
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM REVIEW © 2024 Society for Industrial and Applied Mathematics
Vol. 66, No. 3, pp. 535–571

Operator Learning Using
Random Features:
A Tool for Scientific Computing\ast 

Nicholas H. Nelsen\dagger 

Andrew M. Stuart\dagger 

Abstract. Supervised operator learning centers on the use of training data, in the form of input-
output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as a
powerful tool to complement traditional scientific computing, which may often be framed
in terms of operators mapping between spaces of functions. Building on the classical ran-
dom features methodology for scalar regression, this paper introduces the function-valued
random features method. This leads to a supervised operator learning architecture that
is practical for nonlinear problems yet is structured enough to facilitate efficient training
through the optimization of a convex, quadratic cost. Due to the quadratic structure, the
trained model is equipped with convergence guarantees and error and complexity bounds,
properties that are not readily available for most other operator learning architectures. At
its core, the proposed approach builds a linear combination of random operators. This
turns out to be a low-rank approximation of an operator-valued kernel ridge regression al-
gorithm, and hence the method also has strong connections to Gaussian process regression.
The paper designs function-valued random features that are tailored to the structure of
two nonlinear operator learning benchmark problems arising from parametric partial differ-
ential equations. Numerical results demonstrate the scalability, discretization invariance,
and transferability of the function-valued random features method.
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1. Introduction. The increased use of machine learning for complex scientific
tasks ranging from drug discovery to numerical weather prediction has led to the
emergence of the new field of scientific machine learning. Scientific machine learning
blends modern artificial intelligence techniques with time-tested scientific computing
methods in a principled manner to tackle challenging science and engineering prob-
lems, even those previously considered to be out of reach due to high-dimensionality
or computational cost. A common theme in these physical problems is that the data
are typically modeled as infinite-dimensional quantities like velocity or pressure fields.
Such continuum objects are spatially and temporally varying functions that have in-
trinsic smoothness properties and long-range correlations.

Recognizing the need for new mathematical development of learning algorithms
that are tailor-made for continuum problems, researchers established the operator
learning paradigm to build data-driven models that map between infinite-dimensional
input and output spaces. An operator is an input-output relationship such that each
input and corresponding output is infinite-dimensional. For example, the mapping
from the current temperature in a room to the temperature one hour later is an
operator. This is because temperature at a fixed time is a function characterized
by its values at an uncountably infinite number of spatial locations. More generally,
one may consider the semigroup generated by a time-dependent partial differential
equation (PDE) mapping the initial condition to the solution at a later time. A more
concrete example is the mapping F \dagger : (a, f) \mapsto \rightarrow u from coefficient function a and source
term f to solution function u governed by the elliptic PDE  - \nabla \cdot (a\nabla u) = f , equipped
with appropriate boundary conditions. The paper returns to this example later on.
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The paper focuses exclusively on supervised operator learning. This is concerned
with learning models to fit infinite-dimensional input-output pairs of (what is then
known as labeled) training data. However, the operator learning framework is quite
general and encompasses continuum problems that involve potentially diverse sources
of data, going beyond the supervised learning setting. In the unsupervised setting,
only unlabeled data is available. One example of this is the estimation of a covariance
operator: the dataset comprises random functions drawn from the probability measure
whose covariance is to be estimated. Alternatively, the observed data might only
consist of indirect or sparse measurements of a system, often also corrupted by noise,
as is common in inverse problems; blind deconvolution is an important example.

Infinite-dimensional quantities must always be discretized when represented on a
computer or in experiments. What distinguishes supervised operator learning from
traditional supervised learning architectures that operate on high-dimensional dis-
cretized vectors is that in the continuum limit of infinite resolution, operator learning
architectures have a well-defined and consistent meaning. They capture the underly-
ing continuum structure of the problem and not artifacts due to the particular choice
of discretization. Indeed, for a fixed set of trainable parameters, operator learning
methods by construction produce consistent results given any finite-dimensional dis-
cretization of the conceptually infinite-dimensional data. That is, they are inherently
dimension- and discretization-independent. Practically, this means that once learned
at one resolution, the operator can be transferred to any other resolution without the
need for retraining. Growing empirical evidence suggests that operator learning ex-
hibits excellent performance as a tool to accelerate model-centric tasks in science and
engineering or to discover unknown physical laws from experimental data. However,
the mathematical theory of operator learning is far from complete, which limits its
impact.

The goal of this paper is to develop an operator learning methodology with strong
theoretical foundations that is also especially well suited for the task of speeding
up otherwise prohibitively expensive many-query problems. The need for repeated
evaluations of a complex, costly, and slow forward model for different configurations
of a system parameter occurs in various science and engineering domains. The true
model is often a PDE and the parameter, serving as input to the PDE model, is
often a continuum quantity. For instance, in the heat equation, the input is its initial
condition, and in the preceding elliptic PDE example, the input is its coefficient
and forcing functions. In contrast to the big data regime that dominates computer
vision and other technological fields, only a relatively small amount of high resolution
labeled data can be generated from computer simulations or physical experiments in
scientific applications. Fast approximate surrogates built from this limited available
data that can efficiently and accurately emulate the full order model would be highly
advantageous in downstream outer loop applications.

The present work demonstrates that the random feature model (RFM) has consid-
erable potential for such a purpose when formulated as a map between function spaces.
In contrast to more complicated deep learning approaches, the function-valued random
features algorithm involves learning the coefficients of a linear expansion composed of
random maps. For a suitable training objective function, this is a finite-dimensional
convex, quadratic optimization problem. Equivalently, the paper shows that this su-
pervised training procedure is equivalent to ridge regression over a reproducing kernel
Hilbert space (RKHS) of operators. As a consequence of the careful construction of
the method as a mapping between infinite-dimensional Banach spaces, the resulting

D
ow

nl
oa

de
d 

08
/0

8/
24

 to
 1

31
.2

15
.2

50
.1

49
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

538 NICHOLAS H. NELSEN AND ANDREW M. STUART

RFM surrogate enjoys rigorous convergence guarantees and scales favorably with re-
spect to (w.r.t.) the high input and output dimensions arising in practical, discretized
applications. Numerically, the method achieves a small test error for learning a semi-
group and the solution operator of a parametric elliptic PDE.

This section continues with a literature review and then a summary of the main
contributions of the paper.

1.1. Literature Review. Two different lines of research have emerged that ad-
dress PDE approximation problems with scientific machine learning techniques. The
first perspective takes a more traditional approach akin to point collocation methods
from the field of numerical analysis. Here, the goal is to use a deep neural network
(NN) [125] or other function class [30] to solve a prescribed initial boundary value
problem with as high an accuracy as possible. Given a point cloud in a possibly high-
dimensional spatiotemporal domain \scrD as input data, the prevailing approach first
directly parametrizes the PDE solution field as an NN and then optimizes the NN
parameters by minimizing the PDE residual w.r.t. some loss functional using variants
of stochastic gradient descent (see [78, 125, 134, 49] and the references therein). To
clarify, the object approximated with this approach is a function \scrD \rightarrow \BbbR between
finite-dimensional spaces. While mesh-free by definition, the method is highly intru-
sive as it requires full knowledge of the specified PDE. Any change to the original
formulation of the initial boundary value problem or related PDE problem parame-
ters necessitates an expensive retraining of the NN approximate solution. We do not
explore this first approach any further in this paper.

The second direction takes an operator learning perspective and is arguably more
ambitious: use an NN to emulate the infinite-dimensional mapping between an input
parameter and the PDE solution itself [22] or a functional of the solution, i.e., a
quantity of interest [72]; the latter is widely prevalent in inverse problems [6, 138],
optimization under uncertainty [103], and optimal experimental design [4]. For an
approximation-theoretic treatment of parametric PDEs, we mention the paper [34].
We emphasize that the object approximated in this setting, unlike in the first approach
mentioned in the previous paragraph, is an operator \scrX \rightarrow \scrY , i.e., the PDE solution
operator, where \scrX and \scrY are infinite-dimensional Banach spaces; this map is generally
nonlinear. It is this second line of research that inspires our work. We now highlight
several subtopics relevant to surrogate modeling and operator learning. Summaries of
the state of the art for operator learning may be found in two mathematically oriented
review articles on the subject [22, 86].

Model Reduction. There are many approaches to surrogate modeling that do
not explicitly involve machine learning ideas [120]. The reduced basis method (see
[10, 15, 41] and the references therein) is a classical idea based on constructing an
empirical basis from continuum or high-dimensional data snapshots and solving a
cheaper variational problem; it is still widely used in practice due to computationally
efficient offline-online decompositions that eliminate dependence on the full order de-
grees of freedom. Machine learning extensions to the reduced basis methodology, of
both intrusive (e.g., projection-based reduced order models) and nonintrusive (e.g.,
model-free data only) types, have further improved the applicability of these meth-
ods [9, 32, 58, 59, 70, 94, 121, 131]. However, the input-output maps considered
in these works involve high dimension in only one of the input space or the output
space, not both. A line of research aiming to more closely align model reduction
with operator learning is the work on deep learning--based reduced order models
(ROMs) [25, 55, 56, 57]; some of these studies also derive approximation guarantees
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for the ROMs. Other popular surrogate modeling techniques include Gaussian pro-
cesses [148], polynomial chaos expansions [135], and radial basis functions [146], yet
these are only practically suitable for scalar-valued maps with input space of low to
moderate dimension, unless strong assumptions are placed on the problem. Classical
numerical methods for PDEs may also represent the discretized forward model as a
map \BbbR K \rightarrow \BbbR K , where K is the resolution, albeit implicitly in the form of a computer
code (e.g., finite element, finite difference, finite volume methods). However, the ap-
proximation error is sensitive to K and repeated evaluations of this forward model
often become cost prohibitive due to poor scaling with input dimension K.

Operator Learning. Many earlier attempts to build cheap-to-evaluate surrogate
models for PDEs display sensitivity to discretization. There is a suite of work on
data-driven discretizations of PDEs that allows for identification of the governing
system [8, 20, 100, 119, 137, 142]. However, we note that only the operators appearing
in the underlying equation itself are approximated with these approaches, not the
solution operator of the PDE; the focus in these works is mostly on model discovery
rather than model acceleration. More in line with the theme of the present paper,
architectures based on deep convolutional NNs have proven to be quite successful for
learning elliptic PDE solution operators. For example, see [55, 143, 149, 152], which
take an image-to-image regression approach. Other NNs have been used in similar
elliptic problems for quantity of interest prediction [72, 81], error estimation [29], or
unsupervised learning [95], and for parametric PDEs more generally [60, 88, 117, 133].
Yet in most of the preceding approaches, the architectures and resulting error are
dependent on the mesh resolution. To circumvent this issue, the surrogate map must
be well defined on function space and independent of any finite-dimensional realization
of the map that arises from discretization. This is not a new idea (see [31, 106, 128] or,
for functional data analysis, [77, 107, 126]). The aforementioned reduced basis method
is an example, as is the method of [33, 34], which approximates the solution map with
sparse Taylor polynomials and achieves optimal convergence rates in idealized settings.
Early work in the use of NNs to learn the solution operator, or vector field, defining
ODEs and time-dependent PDEs may be found from the 1990s [31, 64, 106, 127].
However, only recently have practical machine learning methods been designed to
directly operate in infinite dimensions.

Several implementable operator learning architectures were developed concur-
rently [1, 19, 97, 101, 111, 113, 150]. These include the DeepONet [101], which gen-
eralizes and makes practical the main idea in [31], PCA-Net [19], and the RFM from
the original version of the present paper [111]. These were followed by neural op-
erators [87, 97] and, in particular, the Fourier neural operator [96]. Details for and
comparisons among these architectures are given in [86, sect. 3]. Apart from the RFM,
what these methods---which we collectively call ``neural operators""---share is a deep
learning backbone. The approximation theory of such neural operators is fairly well
developed [69, 72, 83, 85, 87, 89, 90, 91, 93]. It includes qualitative universal approx-
imation, i.e., density, results as well as quantitative parameter complexity bounds,
that is, the number of NN parameters required to achieve accuracy \varepsilon . The paper
[93] reveals a ``curse of parametric complexity"" in which the parameter complexity is
shown to be exponentially large in powers of \varepsilon  - 1 to approximate general Lipschitz
continuous operators. This aligns with the findings of older work [106] and suggests
that efficient neural operator learning is not possible without further assumptions. It
turns out that the curse is lifted if enough regularity is assumed. For example, for
linear or holomorphic target operators, efficient algebraic approximation rates may be
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established [2, 69]. However, what rates are possible for sets of operators ``in between""
holomorphic and Lipschitz operators is still an open question.

One of the simplest classes of operators is that of linear operators. There is
a substantial body of work in this setting ranging from the learning of general lin-
ear operators [39, 76, 109, 136] to estimating the Green's function of specific linear
PDEs [62, 21, 23, 132] and Koopman operators [84]. The linear setting allows for
very thorough and sharp statistical analysis that leads to deep insights about the
data efficiency of operator learning in terms of problem structure [21, 39, 72]. Some
sample complexity results have been obtained for nonlinear functionals and operators,
which give the training dataset size needed to obtain \varepsilon accuracy. Most of this theory
depends on kernels, either in an RKHS framework [27, 92] or via local averaging (e.g.,
kernel smoothers) [53, 114]. Error bounds are obtained for encoder--decoder neural
operators such as DeepONet and PCA-Net in [99]. These results imply a ``curse of
sample complexity,"" i.e., exponentially large sample sizes, for learning Lipschitz op-
erators. Similar to the parameter complexity case, with enough regularity assumed
on the operators of interest, as expressed through weighted tensor product structure,
operator holomorphy, or analyticity, for example, minimax lower bounds can return
to better behaved algebraic rates in the sample size [3, 27, 73, 74]. Moreover, there
exist both constructive and nonconstructive estimators that achieve these algebraic
convergence rates for operator learning [2, 27, 92].

Random Features. The RFM as a mapping between finite-dimensional spaces
was formalized in the series of papers [122, 123, 124], building on earlier work in [11,
110, 147]. The RFM is in some sense the simplest possible machine learning model;
it may be viewed as an ensemble average of randomly parametrized functions: an
expansion in a randomized basis with trainable coefficients. The method of random
Fourier features is the most mainstream instantiation of the approach [122]. Here,
the RFM is used to approximate popular translation-invariant kernels by averages
of sinusoidal functions with random frequencies. This approximation is then used
downstream for kernel regression tasks [67]. An equivalent viewpoint is that the
RFM approximates the Gaussian process prior distribution in a Gaussian process
regression method [148]. However, the choice of random feature map can be much
more general than just random sines and cosines. These random features could be
defined, for example, by randomizing the internal parameters of an NN. Many papers
take this viewpoint [63, 105, 123, 124]. Compared to NN emulators with enormous
learnable parameter counts (e.g., O(105) to O(107); see [51, 52, 95]) and methods that
are intrusive or lead to nontrivial implementations [33, 94, 131], the RFM is one of
the simplest models to formulate and train. Often O(104) or fewer linear expansion
coefficients---which are the only free parameters in the RFM---suffice.

The theory of the RFM for real-valued outputs is well developed, partly due
to its close connection to kernel methods [7, 26, 75, 122, 146] and Gaussian pro-
cesses [110, 147], and it includes generalization bounds and dimension-free rates [92,
98, 48, 123, 129, 139, 140]. A quadrature viewpoint on the RFM provides further
insight and leads to Monte Carlo sampling ideas [7]. As in modern deep learning
practice, for some problem classes the RFM has been shown to perform well even
when overparametrized [14, 48, 105]. However, overparametrization is not neces-
sary for good performance; state-of-the-art fast rates are established in the under-
parametrized regime by [98, 129]. The paper [63] derives similar bounds for random
NN approximation of functionals with a random feature-based training strategy.

For the supervised operator learning setting in which inputs and outputs are both
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infinite-dimensional, kernel [27, 77] and Gaussian process methods [12]---and hence
random features---are less explored. The paper [115] performs nonlinear operator
learning in the encoder--decoder paradigm, where the input and output spaces are
represented by truncated orthonormal bases and the finite-dimensional coefficient-to-
coefficient mapping is performed with a kernel smoother. The kernel smoother is
then approximated with random Fourier features [122]. A similar idea uses a Gaus-
sian process perspective [12]. For high-dimensional input parameter spaces, the au-
thors of [65, 80] analyze nonparametric kernel regression for parametric PDEs with
real-valued solution map outputs. However, the preceding methods have poor com-
putational scalability w.r.t. data dimension and sample size. The RFM alleviates
these issues with randomization and efficient convex optimization. The specific ran-
dom Fourier feature approach of Rahimi and Recht [122] was generalized in [24] to the
finite-dimensional matrix-valued kernel setting with vector-valued random Fourier fea-
tures and to the operator-valued kernel setting in [108]. However, canonical operator-
valued kernels are hard to define and the preceding works require explicit knowledge
of these kernels. Our viewpoint in the current paper is to develop function-valued ran-
dom features and work directly with them as a standalone supervised learning method,
choosing them for their properties and noting that they implicitly define a kernel, but
not working directly with that kernel. An additional benefit of our approach is that it
avoids the nonconvex training routines that plague more sophisticated neural operator
architectures and, in particular, hinder the development of uncertainty quantification
and comprehensive complexity bounds. The key idea underlying our methodology is
to formulate the proposed operator random features algorithm on infinite-dimensional
space and only discretize it at implementation time. This philosophy in algorithm de-
velopment has been instructive in a number of areas in scientific computing, as we
describe next.

Other Continuum Algorithms. The general philosophy of designing algorithms
at the continuum level has been hugely successful across disciplines. In PDE-con-
strained optimization, there is the ``optimize-then-discretize"" principle [71]. In applied
probability, there are Markov chain Monte Carlo algorithms for sampling probability
distributions supported on function spaces [36]. The Bayesian formulation of inverse
problems on Banach spaces provides another example [138]. Work along similar lines
extends numerical linear algebra routines for finite-dimensional vectors and matrices
to new ones for infinite-dimensional functions and linear operators [144, 145]. All
such methods inherit certain dimension-independent properties that make them more
robust and possibly more accurate. Operator learning brings this powerful perspective
to machine learning, where it has been promoted as a way of designing and analyzing
learning algorithms [66, 47, 130, 44, 45]. Our work may be understood within this
general framework.

1.2. Contributions. Our primary contributions in this paper are now listed.
(C1) We develop the RFM, directly formulated on the function space level, for

learning nonlinear operators between Banach spaces purely from data. As a
method for parametric PDEs, the methodology is nonintrusive but also has
the additional advantage that it may be used in settings where only data is
available and no model is known.

(C2) We show that our proposed method is more computationally tractable to
both train and evaluate than standard kernel methods in infinite dimensions.
Furthermore, we show that the method is equivalent to kernel ridge regres-
sion performed in a finite-dimensional space spanned by random features and
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comes equipped with a full convergence theory.
(C3) We apply our operator learning methodology to learn the semigroup defined

by the solution operator for the viscous Burgers equation and the coefficient-
to-solution operator for the Darcy flow equation.

(C4) We perform numerical experiments that demonstrate two mesh-independent
approximation properties that are built into the proposed methodology: in-
variance of relative error to mesh resolution and evaluation ability on any
mesh resolution.

The remainder of this paper is structured as follows. In section 2, we communicate
the mathematical framework required to work with the RFM in infinite dimensions,
identify an appropriate approximation space, explain the training procedure, and
review recent error bounds for the method. We introduce two instantiations of random
feature maps that target physical science applications in section 3 and detail the
corresponding numerical results for these applications in section 4. We conclude in
section 5 with a summary and directions for future work.

2. Methodology. In this work, the overarching problem of interest is the ap-
proximation of a map F \dagger : \scrX \rightarrow \scrY , where \scrX and \scrY are infinite-dimensional spaces
of real-valued functions defined on some bounded open subset of \BbbR d, and F \dagger is de-
fined by a \mapsto \rightarrow F \dagger (a) := u, where u \in \scrY is the solution of a (possibly time-dependent)
PDE and a \in \scrX is an input function required to make the problem well-posed. Our
proposed approach for this approximation, constructing a surrogate map F for the
true map F \dagger , is data-driven, nonintrusive, and based on least squares. Least squares--
based methods are integral to the random feature methodology as proposed in low
dimensions [122, 123] and generalized here to the infinite-dimensional setting. They
have also been shown to work well in other algorithms for high-dimensional numeri-
cal approximation [18, 35, 42]. Within the broader scope of reduced order modeling
techniques [15], the approach we adopt in this paper falls within the class of data-fit
emulators. Essentially, our method approximates the solution manifold

\scrM =
\bigl\{ 
u \in \scrY : u = F \dagger (a) and a \in \scrX 

\bigr\} 
(2.1)

on average. The solution map F \dagger , often being the inverse of a differential opera-
tor, is usually smoothing and admits some notion of compactness. Then, the idea is
that \scrM should have some compact, low-dimensional structure or intrinsic dimension.
However, actually finding a model F that exploits this structure despite the high di-
mensionality of the truth map F \dagger is quite difficult. Further, the effectiveness of many
model reduction techniques, such as those based on the reduced basis method, are
dependent on inherent properties of the map F \dagger itself (e.g., analyticity), which in turn
may influence the decay rate of the Kolmogorov width of the manifold \scrM [34]. While
such subtleties of approximation theory are crucial to developing rigorous theory and
provably convergent algorithms [86], we choose to work in the nonintrusive setting
where knowledge of the map F \dagger and its associated PDE are only obtained through
measurement data, and hence detailed characterizations such as those mentioned pre-
viously are essentially unavailable. Thus, we emphasize that our proposed operator
learning methodology is applicable to general continuum problems with function space
data, not just to PDEs.

The remainder of this section introduces the mathematical preliminaries for our
methodology. With the goal of operator approximation in mind, in subsection 2.1
we formulate a supervised learning problem in an infinite-dimensional setting. We
provide the necessary background on RKHSs in subsection 2.2 and then define the
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RFM in subsection 2.3. In subsection 2.4, we describe the optimization principle that
leads to implementable algorithms for the RFM and an example problem in which
\scrX and \scrY are one-dimensional vector spaces. We finish by providing two convergence
results for trained function-valued RFMs in subsection 2.5.

2.1. Problem Formulation. Let \scrX and \scrY be real Banach spaces and F \dagger : \scrX \rightarrow 
\scrY be a (possibly nonlinear) map. It is natural to frame the approximation of F \dagger 

as a supervised learning problem. Suppose we are given training data in the form
of input-output pairs \{ (ai, yi)\} ni=1 \subset \scrX \times \scrY , where ai \sim \nu are independent and
identically distributed (i.i.d.), \nu is a probability measure supported on \scrX , and yi is

given by F \dagger (ai) \sim F \dagger 
\sharp \nu plus, potentially, noise. In the examples in this paper, the

noise is viewed as resulting from model error (the PDE does not perfectly represent the
physics) or from discretization error (in approximating the PDE); situations in which
the data acquisition process is inherently noisy can also be envisioned [92] but are not
explicitly studied here. We aim to build a parametric reconstruction of the true map
F \dagger from the data; that is, construct a model F : \scrX \times \scrP \rightarrow \scrY and find \alpha \dagger \in \scrP \subseteq \BbbR m

such that F ( \cdot , \alpha \dagger ) \approx F \dagger are close as maps from \scrX to \scrY in some suitable sense. The
natural number m here denotes the total number of model parameters.

The standard approach to determining parameters in supervised learning is to
define a loss functional \ell : \scrY \times \scrY \rightarrow \BbbR \geq 0 and minimize the expected risk,

min
\alpha \in \scrP 

\BbbE a\sim \nu 
\Bigl[ 
\ell 
\bigl( 
F \dagger (a), F (a, \alpha )

\bigr) \Bigr] 
.(2.2)

With only the data \{ (ai, yi)\} ni=1 at our disposal, we approximate problem (2.2) by re-
placing \nu with the empirical measure \nu (n) := 1

n

\sum n
i=1 \delta ai

, which leads to the empirical
risk minimization problem

min
\alpha \in \scrP 

1

n

n\sum 
i=1

\ell 
\bigl( 
yi, F (ai, \alpha )

\bigr) 
.(2.3)

The hope is that given minimizer \alpha (n) of (2.3) and \alpha \dagger of (2.2), F ( \cdot , \alpha (n)) well ap-
proximates F ( \cdot , \alpha \dagger ), that is, the learned model generalizes well; these ideas may be
made rigorous with results from statistical learning theory [68]. Solving problem (2.3)
is called training the model F . Once trained, the model is then validated on a new
set of i.i.d. input-output pairs previously unseen during the training process. This
testing phase indicates how well F approximates F \dagger . In what follows, we assume that
(\scrY , \langle \cdot , \cdot \rangle \scrY , \| \cdot \| \scrY ) is a real separable Hilbert space and focus on the squared loss

\ell (y, y\prime ) :=
1

2
\| y  - y\prime \| 2\scrY .(2.4)

We stress that our entire formulation is in an infinite-dimensional setting and we will
remain in this setting throughout the paper; as such, the random feature methodology
we propose will inherit desirable discretization-invariant properties, to be observed in
the numerical experiments of section 4.

Notation 2.1 (expectation). For a Borel measurable map G : \scrU \rightarrow \scrV between two
Banach spaces \scrU and \scrV and a probability measure \pi supported on \scrU , we denote the
expectation of G under \pi by

\BbbE u\sim \pi 
\bigl[ 
G(u)

\bigr] 
=

\int 
\scrU 
G(u)\pi (du) \in \scrV (2.5)

in the sense of Bochner integration (see, e.g., [38, sect. A.2]).
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2.2. Operator-Valued Reproducing Kernels. The RFM is naturally formulated
in an RKHS setting, as our exposition will demonstrate in subsection 2.3. However,
the usual RKHS theory is concerned with real-valued functions [5, 16, 37, 146]. Our
setting, with the output space \scrY a separable Hilbert space, requires several ideas
that generalize the real-valued case. We now outline these ideas with a review of
operator-valued kernels; parts of the presentation that follow may be found in the
references [7, 28, 107, 112].

We first consider the special case \scrY := \BbbR for ease of exposition. A real RKHS
is a Hilbert space (\scrH , \langle \cdot , \cdot \rangle \scrH , \| \cdot \| \scrH ) comprising real-valued functions f : \scrX \rightarrow \BbbR such
that the pointwise evaluation functional f \mapsto \rightarrow f(a) is bounded for every a \in \scrX . It
then follows that there exists a unique, symmetric, positive definite kernel function
k : \scrX \times \scrX \rightarrow \BbbR such that for every a \in \scrX , we have k(\cdot , a) \in \scrH and the reproducing
kernel property f(a) = \langle k(\cdot , a), f\rangle \scrH holds. These two properties are often taken as the
definition of an RKHS. The converse direction is also true: every symmetric, positive
definite kernel defines a unique RKHS [5].

We now introduce the necessary generalization of the reproducing property to the
case of arbitrary real Hilbert spaces \scrY , as this result will motivate the construction
of the RFM. Kernels in this setting are now operator-valued.

Definition 2.2 (operator-valued kernel). Let \scrX be a real Banach space and \scrY a
real separable Hilbert space. An operator-valued kernel is a map

k : \scrX \times \scrX \rightarrow \scrL (\scrY ) ,(2.6)

where \scrL (\scrY ) denotes the Banach space of all bounded linear operators on \scrY , such that
its adjoint satisfies k(a, a\prime )\ast = k(a\prime , a) for all a and a\prime in \scrX and, for every N \in \BbbN ,

N\sum 
i=1

N\sum 
j=1

\bigl\langle 
yi, k(ai, aj)yj

\bigr\rangle 
\scrY \geq 0(2.7)

for all pairs \{ (ai, yi)\} Ni=1 \subset \scrX \times \scrY .

Paralleling the development for the real-valued case, an operator-valued kernel
k also uniquely (up to isomorphism) determines an associated real RKHS \scrH k =
\scrH k(\scrX ;\scrY ) of operators mapping \scrX to \scrY . Now, choosing a probability measure \nu 
supported on \scrX , we define a kernel integral operator Tk associated to k by

Tk : L
2
\nu (\scrX ;\scrY ) \rightarrow L2

\nu (\scrX ;\scrY ) ,

F \mapsto \rightarrow TkF := \BbbE a\prime \sim \nu 
\bigl[ 
k(\cdot , a\prime )F (a\prime )

\bigr] 
,

(2.8)

which is nonnegative, self-adjoint, and compact (provided k(a, a) \in \scrL (\scrY ) is compact

for all a \in \scrX [28]). Let us further assume that all conditions needed for T
1/2
k to be

an isometry from L2
\nu into \scrH k are satisfied, i.e., \scrH k = im(T

1/2
k ). Generalizing the

standard Mercer theory (see, e.g., [7, 16]), we may write the RKHS inner product as

\langle F,G\rangle \scrH k
= \langle F, T - 1

k G\rangle L2
\nu 

for all F \in \scrH k and G \in \scrH k .(2.9)

Note that while (2.9) appears to depend on the measure \nu on \scrX , the set \scrH k itself is
determined by the kernel without any reference to a measure [37, Chap. 3, Thm. 4].
With the inner product now explicit, it is possible to deduce the following reproducing
property of the operator-valued kernel k [111, sect. 2.2].
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Result 2.3 (reproducing property for operator-valued kernels). Let F \in \scrH k be
given. For every a \in \scrX and y \in \scrY , it holds that

\langle y, F (a)\rangle \scrY = \langle k(\cdot , a)y, F \rangle \scrH k
.(2.10)

The identity (2.10), paired with a special choice of operator-valued kernel k, is
the basis of the RFM in our abstract infinite-dimensional setting.

2.3. Random Feature Model. One could approach the approximation of target
map F \dagger : \scrX \rightarrow \scrY from the perspective of kernel methods. However, it is generally a
difficult task to explicitly design operator-valued kernels of the form (2.6) since the
spaces \scrX and \scrY may be of different regularity, for example. Example constructions of
operator-valued kernels studied in the literature include those taking value as diago-
nal operators, multiplication operators, or composition operators [77, 107, 116], but
these all involve some simple generalization of scalar-valued kernels or strong assump-
tions about \scrY . Instead, the RFM allows one to implicitly work with fully general
operator-valued kernels through the use of a random feature map \varphi : \scrX \times \Theta \rightarrow \scrY and
a probability measure \mu supported on Banach space \Theta . The map \varphi is assumed to be
square integrable w.r.t. the product measure \nu \times \mu , i.e., \varphi \in L2

\nu \times \mu (\scrX \times \Theta ;\scrY ), where
\nu is the (sometimes a modeling choice at our discretion, sometimes unknown) data
distribution on \scrX . Together, (\varphi , \mu ) form a random feature pair. With this setup in
place, we now describe the connection between random features and kernels. To this
end, recall the following standard notation.

Notation 2.4 (outer product). Given a Hilbert space (H, \langle \cdot , \cdot \rangle , \| \cdot \| ), the outer
product a\otimes b \in \scrL (H) is defined by (a\otimes b)c = \langle b, c\rangle a for any a, b, and c \in H.

2.3.1. An Intractable Nonparametric Model Class. Given the pair (\varphi , \mu ), we
begin by considering maps k\mu : \scrX \times \scrX \rightarrow \scrL (\scrY ) of the form

k\mu (a, a
\prime ) := \BbbE \theta \sim \mu 

\bigl[ 
\varphi (a; \theta )\otimes \varphi (a\prime ; \theta )

\bigr] 
.(2.11)

Such representations need not be unique; different pairs (\varphi , \mu ) may induce the same
kernel k = k\mu in (2.11). Since k\mu may readily be shown to be an operator-valued kernel
via Definition 2.2, it defines a unique real RKHS \scrH k\mu \subset L2

\nu (\scrX ;\scrY ). Our methodol-
ogy will be based on this space and, in particular, finite-dimensional approximations
thereof.

We now perform a purely formal but instructive calculation, following from appli-
cation of the reproducing property (2.10) to operator-valued kernels of the form (2.11).
Doing so leads to an integral representation of any F \in \scrH k\mu 

. For all a \in \scrX and y \in \scrY ,
it holds that

\langle y, F (a)\rangle \scrY = \langle k\mu (\cdot , a)y, F \rangle \scrH k\mu 
=
\Bigl\langle 
\BbbE \theta \sim \mu 

\bigl[ 
\langle \varphi (a; \theta ), y\rangle \scrY \varphi ( \cdot ; \theta )

\bigr] 
, F
\Bigr\rangle 
\scrH k\mu 

= \BbbE \theta \sim \mu 
\Bigl[ 
\langle \varphi (a; \theta ), y\rangle \scrY \langle \varphi ( \cdot ; \theta ), F \rangle \scrH k\mu 

\Bigr] 
= \BbbE \theta \sim \mu 

\bigl[ 
cF (\theta )\langle y, \varphi (a; \theta )\rangle \scrY 

\bigr] 
=
\Bigl\langle 
y,\BbbE \theta \sim \mu 

\bigl[ 
cF (\theta )\varphi (a; \theta )

\bigr] \Bigr\rangle 
\scrY 
,

where the coefficient function cF : \Theta \rightarrow \BbbR is defined by

\theta \mapsto \rightarrow cF (\theta ) := \langle \varphi ( \cdot ; \theta ), F \rangle \scrH k\mu 
.(2.12)
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Since \scrY is Hilbert, the above holding for all y \in \scrY implies the integral representation

F = \BbbE \theta \sim \mu 
\bigl[ 
cF (\theta )\varphi ( \cdot ; \theta )

\bigr] 
.(2.13)

The formal expression (2.12) for cF (\theta ) needs careful interpretation, which is pro-
vided in [111, App. B] of the original version of this paper. For instance, if \varphi ( \cdot ; \theta )
is chosen to be a realization of a Gaussian process (as seen later in Example 2.9),
then \varphi ( \cdot ; \theta ) /\in \scrH k\mu 

with probability 1; indeed, in this case cF is defined only as
an L2

\mu (\Theta ;\BbbR ) limit. Nonetheless, the RKHS may be completely characterized by this
integral representation. Define the map

\scrA : L2
\mu (\Theta ;\BbbR ) \rightarrow L2

\nu (\scrX ;\scrY ) ,

c \mapsto \rightarrow \scrA c := \BbbE \theta \sim \mu 
\bigl[ 
c(\theta )\varphi ( \cdot ; \theta )

\bigr] 
.

(2.14)

The map \scrA may be shown to be a bounded linear operator that is a particular square
root of Tk\mu 

from (2.8) [111, App. B]. We have the following result whose proof,
provided in the original version of this paper [111, App. A], is a straightforward
generalization of the real-valued case given in [7, sect. 2.2].

Result 2.5 (infinite-dimensional RKHS). Under the assumption that the feature
map \varphi satisfies \varphi \in L2

\nu \times \mu (\scrX \times \Theta ;\scrY ), the RKHS defined by the kernel k\mu in (2.11) is

\scrH k\mu 
= im(\scrA ) =

\biggl\{ 
\BbbE \theta \sim \mu 

\bigl[ 
c(\theta )\varphi ( \cdot ; \theta )

\bigr] 
: c \in L2

\mu (\Theta ;\BbbR )
\biggr\} 
.(2.15)

We stress that the integral representation of mappings in RKHS (2.15) is not
unique, since\scrA is not injective in general. However, the particular choice c = cF (2.12)
in representation (2.13) does enjoy a sense of uniqueness as described in [111, App. B].
In particular, the L2

\mu (\Theta ;\BbbR ) norm of cF equals the \scrH k\mu 
norm of F . The formula (2.15)

suggests that \scrH k\mu 
, which is built from (\varphi , \mu ) and completely determined by coefficient

functionals c \in L2
\mu (\Theta ;\BbbR ), is a natural nonparametric class of operators with which to

perform approximation. However, the actual implementation of estimators based on
the model class \scrH k\mu 

is known to incur enormous computational cost without further
assumptions on the structure of (\varphi , \mu ), as we discuss later in this section. Instead, we
next adopt a parametric approximation to this full RKHS approach.

2.3.2. A Tractable Parametric Model Class. A central role in what follows is
the approximation of measure \mu by the empirical measure

\mu (m) :=
1

m

m\sum 
j=1

\delta \theta j , where \theta j
iid\sim \mu .(2.16)

Given (2.16), define k(m) := k\mu (m) to be the empirical approximation to k\mu , that is,

k(m)(a, a\prime ) = \BbbE \theta \sim \mu (m)\bigl[ 
\varphi (a; \theta )\otimes \varphi (a\prime ; \theta )

\bigr] 
=

1

m

m\sum 
j=1

\varphi (a; \theta j)\otimes \varphi (a\prime ; \theta j) .(2.17)

We then let \scrH k(m) be the unique RKHS induced by the kernel k(m); note that k(m)

and hence \scrH k(m) are themselves random. The following characterization of \scrH k(m) is
proved in the original version of this paper [111, App. A].
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Result 2.6 (finite-dimensional RKHS). Assume that \varphi \in L2
\nu \times \mu (\scrX \times \Theta ;\scrY ) and

that the random features \{ \varphi ( \cdot ; \theta j)\} mj=1 are linearly independent in L2
\nu (\scrX ;\scrY ). Then

the RKHS \scrH k(m) is equal to the linear span of \{ \varphi ( \cdot ; \theta j)\} mj=1.

Applying a simple Monte Carlo sampling approach to elements in RKHS (2.15)
by replacing probability measure \mu by empirical measure \mu (m) gives the intuition that

1

m

m\sum 
j=1

c(\theta j)\varphi ( \cdot ; \theta j) \approx \BbbE \theta \sim \mu 
\bigl[ 
c(\theta )\varphi ( \cdot ; \theta )

\bigr] 
for c \in L2

\mu (\Theta ;\BbbR ) .(2.18)

This low-rank approximation achieves the Monte Carlo rate O(m - 1/2) in expectation
and, by virtue of Result 2.6, is in \scrH k(m) . However, in the setting of this work, the
Monte Carlo approach does not give rise to a practical method for learning a target
map F \dagger \in \scrH k\mu because F \dagger , k\mu , and \scrH k\mu are all unknown; only the random feature
pair (\varphi , \mu ) is assumed to be given. Hence one cannot apply (2.12) or [111, eq. (B.2),
p. A3239] to evaluate c = cF \dagger in (2.18). Furthermore, in realistic settings it may
be that F \dagger \not \in \scrH k\mu 

, which leads to an additional smoothness misspecification gap not
accounted for by the Monte Carlo method. To sidestep these difficulties, the RFM
adopts a data-driven optimization approach to determine a different estimator of F \dagger ,
also from the space \scrH k(m) . We now define the RFM.

Definition 2.7 (RFM). Given probability spaces (\scrX ,\scrB (\scrX ), \nu ) and (\Theta ,\scrB (\Theta ), \mu ),
with \scrX and \Theta being real finite- or infinite-dimensional Banach spaces, a real separable
Hilbert space \scrY , and \varphi \in L2

\nu \times \mu (\scrX \times \Theta ;\scrY ), the RFM is the parametric map

Fm : \scrX \times \BbbR m \rightarrow \scrY ,

(a;\alpha ) \mapsto \rightarrow Fm(a;\alpha ) :=
1

m

m\sum 
j=1

\alpha j\varphi (a; \theta j) , where \theta j
iid\sim \mu .

(2.19)

We use the Borel \sigma -algebras \scrB (\scrX ) and \scrB (\Theta ) to define the probability spaces
in the preceding definition. Our goal with the RFM is to choose parameters \alpha \in 
\BbbR m to approximate mappings F \dagger \in \scrH k\mu 

(in the well-specified setting) by mappings
Fm(\cdot ;\alpha ) \in \scrH k(m) . The RFM is itself random and may be viewed as a spectral method
because the randomized family \{ \varphi ( \cdot ; \theta )\} in the linear expansion (2.19) is defined \nu -
almost everywhere on \scrX . Determining the coefficient vector \alpha from data obviates
the difficulties associated with the oracle Monte Carlo approach because the data-
driven method only requires knowledge of the pair (\varphi , \mu ) and knowledge of sample
input-output pairs from target operator F \dagger .

As written, (2.19) is incredibly simple. The operator Fm is nonlinear in its input
a but linear in its coefficient parameters \alpha . In practice, the linearity w.r.t. the RFM
parameters is broken by also learning hyperparameters that appear in the pair (\varphi , \mu ).
Moreover, similar to operator learning architectures such as neural operators [87] and
Fourier neural operators [96], the RFM is a nonlinear approximation. This means
that the output Fm(a;\alpha ) of the RFM belongs to a nonlinear manifold in \scrY (cf. (2.1))
instead of a fixed linear subspace of \scrY . In contrast, methods such as PCA-Net [19]
and DeepONet [101] are restricted to such fixed linear spaces, which may limit their
approximation power for specific classes of problems. More theory is required to
quantitatively separate these two classes of approximation method.

Overall, it is clear that the choice of random feature map and measure pair (\varphi , \mu )
will determine the quality of approximation. Most papers deploying these methods,
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including [24, 122, 123], take a kernel-oriented perspective by first choosing a kernel
and then finding a random feature map to estimate this kernel. Our perspective,
more aligned with [124, 140], is the opposite in that we allow the choice of random
feature map \varphi and distribution \mu to implicitly define the kernel via the formula (2.11),
instead of picking the kernel first. This viewpoint also has implications for numerics:
the kernel never explicitly appears in any computations, which leads to memory and
other cost savings. It does, however, leave open the question of characterizing the
universality [140] of such kernels and the RKHS \scrH k\mu 

of mappings from \scrX to \scrY that
underlies the approximation method; this is an important avenue for future work.

2.3.3. Connection to Neural Networks and Neural Operators. The close con-
nection to kernels explains the origins of the RFM in the machine learning literature.
Moreover, the RFM may also be interpreted in the context of NNs [110, 140, 147, 151].
To see this explicitly, consider the setting in which \scrX and \scrY are both equal to
the Euclidean space \BbbR and choose \varphi to be a family of hidden neurons of the form
\varphi NN(a; \theta ) := \sigma (\theta (1) \cdot a+ \theta (2)), where \sigma ( \cdot ) is a nonlinear activation function. A single
hidden layer NN would seek to find \{ (\alpha j , \theta j)\} mj=1 \subset \BbbR \times \BbbR 2 such that

1

m

m\sum 
j=1

\alpha j\varphi NN( \cdot ; \theta j)(2.20)

matches the given training data \{ (ai, yi)\} ni=1 \subset \scrX \times \scrY . More generally, and in arbitrary
Euclidean spaces, one may allow \varphi NN( \cdot ; \theta ) to be any deep NN. However, while the
RFM has the same form as (2.20), there is a difference in the training : the \theta j are
drawn i.i.d. from a probability measure and then fixed, and only the \alpha j are chosen to
fit the training data. This idea immediately transfers to the operator learning setting
in which \scrX and \scrY are function spaces and the maps \varphi NN( \cdot ; \theta ) are themselves randomly
initialized deep neural operators or DeepONets. Given any deep NN with randomly
initialized parameters, studies of the lazy training regime and neural tangent kernel
[26, 75] suggest that adopting an RFM approach and only optimizing over the last
layer weights \alpha is quite natural. Indeed, it is observed that in this regime the internal
NN parameters do not stray far from their random initialization during gradient
descent, while the last layer of parameters \{ \alpha j\} mj=1 adapts considerably.

Once the feature parameters \{ \theta j\} mj=1 are sampled at random and fixed, training
the RFM Fm only requires optimizing over \alpha \in \BbbR m. Due to the linearity of Fm in \alpha ,
this is a straightforward task that we now describe.

2.4. Optimization. One of the most attractive characteristics of the RFM is its
training procedure. With the L2-type loss (2.4) as in standard regression settings,
optimizing the coefficients of the RFM w.r.t. the empirical risk (2.3) is a convex opti-
mization problem, requiring only the solution of a finite-dimensional system of linear
equations; the convexity also suggests the possibility of appending convex constraints
(such as linear inequalities), although we do not pursue this here. Further, the kernels
k\mu or k(m) are not required anywhere in the algorithm. We emphasize the simplicity of
the underlying optimization tasks as they suggest the possibility of numerical imple-
mentation of the RFM in complicated black-box computer codes. This is in contrast
with other methods such as deep neural operators, which are trained with variants
of stochastic gradient descent. Such a training strategy leads to nonconvexity that is
notoriously difficult to study, both computationally and theoretically.

We now show that a regularized version of the quadratic optimization prob-
lem (2.3)--(2.4) arises naturally from approximation of a nonparametric regression
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problem defined over the RKHS \scrH k\mu . To this end, recall the supervised learning for-
mulation in subsection 2.1. Given n i.i.d. input-output pairs \{ (ai, yi)\} ni=1 \subset \scrX \times \scrY 
as data, with the ai drawn from (possibly unknown) probability measure \nu on \scrX 
and yi = F \dagger (ai), the objective is to find an approximation \widehat F to the map F \dagger . Let
\scrH k\mu be the hypothesis space and k\mu its operator-valued reproducing kernel of the
form (2.11). The most straightforward learning algorithm in this RKHS setting is
kernel ridge regression, also known as penalized least squares. This method produces
a nonparametric model by finding a minimizer \widehat F of

min
F\in \scrH k\mu 

\Biggl\{ 
n\sum 

i=1

1

2

\bigm\| \bigm\| yi  - F (ai)
\bigm\| \bigm\| 2
\scrY +

\lambda 

2

\bigm\| \bigm\| F\bigm\| \bigm\| 2\scrH k\mu 

\Biggr\} 
,(2.21)

where \lambda \geq 0 is a penalty parameter. By the representer theorem for operator-valued
kernels [107, Thms. 2 and 4], the minimizer has the form

\widehat F =

n\sum 
i=1

k\mu (\cdot , ai)\beta i(2.22)

for some functions \{ \beta i\} ni=1 \subset \scrY . In practice, finding these n functions in the output
space requires solving a block linear operator equation. For the high-dimensional PDE
problems we consider in this work, solving such an equation may become prohibitively
expensive due to both operation count and memory required. A few workarounds
were proposed in [77] such as certain diagonalizations, but these rely on simplifying
assumptions that are somewhat limiting. More fundamentally, the representation of
the solution in (2.22) requires knowledge of the kernel k\mu ; in our setting we assume
access only to the random feature pair (\varphi , \mu ), which defines k\mu and not k\mu itself.

We thus explain how to make progress with this problem given knowledge only
of random features. Recall the empirical kernel given by (2.17), the RKHS \scrH k(m) ,
and Result 2.6. The following result, proved in [111, App. A], shows that an RFM
hypothesis class with a penalized least squares empirical loss function in optimization
problem (2.3)--(2.4) is equivalent to kernel ridge regression (2.21) restricted to \scrH k(m) .

Result 2.8 (random feature ridge regression is equivalent to a kernel method).
Assume that \varphi \in L2

\nu \times \mu (\scrX \times \Theta ;\scrY ) and that the random features \{ \varphi ( \cdot ; \theta j)\} mj=1 are

linearly independent in L2
\nu (\scrX ;\scrY ). Fix \lambda \geq 0. Let \widehat \alpha \in \BbbR m be the unique minimum

norm solution of

min
\alpha \in \BbbR m

\Biggl\{ 
n\sum 

i=1

1

2

\bigm\| \bigm\| \bigm\| \bigm\| yi  - 1

m

m\sum 
l=1

\alpha l\varphi (ai; \theta l)

\bigm\| \bigm\| \bigm\| \bigm\| 2
\scrY 
+

\lambda 

2m
\| \alpha \| 22

\Biggr\} 
.(2.23)

Then the RFM defined by this choice of \alpha = \widehat \alpha satisfies

Fm( \cdot ; \widehat \alpha ) = argmin
F\in \scrH 

k(m)

\Biggl\{ 
n\sum 

i=1

1

2

\bigm\| \bigm\| yi  - F (ai)
\bigm\| \bigm\| 2
\scrY +

\lambda 

2

\bigm\| \bigm\| F\bigm\| \bigm\| 2\scrH 
k(m)

\Biggr\} 
.(2.24)

Solving the convex problem (2.23) trains the RFM. The first order condition for
a global minimizer leads to the normal equations

m\sum 
j=1

\Biggl( 
1

m

n\sum 
i=1

\bigl\langle 
\varphi (ai; \theta l), \varphi (ai; \theta j)

\bigr\rangle 
\scrY + \lambda \delta lj

\Biggr) 
\alpha j =

n\sum 
i=1

\bigl\langle 
\varphi (ai; \theta l), yi

\bigr\rangle 
\scrY (2.25)
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for each l \in \{ 1, . . . ,m\} , where \delta lj = 1 if l = j, and equals zero otherwise. This
is an m-by-m linear system of equations for \alpha \in \BbbR m that is standard to solve. In
the case \lambda = 0, the minimum norm solution of (2.25) may be written in terms of a
pseudoinverse operator (see [102, sect. 6.11]).

Equation (2.25) reveals that the trained RFM Fm( \cdot ; \widehat \alpha ) is a linear function of
the labeled output data \{ yi\} ni=1. This property is undesirable from the perspective of
statistical optimality. Indeed, it is known that any estimator that is linear in the out-
put training data is minimax suboptimal for certain classes of problems [141, Thm. 1,
sect. 4.1, p. 6]. However, any adaptation of the feature pair (\varphi , \mu ) to the training data
will break this property and potentially restore optimality. For example, choosing \lambda 
or hyperparameters appearing in (\varphi , \mu ) based on a cross-validation procedure would
make the RF pair data-dependent as desired. This is typically done in practice.

Example 2.9 (Brownian bridge). We now provide a one-dimensional instantiation
of the RFM to illustrate the methodology. Take the input space as \scrX := (0, 1), output
space as \scrY := \BbbR , input space measure \nu := \sansU \sansn \sansi \sansf (0, 1) to be uniform, and random
parameter space as \Theta := \BbbR \infty . Denote the input by a = x \in \scrX . Then, consider the
random feature map \varphi : (0, 1)\times \BbbR \infty \rightarrow \BbbR defined by the Brownian bridge

\varphi (x; \theta ) :=

\infty \sum 
j=1

\theta (j)(j\pi ) - 1
\surd 
2 sin(j\pi x) , where \theta (j)

iid\sim N(0, 1) ,(2.26)

where \theta := \{ \theta (j)\} j\in \BbbN and \mu := N(0, 1) \times N(0, 1) \times \cdot \cdot \cdot . For any realization of \theta \sim \mu ,
the function \varphi ( \cdot ; \theta ) is a Brownian motion constrained to zero at x = 0 and x = 1.
The induced kernel k\mu : (0, 1) \times (0, 1) \rightarrow \BbbR is then simply the covariance function of
this stochastic process:

k\mu (x, x
\prime ) = \BbbE \theta \sim \mu 

\bigl[ 
\varphi (x; \theta )\varphi (x\prime ; \theta )

\bigr] 
= min\{ x, x\prime \}  - xx\prime .(2.27)

Note that k\mu is the Green's function for the negative Laplacian on (0, 1) with Dirichlet
boundary conditions. Using this fact, we may explicitly characterize the associated
RKHS \scrH k\mu 

as follows. First, we have

Tk\mu f =

\int 1

0

k\mu (\cdot , y)f(y) dy =

\biggl( 
 - d2

dx2

\biggr)  - 1

f ,(2.28)

where the negative Laplacian has domain H2((0, 1);\BbbR ) \cap H1
0 ((0, 1);\BbbR ). Viewing Tk\mu 

as an operator from L2((0, 1);\BbbR ) into itself, from (2.9) we conclude, upon integration
by parts, that for any elements f and g of \scrH k\mu 

, it holds that

\langle f, g\rangle \scrH k\mu 
= \langle f, T - 1

k\mu 
g\rangle L2 =

\biggl\langle 
df

dx
,
dg

dx

\biggr\rangle 
L2

= \langle f, g\rangle H1
0
.(2.29)

Note that the last identity does indeed define an inner product on H1
0 . By this formal

argument we identify the RKHS \scrH k\mu 
as the Sobolev space H1

0 ((0, 1);\BbbR ). Further-
more, the Brownian bridge may be viewed as the Gaussian measure N(0, Tk\mu 

). Ap-
proximation using the RFM with the Brownian bridge random features is illustrated
in Figure 1. Since k\mu (\cdot , x) is a piecewise linear function, a kernel interpolation or
regression method will produce a piecewise linear approximation. Indeed, the figure
indicates that the RFM with n training points fixed approaches the optimal piecewise
linear kernel interpolant as m\rightarrow \infty .
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(a) m = 50
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(b) m = 500
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(c) m = 5000
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(d) m = \infty 

Fig. 1. Brownian bridge RFM for one-dimensional input-output spaces with n = 32 training
points fixed and \lambda = 0 (Example 2.9): As m \rightarrow \infty , the RFM approaches the nonparametric inter-
polant given by the representer theorem (d), which in this case is a piecewise linear approximation
of the true function (an element of RKHS \scrH k\mu = H1

0 , shown in red). Blue lines denote the trained
model evaluated on test data points, and black circles denote evaluation at training points.

The Brownian bridge in Example 2.9 illuminates a more fundamental idea. For
this low-dimensional problem, an expansion in a deterministic Fourier sine basis would
of course be more natural. However, if we do not have a natural, computable orthonor-
mal basis, then randomness provides a useful alternative representation; notice that
the random features each include random combinations of the deterministic Fourier
sine basis in this example. For the more complex problems that we study numerically
in the next two sections, we lack knowledge of good, computable bases for general
maps in infinite dimensions. The RFM approach exploits randomness to explore, im-
plicitly discover the structure of, and represent such maps. Thus we now turn away
from this example of real-valued maps defined on a subset of the real line and instead
consider the use of random features to represent maps between spaces of functions.
It turns out that theoretical guarantees are still possible to obtain in this setting.

2.5. Error Bounds. In this subsection, we review a recent comprehensive error
analysis [92] of the random feature ridge regression problem (2.24) in the general
infinite-dimensional input and output space setting. This is the sharpest available
theory for misspecified problems. Owing to its tractable optimization, the RFM
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is one of the first guaranteed convergent operator learning algorithms for nonlinear
problems that is actually implementable on a computer with controlled complexity.
To see this more concretely, we require the following technical assumptions.

Assumption 2.10 (data and features). The following hold true:
(i) The ground truth operator F \dagger satisfies F \dagger \in L\infty 

\nu (\scrX ;\scrY ).

(ii) The noise-free training data are given by ai
iid\sim \nu and yi = F \dagger (ai) for each i.

(iii) The random feature map \varphi \in L\infty 
\nu \times \mu (\scrX \times \Theta ;\scrY ) is measurable and bounded.

(iv) The RKHS \scrH k\mu 
corresponding to the pair (\varphi , \mu ) is separable.

Our first convergence result is qualitative and follows from [92, Thm. 3.10, p. 6],
which itself is a consequence of a more general error estimate [92, Thm. 3.4, pp. 4--5].1

Theorem 2.11 (almost sure convergence of trained RFM). Let Assumption 2.10
hold. Suppose that the integral operator Tk\mu 

\in \scrL (L2
\nu (\scrX ;\scrY )) in (2.8) is injective. Let

\{ \delta l\} l\in \BbbN \subset (0, 1) be any positive sequence with the property that
\sum \infty 

l=1 \delta l < \infty . For
l \in \BbbN , denote by \widehat \alpha (l) \in \BbbR ml the trained RFM coefficients corresponding to (2.23)
with m = ml random features, n = nl training samples, and regularization parameter
\lambda = \lambda l. If

ml \simeq \delta  - 1
l log(2/\delta l) , nl \simeq \delta  - 2

l log(2/\delta l) , and \lambda l \simeq ml ,(2.30)

then the trained RFM satisfies

\BbbP 
\biggl\{ 
lim
l\rightarrow \infty 

\BbbE a\sim \nu 
\bigm\| \bigm\| F \dagger (a) - Fml

(a; \widehat \alpha (l))
\bigm\| \bigm\| 2
\scrY = 0

\biggr\} 
= 1 .(2.31)

The probability in (2.31) is w.r.t. the joint law of the data \{ ai\} ni=1 \sim \nu \otimes n and
the feature parameters \{ \theta j\} Mj=1 \sim \mu \otimes m. Going beyond the existence of an accurate

approximation to F \dagger , Theorem 2.11 shows that the random feature ridge regression
algorithm delivers a strongly consistent statistical estimator of F \dagger in the limit of
large m, n, and \lambda . That is, the trained RFM that one actually obtains in practice
converges (along a subsequence w.r.t. n) to the true underlying operator F \dagger with
probability 1. The three quantities m, n, and \lambda are linked via a summable sequence
\{ \delta l\} , which determines how they are simultaneously sent to infinity. The conditions
of the theorem are satisfied with \delta l = l - 2 \rightarrow 0, for example.

The next theorem delivers a high probability nonasymptotic error bound that
includes both parameter and sample complexity contributions that depend only alge-
braically on the reciprocal of the error, instead of exponentially [86, sect. 5]. It is a
consequence of [92, Thm. 3.7, p. 5] and controls sources of error due to regularization,
finite parametrization, finite data, and optimization.

Theorem 2.12 (complexity bounds for trained RFM). Let \varepsilon \in (0, 1) be an arbi-
trary error tolerance. Let \widehat \alpha \in \BbbR m denote the trained RFM coefficients from (2.23)
with training sample size n \in \BbbN and regularization parameter \lambda \in (0, n). Suppose that
F \dagger belongs to the RKHS \scrH k\mu corresponding to the random feature pair (\varphi , \mu ). Under
Assumption 2.10, there exists an absolute constant C > 0 such that if

m \geq 11\varepsilon  - 2 , n \geq 10\varepsilon  - 4 , and \lambda \leq 10\varepsilon  - 2 ,(2.32)

1The regularization parameter \lambda in Theorem 2.11 and subsection 2.4 is equal to n times the
regularization parameter that is discussed in [92], which is also denoted by the same symbol.
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then the trained RFM Fm( \cdot ; \widehat \alpha ) satisfies the high probability L2
\nu (\scrX ;\scrY ) error bound

\BbbP 
\biggl\{ \sqrt{} 

\BbbE a\sim \nu 
\bigm\| \bigm\| F \dagger (a) - Fm(a; \widehat \alpha )\bigm\| \bigm\| 2\scrY \leq 

\bigl( 
C\| F \dagger \| \scrH k\mu 

\bigr) 
\varepsilon 

\biggr\} 
\geq 0.999 .(2.33)

The takeaway from Theorem 2.12 is that, up to constant factors, an appropriately
tuned regularization parameter \lambda \simeq \surd 

n and number of random features m \simeq \surd 
n

are enough to guarantee a trained RFM generalization error of size n - 1/4 \simeq m - 1/2

with high probability. However, this quantitative result is dependent on the well-
specified condition F \dagger \in \scrH k\mu , which is quite difficult to verify in practice. It would
be interesting to identify concrete operators of interest that actually belong to such
RKHSs. Similar questions are also open for the Barron [46] and operator Barron
spaces [83] that correspond to NN models instead of RFMs.

The parameter complexity bound m \gtrsim \varepsilon  - 2 in (2.32) corresponds to the standard
``Monte Carlo"" parametric rate of estimation. Due to the i.i.d. sampling in Defini-
tion 2.7 of the RFM, we expect this parametric rate to be sharp. However, the sample
complexity bound n \gtrsim \varepsilon  - 4 from (2.32) is likely not sharp for fixed F \dagger . Indeed, it is
a worst case bound [27] that presumably can be improved to n \gtrsim \varepsilon  - (2+\delta ) for some
small \delta > 0 under stronger assumptions; see, e.g., [129] in the \scrY = \BbbR setting. Such
``fast rates"" are empirically observable in numerical experiments. We remark that the
constants in Theorem 2.12 were not optimized and could be improved. Additional
refinements to Theorems 2.11 and 2.12 that account for discretization error, noisy
output data, and smoothness misspecification may be found in [92, sect. 3].

3. Application to PDE Solution Operators. In this section, we design the ran-
dom feature maps \varphi : \scrX \times \Theta \rightarrow \scrY and measures \mu for the RFM approximation of
two particular PDE parameter-to-solution maps: the evolution semigroup of the vis-
cous Burgers equation in subsection 3.1 and the coefficient-to-solution operator for
the Darcy problem in subsection 3.2. It is well known to kernel method practitioners
that the choice of kernel (which in this work follows from the choice of (\varphi , \mu )) plays a
central role in the quality of the function reconstruction. While our method is purely
data-driven and requires no knowledge of the governing PDE, we take the view that
any prior knowledge can, and should, be introduced into the design of (\varphi , \mu ). How-
ever, the question of how to automatically determine good random feature pairs for
a particular problem or dataset, inducing data-adapted kernels, is open. The maps
\varphi that we choose to employ are nonlinear in both arguments. We also detail the
probability measure \nu on the input space \scrX for both of the PDE applications; this
choice is crucial because while we desire the trained RFM to transfer to arbitrary
out-of-distribution inputs from \scrX , we can in general only expect the learned map to
perform well when restricted to inputs statistically similar to those sampled from \nu .

3.1. Burgers’ Equation: Formulation. The viscous Burgers equation in one spa-
tial dimension is representative of the advection-dominated PDE problem class in
some regimes; these time-dependent equations are not conservation laws due to the
presence of small dissipative terms, but nonlinear transport still plays a central role
in the evolution of solutions. The initial value problem we consider is\left\{         

\partial u

\partial t
+

\partial 

\partial x

\biggl( 
u2

2

\biggr) 
 - \varepsilon 

\partial 2u

\partial x2
= f in (0,\infty )\times (0, 1) ,

u(\cdot , 0) = u(\cdot , 1) , \partial u

\partial x
(\cdot , 0) = \partial u

\partial x
(\cdot , 1) in (0,\infty ) ,

u(0, \cdot ) = a in (0, 1) ,

(3.1)D
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where \varepsilon > 0 is the viscosity (i.e., diffusion coefficient) and we have imposed peri-
odic boundary conditions. The initial condition a serves as the input and is drawn
according to a Gaussian measure defined by

a \sim \nu := N(0, \scrC ) ,(3.2)

with Mat\'ern-like covariance operator [43, 104]

\scrC := \tau 2\alpha  - d( - \Delta + \tau 2 Id) - \alpha ,(3.3)

where d = 1 and the negative Laplacian  - \Delta is defined over the torus \BbbT 1 = [0, 1]per
and restricted to functions which integrate to zero over \BbbT 1. The hyperparameter \tau \geq 0
is an inverse length scale and \alpha > 1/2 controls the regularity of the draw. Such a are
almost surely H\"older and Sobolev regular with exponent up to \alpha  - 1/2 [38, Thm. 12,
p. 338], so in particular a \in \scrX := L2(\BbbT 1;\BbbR ). Then, for all \varepsilon > 0, the unique global
solution u(t, \cdot ) to (3.1) is real analytic for all t > 0 [82, Thm. 1.1]. Hence, setting the
output space to be \scrY := Hs(\BbbT 1;\BbbR ) for any s > 0, we may define the solution map

F \dagger : L2 \rightarrow Hs ,

a \mapsto \rightarrow F \dagger (a) := \Psi T (a) = u(T, \cdot ) ,
(3.4)

where \{ \Psi t\} t>0 forms the solution operator semigroup for (3.1) and we fix the final
time t = T > 0. The map F \dagger is smoothing and nonlinear.

We now describe a random feature map for use in the RFM (2.19) that we call
Fourier space random features. Let \scrF denote the Fourier transform over spatial do-
main \BbbT 1 and define \varphi : \scrX \times \Theta \rightarrow \scrY by

\varphi (a; \theta ) := \sigma 
\bigl( 
\scrF  - 1(\chi \scrF a\scrF \theta )

\bigr) 
,(3.5)

where \sigma ( \cdot ), the ELU function defined below, is defined as a mapping on \BbbR and
applied pointwise to functions. Considering \Theta \subseteq L2(\BbbT 1;\BbbR ), the randomness enters
through \theta \sim \mu := N(0, \scrC \prime ) with \scrC \prime the same covariance operator as in (3.3) but with
potentially different inverse length scale and regularity, and the wavenumber filter
function \chi : \BbbZ \rightarrow \BbbR \geq 0 is given for k \in \BbbZ by

\chi (k) := \sigma \chi (2\pi | k| \delta ) , where \sigma \chi (r) := max
\Bigl( 
0,min

\bigl( 
2r, (r + 1/2) - \beta 

\bigr) \Bigr) 
,(3.6)

\delta > 0, and \beta > 0. The map \varphi ( \cdot ; \theta ) essentially performs a filtered random convo-
lution with the initial condition. Figure 2(a) illustrates a sample input and output
from \varphi . Although simply hand-tuned for performance and not optimized, the fil-
ter \chi is designed to shuffle energy in low to medium wavenumbers and cut off high
wavenumbers (see Figure 2(b)), reflecting our prior knowledge of solutions to (3.1).

We choose the activation function \sigma in (3.5) to be the exponential linear unit

r \mapsto \rightarrow ELU(r) :=

\biggl\{ 
r if r \geq 0 ,

er  - 1 if r < 0 .
(3.7)

The ELU function has been used successfully as activation in other machine learning
frameworks for related nonlinear PDE problems [94, 118, 119]. We also find ELU( \cdot ) to
perform better in the RFM framework than several other choices including ReLU( \cdot ),
tanh( \cdot ), sigmoid( \cdot ), sin( \cdot ), SELU( \cdot ), and softplus( \cdot ). Note that the pointwise eval-
uation of the ELU function in (3.5) will be well defined, by Sobolev embedding, for
s > 1/2 sufficiently large in the definition of \scrY = Hs. Since the solution operator
maps into Hs for any s > 0, this does not constrain the method.
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ϕ(a; θ)

(a) Random feature (b) Filter function

Fig. 2. Random feature map construction for Burgers' equation: (a) displays a representative
input-output pair for the random feature \varphi ( \cdot ; \theta ) with \theta \sim \mu (3.5), while (b) shows the filter k \mapsto \rightarrow \chi (k)
for \delta = 0.0025 and \beta = 4 (3.6).

3.2. Darcy Flow: Formulation. Divergence form elliptic equations [61] arise in
a variety of applications, in particular, the groundwater flow in a porous medium
governed by Darcy's law [13]. This linear elliptic boundary value problem reads\biggl\{ 

 - \nabla \cdot (a\nabla u) = f in D ,
u = 0 on \partial D ,

(3.8)

where D is a bounded open subset in \BbbR d, f represents sources and sinks of fluid, a the
permeability of the porous medium, and u is the piezometric head; all three functions
map D into \BbbR and, in addition, a is strictly positive almost everywhere in D. We work
in a setting where f is fixed and consider the input-output map defined by a \mapsto \rightarrow u.
The measure \nu on a is a high contrast level set prior constructed as the pushforward
of a Gaussian measure:

a \sim \nu := \psi \sharp N(0, \scrC ) .(3.9)

Here \psi : \BbbR \rightarrow \BbbR is a threshold function defined for r \in \BbbR by

\psi (r) := a+1(0,\infty )(r) + a - 1( - \infty ,0)(r) , where 0 < a - \leq a+ <\infty ,(3.10)

applied pointwise to functions, and the covariance operator \scrC is given in (3.3) with
d = 2 and homogeneous Neumann boundary conditions on  - \Delta . That is, the resulting
coefficient a almost surely takes only two values (a+ or a - ) and, as the zero level set
of a Gaussian random field, exhibits random geometry in the physical domain D. It
follows that a \in L\infty (D;\BbbR \geq 0) almost surely. Further, the size of the contrast ratio
a+/a - measures the scale separation of this elliptic problem and hence controls the
difficulty of reconstruction [17]. See Figure 3(a) for a representative sample.

Given f \in L2(D;\BbbR ), the standard Lax--Milgram theory may be applied to show
that for coefficient a \in \scrX := L\infty (D;\BbbR \geq 0), there exists a unique weak solution u \in 
\scrY := H1

0 (D;\BbbR ) for (3.8) (see, e.g., Evans [50]). Thus, we define the ground truth
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solution map

F \dagger : L\infty \rightarrow H1
0 ,

a \mapsto \rightarrow F \dagger (a) := u .
(3.11)

Although the PDE (3.8) is linear, the solution map F \dagger is nonlinear.
We now describe the chosen random feature map for this problem, which we call

predictor-corrector random features. Define \varphi : \scrX \times \Theta \rightarrow \scrY by \varphi (a; \theta ) := p1 such that

 - \Delta p0 =
f

a
+ \sigma \gamma (\theta 1) ,(3.12a)

 - \Delta p1 =
f

a
+ \sigma \gamma (\theta 2) +\nabla (log a) \cdot \nabla p0 ,(3.12b)

where the boundary conditions are homogeneous Dirichlet, \theta = (\theta 1, \theta 2) \sim \mu := \mu \prime \times \mu \prime 

are two Gaussian random fields each drawn from \mu \prime := N(0, \scrC \prime ), f is the source term
in (3.8), and \gamma = (s+, s - , \delta ) are parameters for a thresholded sigmoid \sigma \gamma : \BbbR \rightarrow \BbbR ,

r \mapsto \rightarrow \sigma \gamma (r) :=
s+  - s - 

1 + e - r/\delta 
+ s - ,(3.13)

and extended as a Nemytskii operator when applied to \theta 1( \cdot ) or \theta 2( \cdot ). We consider
\Theta \subseteq L2(D;\BbbR )\times L2(D;\BbbR ). In practice, since \nabla a is not well defined when drawn from
the level set measure, we replace a with a\varepsilon , where a\varepsilon := v(1, \cdot ) is a smoothed version
of a obtained by evolving the following linear heat equation for one time unit:\left\{         

\partial v

\partial t
= \eta \Delta v in (0, 1)\times D ,

\sansn \cdot \nabla v = 0 on (0, 1)\times \partial D ,

v(0, \cdot ) = a in D ,

(3.14)

where \sansn is the outward unit normal vector to \partial D. An example of the response \varphi (a; \theta )
to a piecewise constant input a \sim \nu is shown in Figure 3 for some \theta \sim \mu .

We remark that by removing the two random terms involving \theta 1 and \theta 2 in (3.12),
we obtain a remarkably accurate surrogate model for the PDE. This observation is
representative of a more general iterative method, a predictor-corrector type iteration,
for solving the Darcy equation (3.8), whose convergence depends on the size of a. The
map \varphi is essentially a random perturbation of a single step of this iterative method:
(3.12a) makes a coarse prediction of the output, then (3.12b) improves this prediction
with a correction term derived from expanding the original PDE. This choice of \varphi 
falls within an ensemble viewpoint that the RFM may be used to improve preexisting
surrogate models by taking \varphi ( \cdot ; \theta ) to be an existing emulator, but randomized in a
principled way through \theta \sim \mu .

For this particular example, we are cognizant of the facts that the random feature
map \varphi requires full knowledge of the Darcy equation and a naive evaluation of \varphi may
be as expensive as solving the original PDE, which is itself linear; however, we believe
that the ideas underlying the random features used here are intuitive and suggestive
of what is possible in other application areas. For example, RFMs may be applied
on larger domains with simple geometries, viewed as supersets of the physical domain
of interest, enabling the use of efficient algorithms such as the fast Fourier transform
(FFT) even though these may not be available for the original problem, either because
the operator to be inverted is spatially inhomogeneous or because of the complicated
geometry of the physical domain.
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(a) a \sim \nu (b) \varphi (a; \theta ), where \theta \sim \mu 

Fig. 3. Random feature map construction for Darcy flow: (a) displays a representative in-
put draw a with \tau = 3, \alpha = 2 and a+ = 12, a - = 3; (b) shows the output random feature
\varphi (a; \theta ) (equation (3.12)) taking the coefficient a as input. Here, f \equiv 1, \tau \prime = 7.5, \alpha \prime = 2, s+ = 1/a+,
s - =  - 1/a - , and \delta = 0.15.

4. Numerical Experiments. We now assess the performance of our proposed
methodology on the approximation of operators F \dagger : \scrX \rightarrow \scrY presented in section 3.
Practical implementation of the approach on a computer necessitates discretization
of the input-output function spaces \scrX and \scrY . Hence, in the numerical experiments
that follow, all infinite-dimensional objects such as the training data, evaluations of
random feature maps, and random fields are discretized on an equispaced mesh with
K grid points to take advantage of the O(K logK) computational speed of the FFT.
The simple choice of equispaced points does not limit the proposed approach, as our
formulation of the RFM on function space allows the method to be implemented nu-
merically with any choice of spatial discretization. Such a numerical discretization
procedure leads to the problem of high- but finite-dimensional approximation of dis-
cretized target operators mapping \BbbR K to \BbbR K by similarly discretized RFMs. However,
we emphasize the fact that K is allowed to vary, and we study the properties of the
discretized RFM as K varies, noting that since the RFM is defined conceptually on
function space in section 2 without reference to discretization, its discretized numeri-
cal realization has approximation quality consistent with the infinite-dimensional limit
K \rightarrow \infty . This implies that the same trained model can be deployed across the entire
hierarchy of finite-dimensional spaces \BbbR K parametrized by K \in \BbbN without the need
to be retrained, provided K is sufficiently large. Thus, in this section, our notation
does not make explicit the dependence of the discretized RFM or target operators on
mesh size K. We demonstrate these claimed properties numerically.

The input functions and our chosen random feature maps (3.5) and (3.12) require
i.i.d. draws of Gaussian random fields to be fully defined. We efficiently sample these
fields by truncating a Karhunen--Lo\'eve expansion and employing fast summation of
the eigenfunctions with FFTs. More precisely, on a mesh of size K, denote by g(\cdot ) a
numerical approximation of a Gaussian random field on domain D = (0, 1)d, d = 1, 2:

g =
\sum 

k\in ZK

\xi k
\sqrt{} 
\lambda k\phi k \approx 

\sum 
k\prime \in \BbbZ d

\geq 0

\xi k\prime 

\sqrt{} 
\lambda k\prime \phi k\prime \sim N(0, \scrC ) ,(4.1)D
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where \xi j \sim N(0, 1) i.i.d. for each j and ZK \subset \BbbZ \geq 0 is a truncated one-dimensional
lattice of cardinality K ordered such that \{ \lambda j\} is nonincreasing. The pairs (\lambda k\prime , \phi k\prime )
are found by solving the eigenvalue problem \scrC \phi k\prime = \lambda k\prime \phi k\prime for nonnegative, symmetric,
trace-class operator \scrC (3.3). Concretely, these solutions are given by

\phi k\prime (x) =

\Biggl\{ \surd 
2 cos(k\prime 1\pi x1) cos(k

\prime 
2\pi x2), k\prime 1 or k\prime 2 = 0 ,

2 cos(k\prime 1\pi x1) cos(k
\prime 
2\pi x2) otherwise ,

\lambda k\prime = \tau 2\alpha  - 2(\pi 2| k\prime | 2 + \tau 2) - \alpha ,

(4.2)

for homogeneous Neumann boundary conditions when d = 2, k\prime = (k\prime 1, k
\prime 
2) \in \BbbZ 2

\geq 0\setminus \{ 0\} ,
x = (x1, x2) \in (0, 1)2. They are given by

\phi 2j(x) =
\surd 
2 cos(2\pi jx) , \phi 2j - 1(x) =

\surd 
2 sin(2\pi jx) , \phi 0(x) = 1 ,(4.3a)

\lambda 2j = \lambda 2j - 1 = \tau 2\alpha  - 1(4\pi 2j2 + \tau 2) - \alpha , \lambda 0 = \tau  - 1,(4.3b)

for periodic boundary conditions when d = 1, j \in \BbbZ >0, and x \in (0, 1). In both cases,
we enforce that g integrates to zero over D by manually setting to zero the Fourier
coefficient corresponding to multi-index k\prime = 0. We use such a g in all experiments
that follow. Additionally, the k and k\prime used in this section to denote wavenumber
indices should not be confused with our previous notation for kernels.

With the discretization and data generation setup now well defined, and the pairs
(\varphi , \mu ) given in section 3, the last algorithmic step is to train the RFM by solving (2.25)
and then test its performance. For a fixed number of random features m, we only
train and test a single realization of the RFM, viewed as a random variable itself. In
each instance m is varied in the experiments that follow, and the draws \{ \theta j\} mj=1 are
resampled i.i.d. from \mu . To measure the distance between the trained RFM Fm(\cdot ; \widehat \alpha )
and the ground truth F \dagger , we employ the approximate expected relative test error

en\prime ,m :=
1

n\prime 

n\prime \sum 
j=1

\| F \dagger (a\prime j) - Fm(a\prime j ; \widehat \alpha )\| L2

\| F \dagger (a\prime j)\| L2

\approx \BbbE a\prime \sim \nu 

\biggl[ \| F \dagger (a\prime ) - Fm(a\prime ; \widehat \alpha )\| L2

\| F \dagger (a\prime )\| L2

\biggr] 
,(4.4)

where the \{ a\prime j\} n
\prime 

j=1 are drawn i.i.d. from \nu and n\prime denotes the number of input-output

pairs used for testing. All L2(D;\BbbR ) norms on the physical domain are numerically
approximated by composite trapezoid rule quadrature. Since \scrY \subset L2 for both the
PDE solution operators (3.4) and (3.11), we also perform all required inner products
during training in L2 rather than in \scrY ; this results in smaller relative test error en\prime ,m.

4.1. Burgers’ Equation: Experiment. We generate a high resolution dataset of
input-output pairs by solving Burgers' equation (3.1) on an equispaced periodic mesh
of size K = 1025 (identifying the first mesh point with the last) with random ini-
tial conditions sampled from \nu = N(0, \scrC ) using (4.1), where \scrC is given by (3.3) with
parameter choices \tau = 7 and \alpha = 2.5. The full order solver is an FFT-based pseu-
dospectral method for spatial discretization [54] and a fourth order Runge--Kutta inte-
grating factor time-stepping scheme for time discretization [79]. All data represented
on mesh sizes K < 1025 used in both training and testing phases are subsampled from
this original dataset, and hence we consider numerical realizations of F \dagger (3.4) up to
\BbbR 1025 \rightarrow \BbbR 1025. We fix n = 512 training and n\prime = 4000 testing pairs unless otherwise
noted and also fix the viscosity to \varepsilon = 10 - 2 in all experiments. Lowering \varepsilon leads to
smaller length scale solutions and more difficult reconstruction; more data (higher n)
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x
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Input
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Truth

(a) Input and output (b) Pointwise error

Fig. 4. Representative input-output test sample for the Burgers equation solution map F \dagger :=
\Psi 1: (a) shows a sample input, output (truth), and trained RFM prediction (test), while (b) displays
the pointwise error. The relative L2 error for this single prediction is 0.0146. Here, n = 512,
m = 1024, and K = 1025.

and features (higher m) or a more expressive choice of (\varphi , \mu ) would be required to
achieve comparable error levels due to the slow decaying Kolmogorov width of the
solution map. For simplicity, we set the forcing f \equiv 0, although nonzero forcing could
lead to other interesting solution maps such as f \mapsto \rightarrow u(T, \cdot ). It is easy to check that
the solution will have zero mean for all time and a steady state of zero. Hence, we
choose T \leq 2 to ensure that the solution is far enough away from steady state. For
the random feature map (3.5), we fix the hyperparameters \alpha \prime = 2, \tau \prime = 5, \delta = 0.0025,
and \beta = 4. The map itself is evaluated efficiently with the FFT and requires no other
tools to be discretized. RFM hyperparameters are hand-tuned but not optimized. We
find that regularization during training has a negligible effect for this problem, so the
RFM is trained with \lambda = 0 by solving the normal equations (2.25) with the pseudoin-
verse to deliver the minimum norm least squares solution; we use the truncated SVD
implementation in Python's scipy.linalg.pinv2 for this purpose.

Our experiments study the RFM approximation to the viscous Burgers equation
evolution operator semigroup (3.4). As a visual aid for the high-dimensional problem
at hand, Figure 4 shows a representative sample input and output along with a trained
RFM test prediction. To determine whether the RFM has actually learned the correct
evolution operator, we test the semigroup property of the map; [150] pursues closely
related work also in a Fourier space setting. Denote the (j  - 1)-fold composition of a
function G with itself by Gj . Then, with u(0, \cdot ) = a, we have

(\Psi T \circ \cdot \cdot \cdot \circ \Psi T )(a) = \Psi j
T (a) = \Psi jT (a) = u(jT, \cdot )(4.5)

by definition. We train the RFM on input-output pairs from the map \Psi T with T := 0.5
to obtain \widehat F := Fm( \cdot ; \widehat \alpha ). Then, it should follow from (4.5) that \widehat F j \approx \Psi jT ; that is,

each application of \widehat F should evolve the solution T time units. We test this semigroup
approximation by learning the map \widehat F and then comparing \widehat F j on n\prime = 4000 fixed
inputs to outputs from each of the operators \Psi jT , with j \in \{ 1, 2, 3, 4\} (the solutions
at time T , 2T , 3T , 4T ). The results are presented in Table 1 for a fixed mesh size

D
ow

nl
oa

de
d 

08
/0

8/
24

 to
 1

31
.2

15
.2

50
.1

49
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

560 NICHOLAS H. NELSEN AND ANDREW M. STUART

Table 1
Expected relative error en\prime ,m for time upscaling with the learned RFM operator semigroup for

Burgers' equation. Here, n\prime = 4000, m = 1024, n = 512, and K = 129. The RFM is trained on
data from the evolution operator \Psi T=0.5 and then tested on input-output samples generated from
\Psi jT , where j = 2, 3, 4, by repeated composition of the learned model. The increase in error is small
even after three compositions, reflecting excellent out-of-distribution performance.

Train on: T = 0.5 Test on: 2T = 1.0 3T = 1.5 4T = 2.0

0.0360 0.0407 0.0528 0.0788

K = 129. We observe that the composed RFM map \widehat F j accurately captures \Psi jT ,
though this accuracy deteriorates as j increases due to error propagation in time, as
is common with any traditional integrator. However, even after three compositions
corresponding to 1.5 time units past the training time T = 0.5, the relative error only
increases by around 0.04. It is remarkable that the RFM learns time evolution without
explicitly time-stepping the PDE (3.1) itself. Such a procedure is coined time upscaling
in the PDE context and in some sense breaks the CFL stability barrier [40]. Table 1 is
evidence that the RFM has excellent out-of-distribution performance: although only
trained on inputs a \sim \nu , the model outputs accurate predictions given new input
samples \Psi jT (a) \sim (\Psi jT )\sharp \nu .

We next study the ability of the RFM to transfer its learned coefficients \widehat \alpha ob-
tained from training on mesh size K to different mesh resolutions K \prime in Figure 5(a).
We fix T := 1 in what follows and observe that the lowest test error occurs when
K = K \prime , that is, when the train and test resolutions are identical; this behavior was
also observed in the contemporaneous work [97]. At very low resolutions, such as
K = 17 here, the test error is dominated by discretization error which can become
quite large; for example, resolving conceptually infinite-dimensional objects such as
the Fourier space based feature map in (3.5) or the L2 norms in (4.4) with only 17
grid points gives bad accuracy. However, outside this regime, the errors are essentially
constant across resolution regardless of the training resolution K, indicating that the
RFM learns its optimal coefficients independently of the resolution and hence gen-
eralizes well to any desired mesh size. In fact, the trained model could be deployed
on different discretizations of the domain D (e.g., various choices of finite elements,
graph-based/particle methods), not just with different mesh sizes. Practically speak-
ing, this means that high resolution training sets can be subsampled to mesh sizes K
that are smaller (yet still large enough to avoid large discretization error) for faster
training, leading to a trained model with nearly the same accuracy at all higher res-
olutions.

The smallest expected relative test error achieved by the RFM is 0.0303 for the
configuration in Figure 5(b). This excellent performance is encouraging because the
error we report is of the same order of magnitude as that reported in [96, sect. 5.1] for
the same Burgers solution operator that we study, but with slightly different problem
parameter choices. We emphasize that the neural operator methods in that work are
based on deep learning, which involves training NNs by solving a nonconvex opti-
mization problem with stochastic gradient descent, while our random feature meth-
ods have orders of magnitude fewer trainable parameters that are easily optimized
through convex optimization. In Figure 5(b), we see that for large enough n, the
error empirically follows the O(m - 1/2) parameter complexity bound that is suggested
by Theorem 2.12. This theorem does not directly apply here because it requires the
regularization parameter \lambda to be strictly positive and F \dagger to be in the RKHS of (\varphi , \mu )
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Fig. 5. Expected relative test error of a trained RFM for the Burgers evolution operator F \dagger = \Psi 1

with n\prime = 4000 test pairs: (a) displays the invariance of test error w.r.t. training and testing on
different resolutions for m = 1024 and n = 512 fixed; the RFM can train and test on different mesh
sizes without loss of accuracy. (b) shows the decay of the test error for resolution K = 129 fixed as
a function of m and n; the error follows the O(m - 1/2) Monte Carlo rate remarkably well and the
smallest error achieved is 0.0303 for n = 1000 and m = 1024.
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Fig. 6. Results of a trained RFM for the Burgers equation evolution operator F \dagger = \Psi 1: (a)
shows resolution-invariant test error for various m. (b) displays the relative error of the learned
coefficient \alpha w.r.t. the coefficient learned on the highest mesh size (K = 1025). Here, n = 512
training and n\prime = 4000 testing pairs were used.

from subsection 3.1, which we do not verify. Nonetheless, Figure 5(b) indicates that
the error bounds for the trained RFM hold for a larger class of problems than the
stated assumptions suggest.

Finally, Figure 6 demonstrates the invariance of the expected relative test error
to the mesh resolution used for training and testing. This result is a consequence of
framing the RFM on function space; other machine learning--based surrogate methods
defined in finite dimensions exhibit an increase in test error as mesh resolution is
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increased (see [19, sect. 4] for a numerical account of this phenomenon). Figure 6(a)
shows the error as a function of mesh resolution for three values of m. For very
low resolution, the error varies slightly but then flattens out to a constant value as
K \rightarrow \infty . Figure 6(b) indicates that the learned coefficient \alpha (K) for each K converges
to some \alpha (\infty ) as K \rightarrow \infty , again reflecting the design of the RFM as a mapping
between infinite-dimensional spaces.

4.2. Darcy Flow: Experiment. In this section, we consider Darcy flow on the
physical domainD := (0, 1)2, the unit square. We generate a high resolution dataset of
input-output pairs for F \dagger (3.11) by solving (3.8) on an equispaced 257\times 257 mesh (size
K = 2572) using a second order finite difference scheme. All mesh sizes K < 2572 are
subsampled from this original dataset and hence we consider numerical realizations
of F \dagger up to \BbbR 66049 \rightarrow \BbbR 66049. We denote resolution by r such that K = r2. We
fix n = 128 training and n\prime = 1000 testing pairs unless otherwise noted. The input
data are drawn from the level set measure \nu (3.9) with \tau = 3 and \alpha = 2 fixed. We
choose a+ = 12 and a - = 3 in all experiments that follow and hence the contrast
ratio a+/a - = 4 is fixed. The source is fixed to f \equiv 1, the constant function. We
evaluate the predictor-corrector random features \varphi (3.12) using an FFT-based fast
Poisson solver corresponding to an underlying second order finite difference stencil
at a cost of O(K logK) per solve. The smoothed coefficient a\varepsilon in the definition of
\varphi is obtained by solving (3.14) with time step 0.03 and diffusion constant \eta = 10 - 4;
with centered second order finite differences, this incurs 34 time steps and hence a
cost O(34K). We fix the hyperparameters \alpha \prime = 2, \tau \prime = 7.5, s+ = 1/12, s - =  - 1/3,
and \delta = 0.15 for the map \varphi . Unlike in subsection 4.1, we find via grid search on
\lambda that regularization during training does improve the reconstruction of the Darcy
flow solution operator and hence we train with \lambda := 10 - 8 fixed. We remark that, for
simplicity, the above hyperparameters were not systematically and jointly optimized;
as a consequence the RFM performance has room to improve beyond the results in
this section.

Darcy flow is characterized by the geometry of the high contrast coefficients a \sim \nu .
As seen in Figure 7, the solution inherits the steep interfaces of the input. However, we
see that a trained RFM with predictor-corrector random features (3.12) captures these
interfaces well, albeit with slight smoothing; the error concentrates on the location of
the interface. The effect of increasingm and n on the test error is shown in Figure 8(b).
Here, the error appears to saturate more than was observed for the Burgers equation
problem (Figure 5(b)) and does not follow the O(m - 1/2) rate. This is likely due to
our fixing \lambda to be constant instead of scaling it with m as suggested by Theorem 2.12.
It is also possible that the Darcy flow solution map does not belong to the RKHS
\scrH k\mu , leading to an additional misspecification error. However, the smallest test error
achieved for the best performing RFM configuration is 0.0381, which is on the same
scale as the error reported in competing neural operator--based methods [19, 97] for
the same setup.

The RFM is able to be successfully trained and tested on different resolutions for
Darcy flow. Figure 8(a) shows that, again, for low resolutions, the smallest relative test
error is achieved when the train and test resolutions are identical (here, for r = 17).
However, when the resolution is increased away from this low resolution regime, the
relative test error slightly increases then approaches a constant value, reflecting the
function space design of the method. Training the RFM on a high resolution mesh
poses no issues when transferring to lower or higher resolutions for model evaluation,
and it achieves consistent error for test resolutions sufficiently large (i.e., r \geq 33, the
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(a) Truth (b) Approximation

(c) Input (d) Pointwise error

Fig. 7. Representative input-output test sample for the Darcy flow solution map: (c) shows a
sample input, (a) the resulting output (truth), (b) a trained RFM prediction, and (d) the pointwise
error. The relative L2 error for this single prediction is 0.0122. Here, n = 256, m = 350, and
K = 2572.

regime where discretization error starts to become negligible). Additionally, the RFM
basis functions \{ \varphi ( \cdot ; \theta j)\} mj=1 are defined without any dependence on the training data,
unlike in other competing approaches based on similar shallow linear approximations,
such as the reduced basis method or the PCA-Net method in [19]. Consequently,
our RFM may be directly evaluated on any desired mesh resolution once trained
(``superresolution""), whereas those aforementioned approaches require some form of
interpolation to transfer between different mesh sizes (see [19, sect. 4.3]).

In Figure 9, we again confirm that our method is invariant to the refinement of the
mesh and improves with more random features. While the difference at low resolutions
is more pronounced than that observed for the Burgers equation, our results for Darcy
flow still suggest that the expected relative test error converges to a constant value
as resolution increases; an estimate of this rate of convergence is seen in Figure 9(b),
where we plot the relative error of the learned parameter \alpha (r) at resolution r w.r.t. the
parameter learned at the highest resolution trained, which was r = 129.
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Fig. 8. Expected relative test error of a trained RFM for Darcy flow with n\prime = 1000 test
pairs: (a) displays the invariance of test error w.r.t. training and testing on different resolutions for
m = 512 and n = 256 fixed; the RFM can train and test on different mesh sizes without significant
loss of accuracy. (b) shows the decay of the test error for resolution r = 33 fixed as a function of m
and n; the smallest error achieved is 0.0381 for n = 500 and m = 512.
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Fig. 9. Results of a trained RFM for Darcy flow: (a) demonstrates resolution-invariant test
error for various m, while (b) displays the relative error of the learned coefficient \alpha (r) at resolution
r w.r.t. the coefficient learned on the highest resolution (r = 129). Here, n = 128 training and
n\prime = 1000 testing pairs were used.

5. Conclusion. This paper introduces a random feature methodology for the
data-driven estimation of operators mapping between infinite-dimensional Banach
spaces. It may be interpreted as a low-rank approximation to operator-valued kernel
ridge regression. Training the function-valued random features only requires solv-
ing a quadratic optimization problem for an m-dimensional coefficient vector. The
conceptually infinite-dimensional algorithm is nonintrusive and results in a scalable
method that is consistent with the continuum limit, robust to discretization, and
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highly flexible in practical use cases. Numerical experiments confirm these benefits
in scientific machine learning applications involving two nonlinear forward operators
arising from PDEs. Backed by tractable training routines and theoretical guarantees,
operator learning with the function-valued random features method displays consid-
erable potential for accelerating many-query computational tasks and for discovering
new models from high-dimensional experimental data in science and engineering.

Going beyond this paper, several directions for future research remain open. Some
of the first theoretical results for function-valued random features are summarized in
subsection 2.5. However, it is not yet known what conditions on the problem and
the feature pair allow for faster rates of convergence. In addition, it is of interest
to characterize the quality of the operator RKHS spaces induced by random feature
pairs and whether practical problem classes actually belong to these spaces. Also of
importance is the question of how to automatically adapt function-valued random
features to data instead of manually constructing them. Some possibilities along this
line of work include the Bayesian estimation of hyperparameters, as is frequently used
in Gaussian process regression, or more general hierarchical learning of the random
feature pair (\varphi , \mu ) itself. In tandem, there is a need for a mature function-valued
random features software library that includes efficient linear solvers and GPU im-
plementations, benchmark problems, and robust hyperparameter optimizers. These
advances will further enable the random features method to learn from real-world data
and solve challenging forward and inverse problems from the physical sciences, such as
climate modeling and material modeling, with controlled computational complexity.

Data and Code Availability. Links to datasets and code used to produce the
numerical results and figures in this paper are available at

https://github.com/nickhnelsen/random-features-banach .
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