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Complex dynamical systems are notoriously difficult to model because some degrees of freedom 
(e.g., small scales) may be computationally unresolvable or are incompletely understood, yet 
they are dynamically important. For example, the small scales of cloud dynamics and droplet 
formation are crucial for controlling climate, yet are unresolvable in global climate models. 
Semi-empirical closure models for the effects of unresolved degrees of freedom often exist and 
encode important domain-specific knowledge. Building on such closure models and correcting 
them through learning the structural errors can be an effective way of fusing data with domain 
knowledge. Here we describe a general approach, principles, and algorithms for learning about 
structural errors. Key to our approach is to include structural error models inside the models 
of complex systems, for example, in closure models for unresolved scales. The structural errors 
then map, usually nonlinearly, to observable data. As a result, however, mismatches between 
model output and data are only indirectly informative about structural errors, due to a lack of 
labeled pairs of inputs and outputs of structural error models. Additionally, derivatives of the 
model may not exist or be readily available. We discuss how structural error models can be 
learned from indirect data with derivative-free Kalman inversion algorithms and variants, how 
sparsity constraints enforce a “do no harm” principle, and various ways of modeling structural 
errors. We also discuss the merits of using non-local and/or stochastic error models. In addition, 
we demonstrate how data assimilation techniques can assist the learning about structural errors 
in non-ergodic systems. The concepts and algorithms are illustrated in two numerical examples 
based on the Lorenz-96 system and a human glucose-insulin model.

1. Introduction

Numerical simulation is at the heart of modeling, predicting, and understanding dynamical systems that are too complex to be 
amenable to analytical solution. Complex dynamical systems here extend from molecular dynamics with quantum effects to the 
planetary scales of weather and climate. The range of dynamically important scales in these systems can be vast, for example, in 
case of the atmosphere, extending over 13 orders of magnitude from the micrometers of cloud droplets and aerosols to the tens of 
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thousands kilometers of planetary waves. The number of degrees of freedom that would need to be resolved for a faithful simulation 
of such systems (e.g., ≳ 1021 for a typical atmospheric boundary layer flow) often exceeds what will be computationally feasible for 
the foreseeable future [1].

Instead of direct numerical simulation, a variety of approaches has been devised to approximately resolve the most important 
degrees of freedom in numerical simulations. The degrees of freedom that remain unresolved but, because of nonlinear interactions, 
are still important for the resolved degrees of freedom are then represented by closure models, which link what is unresolved to what 
is resolved. The state 𝑋 of the approximate system evolves according to dynamics of the form

�̇� = 𝑓 (𝑋;𝜃P), (1)

where 𝑓 may depend on derivatives of the state 𝑋; hence, the system may represent partial differential equations. The system 
depends on empirical parameters 𝜃P that appear in closure models. For example, in large-eddy simulations of turbulent flows, 
the most energetic “large eddies” are explicitly resolved in the dynamics represented by 𝑓 . The effect of the unresolved scales is 
modeled by subgrid-scale models, such as the classical Smagorinsky model [2], which depend on empirical parameters 𝜃P (e.g., the 
Smagorinsky coefficient). Similar semi-empirical models are used in many other fields. They encode domain-specific knowledge, and 
their parameters 𝜃P need to be calibrated with data.

Data 𝑦 that are informative about the system come in a variety of forms, such as direct measurements of the time evolution of 
the state 𝑋 or more indirect mappings of the state 𝑋 onto observables, which may, for example, be statistical aggregates of state 
variables or convolutions of state variables with kernels. Convolutional data arise, for example, when representing the effect of a 
state variable such as temperature on the radiative energy fluxes that a satellite measures from space. Generally, we can write that 
the state maps to observables via an observation operator , such that

�̂� =[𝑋]. (2)

The challenge is that simulated observables �̂� generally are biased estimates of actual data 𝑦. The actual data 𝑦 are affected by 
measurement error, and the simulated data �̂� are affected by structural errors in the approximate dynamical system (1); both 𝑦 and 
�̂� can also be affected by sampling error. For example, while a general feature of turbulence is to enhance mixing of conserved 
quantities, turbulent mixing is not always diffusive in character. Therefore, diffusive subgrid-scale models such as the Smagorinsky 
model are not always structurally correct, especially in convective situations with coherent flow structures [3]. This can lead to 
biases that, for example, adversely affect the calibration of model parameters 𝜃P.

The purpose of this paper is to summarize principles of, and algorithms for, learning about structural error models that correct 
semi-empirical closure models. Wholesale replacement of semi-empirical closure models with neural networks and other deep learn-

ing approaches promises to overcome the structural strictures of existing closure models through more expressive models; it has 
recently received much attention [4–11]. However, existing semi-empirical closure models encode valuable domain-specific knowl-

edge. Learning flexible corrections to these models is often less data hungry, more interpretable, and potentially more generalizable 
than replacing them wholesale.

What follows is a distillation of experiences we gained in studying various complex dynamical systems. Our goal is to provide 
guidelines and algorithms that can lead to a broad-purpose computational framework for systematically learning about model error 
in dynamical systems. We focus on two important parts of error modeling: (i) how to construct an error model, and (ii) how to 
calibrate an error model.

Our approach to constructing error models builds upon but goes beyond the classical work of Kennedy and O’Hagan [12], who 
accounted for model error through an external bias correction term 𝛿(𝑋; 𝜃E), parameterized by parameters 𝜃E and inserted at the 
boundary between output from a computer model �̂� = (𝜃P) and data 𝑦:

𝑦 = �̂�+ 𝛿(𝑋;𝜃E) + 𝜂. (3)

Here, (𝜃P) =[𝑋(𝜃P)] corresponds to solving (1) for the time series of the state 𝑋, which depends parametrically on 𝜃P, and then 
applying the observation operator (2); hence,  is a mapping from the space of model parameters 𝜃P to the space of observations 
𝑦. The noise 𝜂 represents additional (e.g., observation) errors, assumed to have zero mean. In this approach, the model parameters 
𝜃P remain fixed (i.e., a property of ) while parameters 𝜃E in the error model 𝛿 are tuned such that the residual 𝑦 − �̂� has a small 
magnitude and zero mean. This approach of externalizing model error for bias correction has been applied and further expanded in 
many subsequent papers (e.g., [13–17]). A key advantage of the external model error approach is that the model producing �̂� can 
be treated as a black box, which facilitates use of this approach across different domains. State variables 𝑋 and residuals 𝑦 − �̂� form 
input-output pairs from which the error model 𝛿(𝑋; 𝜃E) can be learned, for example, with supervised learning2 approaches, usually 
in an offline setting separate from learning about the model parameters 𝜃P.

However, the external model error approach has several drawbacks:

• It is difficult to incorporate physical (or other process-based) knowledge or constraints (e.g., conservation laws) in the error 
model 𝛿(𝑋; 𝜃E) [15].

• It cannot improve predictions for quantities other than the observations 𝑦 on which the error model 𝛿(𝑋; 𝜃E) has been trained.
2

2 Supervised learning refers to regression or interpolation of data.
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Fig. 1. External and internal approaches to modeling structural errors in complex dynamical systems. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

• It leads to interpretability challenges because 𝛿(𝑋; 𝜃E) is a catch-all error term that typically represents the sum total of errors 
made in several, and often disparate, closure models.

To address these drawbacks, a few researchers have started to explore an approach that internalizes model error [18–20]. Such 
an internal model error approach embeds 𝐿 error models 𝛿𝑙(𝑋; 𝜃(𝑙)

I
) (𝑙 = 1, … , 𝐿) within the dynamical system, at the places (e.g., 

in closure models) where the errors are actually made. Let their collection be written as

𝛿(𝑋; 𝜃I) ∶=
{
𝛿𝑙
(
𝑋 ; 𝜃(𝑙)

I

)}𝐿

𝑙=1
(4)

so that we can write for the overall system

�̇� = 𝑓

(
𝑋; 𝜃P, 𝛿(𝑋; 𝜃I)

)
. (5)

The error models internal to the dynamical system are chosen so that the error-corrected computer model �̂� = (𝜃P; 𝜃I) =[𝑋(𝜃P; 𝜃I)]
provides unbiased estimates of the data 𝑦:

𝑦 = (𝜃P; 𝜃I) + 𝜂, (6)

where the additional errors 𝜂 are still assumed to have zero mean. Fig. 1 illustrates and contrasts the external and internal approaches 
to modeling structural errors.

Such an approach has found applications, for example, in turbulence modeling [21–27]. By incorporating the structural error 
models 𝛿(𝑋; 𝜃I) inside the dynamical system, the error models can in principle lead to improved predictions even of quantities that 
were not used to train the error models. The error models can be learned alongside the model parameters 𝜃P in an online setting. 
They also are more amenable to interpretation because they are included in the places where errors are actually made. A potential 
downside of internalizing model error is that the effects of the structural errors 𝛿 map onto data 𝑦 only through the resolved state 𝑋
of the dynamical system, and residuals 𝑦 − �̂� are generally not directly informative about how the structural errors 𝛿(𝑋; 𝜃I) depend on 
state variables 𝑋; thus, learning about structural errors 𝛿(𝑋; 𝜃I) can generally not be accomplished with direct supervised learning 
approaches. Instead, residuals 𝑦 − �̂� only provide indirect information about structural errors 𝛿(𝑋; 𝜃I). Additionally, if derivatives 
of the dynamical system 𝑓 with respect to parameters are not easily available, or if the dynamical system is not differentiable, 
gradient-based methods for learning about the model errors 𝛿(𝑋; 𝜃I) are difficult or impossible to use.

Here we show various ways of constructing models for structural errors and demonstrate how one can learn about the structural 
errors from direct or indirect data in the absence of derivatives of the dynamical system. As error models, we will consider:

• Gaussian processes, as in Kennedy and O’Hagan [12];

• Models assembled from dictionaries of terms (e.g., involving differential operators), as in the data-driven discovery of partial 
differential equations [28–33];

• Neural networks, for their expressivity [4,6,7,34–36];

• Stochastic models, because without a clear scale separation between resolved and unresolved degrees of freedom, theoretical 
analysis suggests that closure models generally should be stochastic (e.g., [37–40]);
3

• Non-local models, because structural errors may be non-local in space [41–45], in time [46–48], or in both [49].
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We will discuss how to learn about such error models both from direct and indirect data. Supervised learning of various types of 
error models 𝛿𝑙 from direct data has been performed in a number of settings, for example, to discover terms in differential equations 
or neural network closure models from residual time tendencies that give direct information about the error model that is sought 
(e.g., [26,27,50,51]). However, data directly informative about error models, such as high-resolution time tendencies, are not always 
available. When training an error model on time tendencies, it can also be difficult to ensure both stability of the dynamical system 
including the error model and satisfaction of physical constraints (e.g., energy conservation) (e.g., [36]). Training an error model 
with indirect data, in an inverse problem rather than supervised learning setting (e.g., [24,52,53]), can be advantageous in those 
circumstances. We demonstrate how it can be accomplished.

Our main contributions are:

• Summarizing the internal model error approach and comparing and contrasting it with the external model error approach.

• Presenting a comprehensive study of the internal model error approach for various model forms, including dictionary-based 
models, Gaussian processes, and neural networks, including non-local and stochastic generalizations.

• Demonstrating various methods for calibrating the internal model error, including (i) learning from direct data, (ii) learning from 
indirect data (e.g., moments of the time series for ergodic systems) with ensemble Kalman inversion (EKI), and (iii) learning 
from the time series of non-ergodic systems and using EKI for data assimilation (DA).

• Illustrating the importance of constraints (i.e., sparsity and known physics) for improved generalization of the calibrated internal 
model error.

The principles and algorithms we will discuss are broad purpose and applicable across a range of domains and model complexities. 
To illustrate their properties in a relatively simple setting, we use two versions of the Lorenz 96 [54] dynamical system: the basic 
version of the model and its multiscale generalization [55]. Section 2 discusses the calibration of internal error models with direct or 
indirect data and the enforcement of constraints such as conservation properties. Section 3 introduces various ways of constructing 
error models. Section 4 introduces the two Lorenz 96 systems and then proceeds to present various concepts and methods through 
numerical results for these systems. The Lorenz 96 systems serve as illustrative examples of ergodic systems, for which we avoid 
trajectory matching and learn about unknown parameters from time-averaged statistics, which approximate the expectation with 
respect to the invariant measure. Section 5 is organized similarly to the previous section, but deals with non-ergodic systems for 
which trajectory matching is needed to learn about the underlying unknown parameters; as an example, we study a model of the 
human glucose-insulin system. In Section 6, we state our conclusions.

2. Calibrating error models

We first summarize several important aspects of calibrating internal error models, including (i) direct or indirect data, (ii) 
gradient-based or derivative-free optimization, and (iii) enforcing constraints (e.g., sparsity or physical laws). We discuss these 
aspects with a generic internal error model 𝛿(𝑋; 𝜃I), which may represent any one of the error model types we will introduce later.

2.1. Data availability

2.1.1. Direct data

Direct data to calibrate 𝛿 are defined as “labeled” input-output pairs {𝑋(𝑡𝑖), 𝛿(𝑋(𝑡𝑖))}𝑁𝑖=1, where 𝑖 denotes a time index. Consider 
the additive error model

�̇� = 𝑓 (𝑋;𝜃P) + 𝛿(𝑋;𝜃I)

as an example. A fine temporal resolution of 𝑋(𝑡) is usually needed to approximate �̇� − 𝑓 (𝑋; 𝜃P) and obtain estimates of the error 
𝛿(𝑋; 𝜃I) as a residual. With this method, it becomes challenging to obtain reliable direct data when the trajectories �̇� are noisy, 
for example, when the dynamical system is chaotic [50]. Furthermore it may not be possible to observe the entirety of 𝑋. This 
may be handled as a missing data problem [56], and could be handled by joint parameter-state estimation for example using data 
assimilation; see [57,58].

An additional complication with using direct data is ensuring the stability of the dynamical system with the calibrated error model 
𝛿(⋅). Although with direct data, we can get more control of the accuracy of the error model itself, the calibrated error model often 
leads to unstable simulations of the dynamical system with the error model [59,60]. There are several ways to mitigate the instability 
introduced by the error model, e.g., adopting a structure that ensures physical constraints [61], enforcing physical constraints [62], 
ensuring stability by bounding the eigenvalues of the linearized operator, and limiting the Lipschitz constant of 𝛿(⋅) [63]. However, 
a systematic approach to ensure stability is lacking.

2.1.2. Indirect data

Instead of assuming access to direct data {𝑋, 𝛿(𝑋)}, the error model can also be calibrated with indirect data by solving an 
inverse problem associated with (6) (i.e., solve for the most likely parameters 𝜃P, 𝜃I given the model  and data 𝑦). Using indirect 
data involves simulating the dynamical system with the error model as in (5); therefore, the calibration procedure with indirect data 
favors error models that lead to stable simulations, an important advantage over the direct methods. Typical examples of problems 
4

giving rise to indirect data include time-series of 𝑋 for which the resolution is not fine enough to extract direct data for calibration 
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[64], time-averaged statistics of 𝑋 [65] or dynamical systems that are partially observed [66]. More generally, indirect data can also 
be interpreted as constraints on 𝑋, and thus physical constraints can be enforced via augmenting indirect data.

2.2. Methods of calibration

Using direct data {𝑋, 𝛿(𝑋)} for calibration leads to a regression problem, which can be solved with standard methods for a given 
parameterization of the error model (e.g., least squares fit for dictionary learning, gradient descent methods for neural network). By 
contrast, using indirect data for calibration leads to an inverse problem associated with Eq. (6). Indirect methods can be linked to 
direct methods by framing the inverse problem as a missing data problem [56] and alternating between updating the missing data and 
updating the calibration parameters using learned direct data, for example, using the expectation-maximization (EM) algorithm [67]. 
However, in this section we focus on the calibration in the inverse problem setting; we discuss gradient-based and derivative-free 
optimization methods and how to enforce constraints.

2.2.1. Gradient-based or derivative-free optimization

Eq. (6) defines a forward problem in which , 𝜃P, 𝜃I and noise 𝜂 can be used to generate simulated data. The associated inverse 
problem involves identifying the most likely parameters 𝜃P, 𝜃I for , conditioned on observed data 𝑦. To formalize this, we first define 
a loss function

(𝜃) =1
2
|||𝑦− (𝜃P; 𝜃I

)|||2Σ, (7)

where Σ denotes the covariance of the zero-mean noise 𝜂, which is assumed to be independent of 𝜃.3 The inverse problem

𝜃∗ = argmin
𝜃

(𝜃)
can be solved by gradient descent methods once the gradient

𝑑
𝑑𝜃

= 𝑑𝑇
𝑑𝜃

Σ−1(𝑦− ) (8)

is calculated, where 𝜃 = [𝜃I, 𝜃P] collects all parameters. In practice, the action of the gradient 𝑑𝑇 ∕𝑑𝜃 is often evaluated via adjoint 
methods for efficiency. Although the gradient-based optimization is usually more efficient when  is differentiable, the evaluation 
of  can be noisy (e.g., when using finite-time averages to approximate infinite-time averaged data [68]) or stochastic (e.g., when 
using stochastic processes to construct the error model). In these settings, gradient-based optimization may no longer be suitable, and 
derivative-free optimization becomes necessary. In this paper we focus on Kalman-based derivative-free optimization for solving the 
inverse problem; Appendix A briefly reviews a specific easily implementable form of ensemble Kalman inversion (EKI), to illustrate 
how the methodology works, and gives pointers to the broader literature in the field.

It is worth noting that EKI requires ensemble simulations, which may be less attractive when the system is not chaotic and gradient 
information is available. Even for chaotic systems, matching short trajectories can be achieved by gradient-based optimization [69], 
without the need to run ensemble simulations. For large datasets, the computational cost of EKI increases, e.g., because of the cost of 
the matrix inversions in the EKI formula. However, it is possible to make use of the sparse structure of the covariance matrix in data 
space and thus reduce the computational cost of the matrix inversion [70]. For a large dataset and a large number of parameters, a 
relatively small ensemble size may not suffice to approximate the covariance matrix; in that case, localization techniques [71–73]

can be used to avoid spurious correlations due to the small ensemble size. In practice, localization techniques often lead to sparse 
covariance matrices, which allows users to employ standard efficient algorithms for the inverse and the multiplication of those 
covariance matrices in EKI.

2.2.2. Enforcing constraints

There are various types of constraints that can be enforced when calibrating an error model. Two common constraints are sparsity 
constraints and physical constraints (e.g., conservation laws). Here we present the general concept of enforcing these two types of 
constraints in calibration, and Appendix A presents more details about using EKI to solve the corresponding constrained optimization 
problems.

Sparsity is important to impose on error models to avoid adding parameters to an error model that have no or little measurable 
impact on the output �̂� of the host model; that is, the first principle in modeling structural errors should be to do no harm that 
would result from unnecessary error model complexity. To impose sparsity on the solution of 𝜃I , we aim to solve the optimization 
problem [74]

(𝜃;𝜆) ∶=1
2
|||𝑦− (𝜃P; 𝜃I

)|||2Σ + 𝜆|𝜃I|𝓁0 ,
𝜃∗ =argmin

𝜃∈𝔙
(𝜃;𝜆), (9)
5

3 By | ⋅ |𝐵 , we denote the covariance-weighted norm defined by |𝑣|𝐵 = 𝑣∗𝐵−1𝑣 for any positive definite 𝐵.
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where 𝔙 = {𝜃 ∶ |𝜃I|𝓁1 ≤ 𝛾}. The regularization parameters 𝛾 and 𝜆 can be determined via cross-validation. In practice, adding the 
𝓁0 constraint is achieved by thresholding the results from 𝓁1-constrained optimization. The detailed algorithm was proposed in [74]

and is summarized in Appendix A.

In many applications, it is important to find error models that satisfy physical constraints, such as energy conservation. To impose 
physical constraints on the solution of 𝜃I from EKI, we first generalize the constraint as:

𝔙 = {𝜃 ∶(𝜃I) ≤ 𝛾}. (10)

Here,  can be interpreted as a function that evaluates the residuals of certain physical constraints (typically, by solving Eq (5)). 
The constraint function  can be nonlinear with respect to 𝜃I. Taking the additive error model �̇� = 𝑓 (𝑋) + 𝛿(𝑋; 𝜃I) as an example, 
the function  corresponding to the energy conservation constraint can be written explicitly as

(𝜃I) =
|||

𝑇

∫
0

(⟨𝛿(𝑋(𝑡);𝜃I),𝑋(𝑡)⟩)𝑑𝑡|||, (11)

which constrains the total energy introduced into the system during the time interval [0, 𝑇 ]. Alternatively, a stronger constraint can 
be formulated as

(𝜃I) =

𝑇

∫
0

|||⟨𝛿(𝑋(𝑡);𝜃I),𝑋(𝑡)⟩|||𝑑𝑡, (12)

which constrains the additional energy introduced into the system at every infinitesimal time step within the time interval [0, 𝑇 ]. 
The notation ⟨⋅, ⋅⟩ denotes the inner product. Both forms of constraint in (11) and (12) can be implemented by using augmented 
observations, i.e., including the accumulated violation of the energy constraint as a additional piece of observation data whose true 
mean value is zero.

2.2.3. Accounting for initial conditions

Evaluation of  typically requires an initial condition, 𝑋(0), when solving Eq. (5). When we observe ergodic systems over 
sufficiently long time scales, we can treat  as a stochastic map over a distribution of initial conditions [75]. However, when we 
observe systems over shorter time scales (or if they are non-ergodic), it is often necessary to identify initial conditions that generated 
the observations. We highlight two basic approaches: (i) append 𝑋(0) to the vector of learned parameters for , and (ii) implicitly 
identify 𝑋(0) by applying data assimilation techniques. To achieve (i), we can minimize:

(𝜃,𝑋(0)
)
= 1

2
|||𝑦− (𝜃P; 𝜃I,𝑋(0)

)|||2Σ. (13)

To achieve (ii), we can minimize:

(𝜃) =1
2
|||𝑦− (𝜃P; 𝜃I,𝑋(0)

)|||2Σ,
s.t. 𝑋(0) =(𝜃, 𝑦),

(14)

where  represents a data assimilation algorithm that performs state estimation given observations 𝑦 and assumed parameters 
𝜃. While Eqs. (13) and (14) appear quite similar, the utilization of efficient state-estimation algorithms in (14) can help cope with 
sensitivities to initial conditions that may cause (13) to fail. Recent work has explored different variants of (14), often using gradient-

based optimization approaches and sequential state-estimation schemes [51,58,76,77].

3. Constructing error models

We highlight three different approaches to representing structural errors: dictionary learning, Gaussian processes, and neural 
networks; however, other representations of structural error can also be considered within the overarching framework proposed 
here. For these three approaches, existing work mainly focuses on constructing deterministic error models that are locally dependent 
on state variables; however, the approaches can all be extended to the construction of stochastic error models or can be made 
non-locally dependent on state variables as described in Sections 3.4 and 3.5. For simplicity, we define the error models for the 
whole collection of structural errors 𝛿(𝑋, 𝜃I); however, we can also define and learn them independently for each component of the 
structural error model 𝛿𝑙(𝑋, 𝜃𝑙

I
) for 𝑙 = 1, … , 𝐿.

3.1. Dictionary learning

If a set of candidate terms in error models is known or can be approximated, an error model can be constructed via learning from 
a dictionary of 𝐽 candidate terms,

𝛿(𝑋;𝜃 ) =
𝐽∑

𝛼 𝜙 (𝑋;𝛽 ), (15)
6

I

𝑗=1
𝑗 𝑗 𝑗
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where 𝜃I = {𝛼, 𝛽} and 𝜙𝑗 (𝑋; 𝛽𝑗 ) denote user-specified, parametric basis functions that can, for example, include differential operators 
[28–30,50]. In practice, it is difficult to know all suitable basis functions a priori, and thus it is common to include redundant basis 
functions in the dictionary. Basis functions can then be pruned based on data by imposing sparsity constraints on the coefficients 𝛼𝑗 . 
Such sparsity constraints have proven to be beneficial in the construction of data-driven models of dynamical systems [28–30,50,74]. 
They are also commonly used in compressed sensing [78], where dictionary learning has been widely used.

An advantage of using dictionary learning is the potential interpretability of the constructed error model, arising because the 
error model is a linear combination of user-specified and hence interpretable basis functions. On the other hand, this approach can 
be overly restrictive when the dictionary of basis functions {𝜙𝑗} is misspecified, resulting in an insufficiently expressive error model.

3.2. Gaussian processes

Another option of constructing an error model is via Gaussian processes (GPs) [79],4

𝛿(𝑋;𝜃I) ∼  (𝑚,) , (16)

where 𝑚 ∶  ↦ℝ denotes the mean of 𝛿,  ∶  × ↦ℝ represents a kernel, and  is the input space of the structural error model. 
Given data at 𝐽 different points 𝑋(𝑗) for 𝑗 = 1, 2, ..., 𝐽 , the mean of the error model can be written as a linear combination of basis 
functions,

𝑚(𝑋) =
∑
𝑗

𝛼𝑗(𝑋(𝑗),𝑋;𝜓), (17)

where 𝜓 denotes the hyper-parameters of the kernel . Therefore, the parameters that characterize the error model become 𝜃I =
{𝛼, 𝜓} if the mean of a GP is used to represent the model error term 𝛿. The GP approach requires the choice of a kernel , which 
then determines the kernel functions (𝑋(𝑗), ⋅) in Eq. (17). This may appear restrictive, but the hyper-parameters of  are learned 
from the data; thus, the set of functions in which the solution is sought is data-adapted. This confers a potential advantage over 
dictionary learning, in particular for problems lacking in strong prior knowledge about the functional form of the model 𝛿(𝑋; 𝜃I) to 
be learned. In the case of indirect data, the locations 𝑋(𝑗) must also be chosen a priori (or learned as additional parameters).

Because of the similar forms of Eqs. (17) and (15), the GP shares similar shortcomings as dictionary learning when the kernel 
 is misspecified, even in the presence of hyper-parameter learning. In practice, a more sophisticated kernel  =

∑
𝑖

𝑖 is often 

constructed from some basic kernels 𝑖 [80–82]. If a redundant set of basic kernels is used, sparsity constraints can be imposed in 
a similar way as in dictionary learning to prune the kernel set. A further limitation of using GPs is the computational cost, which 
grows exponentially with the dimension of  . This pathology can be ameliorated by representing the GP as a linear combination 
of random Fourier features [83], which allows us to recast a GP as a dictionary-based approach in which the bases 𝜙𝑗 are drawn 
randomly from a special distribution known to reproduce a kernel of interest.

3.3. Neural networks

Compared to dictionary learning, neural networks are more expressive, and they are more scalable than GPs, as the latter suffer 
from the curse of dimensionality if the model has high-dimensional input. Neural networks can also be used to construct an error 
model,

𝛿(𝑋;𝜃I) = (𝑋;𝜃I), (18)

where  denotes a neural network and 𝜃I the coefficients (biases and weights) of the neural network. While neural networks 
are expressive and scalable, it is more difficult to enforce stability of a dynamical system with a neural network error model [60]. 
This is mainly because the nonlinearity introduced by a neural network is often more difficult to analyze compared with dictionary 
learning, for which we explicitly specify basis functions and thus can avoid using those that lead to instability; it is also more difficult 
to analyze than GP based learning because the latter is easier to interpret, as the kernels are hand-picked and then tuned to data. In 
Section 2.2.2, we discuss a general approach to enhancing stability by enforcing energy constraints in the context of learning from 
indirect data.

3.4. Stochastic extension

In the preceding sections, we briefly summarized commonly used tools for constructing error models. All of those models were 
deterministic, with fixed parameters 𝜃I. To quantify uncertainties, we can take a Bayesian perspective, view the unknown parameters 
as random variables, and infer the distributions of those parameters given the data. We can then propagate the uncertainties of 
those parameters to the simulated state 𝑋 and predicted observations �̂� via Monte Carlo simulations. Although this is a standard 
approach to quantifying uncertainties, it cannot directly account for the impact of neglected information of unresolved scales upon 

4 Here we use only the mean of the GP, and the methodology is simply a form of data-adapted regression; we are not using the uncertainty quantification that 
7

comes with GPs.
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the resolved state 𝑋. The randomness of the unresolved state can have an order one impact upon 𝑋; this issue is particularly 
prevalent in applications without a clear scale separation, such as turbulence, but can also happen in scale-separated problems. In 
such a scenario, directly modeling this impact as randomness in the resolved state becomes more appropriate, and it can be achieved 
by further adding a stochastic process to the deterministic error model:

𝛿

(
𝑋;𝜃I

)
d𝑡 = 𝛿det (𝑋;𝜃det )d𝑡+

√
𝜎2(𝑋;𝜃ran)d𝑊 , (19)

where det indicates a deterministic model, 𝑊 denotes the Wiener process, and the overall unknown parameters are defined as 
𝜃I = {𝜃det , 𝜃ran}. In practice, the above formulation can be further generalized by using stochastic processes (e.g., with desired 
temporal correlations) other than the Wiener process.

Fitting stochastic models to time-series data has been explored in some previous works [84–87]; a common problem when 
applying these methods is the inconsistency between data and the incremental structure of the Gaussian noise driving the model 
as the time step is approaching zero [88–91]. A common practice to address this issue is the multi-scale use of data, e.g., via 
subsampling [66,92–96]. Some previous works also explored Kramers–Moyal averaging with finite sampling rate correction [97–99]. 
On the other hand, fitting a discretized version of stochastic processes to time-series data has been explored using autoregressive 
models [100–103]. For some dynamical systems, the unresolved state has conditional (with respect to the resolved state) Gaussian 
statistics [104,105], and then fitting the stochastic models can be achieved using analytically derived likelihoods.

In the absence of the whole trajectories of time series, some recent works started to explore fitting stochastic models to statistics of 
time-series data [52,106–108]. Using time-averaged data to estimate linear SDEs has been studied for decades to account for climate 
variability [109–112], and extension to nonlinear SDEs was discussed in [113].

3.5. Representing non-local effects

Spatial non-locality The states 𝑋(𝑡) for approximate models and their structural corrections typically consider 𝑋(𝑡) as a discretized 
spatial field. Most traditional closure models are formed locally; that is, they rely on the assumption of local dependence on 𝑋(𝑡, 𝑟), 
where 𝑋(𝑡, ⋅) ∶ℝ𝑝 ↦ℝ is a spatial field, and 𝑟 ∈ℝ𝑝 represents the spatial coordinate. For some applications, it is useful to consider 
non-local effect in the error model. Indeed, our formulations of the approximate physical model in (1) and models for structural 
error in Sections 3.1 to 3.3 are well-specified for scalar (local, component-wise) or vector-valued (non-local) 𝑋. Moreover, we note 
that non-local functions of the state 𝑋(𝑡) are best conceptualized as function-valued operators—while they take as inputs a vector 
of neighboring coordinates from 𝑋(𝑡), this vector represents a discretized spatial function. Thus, when designing spatially non-local 
closures, it is often sensible to build them to be consistent across different spatial discretizations.

In the case of neural networks, we can build spatially non-local closures with convolutional neural networks (CNNs); the Fourier 
neural operator (FNO) [114] or deep operator network (DeepONet) [115] provide an extension to an operator limit. Similarly, GPs 
and random feature methods (a dictionary-based formulation of GPs) can be designed with spatially non-local vectorized inputs from 
𝑋(𝑡). Recent theoretical work has also allowed these basic methods to be taken to a continuous operator limit [116,117].

As an emerging topic in the context of data-driven modeling, some recent works have explored non-local diffusion [43–45,118]

and spatially non-local modeling [41,42,49]. In this work, we capture the spatially non-local dependence on 𝑋 via a data-driven 
convolution kernel:

𝛿

(
𝑋(𝑡, 𝑟);𝜃I

)
= ∫
𝑟′∈Ω

𝛿loc(𝑋(𝑡, 𝑟′);𝜃loc)(𝑟− 𝑟′;𝜃non-loc)𝑑𝑟′ (20)

where Ω ⊂ℝ𝑝 represents a subset of ℝ𝑝 that contains 𝑟, and  ∶ℝ𝑝 ↦ℝ denotes a convolution kernel with hyper-parameters 𝜃non-loc. 
The overall parameterization is defined by 𝜃I = {𝜃loc, 𝜃non-loc}, such that the unknown parameters in the local error model 𝛿loc and 
the convolutional kernel  can be jointly estimated.

Note that hyper-parameters can be made state-dependent, so that 𝜃non-loc(𝑋(𝑡, 𝑟); 𝜅); in this case, the additional unknowns 𝜅 can 
be learned, appending them to 𝜃I. Similarly, learning a nonlinear integral kernel has been discussed in [119] and shown to be a 
continuous generalization of the transformer architecture [120].

The form of non-local closure in (20) draws inspiration from a series of works about non-local modeling [118], in which 𝛿loc

corresponds to a local Laplace operator. Some mathematical foundations of non-local operators and calculus were summarized 
in [118], and the connection to fractional differential operators was illustrated in [121].

Temporal non-locality Non-locality in time (memory) is also important. Generically, any form of variable elimination or coarse-

graining results in memory effects which require, at each current point in time, integration of the entire time-history from the initial 
condition up to the current time [37]. Such memory effects are undesirable as they lead to computational algorithms that scale poorly 
with respect to length of the time interval. Markovian models that encapsulate memory can be constructed, for example, by intro-

ducing a recurrent neural network [51], or by the use of delay embedding [122]; such Markovian models are more computationally 
expedient. Temporally non-local modeling has received significant recent attention [46–49]. If diffusion/advection mechanisms are 
present in the resolved system, memory effects of any state variable would manifest themselves in the state variables as a spatial 
non-locality. For this reason non-local models with a flexible enough kernel could potentially be used to capture memory effects, 
8

without significantly increasing the computational costs.
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4. Lorenz 96 systems as illustrative examples

For our simulation studies of structural model error, we consider two variants of the celebrated Lorenz 96 model [54], described 
in what follows.

4.1. Lorenz models

We consider a multiscale Lorenz 96 model, together with a single-scale companion model, to illustrate the principles and algo-

rithms described in the subsequent sections. In each case, we use an untruncated version of the model as the true data-generating 
model and a truncated version as the model in which structural error models are to be learned.

4.1.1. Multiscale Lorenz 96 model

The Lorenz 96 multi-scale system [54] describes the evolution of a simplified atmospheric flow, which is periodic along latitude 
circles (space). It does so through one set of slow variables, 𝑥𝑘 (𝑘 = 1, … , 𝐾), coupled to a set of fast variables, 𝑧𝑗,𝑘 (𝑗 = 1, … , 𝐽 ), 
whose indices label space coordinates:

�̇�𝑘 = −𝑥𝑘−1(𝑥𝑘−2 − 𝑥𝑘+1) − 𝑥𝑘 + 𝐹 − ℎ𝑐�̄�𝑘,

1
𝑐
�̇�𝑗,𝑘 = −𝑏𝑧𝑗+1,𝑘(𝑧𝑗+2,𝑘 − 𝑧𝑗−1,𝑘) − 𝑧𝑗,𝑘 +

ℎ

𝐽
𝑥𝑘.

(21)

Reflecting the periodicity along latitude circles, the variables are periodic in their indices, with

𝑥𝑘+𝐾 = 𝑥𝑘, 𝑧𝑗,𝑘+𝐾 = 𝑧𝑗,𝑘, 𝑧𝑗+𝐽 ,𝑘 = 𝑧𝑗,𝑘+1. (22)

The coupling term ℎ𝑐�̄�𝑘 describes the impact of the fast dynamics on the slow dynamics, with only the average

�̄�𝑘 =
1
𝐽

𝐽∑
𝑗=1

𝑧𝑗,𝑘 (23)

of the fast variables affecting the slow variables. To generate data, we work with the parameter choices 𝐾 = 36, 𝐽 = 10, and 
𝐹 = 𝑏 = 10 [54,65]. The choices of ℎ and 𝑐 are summarized in Subsection 4.2 for different cases.

To study how to model structural errors, we consider a coarse-grained system in which we only simulate approximate versions 
𝑋𝑘 of the slow variables 𝑥𝑘, neglecting the fast variables. The approximate slow variables are governed by the system,

�̇�𝑘 = −𝑋𝑘−1(𝑋𝑘−2 −𝑋𝑘+1) −𝑋𝑘 + 𝐹 + 𝛿(𝑋𝑘,𝑋
−
𝑘
;𝜃I),

𝑋𝑘+𝐾 =𝑋𝑘,
(24)

for 𝑋−
𝑘
= (𝑋𝑘−𝑑 , ⋯ , 𝑋𝑘−1, 𝑋𝑘+1, ⋯ , 𝑋𝑘+𝑑 ). Here, 𝛿(⋅) is the error model that accounts for the missing multiscale interactions. If there 

is no dependence on 𝑋−
𝑘

, the model is local; otherwise, we allow for non-local dependency with a stencil of width 𝑑 on either side of 
𝑋𝑘. If specified correctly, the model error ensures that the resolved variables 𝑋𝑘 of the coarse-grained system (24) approximate the 
variables 𝑥𝑘 of the full data generating system (21)–(23). We will use data generated with the full system (21)–(23) to learn about 
the error model 𝛿(⋅) in the coarse-grained system (24).

As data 𝑦 =[𝑥(⋅)] we consider

[𝑥(⋅)] = 𝔼 (𝑥(⋅)),

where 𝔼 denotes expectation with respect to the stationary distribution of 𝑥(𝑡) and  ∶ traj ↦ ℝ𝑞 is a function on the space of 
solution trajectories (i.e., traj ∶ 0+ ↦ ). In this work, we use moments of the vector 𝑥 and the averaged auto-correlation function 
as data and employ a finite-time average to approximate the expectation 𝔼:

(i) We will use 𝑚th-moments of the vector 𝑥, i.e., 𝑚(𝑥) =Π𝑘∈𝑀𝑥𝑘:

[𝑥(⋅)] ≈ 1
𝑇

𝑇

∫
0

Π𝑘∈𝑀𝑥𝑘(𝑡)d𝑡,

where 𝑥𝑘 denotes the 𝑘th element of vector 𝑥, and 𝑀 is a subset of size 𝑚 comprising indices (repetition allowed) from 
{1, ⋯ , 𝐾}.

(ii) We will also use autocorrelation function 𝑎𝑐 (𝑥(⋅)) = 𝑥(𝑡 + 𝜏) ⊗𝑥(𝑡):

[𝑥(⋅)] ≈ 1
𝑇

𝑇

∫
0

𝑥(𝑡+ 𝜏)⊗𝑥(𝑡)d𝑡.
9

In this work, we only consider the autocorrelation of the same element in the vector 𝑥, i.e., 𝑥𝑘(𝑡 + 𝜏)𝑥𝑘(𝑡).
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4.1.2. Single-scale Lorenz 96 model

The single-scale Lorenz 96 system does not include the fast variables. We use it to illustrate the combined use of direct and 
indirect data and the advantage of enforcing conservation constraints in error models. The single-scale Lorenz 96 system describes 
the evolution of the 𝑥𝑘 variables alone,

�̇�𝑘 = −𝑥𝑘−1(𝑥𝑘−2 − 𝑥𝑘+1) − 𝑥𝑘 + 𝐹 ,

𝑥𝑘+𝐾 = 𝑥𝑘,
(25)

and we use it to generate data in the setting where 𝐾 = 36 and 𝐹 = 10.

As the truncated system, we will only assume that we know the linearized part of the dynamics, resulting in an approximate 
model of the form

�̇�𝑘 = −𝑋𝑘 + 𝐹 + 𝛿(𝑋𝑘−2,𝑋𝑘−1,𝑋𝑘+1,𝑋𝑘+2;𝜃I),

𝑋𝑘+𝐾 =𝑋𝑘.
(26)

Here, 𝛿 is the error model that models the missing quadratic terms; we note that we postulate the need to learn a single universal 
function 𝛿 to account for model error in each component of the equation, reflecting an a priori assumption about the homogeneity 
of the structural error with respect to 𝑘. Since the error model 𝛿 accounts for the unknown convection term and thus should not 
introduce additional energy, the state variable 𝑋𝑘 is excluded from the inputs of 𝛿 in the 𝑘-th equation. We will use data generated 
from the untruncated system (25) to learn about the error 𝛿 in the truncated system (26). As data 𝑦 =[𝑥(𝑡)], we employ the same 
types of data (i.e., moments and autocorrelation of the vector 𝑥) as described in Section 4.2.2.

4.2. Numerical results for Lorenz models

Before presenting detailed numerical results for Lorenz systems, we summarize several highlights of our numerical results.

1. For a multiscale system with clear scale separation, local deterministic error models using either direct or indirect data lead to 
satisfactory model fits. Detailed results are presented in Figs. 2 and 3.

2. For a multiscale system with less clear scale separation, local deterministic error models using direct data or indirect data do not 
lead to satisfactory model fits. Detailed results are presented in Figs. 4 and 5. However non-local or stochastic error models do 
lead to satisfactory fits. Detailed results are presented in Figs. 6 to 8.

3. For the single-scale Lorenz model, we show how an energy constraint can be incorporated into the EKI learning framework and 
leads to enhanced calibration of the error model. Detailed results are presented in Figs. 9 to 11.

Here, we investigate the long-term behavior of the trained models for the Lorenz systems via the invariant measure. For the 
numerical examples, the invariant measure corresponds to the probability density function of a system state variable, when simulating 
the dynamical system for a long enough time so that the probability density function does not vary. For the numerical examples with 
indirect data, the invariant measure is employed as a qualitative indicator for the long-term performance of the trained models. 
Considering that the indirect data only contain partial information about the true invariant measure, the quantitative comparison of 
the ensemble mean for the invariant measures may lead to over-interpretation of the results; thus, we only present the ensemble of 
invariant measures.

4.2.1. Lorenz 96 multi-scale model

We first study the multi-scale Lorenz 96 system. The numerical examples for the multi-scale Lorenz 96 system are as follows:

(i) For 𝑐 = 10 and ℎ = 1 in the multi-scale Lorenz 96 system, a fully-connected neural network is trained as a local deterministic 
error model 𝛿(𝑋𝑘) using direct data ({𝑥𝑘, ℎ𝑐𝑧𝑘}), and a dictionary-learning-based model is trained using indirect data (first and 
second moments of the slow variable 𝑥𝑘). The direct data comprise 36000 data points. For the indirect data in this example, 
we assume partial observations of the first eight slow variables and include cross-terms of second moments (i.e., 𝔼(𝑥𝑖𝑥𝑗 ) for 
different 𝑖 and 𝑗). The indirect data comprise 44 data points. The results are presented in Figs. 2 and 3.

(ii) For 𝑐 = 3 and ℎ = 10∕3 in the multi-scale Lorenz 96 system, the scale separation between fast and slow variables becomes 
smaller and thus leads to a more challenging case. In this case, a fully-connected neural network is trained as the local deter-

ministic error model 𝛿(𝑋𝑘) using either direct data ({𝑥𝑘, ℎ𝑐𝑧𝑘}) or indirect data (first to fourth moments of the slow variable 
𝑥𝑘 and the autocorrelation of 𝑥𝑘). For the indirect data in this and the next examples, we enable the full observation of all 
36 slow variables and preclude the use of all cross-terms of second to fourth moments. The direct data comprise 36000 data 
points, and the indirect data 154 data points. The results are presented in Figs. 4 and 5.

(iii) For 𝑐 = 3 and ℎ = 10∕3 in the multi-scale Lorenz 96 system, we train a non-local deterministic error model 𝛿(𝑋) =∑
𝑘′ 𝛿(𝑋𝑘′ )(𝑘 − 𝑘′; 𝜃non-loc), a local stochastic error model with additive noise 𝛿(𝑋𝑘) +

√
𝜎2�̇�𝑘, and a local stochastic er-

ror model with multiplicative noise 𝛿(𝑋𝑘) +
√
𝜎2(𝑋𝑘)�̇�𝑘, using indirect data (first to fourth moments of the slow variable 𝑥𝑘
10

and the autocorrelation of 𝑥𝑘). The results are presented in Figs. 6 to 8.
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Fig. 2. Direct training of the error model (𝑐 = 10) using a neural network, with results for (a) the trained error model and (b) the invariant measure.

Fig. 3. Indirect training of the error model (𝑐 = 10) using dictionary learning, with the results for (a) first and second moments and (b) the invariant measure. The 
results with a GP and a neural network have similar performance and are omitted.

Fig. 2a presents the direct data {𝑥𝑘, ℎ𝑐�̄�𝑘}. Based on direct data, a regression model 𝛿(𝑋𝑘) can be trained and then used to 
simulate the dynamical system of 𝑋𝑘 in (24). In this work, we train such a regression model using a fully-connected neural network 
with two hidden layers (five neurons at the first hidden layer and one neuron at the second hidden layer). It can be seen in Fig. 2a 
that the trained model captures the general pattern of the training data. We also simulate the dynamical system in (24) for a long time 
trajectory and compare the invariant measure of 𝑋𝑘 with the true system in (21). As shown in Fig. 2b, we obtain a good agreement 
between the invariant measures of the modeled system and the true system.

Because direct data {𝑥𝑘, ℎ𝑐�̄�𝑘} may not be accessible in some applications, we also explore the use of indirect data to calibrate 
the error model 𝛿(𝑋𝑘). In this example, the first and second moments of the first eight components of 𝑥𝑘 are used for the calibration. 
We tested different approaches that parameterize the error model 𝛿(𝑋𝑘), including dictionary learning (Fig. 3), GPs and neural 
networks. The error model based on dictionary learning has the form 𝛿(𝑋𝑘) =

∑2
𝑖=1 𝛼𝑖𝜙𝑖(𝑋𝑘), where we choose the basis function 

dictionary 𝜙𝑖(𝑋𝑘) ∈ {tanh(𝛽1𝑋𝑘), tanh(𝛽2𝑋2
𝑘
)}. Therefore, we have {𝛼𝑖, 𝛽𝑖}2𝑖=1 as unknown parameters to be learned. Instead of using 

polynomial basis functions, we have introduced the hyperbolic tangent function tanh(⋅) to enhance the numerical stability. The 
error model based on a GP has the form 𝛿(𝑋𝑘) =

∑7
𝑗=1 𝛼𝑗(𝑋(𝑗)

𝑘
, 𝑋𝑘; 𝜓), where we chose the 𝑋(𝑗)

𝑘
as seven fixed points uniformly 

distributed in [−15, 15], and  as a squared exponential kernel with unknown constant hyper-parameters 𝜓 = {𝜎GP, 𝓁}, where 𝜎GP
denotes the standard deviation and 𝓁 the length scale of the kernel. The results with a GP and with a neural network are similar to the 
ones with dictionary learning in Fig. 3 and are omitted here. The calibrated models in all three tests lead to good agreement in both 
data and invariant measure, and the performance of the calibrated model is not sensitive to the specific choice of parameterization 
approaches.

Although the performance of the calibrated error model is not sensitive to either the types of data or the parameterization 
approaches for this numerical example, the specific choices made in constructing and calibrating error models are still important, and 
even more so for more challenging scenarios, e.g., when the resolved and unresolved degrees of freedom have less scale separation.

To illustrate the advantage of using indirect data and stochastic/non-local error models, we study a more challenging scenario 
where the scale separation between 𝑥𝑘 and 𝑦𝑗,𝑘 in (21) is narrower, by setting ℎ = 10∕3 and 𝑐 = 3. It can be seen in Fig. 4a that 
11

the general pattern of the direct data is still captured by the trained error model 𝛿(𝑋𝑘). However, the comparison of the invariant 
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Fig. 4. Direct training of the error model (𝑐 = 3) using a neural network, with results for (a) the trained error model and (b) the invariant measure.

Fig. 5. Indirect training of the error model (𝑐 = 3) using a deterministic model (local), with the results for (a) the first four moments and autocorrelation, and (b) the 
invariant measure.

measures in Fig. 4b shows that the long-time behavior of the trained model does not agree with the true system, indicating the 
limitation of using only direct data for the calibration.

We further investigate the use of indirect data. Specifically, the first four moments of 𝑋𝑘 and ten points sampled from the averaged 
autocorrelation function of 𝑋𝑘 are used as training data. Fig. 5 presents the results for the calibrated local model 𝛿(𝑋𝑘). It can be 
seen in Fig. 5a that the trained error model agrees with the training data, while the invariant measures in Fig. 5b still differ between 
the calibrated and the true systems, indicating overfitting of the training data.

To avoid the overfitting in Fig. 5, we calibrate a non-local error model, as discussed in Section 3.5. Compared to the results for the 
local error model, it can be seen in Fig. 6 that the invariant measure of the calibrated system agrees better with the true system, which 
indicates that the closure model 𝛿(⋅) in (24) with non-local effects represents a better closure for unresolved scales if there is a less 
clear scale separation between resolved and unresolved scales. The non-local model tends to be more flexible than the local model. 
Fig. 5a demonstrates that the local model already achieves a good agreement in data space with the true system. It is likely that 
more than one possible non-local model can achieve a comparable performance of matching the indirect data. However, simulating 
those different non-local models for a much longer time can lead to more noticeable differences in their invariant measures, which 
provides a possible explanation for the larger variability within the ensemble in Fig. 6b. It should be noted that the key challenge of 
this example is the relatively large variability of the true closure term in Fig. 4a. Without accounting for such variability, the local 
and deterministic model does not correctly capture the invariant measure even in the standard regression setting with an abundance 
of training data as presented in Fig. 4b. In the non-local model, two local states with similar values may have noticeably different 
values of their neighbor states, and thus the non-local model with the local state and its neighbor states as the inputs can address 
some of the variability in Fig. 4a, which explains its improved performance relative to the local models. Considering that there are 
three peaks in the invariant measure of the true system, the non-local model has a greater chance of having some inputs from the 
left or right peak than merely having inputs from the central peak. Therefore, the trained model can be more in favor of the left or 
right peak of the invariant measure, which provides a possible explanation for the pattern of peaks presented in Fig. 6b.

We also explored learning a stochastic error model for this example. The neural networks used in the stochastic error models have 
5 neurons in the first hidden layer and one neuron in the second layer. The hidden layer neurons have a sigmoid activation function, 
12

and the output layer neurons have no nonlinear activation function. For the stochastic error model with an additive noise term, 19 
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Fig. 6. Indirect training of the error model (𝑐 = 3) using a non-local deterministic model, with results for (a) the first four moments and autocorrelation, and (b) the 
invariant measure.

Fig. 7. Indirect training of the error model (𝑐 = 3) using stochastic model with additive noise, with the results for (a) the first four moments and autocorrelation, and 
(b) the invariant measure.

Fig. 8. Indirect training of the error model (𝑐 = 3) using a stochastic model with multiplicative noise, with the results for (a) the first four moments and autocorrelation, 
and (b) the invariant measure.

parameters need to be estimated. For the stochastic error model with a multiplicative noise term, 36 parameters need to be estimated. 
Fig. 7 presents the results of the calibrated system with an additive stochastic error model. Compared to the results for deterministic 
error models in Figs. 5 and 6, we can see that the invariant measure of the calibrated system agrees better with the true system in 
Fig. 7b. We further test the stochastic error model by also learning a state-dependent diffusion coefficient. As shown in Fig. 8b, the 
calibrated system achieves better agreement with the invariant measure of the true system, which confirms that increased flexibility 
13

in the stochastic error model can help achieve improved predictive performance via training against indirect data. It should be noted 
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Fig. 9. Invariant measures via direct training of the error model (𝑐 = 10) for the single-scale Lorenz 96 system.

Fig. 10. Results from trained error model (𝑐 = 10) for the single-scale Lorenz 96 system without energy conservation constraint, including (a) first four moments and 
autocorrelation, and (b) invariant measures.

that Figs. 6 to 8 do not display a single converged invariant measure. This arises because the calibrated parameters vary across the 
ensemble; as a result, we obtain a family of structural error models that all fit the data with similar accuracy. We surmise that this 
is caused by the fact that the indirect data contain only partial information about the invariant measure. Nonetheless, the fits are all 
far superior to those obtained with the local deterministic model.

4.2.2. Lorenz 96 single-scale model

We studied the Lorenz 96 single-scale system to learn the quadratic term as an error model. Using this numerical example, 
we demonstrate the merit of combined use of direct and indirect data and the importance of enforcing physical constraints. 
More specifically, we assume that the quadratic term of the true system in (25) is unknown and then calibrate an error model 
𝛿(𝑋𝑘−2, 𝑋𝑘−1, 𝑋𝑘+1, 𝑋𝑘+2) as in (26). The size of the direct data is 36000, and the size of the indirect data is 154. The numerical 
examples for the single-scale Lorenz 96 system are as follows:

(i) We train a fully-connected neural network as an error model 𝛿(⋅) using time-series of 𝑥𝑘 and the true quadratic term as direct 
data. The results are presented in Fig. 9.

(ii) We train a fully-connected neural network as an error model 𝛿(⋅) using indirect data (first to fourth moments of the state 
variable 𝑥𝑘 and the autocorrelation of 𝑥𝑘). The results are presented in Fig. 10.

(iii) We train a fully-connected neural network as an error model 𝛿(⋅) using indirect data (first to fourth moments of the state 
variable 𝑥𝑘 and the autocorrelation of 𝑥𝑘) and the energy conservation constraint in (12). The results are presented in Fig. 11.

Fig. 9 presents the comparison of invariant measures between the calibrated system and the true system when a fully connected 
neural network is used as an error model and is learned from direct data. As seen in Fig. 9, the calibrated system using direct data 
still differs noticeably in the invariant measure, indicating a difference from the long-time behavior of the true system.

In order to improve the results of Fig. 9, we incorporate indirect data about the 𝑥𝑘. Specifically, we employ the trained model 
using direct data as the prior mean of EKI, and we set the prior standard deviation as 30% of the mean values for each unknown 
coefficient of the error model. We then use EKI to calibrate the error model based on the first four moments of 𝑋𝑘 and the ten 
14

sampled points from the autocorrelation function of 𝑋𝑘. Without enforcing energy conservation of the error model, we can see in 
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Fig. 11. Results from trained error model (𝑐 = 10) for the single-scale Lorenz 96 system with energy conservation constraint, including (a) first four moments and 
autocorrelation, and (b) invariant measures.

Fig. 10b that the performance of the calibrated model is similar to the calibrated system using direct data in Fig. 9. On the other 
hand, we also performed the calibration based on indirect data and enforced the energy conservation of the error model as discussed 
in Section 2.2.2. Considering that the true system conserves quadratic energy at every time, the energy constraint with the form in 
Eq. (12) is used. As shown in Fig. 11, the calibrated error model with energy conservation leads to a modeled system that better fits 
the training data and achieves a good agreement with the invariant measure of the true system.

5. Human glucose-insulin model as illustrative example

The examples based on Lorenz systems in Section 4 illustrate the construction and calibration of internal error models for chaotic 
and ergodic systems, which are representative of a wide range of applications, e.g., in weather forecasting and climate change 
prediction, design of hypersonic vehicles, or the control of unmanned vehicles in a turbulent environment. However, there is another 
large class of applications for which the systems are non-ergodic and the goal is to accurately predict the time series of the system 
evolution. To achieve this goal for non-ergodic systems, we can no longer neglect the impact of the initial condition. We use a human 
glucose-insulin model as an example of a non-ergodic system and illustrate how the internal error model can be calibrated based on 
time series data, using EKI combined with data assimilation techniques.

5.1. Ultradian model

We consider the ultradian model of the glucose-insulin system proposed in [123]. Its primary state variables are the plasma glucose 
concentration, 𝐺, the plasma insulin concentration, 𝐼𝑝, and the interstitial insulin concentration, 𝐼𝑖. These three state variables are 
augmented with a three stage delay (ℎ1, ℎ2, ℎ3) which encodes a non-linear delayed hepatic glucose response to plasma insulin levels. 
The resulting ordinary differential equations have the form:

𝑑𝐼𝑝

𝑑𝑡
= 𝑓1(𝐺) −𝐸

( 𝐼𝑝

𝑉𝑝
−

𝐼𝑖

𝑉𝑖

)
−

𝐼𝑝

𝑡𝑝
(27a)

𝑑𝐼𝑖

𝑑𝑡
=𝐸

( 𝐼𝑝

𝑉𝑝
−

𝐼𝑖

𝑉𝑖

)
−

𝐼𝑖

𝑡𝑖
(27b)

𝑑𝐺

𝑑𝑡
= −𝑓2(𝐺) − 𝑓3(𝐼𝑖)𝐺 + 𝑓4(ℎ3) +𝑚𝐺(𝑡) (27c)

𝑑ℎ1
𝑑𝑡

= 1
𝑡𝑑
(𝐼𝑝 − ℎ1) (27d)

𝑑ℎ2
𝑑𝑡

= 1
𝑡𝑑
(ℎ1 − ℎ2) (27e)

𝑑ℎ3
𝑑𝑡

= 1
𝑡𝑑
(ℎ2 − ℎ3) (27f)

Here 𝑚𝐺(𝑡) represents a known rate of ingested carbohydrates appearing in the plasma, 𝑓1(𝐺) represents the rate of glucose-

dependent insulin production, 𝑓2(𝐺) represents insulin-independent glucose utilization, 𝑓3(𝐼𝑖)𝐺 represents insulin-dependent glucose 
utilization, and 𝑓4(ℎ3) represents delayed insulin-dependent hepatic glucose production. The functional forms of these parameterized 
processes are shown in Appendix B.

We represent a potential structural error in this model by removing the final linear term in (27a) (i.e., 𝑡𝑝 =∞). We then aim to 
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identify a neural-network-based additive correction term for (27a), denoted by 𝛿(𝐼𝑝, 𝐼𝑖, 𝐺, ℎ1, ℎ2, ℎ3; 𝜃). We calibrate 𝛿(⋅ ; 𝜃) using 
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Fig. 12. Partial, noisy, transient timeseries data were used to calibrate model error. Results in (a-b) show the trained neural network error model for two specific 
input scenarios and (c) shows next-step predictions of 𝐺 from sequential data assimilation using the trained model. Figures (a-b) plot the model 𝛿 (a function of all 6 
state variables) for 5 fixed states while varying 𝐼𝑝 and 𝐺, respectively.

partial, noisy observations of the physiologic state at times {𝑡𝑘}𝐾𝑘=0. Specifically, we observe only the glucose state, 𝐺(𝑡), (it is the only 
state variable that is reliably measurable in patients) and add i.i.d. unit-Gaussian noise. Thus the observation operator  in Eq. (2)

is defined through observation matrix 𝐻 ∈ℝ1×6. To be specific 𝐻𝑋(𝑡) =𝑋3(𝑡) where 𝑋(𝑡) = [𝐼𝑝(𝑡), 𝐼𝑖(𝑡), 𝐺(𝑡), ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡)]𝑇 and 
then [𝑋] = {𝐻𝑋(𝑡𝑘)}𝐾𝑘=0. It should be noted that the observation matrix 𝐻 projects between the full system state space and the 
observable space and may be used in the definition of a gain matrix 𝐾 for Kalman methods and generalizations such as 3DVAR (See 
Table 9.1 in [124]).

We refer to the observed data as 𝑦 =
[
𝑦(𝑡1), ⋯ , 𝑦(𝑡𝐾 )

]
and to the solution of the entire six dimensional dynamical system at the 

observation times as 
[
𝑥(𝑡1), ⋯ , 𝑥(𝑡𝐾 )

]
. We infer parameters 𝜃 by minimizing a variant of the loss defined in Eq. (14) in which the 

forward model itself depends on 𝑦:

(𝜃) = 1
2
|||𝑦− (𝜃; 𝑦)|||2Σ. (28)

Specifically 𝑘(𝜃; 𝑦) uses sequential data assimilation to combine previous observations 
[
𝑦(𝑡1), ⋯ , 𝑦(𝑡𝑘−1)

]
with parameters 𝜃 to 

produce a filtered estimate for 𝑥(𝑡𝑘−1) and, from this, predict the observation 𝑦(𝑡𝑘); see section 2.2.3. The minimization of Eq. (28) is 
performed using EKI, where each evaluation of (𝜃; 𝑦) involves running a data assimilation sub-routine (3DVAR [124] with constant 
gain 𝐾 = [0, 0, 1, 0, 0, 0]).

5.2. Numerical results for ultradian model

Through the presented numerical experiments in this section, we find that:

1. Model corrections can be learned for non-ergodic, non-stationary systems from noisy, partial observations of transient dynamics 
by applying DA as a sub-routine within the model inference pipeline (Fig. 12).

2. Key structural components of model error terms can be identified despite being unobserved (Fig. 12a).

3. Learned model error structure can exhibit inaccuracies outside of the observed data distribution and when models are insensitive 
to these inaccuracies (Fig. 12b).

4. Appropriate choice of regularization can improve the inference of otherwise un-identifiable model error structure (Fig. 13).

Fig. 12 presents results from a trained model obtained by minimizing (28) via EKI. Fig. 12c shows the transient trajectory data 
used to calibrate the model error, along with the obtained next-step predictions, which are seen to be highly accurate. Fig. 12a shows 
that the neural network captures the true missing linear term −𝐼𝑝∕𝑡𝑝 quite accurately for 𝐼𝑝 ∈ [0, 110], but it is inaccurate for larger 
values of 𝐼𝑝. While only 𝐺 is observed (not 𝐼𝑝), we note that indeed 𝐼𝑝(𝑡) < 110 for solutions of the true model. In other words, under 
the true model, the error term is only identifiable within the domain [0, 110]. Fig. 12b shows the neural network as a function of 
an inactive input 𝐺 (an input upon which the true missing term does not depend); instead, it learns a linear function of 𝐺 with a 
small slope. Other results (not shown) indicate that the neural network learned substantial dependencies on inactive variables. This 
suggests that sparsity constraints may be useful in these experiments.

Fig. 13 presents results from a trained model obtained by minimizing (28) via sparse EKI [74]. Compared to standard EKI, sparse 
EKI incorporates sparsity into the coefficients of the trained model via 𝓁1-constrained optimization. It can be seen in Fig. 13a that the 
neural network captures the linear pattern of the true term −𝐼𝑝∕𝑡𝑝 and achieves overall better agreement than the results in Fig. 12a. 
In addition, Fig. 13b shows that the neural network learns to correctly ignore 𝐺 in all plotted scenarios. An example of sparse EKI 
driving initially non-zero error model coefficients to zero is presented in Fig. 13c, for which the standard EKI would lead to larger 
variability with even more EKI iterations. The sparse EKI also drives some redundant coefficients of the error model to values very 
close to zero.

This example highlights to importance of sparsity constraints in learning error models, to avoid learning nonzero error terms that 
16

may otherwise arise because the error has zero or small projection on the output data of the model.
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Fig. 13. Partial, noisy, transient timeseries data were used to calibrate model error with sparse EKI. Results in (a-b) show the trained neural network error model for 
two specific input scenarios and (c) shows an example of how sparse EKI drives initially non-zero error model coefficients to zero. Figures (a-b) plot the model 𝛿 (a 
function of all 6 state variables) for 5 fixed states while varying 𝐼𝑝 and 𝐺, respectively.

6. Conclusions

Complex nonlinear dynamics and/or a large number of degrees of freedom are present in many systems, for example, in physio-

logical models of the human body and turbulent flows around an airplane or in the wake of wind turbines. Typically, closure models 
are needed if some dynamically important degrees of freedom cannot be resolved by direct numerical simulations. Without a clear 
scale separation between resolved and unresolved degrees of freedom, most existing models, which are, semi-empirical, deterministic 
and local and are calibrated with only limited amounts of data, are not sophisticated enough to capture the true dynamics of the 
system. Incorporating models of structural errors that are informed by data can be an effective way to build on domain knowledge 
while using data more extensively.

We have summarized some key aspects of learning structural error models from data, including the construction of error models 
and their calibration. In doing so, we have provided guidelines about how to learn error models for complex dynamical systems, 
ranging from key insights about the incorporation of sparsity constraints (“do no harm”) and physical constraints, to advanced 
aspects such as the combined use of direct and indirect data and the merit of using non-local/stochastic error models. By addressing 
these varied aspects in a systematic manner, our goal has been to inspire further applied, methodological and theoretical research in 
this area.
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Appendix A. Ensemble Kalman inversion

The use of ensemble Kalman based methods for parameter calibration and the solution of inverse problems, and history of this 
subject, is overviewed in [Section 4] [125]. To be concrete we will concentrate on a particular variant of the methodology, sometimes 
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termed Ensemble Kalman inversion (EKI). This is a specific ensemble-based, gradient-free optimization scheme that was proposed 

https://github.com/jinlong83/Learning-Structural-Errors.git
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and studied in [126]; we emphasize that other ensemble Kalman based methods share the core desirable attributes of EKI, namely 
that it is derivative-free, is effective with relatively few evaluations of the forward model  and is robust to the presence of noise in 
the evaluations of .

The core task of EKI is equivalent to a quadratic optimization problem, which facilitates adding linear equality and inequality 
constraints [127]. To explain the details of EKI, we first introduce a new variable 𝑤 = (𝜃) and variables 𝑣 and 𝑔(𝑣):

𝑣 = (𝜃,𝑤)⊤,

𝑔(𝑣) = (𝜃,(𝜃))⊤ .
(A.1)

Using these variables we formulate the following noisily observed dynamical system:

𝑣𝑚+1 = 𝑔(𝑣𝑚)

𝑦𝑚+1 =𝐻𝑣𝑚+1 + 𝜂𝑚+1.
(A.2)

Here 𝐻 = [0, 𝐼], 𝐻⟂ = [𝐼, 0], and hence 𝐻𝑣 =𝑤, 𝐻⟂𝑣 = 𝜃. In this setting, {𝑣𝑚} is the state and {𝑦𝑚} are the data. The objective is 
to estimate 𝐻⟂𝑣𝑚 = 𝜃𝑚 from {𝑦𝓁}𝑚𝓁=1 and to do so iteratively with respect to 𝑚. In practice we only have one data point 𝑦 and not a 
sequence 𝑦𝑚; we address this issue in what follows below.

The EKI methodology creates an ensemble {𝑣(𝑗)𝑚 }𝐽
𝑗=1 defined iteratively in 𝑚 as follows:

𝐿(𝑗)
𝑚
(𝑣) ∶=1

2
|||𝑦(𝑗)𝑚+1 −𝐻𝑣

|||2Γ + 1
2
|||𝑣− 𝑔

(
𝑣(𝑗)
𝑚

)|||2𝐶𝑔𝑔
𝑚

,

𝑣
(𝑗)
𝑚+1 =argmin

𝑣

𝐿(𝑗)
𝑚
(𝑣).

(A.3)

The matrix 𝐶𝑔𝑔 is the empirical covariance of {𝑔(𝑣(𝑗)𝑚 )}𝐽
𝑗=1. The data 𝑦(𝑗)

𝑚+1 is either fixed so that 𝑦(𝑗)
𝑚+1 ≡ 𝑦 or created by adding random 

draws to 𝑦 from the distribution of the 𝜂, independently for all 𝑚 and 𝑗. At each step, 𝑚 ensemble parameter estimates indexed by 
𝑗 = 1, ⋯ , 𝐽 are found from 𝜃(𝑗)𝑚 =𝐻⟂𝑣

(𝑗)
𝑚 .

Using the fact that 𝑣 = (𝜃, 𝑤)𝑇 , the minimizer 𝑣(𝑗)
𝑚+1 in (A.3) decouples to give the update formula

𝜃
(𝑗)
𝑚+1 = 𝜃(𝑗)

𝑚
+𝐶𝜃

𝑚

(
𝐶
𝑚

+ Γ
)−1 (

𝑦
(𝑗)
𝑚+1 − (𝜃(𝑗)

𝑚
)
)
; (A.4)

here the matrix 𝐶
𝑚

is the empirical covariance of {(𝜃(𝑗)𝑚 )}𝐽
𝑗=1, while matrix 𝐶𝜃

𝑚
is the empirical cross-covariance of {𝜃(𝑗)𝑚 }𝐽

𝑗=1 with 
{(𝜃(𝑗)𝑚 )}𝐽

𝑗=1.

To impose sparsity on the solution of 𝜃 from EKI, we solve the following constrained optimization problem after each EKI update 
step:

𝐿(𝑗)
𝑚
(𝑣,𝜆) ∶=1

2
|||𝑦(𝑗)𝑚+1 −𝐻𝑣

|||2Γ + 1
2
|||𝑣− 𝑔

(
𝑣(𝑗)
𝑚

)|||2𝐶𝑔𝑔
𝑚

,

𝑣
(𝑗)
𝑚+1 =argmin

𝑣∈𝔙
𝐿(𝑗)
𝑚
(𝑣),

(A.5)

where

𝔙 = {𝑣 ∶ |𝐻⟂𝑣|𝓁1 ≤ 𝛾}. (A.6)

We also employ the thresholding function  on vectors defined by

 (𝜃𝑖) =

{
0, if |𝜃𝑖| <√

2𝜆
𝜃𝑖, otherwise,

(A.7)

to threshold those 𝜃𝑖 with values close to zero, after having solved the constrained optimization problem in (A.5). Such a thresholding 
step after the 𝓁1-constrained optimization in (A.5) is equivalent to adding 𝓁0 constraint. More details about imposing sparsity into 
EKI can be found in [74].

For the multiscale Lorenz 96 example with 𝑐 = 10 and the single scale Lorenz 96 example, 100 ensembles are used and the number 
of EKI iterations is 20. The multiscale Lorenz 96 example with 𝑐 = 3 is more challenging to train, for which 200 ensembles are used 
and the number of EKI iterations is 30. The single-scale Lorenz 96 example uses 200 ensembles and the number of EKI iterations is 
10. The ultradian model example is not chaotic while the convergence of standard EKI is relatively slow, for which 50 ensembles are 
used and the number of EKI iterations is 50. The noise level 𝜂 is estimated by running ensemble simulations of the true system and 
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calculating the covariance of the data 𝑦. In practice, only the diagonal of the estimated covariance matrix is kept.
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Appendix B. Application to a glucose-insulin model

The functional forms of the parameterized processes in Eq. (27) are as follows:

𝑓1(𝐺) =
𝑅𝑚

1 + exp
(
− 𝐺

𝑉𝑔𝑐1
+ 𝑎1

) (rate of insulin production) (B.1)

𝑓2(𝐺) =𝑈1

(
1 − exp

(
− 𝐺

𝐶2𝑉𝑔

))
(insulin-independent glucose utilization) (B.2)

𝑓3(𝐼𝑖) =
1

𝐶3𝑉𝑔

(
𝑈0 +

𝑈𝑚 −𝑈0
1 + (𝜅𝐼𝑖)−𝛽

)
(insulin-dependent glucose utilization) (B.3)

𝑓4(ℎ3) =
𝑅𝑔

1 + exp
(
𝛼

(
ℎ3

𝐶5𝑉𝑝
− 1

)) delayed insulin-dependent glucose utilization (B.4)

𝜅 = 1
𝐶4

(
1
𝑉𝑖

− 1
𝐸𝑡𝑖

)
. (B.5)

The uptake of carbohydrates is modelled by the function

𝑚𝐺(𝑡) =
𝑁(𝑡)∑
𝑗=1

𝑚𝑗𝑘

60 min
exp(𝑘(𝑡𝑗 − 𝑡)), 𝑁(𝑡) = #{𝑡𝑗 < 𝑡} (B.6)

in which 𝑁 meals occur at times {𝑡𝑗}𝑁𝑗=1 (in minutes), with carbohydrate composition {𝑚𝑗}𝑁𝑗=1 (note that these typically differ from 
observation times).
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