d;\BbbR d) \leq 
\surd 
d\beta 

\alpha 
.

2. For \chi (1) and \chi (2) solutions to the cell problem in (1.4) associated with coeffi-
cients A(1),A(2) \in \sansP \sansD \alpha ,\beta , respectively, it follows that

\| \chi (2)  - \chi (1)\| \.H1(\BbbT d;\BbbR d) \leq 
\surd 
d

\alpha 

\biggl( 
1 +

\beta 

\alpha 

\biggr) 
\| A(1)  - A(2)\| L\infty (\BbbT d;\BbbR d\times d).(1.8)

Proof. For existence and uniqueness of the solution to the cell problem using
Lax--Milgram, we refer to the texts [10, 54]; we simply derive the bounds and stability
estimate. First, note that (1.4) decouples, in particular,

 - \nabla \cdot (A\nabla \chi \ell ) =\nabla \cdot Ae\ell , y \in \BbbT d,(A.1)

for l= 1, . . . , d, where e\ell is the \ell th standard basis vector of \BbbR d and each \chi \ell \in \.H1(\BbbT d;\BbbR ).
Multiplying by \chi \ell and integrating by parts shows

\alpha \| \nabla \chi \ell \| 2L2 \leq 
\int 
\BbbT d

\langle A\nabla \chi \ell ,\nabla \chi \ell \rangle \sansd y

= - 
\int 
\BbbT d

\langle Ae\ell ,\nabla \chi \ell \rangle \sansd y

\leq 
\int 
\BbbT d

| Ae\ell | | \nabla \chi \ell | \sansd y

\leq 
\biggl( \int 

\BbbT d

| Ae\ell | 2 \sansd y
\biggr) 1

2
\biggl( \int 

\BbbT d

| \nabla \chi \ell | 2 \sansd y
\biggr) 1

2

\leq \| A\| L\infty \| \nabla \chi \ell \| L2 .
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1860 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

Therefore

\| \nabla \chi \| 2L2 =

d\sum 
l=1

\| \nabla \chi \ell \| 2L2 \leq d\| A\| 2L\infty 

\alpha 2
\leq d\beta 2

\alpha 2
,

which implies the first result.
To prove the second result, we denote the right-hand side of (A.1) by f

(i)
\ell =

\nabla \cdot A(i)e\ell in what follows. For any v \in \.H1(\BbbT d;\BbbR ), we have that

 - 
\int 
\BbbT d

\nabla \cdot (A(1)\nabla \chi (1)
\ell )v \sansd y=

\int 
\BbbT d

f
(1)
\ell v \sansd y,

 - 
\int 
\partial \BbbT d

vA(1)\nabla \chi (1)
\ell \cdot \widehat n \sansd y+

\int 
\BbbT d

\nabla v \cdot A(1)\nabla \chi (1)
\ell \sansd y=

\int 
\BbbT d

f
(1)
\ell v \sansd y.

Since v, A(1), and the solution \chi 
(1)
\ell are all periodic on \BbbT d, the first term is 0.

Combining with the equation for \chi 
(2)
\ell , we get\int 

\BbbT d

\nabla v \cdot 
\Bigl( 
A(1)  - A(2)

\Bigr) 
\nabla \chi (1)

\ell \sansd y

=

\int 
\BbbT d

(f
(1)
\ell  - f

(2)
\ell )v+\nabla v \cdot 

\Bigl( 
A(2)

\Bigl( 
\nabla \chi (2)

\ell  - \nabla \chi (1)
\ell 

\Bigr) \Bigr) 
\sansd y.

Setting v= \chi 
(2)
\ell  - \chi 

(1)
\ell , we have\int 

\BbbT d

\Bigl( 
\nabla \chi (2)

\ell  - \nabla \chi (1)
\ell 

\Bigr) 
\cdot 
\Bigl( \Bigl( 
A(1)  - A(2)

\Bigr) 
\nabla \chi (1)

\ell 

\Bigr) 
\sansd y=

\int 
\BbbT d

(f
(1)
\ell  - f

(2)
\ell )

\Bigl( 
\chi 
(2)
\ell  - \chi 

(1)
\ell 

\Bigr) 
\sansd y

+

\int 
\BbbT d

\Bigl( 
\nabla \chi (2)

\ell  - \nabla \chi (1)
\ell 

\Bigr) 
\cdot 
\Bigl( 
A(2)

\Bigl( 
\nabla \chi (2)

\ell  - \nabla \chi (1)
\ell 

\Bigr) \Bigr) 
\sansd y,

\alpha \| \nabla \chi (2)
\ell  - \nabla \chi (1)

\ell \| 2L2 \leq \| A(1)  - A(2)\| L\infty \| \nabla \chi (1)
\ell \| L2\| \nabla \chi (2)

\ell  - \nabla \chi (1)
\ell \| L2

+ \| f (1)\ell  - f
(2)
\ell \| \.H - 1\| \nabla \chi (2)

\ell  - \nabla \chi (1)
\ell \| L2 ,

\| \chi (2)
\ell  - \chi 

(1)
\ell \| \.H1 \leq 

1

\alpha 

\Bigl( 
\| A(1)  - A(2)\| L\infty \| \nabla \chi (1)

\ell \| L2 + \| f (1)\ell  - f
(2)
\ell \| \.H - 1

\Bigr) 
.(A.2)

Evaluating,

\| f (1)\ell  - f
(2)
\ell \| \.H - 1 = \| \nabla \cdot A(1)e\ell  - \nabla \cdot A(2)e\ell \| \.H - 1(A.3)

= sup
\| \xi \| \.H1=1

\int 
\BbbT d

\xi \nabla \cdot (A(1)  - A(2))e\ell \sansd y(A.4)

\leq sup
\| \xi \| \.H1=1

\| (A(1)  - A(2))e\ell \| L2\| \nabla \xi \| L2(A.5)

\leq \| A(1)  - A(2)\| L2 \leq \| A(1)  - A(2)\| L\infty (A.6)

since our domain is \BbbT d. Combining this with (A.2) and the bound of \| \nabla \chi \ell \| L2 \leq \beta 
\alpha 

obtained in the first part of this proposition, we have

\| \chi (2)
\ell  - \chi 

(1)
\ell \| \.H1 \leq 

1

\alpha 

\biggl( 
1 +

\beta 

\alpha 

\biggr) 
\| A(1)  - A(2)\| L\infty .(A.7)

Returning to d vector components yields the result.

The following result shows that the mapping A \mapsto \rightarrow \=A is continuous on separable
subspaces of L\infty (\BbbT d;\BbbR d\times d).
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1861

Lemma A.1. Let \scrA \subset L\infty (\BbbT d;\BbbR d\times d) be a separable subspace and K \subset \scrA \cap \sansP \sansD \alpha ,\beta 

a closed set in L\infty . Define the mapping F :K \rightarrow \BbbR d\times d by A \mapsto \rightarrow \=A as given by (1.3).
Then there exists a continuous mapping \scrF \in C(\scrA ;\BbbR d\times d) such that \scrF (A) = F (A) for
any A\in K.

Proof. Let A(1),A(2) \in K; then, by Proposition 1.1,\bigm| \bigm| F \bigl( A(1)
\bigr) 
 - F

\bigl( 
A(2)

\bigr) \bigm| \bigm| 
F
\leq 
\int 
\BbbT d

| A(1)  - A(2)| F
\bigl( 
1 + | \nabla \chi (1)| F

\bigr) 
\sansd y

+

\int 
\BbbT d

| A(2)| F | \nabla \chi (1)  - \nabla \chi (2)| F \sansd y

\leq \| A(1)  - A(2)\| L\infty 
\bigl( 
1 + \| \nabla \chi (1)\| L2

\bigr) 
+ \| A(2)\| L\infty \| \nabla \chi (1)  - \nabla \chi (2)\| L2

\leq 
\Biggl( 
1 +

\surd 
d

\alpha 

\Biggl( 
\| A(1)\| L\infty + \| A(2)\| L\infty 

\Biggl( 
min

\bigl( 
\| A(1)\| L\infty ,\| A(2)\| L\infty 

\bigr) 
\alpha 

+ 1

\Biggr) \Biggr) \Biggr) 
\cdot \| A(1)  - A(2)\| L\infty ,

hence F \in C(K;\BbbR d\times d). Applying the Tietze extension theorem [20] to F implies the
existence
of \scrF .

The following lemma shows that, unfortunately, separable subspaces of L\infty (\BbbT d;
\BbbR d\times d) are not very useful. Indeed, in the desired area of application of continuum
mechanics, we ought to be able to place a boundary of material discontinuity anywhere
in the domain. The following result shows that doing so is impossible for a subset of
\sansP \sansD \alpha ,\beta which lies only in a separable subspace of L\infty (\BbbT d;\BbbR d\times d).

Lemma A.2. For any t\in [0,1] define ct : [0,1]\rightarrow \BbbR by

ct(x) =

\Biggl\{ 
1, x\leq t,

0, x > t,
\forall x\in [0,1].

Define E = \{ ct : t \in [0,1]\} \subset L\infty ([0,1]). There exists no separable subspace \scrA \subset 
L\infty ([0,1]) such that E \subseteq \scrA .

Proof. Suppose otherwise. Since (\scrA ,\| \cdot \| L\infty ) is a separable metric space, (E,\| \cdot 
\| L\infty ) must be separable since E \subseteq \scrA ; this is a contradiction since (E,\| \cdot \| L\infty ) is not
separable. To see this, let \{ ctj\} \infty j=1 be an arbitrary countable susbset of E. Then for
any t \not \in \{ tj\} \infty j=1, we have

inf
\{ tj\} \infty 

j=1

\| ct  - ctj\| L\infty = 1.

Hence no countable subset can be dense.

Instead of working on a compact subset of a separable subspace of L\infty (\BbbT d;\BbbR d\times d),
we may instead try to find a suitable probability measure which contains the discon-
tinous functions of interest. The following remark makes clear why such an approach
would still be problematic for the purposes of approximation.

Remark A.3 (Gaussian threshholding). Let \mu be a Gaussian measure on
L2([0,1]). Define

T (x) =

\Biggl\{ 
1, x\geq 0,

0, x < 0,
\forall x\in [0,1],
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1862 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

and consider the corresponding Nemytskii operatorNT :L2([0,1])\rightarrow L\infty ([0,1]). Then,
working with the definitions in Lemma A.2, it is easy to see that E \subset supp NT

\sharp \mu .
Therefore there exists no separable subspace of L\infty ([0,1]) which contains supp NT

\sharp \mu .

We therefore abandon L\infty and instead show continuity and Lipschitz continuity
for some Lq with q <\infty to \.H1. The following lemma is a general result for convergence
of sequences in metric spaces which is used in a more specific context in the next
lemma.

Lemma A.4. Let (M,d) be a metric space and (an) \subset M a sequence. If every
subsequence (ank

) \subset (an) contains a subsequence (ankl
) \subset (ank

) such that (ankl
) \rightarrow 

a\in M , then (an)\rightarrow a.

Proof. Suppose otherwise. Then, there exists some \epsilon > 0 such that, for every
N \in \BbbZ +, there exists some n= n(N)>N such that

d(an, a)\geq \epsilon .

Then we can construct a subsequence (anj ) \subset (an) such that d(anj , a) \geq \epsilon for all nj .
Therefore anj

does not have a subsequence converging to a, which is a contradiction.

The following lemma proves existence of a limit in L2(D;\BbbR d) of a sequence of
outputs of operators in L\infty (D;\BbbR d\times d).

Lemma A.5. Let D \subseteq \BbbR d be an open set and (An) \subset L\infty (D;\BbbR d\times d) a sequence
satisfying the following.

1. An \in \sansP \sansD \alpha ,\beta for all n.
2. There exists A\in L\infty (D;\BbbR d\times d) such that (An)\rightarrow A in L2(D;\BbbR d\times d).

Then, for any g \in L2(D;\BbbR d), we have that (Ang)\rightarrow Ag in L2(D;\BbbR d).

Proof. We have

\| Ang\| L2 \leq \beta \| g\| L2 ,

hence (Ang) \subset L2(D;\BbbR d), and, similarly, by finite-dimensional norm equivalence,
there is a constant C1 > 0 such that

\| Ag\| L2 \leq C1\| A\| L\infty \| g\| L2 ,

hence Ag \in L2(D;\BbbR d). Again, by finite-dimensional norm equivalence, we have that
there exists a constant C2 > 0 such that, for j \in \{ 1, . . . , d\} and almost every y \in D,
we have

(Ang)j(y)
2 \leq | A(j)

n (y)| 2| g(y)| 2 \leq C2\beta 
2| g(y)| 2,

where A
(j)
n (y) denotes the jth row of A

(j)
n (y). In particular,

| (Ang)j(y)| \leq 
\sqrt{} 
C2\beta | g(y)| .

Let (Ank
) \subset (An) be an arbitrary subsequence. Since (An) \rightarrow A, we have that

(Ank
) \rightarrow A in L2(D;\BbbR d\times d). Therefore, there exists a subsequence (Ankl

) \subset (Ank
)

such that Ankl
(y) \rightarrow A(y) for almost every y \in D. Then Ankl

(y)g(y) \rightarrow A(y)g(y)

for almost every y \in D. Since | g| \in L2(\BbbR d), we have, by the dominated conver-
gence theorem, that (Ankl

g)j \rightarrow (Ag)j in L2(D) for every j \in \{ 1, . . . , d\} . Therefore

(Ankl
g)\rightarrow Ag in L2(D;\BbbR d). Since the subsequence (Ank

) was arbitrary, Lemma A.4
implies the result.

Finally, we may prove Proposition 1.2.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1863

Proposition 1.2. Endow \sansP \sansD \alpha ,\beta with the L2(\BbbT d;\BbbR d\times d) induced topology and let
K \subset \sansP \sansD \alpha ,\beta be a closed set. Define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by A \mapsto \rightarrow \chi as
given by (1.4). Then there exists a bounded continuous mapping

\scrG \in C(L2(\BbbT d; \BbbR d\times d); \.H1(\BbbT d;\BbbR d))

such that \scrG (A) =G(A) for any A\in K.

Proof. Consider the PDE

 - \nabla \cdot (A\nabla u) =\nabla \cdot Ae, y \in \BbbT d,(A.8)

where e is some standard basis vector of \BbbR d. Let (An) \subset K be a sequence such
that (An) \rightarrow A \in K in L2(\BbbT d;\BbbR d\times d). Denote by un \in \.H1(\BbbT d) the solution to (A.8)
corresponding to eachAn and by u\in \.H1(\BbbT d) the solution corresponding to the limiting
A. A similar calculation as in the proof of Proposition 1.1 shows

\alpha \| un  - u\| 2\.H1 \leq 
\int 
\BbbT d

\langle (A - An)(\nabla u+ e),\nabla un  - \nabla u\rangle \sansd y

\leq \| un  - u\| \.H1\| (An  - A)(\nabla u+ e)\| L2 .

Since \nabla u+ e\in L2(\BbbT d;\BbbR d), by Lemma A.5,
\bigl( 
An(\nabla u+ e)

\bigr) 
\rightarrow A(\nabla u+ e) in L2(\BbbT d;\BbbR d),

hence (un) \rightarrow u in \.H1(\BbbT d). In particular, the mapping A \mapsto \rightarrow u defined by (A.8) is
continuous. Since the problem (1.4) decouples as shown by (A.1), we have that each
component mapping Gl :K\rightarrow \.H1(\BbbT d) defined by A \mapsto \rightarrow \chi \ell is continuous, thus G is con-
tinuous. Applying the Tietze extension theorem [20] to G implies the existence of \scrG .

The following is a straightforward consequence of Proposition 1.2 that establishes
continuity of the map A \mapsto \rightarrow A defined in (1.3) as well.

Lemma A.6. Endow \sansP \sansD \alpha ,\beta with the L2(\BbbT d;\BbbR d\times d) induced topology and let K \subset 
\sansP \sansD \alpha ,\beta be a closed set. Define the mapping F : K \rightarrow \BbbR d\times d by A \mapsto \rightarrow \=A as given by
(1.3). Then there exists a bounded continuous mapping \scrF \in C

\bigl( 
L2(\BbbT d;\BbbR d\times d);\BbbR d\times d

\bigr) 
such that \scrF (A) = F (A) for any A\in K.

Proof. Since \nabla : \.H1(\BbbT d;\BbbR d) \rightarrow L2(\BbbT d;\BbbR d\times d) is a bounded operator, Lemma 1.2
implies that the mapping A \mapsto \rightarrow A+A\nabla \chi T is continuous as compositions, sums, and
products of continuous functions are continuous. Now let A \in \sansP \sansD \alpha ,\beta ; then A \in 
L1(\BbbT d;\BbbR d\times d) since A\in L\infty (\BbbT d;\BbbR d\times d). Thus\bigm| \bigm| \bigm| \bigm| \int 

\BbbT d

A \sansd y

\bigm| \bigm| \bigm| \bigm| 
F

\leq 
\int 
\BbbT d

| A| F \sansd y\leq \| A\| L2

by H\"older's inequality and the fact that
\int 
\BbbT d \sansd y = 1. Hence F \in C(K;\BbbR d\times d) as a

composition of continuous maps. Again applying the Tietze extension theorem [20]
to F implies the existence of \scrF .

To prove Proposition 1.3, we need to establish Lipschitz continuity. We first
establish the following result, which is similar to the one proved in [11] in Theorem
2.1. We show it again here both for completeness and because we specialize to the case
of the cell problem (1.4) with periodic boundary conditions rather than the system
(1.1) with Dirichlet boundary conditions.
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1864 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

Lemma A.7. Let A(1),A(2) \in \sansP \sansD \alpha ,\beta and let \chi (1), \chi (2) be the corresponding solu-
tions to (1.4). Then

\| \chi (1)  - \chi (2)\| \.H1 \leq 
\surd 
d

\alpha 

\Bigl( 
\| A(2)  - A(1)\| L2 + \| \nabla \chi (2)\| Lp\| A(2)  - A(1)\| Lq

\Bigr) 
(A.9)

for p\geq 2 and q= 2p
p - 2 .

Proof. As in the proof of Proposition 1.1, we denote f (i) =\nabla \cdot A(i) for i \in \{ 1,2\} 
for simplicity of notation and to be easily comparable to the proof of Theorem 2.1 in
[11]. Since both sides of the cell problem equation (1.4) depend on A(i), we introduce\widetilde \chi as the solution of

 - \nabla \cdot 
\Bigl( 
\nabla \widetilde \chi A(2)

\Bigr) 
=\nabla \cdot A(1), \widetilde \chi \in \.H1(\BbbT d;\BbbR d)(A.10)

as an intermediate function. We obtain bounds using \widetilde \chi and apply the triangle in-
equality to

\| (\chi (1)  - \widetilde \chi ) + (\widetilde \chi  - \chi (2))\| \.H1

to obtain a bound on \| \chi (1)  - \chi (2)\| \.H1 . From the na\"{\i}ve perturbation bound in (A.2)
we have

\| \widetilde \chi \ell  - \chi 
(2)
\ell \| \.H1 \leq 

1

\alpha 
\| f (1)\ell  - f

(2)
\ell \| \.H - 1 ,

so we are left to bound \| \chi (1)
\ell  - \widetilde \chi \ell \| \.H1 . We note that

\nabla \cdot 
\Bigl( 
A(2)\nabla \widetilde \chi \ell 

\Bigr) 
=\nabla \cdot 

\Bigl( 
A(1)\nabla \chi (1)

\ell 

\Bigr) 
,\int 

\BbbT d

A(2)\nabla \widetilde \chi \ell \cdot \nabla v \sansd y=

\int 
\BbbT d

A(1)\nabla \chi (1)
\ell \cdot \nabla v \sansd y \forall v \in \.H1(\BbbT d;\BbbR ).

Letting v= \chi 
(1)
\ell  - \widetilde \chi \ell ,\int 

\BbbT d

A(2)\nabla \widetilde \chi \ell \cdot 
\Bigl( 
\nabla \chi (1)

\ell  - \nabla \widetilde \chi \ell 

\Bigr) 
\sansd y=

\int 
\BbbT d

A(1)\nabla \chi (1)
\ell \cdot 

\Bigl( 
\nabla \chi (1)

\ell  - \nabla \widetilde \chi \ell 

\Bigr) 
\sansd y,\int 

\BbbT d

A(2)
\Bigl( 
\nabla \widetilde \chi \ell  - \nabla \chi (1)

\ell 

\Bigr) 
\cdot 
\Bigl( 
\nabla \widetilde \chi \ell  - \nabla \chi (1)

\ell 

\Bigr) 
\sansd y

=

\int 
\BbbT d

\Bigl( 
A(2)  - A(1)

\Bigr) 
\nabla \chi (1)

\ell \cdot 
\Bigl( 
\nabla \chi (1)

\ell  - \nabla \widetilde \chi \ell 

\Bigr) 
\sansd y,

\alpha \| \widetilde \chi \ell  - \chi 
(1)
\ell \| \.H1 \leq \| (A(2)  - A(1))(\nabla \chi (1)

\ell )\| L2 .

Applying H\"older for L2, we get

\| \widetilde \chi \ell  - \chi 
(1)
\ell \| \.H1 \leq 

1

\alpha 
\| \nabla \chi (1)

\ell \| Lp\| A(2)  - A(1)\| Lq(A.11)

for q= 2p
p - 2 , where p\in [2,\infty ]. Putting the two parts together, we have that

\| \chi (2)
\ell  - \chi 

(1)
\ell \| \.H1 \leq 

1

\alpha 
\| \nabla \cdot A(2)e\ell  - \nabla \cdot A(1)e\ell \| \.H - 1 +

1

\alpha 
\| \nabla \chi (1)

\ell \| Lp\| A(2)  - A(1)\| Lq

\leq 1

\alpha 
\| A(2)  - A(1)\| L2 +

1

\alpha 
\| \nabla \chi (1)

\ell \| Lp\| A(2)  - A(1)\| Lq .

Combining bounds for all d dimensions yields the result.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1865

Remark A.8. Since Lq(\Omega ) \lhook \rightarrow L2(\Omega ) for bounded \Omega \subset \BbbR d and q \geq 2, we could also
write the bound of Lemma A.7 as

\| \chi (2)
\ell  - \chi 

(1)
\ell \| \.H1 \leq 

1

\alpha 

\Bigl( 
C + \| \nabla \chi (1)

\ell \| Lp

\Bigr) 
\| A(2)  - A(1)\| Lq

for some C dependent only on q and \Omega .

The result of Lemma A.7 is unhelpful if \| \nabla \chi \| Lp is unbounded. In this setting, it
is not possible for Lemma A.7 to result in Lipschitz continuity as a map from L2 to
\.H1. Instead, we seek to bound \| \nabla \chi \| Lp for some p satisfying 2< p<\infty .

Before continuing, we establish a bound on the gradient of the solution to the
Poisson equation on the torus. This follows the strategy of [11] for the Dirichlet
problem. In order to avoid extra factors of 2\pi in all formulae, we work on the rescaled
torus denoted \BbbY d = [0,2\pi ]d with opposite faces identified for the following result of
Lemma A.9. As we work on the torus, it is useful to first set up notation for the
function spaces of interest. Let

\scrD (\BbbY d) =C\infty 
c (\BbbY d) =C\infty (\BbbY d)

be the space of test functions, where the last equality follows from compactness of the
torus. Functions can be either \BbbR or \BbbC valued, hence we do not explicitly specify the
range. We equip \scrD (\BbbY d) with a locally convex topology generated by an appropriate
family of seminorms; see, for example, [56, section 3.2.1]. Any function g \in \scrD (\BbbY d) can
be represented by its Fourier series

g(x) =
\sum 
k\in \BbbZ d

\widehat g(k)eix\cdot k,
where \widehat g denotes the Fourier transform of g and convergence of the right-hand-side
sum is with respect to the topology of \scrD (\BbbY d), and i denotes the imaginary unit. It
holds that \widehat g \in \scrS (\BbbZ d), the Schwartz space of rapidly decreasing functions on the integer
lattice, so we have

| \widehat g(k)| \leq cm(1 + | k| ) - m, m= 0,1, . . . ,

for some constants cm. We may then define the topological (continuous) dual space of
\scrD (\BbbY d), the space of distributions, denoted \scrD \prime (\BbbY d), which can be described as follows:
the condition that f \in \scrD \prime (\BbbY d) is characterized by the property

| \widehat f(k)| \leq bm(1 + | k| )m, m= 0,1, . . . ,

for some constants bm. We take the weak-\ast topology on \scrD \prime (\BbbY d) and generally use
the prime notation for any such dual space. For any  - \infty < s < \infty , we define the
fractional Laplacian as

( - \Delta )sf =
\sum 

k\in \BbbZ d\setminus \{ 0\} 

| k| 2s \widehat f(k)eik\cdot x,(A.12)

where the right-hand-side sum converges in the topology of \scrD \prime (\BbbY d). It is easy to see
that ( - \Delta )s : \scrD \prime (\BbbY d) \rightarrow \scrD \prime (\BbbY d) is continuous. Furthermore, for any j \in \{ 1, . . . , d\} ,
we define the family of operators \~Rj : \scrD \prime (\BbbY d) \rightarrow \scrD \prime (\BbbY d), defining periodic Riesz
transforms, by

\~Rjf =
\sum 
k\in \BbbZ d

 - ikj| k| 
\widehat f(k)eik\cdot x,(A.13)
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1866 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

where we identify
kj

| k| | k=0 = lim| k| \rightarrow 0
kj

| k| = 0. Again, we stress that convergence of

the right-hand-side sum is in the topology of \scrD \prime (\BbbY d). Last, we denote by \scrS (\BbbR d) and
\scrS \prime (\BbbR d) the Schwartz space and the space of tempered distributions on \BbbR d, respectively;
see, for example, [57, Chapter 1] for the precise definitions.

The following lemma establishes boundedness of the periodic Riesz transform on
Lp(\BbbY d). It is essential in proving boundedness of the gradient to the solution of the
Poisson equation on the torus. The result is essentially proven in [57]. We include it
here, in our specific torus setting, giving the full argument for completeness.

Lemma A.9. There exists a constant c = c(d, p) > 0 such that, for any j \in 
\{ 1, . . . , d\} and any f \in Lp(\BbbY d) for some 2\leq p <\infty , we have

\| \~Rjf\| Lp(\BbbY d) \leq c\| f\| Lp(\BbbY d).

Proof. Let g \in L2(\BbbR d)\cap Lp(\BbbR d) for some 1< p<\infty . For any j \in \{ 1, . . . , d\} , define
the family of operators Rj by

(Rjg)(x) = lim
\delta  - 1,\epsilon \rightarrow 0+

\int 
\delta \geq | t| \geq \epsilon 

g(x - t)Kj(t) dt,

where

Kj(t) =
\Gamma 
\bigl( 
(d+ 1)/2

\bigr) 
tj

\pi (d+1)/2| t| d+1

and \Gamma denotes the Euler-Gamma function. By [57, Chapter 4, Theorem 4.5], Kj \in 
\scrS \prime (\BbbR d) and its Fourier transform satisfy

\widehat Kj(t) = - itj| t| .

Therefore, for any \phi \in \scrS (\BbbR d), we have

(Kj \ast \phi )\widehat (t) = - itj| t| 
\widehat \phi (t),

where \ast denotes convolution; see, for example, [57, Chapter 1, Theorem 3.18]. Since
g \in L2(\BbbR d), we therefore find that, by [57, Chapter 6, Theorem 2.6],

(Rjg)
\widehat (x) = - ixj| x| \widehat g(x)(A.14)

for Lebesgue almost every x \in \BbbR d. The result [57, Chapter 6, Theorem 2.6] further
shows that there exists a constant c= c(d, p)> 0 such that

\| Rjg\| Lp(\BbbR d) \leq c\| g\| Lp(\BbbR d).

We note from (A.14) and the definition (A.13) that \~Rj may be viewed as Rj with the

restriction of the Fourier multiplier  - ixj

| x| to the lattice \BbbZ d. We can therefore use the

transference theory of [57] to establish boundedness of \~Rj from the boundedness of

Rj . In particular, note that the mapping x \mapsto \rightarrow  - ixj

| x| is continuous at all x\in \BbbR d except
x= 0. However, by symmetry, we have that, for all \epsilon > 0,\int 

| x| \leq \epsilon 

 - ixj| x| dx= 0.
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1867

Therefore we can apply [57, Chapter 7, Theorem 3.8, Corollary 3.16] to conclude that,
since Rj is bounded from Lp(\BbbR d) to Lp(\BbbR d), \~Rj is bounded from Lp(\BbbY d) to Lp(\BbbY d)
with

\| \~Rj\| Lp(\BbbY d)\rightarrow Lp(\BbbY d) \leq \| Rj\| Lp(\BbbR d)\rightarrow Lp(\BbbR d).

This implies the desired result.

We define the Bessel potential spaces by

Ls,p(\BbbY d) = \{ u\in \scrD \prime (\BbbY d) | \| u\| Ls,p(\BbbY d) := \| (I  - \Delta )s/2u\| Lp(\BbbY d) <\infty \} 

for any  - \infty < s<\infty and 1< p<\infty . We also define the homogeneous version of these
spaces, sometimes called the Riesz potential spaces, by

\.Ls,p(\BbbY d) =

\biggl\{ 
u\in \scrD \prime (\BbbY d) | \| u\| \.Ls,p(\BbbY d) := \| ( - \Delta )s/2u\| Lp(\BbbY d) <\infty ,

\int 
\BbbY d

u \sansd y= 0

\biggr\} 
.

It is clear that \.Ls,p(\BbbY d) \subset Ls,p(\BbbY d) is closed subspace. We then have the following
result for the Poisson equation.

Lemma A.10. For each f \in Ls,p(\BbbY d), for  - \infty < s < \infty and 2 \leq p < \infty , the
solution u of the equation

 - \Delta u= f, u 1-periodic,

\int 
\BbbY d

u \sansd y= 0(A.15)

satisfies

\| \nabla u\| \.Ls+1,p(\BbbY d) \leq K\| f\| \.Ls,p(\BbbY d)(A.16)

for some finite K > 0 depending only on p and d.

Proof. From the definitions (A.12) and (A.13), it is easy to see that the Riesz
transform can be written as

\~Rj = - \partial xj
( - \Delta ) - 1/2

in the sense of distributions. Consider now (A.15) with f \in Ls,p(\BbbY d) for 2 \leq p <\infty .
We have that

\| \partial xju\| \.Ls+1,p(\BbbY d) = \| \partial xj ( - \Delta ) - 1f\| \.Ls+1,p(\BbbY d)

= \| \partial xj
( - \Delta ) - 1/2( - \Delta )s/2f\| Lp(\BbbY d)

= \| \~Rj( - \Delta )s/2f\| Lp(\BbbY d).

It is clear that

\| ( - \Delta )s/2f\| Lp(\BbbY d) = \| f\| \.Ls,p(\BbbY d) <\infty ,

hence ( - \Delta )s/2f \in Lp(\BbbY d). We can thus apply Lemma A.9 to find a constant c =
c(d, p)> 0 such that

\| \partial xj
u\| \.Ls+1,p(\BbbY d) \leq c\| ( - \Delta )s/2f\| Lp(\BbbY d) = c\| f\| \.Ls,p(\BbbY d).

The result follows by finite-dimensional norm equivalence.
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1868 BHATTACHARYA, KOVACHKI, RAJAN, STUART, TRAUTNER

Next we define the homogeneous Sobolev spaces on the torus as

\.W k,p(\BbbT d) =

\biggl\{ 
u\in W k,p(\BbbT d) | u is 1-periodic,

\int 
\BbbT d

u \sansd y= 0

\biggr\} 
(A.17)

for k= 0,1, . . . , and 1\leq p\leq \infty with the standard norm on W k,p; see, for example, [2].

Remark A.11. By [56, section 3.5.4], we have that, for any k = 0,1, . . . and
1< p<\infty ,

Lk,p(\BbbT d) =W k,p(\BbbT d), \.Lk,p(\BbbT d) = \.W k,p(\BbbT d).

Furthermore, by [56, section 3.5.6],

W - k,p\prime 
(\BbbT d) =

\bigl( 
W k,p(\BbbT d)

\bigr) \prime 
=
\bigl( 
Lk,p(\BbbT d)

\bigr) \prime 
=L - k,p\prime 

(\BbbT d),

\.W - k,p\prime 
(\BbbT d) =

\bigl( 
\.W k,p(\BbbT d)

\bigr) \prime 
=
\bigl( 
\.Lk,p(\BbbT d)

\bigr) \prime 
= \.L - k,p\prime 

(\BbbT d),

where p\prime is the H\"older conjugate of p, i.e., 1/p+ 1/p\prime = 1.

In the following, we use the notation

[K0,K1]\theta ,q(A.18)

to denote the real interpolation between two Banach spaces continuously embedded
in the same Hausdorff topological space, as described in [2]. We also need Lemma A1
from [22], which we have copied below as Lemma A.12 to ease readability. Although
this lemma was written only for q = 2, the result still holds for our q > 2 with a very
similar proof.

Lemma A.12. Let E1 \subset E0 be two Banach spaces with E1 continuously embedded
in E0. Let T : Ej \rightarrow Ej be a bounded operator with closed range and assume that
T is a projection, j \in \{ 0,1\} . Denote by K0 and K1 the ranges of T | E0

and T | E1
,

respectively. Then the following two spaces coincide with equivalent norms:

[K0,K1]\theta ,q = [E0,E1]\theta ,q \cap K0 \forall \theta \in (0,1).

We now state the result for the bound on \| \nabla \chi \| Lp with a proof largely developed
in [11].

Lemma A.13. Let \chi solve (1.4) for A\in \sansP \sansD \alpha ,\beta . Then

\| \nabla \chi \| Lp \leq K\eta (p)

1 - K\eta (p)
\Bigl( 
1 - \alpha 

\beta 

\Bigr) (A.19)

for 2\leq p < p\ast (\alpha \beta ) where

p\ast (t) :=max
\Bigl\{ 
p | K - \eta (p) \geq 1 - t, 2< p<Q

\Bigr\} 
(A.20)

for \eta (p) = 1/2 - 1/p
1/2 - 1/Qand K =K(d,Q) is the constant in Lemma A.10 for any choice of

Q> p.

Proof. The operator T =  - \Delta is invertible from H - 1 to \.H1, and the inverse
T - 1 is bounded with norm 1 since the Poisson equation with periodic boundary
conditions has a unique solution in \.H1 for f \in H - 1 with bound \| u\| \.H1 \leq \| f\| H - 1 .
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LEARNING HOMOGENIZATION FOR ELLIPTIC OPERATORS 1869

From Lemma A.10 it is also bounded with norm K =K(d,Q) from W - 1,Q to \.W 1,Q

for any Q> 2. By the real method of interpolation [2], for 2< p<Q we have that

W 1,p =
\bigl[ 
H1,W 1,Q

\bigr] 
\eta (p),p

(A.21)

using the notation of [2] where \eta (p) = 1/2 - 1/p
1/2 - 1/Q . From the duality theorem (Theorem

3.7.1 of [6]), we have that\bigl[ 
H - 1,W - 1,Q

\bigr] 
\eta (p),p

=

\biggl( \Bigl[ 
H1,W 1,Q\prime 

\Bigr] 
\eta (p),p\prime 

\biggr) \prime 

.(A.22)

From real interpolation, the right-hand side equals (W 1,p\prime 
)\prime =W - 1,p in our notation.

Therefore, we have the necessary dual statement that parallels (A.21):

W - 1,p =
\bigl[ 
H - 1,W - 1,Q

\bigr] 
\eta (p),p

.(A.23)

Next we restrict these spaces to functions with periodic boundary conditions. Using
the projection onto the space of continuous, periodic functions on \BbbT d and noticing
that W 1,Q \lhook \rightarrow H1, we apply Lemma A.12 with K0 = \.H1 and have

\.W 1,p = [ \.H1, \.W 1,Q]\eta (p),p.(A.24)

Using the exact interpolation theorem, Theorem 7.23 of [2], T - 1 is also a bounded
map from W - 1,p to \.W 1,p with norm K\eta (p):

\| T - 1f\| \.W 1,p \leq K\eta (p)\| f\| W - 1,p .(A.25)

The remainder of the proof is identical to that of the proof of Proposition 1 in [11],
but we state it here in our notation for completeness. Define S: \.W 1,p \rightarrow W - 1,p as the
operator Su= - \nabla \cdot ( 1\beta A\nabla u). Let V be the perturbation operator V := T  - S. Since

A \in \sansP \sansD \alpha ,\beta , S and V are bounded operators from \.W 1,p to W - 1,p, with the operator
norms \| S\| \leq 1 and \| V \| \leq 1 - \alpha 

\beta . Therefore,

\| T - 1V \| \.W 1,p\rightarrow \.W 1,p \leq \| T - 1\| W - 1,p\rightarrow \.W 1,p\| V \| \.W 1,p\rightarrow W - 1,p \leq K\eta (p)

\biggl( 
1 - \alpha 

\beta 

\biggr) 
,(A.26)

where the input and output spaces defining the operator norms are included for clarity.
Since T is invertible, S = T (I  - T - 1V ) is invertible provided K\eta (p)(1  - \alpha 

\beta ) < 1.

Moreover, for S - 1 as a mapping from W - 1,p to \.W 1,p,

\| S - 1\| \leq \| (I  - T - 1V ) - 1\| \.W 1,p\rightarrow \.W 1,p\| T - 1\| W - 1,p\rightarrow \.W 1,p \leq 
K\eta (p)

1 - K\eta (p)
\Bigl( 
1 - \alpha 

\beta 

\Bigr) .(A.27)

Therefore,

\| \nabla \chi \| Lp = \| \chi \| \.W 1,p \leq 
1

\beta 
\| S - 1\| \| \nabla \cdot A\| \leq K\eta (p)

1 - K\eta (p)
\Bigl( 
1 - \alpha 

\beta 

\Bigr) (A.28)

provided K\eta (p)(1 - \alpha 
\beta )< 1. The bound and specified range of p follow.

Finally, we may prove Proposition 1.3

Proposition 1.3. There exists q0 \in (2,\infty ) such that, for all q satisfying q \in 
(q0,\infty ], the following holds. Endow \sansP \sansD \alpha ,\beta with the Lq(\BbbT d;\BbbR d\times d) topology and let
K \subset \sansP \sansD \alpha ,\beta be a closed set. Define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by A \mapsto \rightarrow \chi as
given by (1.4). Then there exists a bounded Lipschitz-continuous mapping
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\scrG : Lq(\BbbT d;\BbbR d\times d)\rightarrow \.H1(\BbbT d;\BbbR d)

such that \scrG (A) =G(A) for any A\in K.

Proof. Lemma A.13 guarantees a p0 > 2 such that \| \nabla \chi (2)\| Lp in Lemma A.7
is bounded above by a constant for 2 < p < p0. Then Lemma A.7 gives Lipschitz
continuity of the solution map from Lq(\BbbT d) \mapsto \rightarrow \.H1(\BbbT d) for q satisfying q0 < q <\infty for
some q0 > 2.

Remark A.14. From the results of Lemmas A.13 and A.7, we have that we can
take q0 =

2p0

p0 - 2 where

p0 =max\{ p | K - \eta (p) \geq 1 - t, 2< p<Q\} .
Therefore, bounds on p0 may be inherited from bounds on K that appear in
Lemma A.10.

Appendix B. Proofs of approximation theorems. In this section we prove
the approximation theorems stated in section 3.

Theorem 3.3. Let K \subset \sansP \sansD \alpha ,\beta and define the mapping G : K \rightarrow \.H1(\BbbT d;\BbbR d) by
A \mapsto \rightarrow \chi as given by (1.4). Assume in addition that K is compact in L2(\BbbT d;\BbbR d\times d).
Then, for any \epsilon > 0, there exists an FNO \Psi :K\rightarrow \.H1(\BbbT d;\BbbR d) such that

sup
A\in K

\| G(A) - \Psi (A)\| \.H1 < \epsilon .

Proof. By Proposition 1.2, there exists a continuous map \scrG \in C(L2(\BbbT d;\BbbR d\times d);
\.H1(\BbbT d;\BbbR d)) such that \scrG (A) =G(A) for any A \in K. By [32, Theorem 5], there exists
an FNO \Psi :L2(\BbbT d;\BbbR d\times d)\rightarrow \.H1(\BbbT d;\BbbR d) such that

sup
A\in K

\| \scrG (A) - \Psi (A)\| \.H1 < \epsilon .

Therefore

sup
A\in K

\| G(A) - \Psi (A)\| \.H1 = sup
A\in K

\| \scrG (A) - \Psi (A)\| \.H1 < \epsilon 

as desired.

Theorem 3.4. Let K \subset \sansP \sansD \alpha ,\beta and define the mapping F :K \rightarrow \BbbR d\times d by A \mapsto \rightarrow \=A
as given by (1.3), (1.4). Assume in addition that K is compact in L2(\BbbT d;\BbbR d\times d). Then,
for any \epsilon > 0, there exists an FNO \Phi :K\rightarrow L\infty (\BbbT d;\BbbR d\times d) such that

sup
A\in K

sup
x\in \BbbT d

| F (A) - \Phi (A)(x)| F < \epsilon .

Proof. The result follows as in Theorem 3.3 by applying Lemma A.6 instead of
Proposition 1.2.

Appendix C. Proofs for microstructure examples. The following lemma
establishes the compactness of subsets of \sansP \sansD \alpha ,\beta generated by the probability measures
from section 4. As we are unaware of a proof in the literature, we have provided one
below. The proof uses the L1-Lipschitz spaces, which are defined as

\sansL \sansi \sansp \alpha (L
1) = \{ u\in L1 : \exists M(u)> 0 : \omega (u, t)1 \leq Mt\alpha \} ,

where \omega (u, t)1 is the 1-modulus of continuity, defined via

\omega (u, t)1 = sup
0\leq | h| \leq t

\| \tau hu - u\| L1(\BbbT d).
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Lemma C.1. \sansB \sansV (\BbbT d)\cap L\infty (\BbbT d) is compactly embedded in L2(\BbbT d).

Proof. Let u \in B, where B is a bounded subset of \sansB \sansV (\BbbT d) \cap L\infty (\BbbT d) with L\infty 

norm and BV seminorm bounded by M , and let \tau hf denote the translation of f by
h, i.e., \tau hf(x) = f(x - h). Then

\| \tau hu - u\| L2 \leq \| \tau hu - u\| 1/2L1 \| \tau hu - u\| 1/2L\infty .(C.1)

Since \sansB \sansV (\BbbT d)\equiv \sansL \sansi \sansp 1(L
1(\BbbT d)), \| \tau hu - u\| L1 \leq \| u\| \sansB \sansV | h| . We have then

\| \tau hu - u\| L2 \leq \| u\| 1/2\sansB \sansV | h| 1/2(2M)1/2.

By the Fr\'echet--Kolmogorov theorem [60], this equicontinuity result is sufficient for
compactness of B in L2(\BbbT d).

Using the result of Lemma C.1, we see that any set of microstructure coefficients
bounded in L\infty (\BbbT d)\cap BV (\BbbT d) satisfies the compactness assumption of the approxima-
tion theorems in section 3. It is clear that the method of construction of the examples
in subsection 4.1 leads to such sets.

Appendix D. Numerical implementation details. All FNO models are im-
plemented in PyTorch using Python 3.9.7. Unless otherwise specified, the models
have 18 modes in each dimension, a width of 64, and 4 hidden layers. The lifting
layer is a linear transformation with trainable parameters, and the projecting layer
is a pointwise multilayer perceptron with trainable parameters. The batch size is 20,
the learning rate is 0.001, and the number of epochs is 400. These hyperparame-
ters are chosen with a small grid search, but we emphasize that the FNO does not
drastically change in performance unless these parameters are changed by an order
of magnitude. For a model trained on 9500 data using these hyperparameters and
accelerated with an Nvidia P100 GPU, the training time is approximately 7 hours.
In Figures 3, 4, and 5, the error bars shown correspond to two standard deviations
in each direction over the five samples. All code for this work may be found at
github.com/mtrautner/LearningHomogenization/.

Acknowledgments. The authors are grateful to Samuel Lanthaler and Endre
S\"uli for essential discussions leading to the proof of Lemma C.1.
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