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and
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and
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7.1 Introduction

There are many applications where it is desirable to fit reduced stochastic de-
scriptions (e.g. SDEs) to data. These include molecular dynamics (Schlick
(2000), Frenkel and Smit (2002)), atmosphere/ocean science (Majda and Kra-
mer (1999)), cellular biology (Alberts et al. (2002)) and econometrics (Daco-
rogna, Gengay, Miiller, Olsen, and Pictet (2001)). The data arising in these
problems often has a multiscale character and may not be compatible with
the desired diffusion at small scales (see Givon, Kupferman, and Stuart (2004),
Majda, Timofeyev, and Vanden-Eijnden (1999), Kepler and Elston (2001),
Zhang, Mykland, and Ait-Sahalia (2005) and Olhede, Sykulski, and Pavlio-
tis (2009)). The question then arises as to how to optimally employ such data
to find a useful diffusion approximation.

The types of data available and the pertinent scientific questions depend on
the particular field of application. While this chapter is about multiscale phe-
nomena common to the above fields of application, we detail the type of data
available and the pertinent scientific questions for the example of molecular
dynamics.
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430 PARAMETER ESTIMATION FOR MULTISCALE DIFFUSIONS

Molecular dynamics data usually arises from large scale simulation of a high-
dimensional Hamiltonian dynamical system, which stems from an approxima-
tion of molecular processes by, essentially, classical mechanics. The simula-
tions can be deterministic or stochastic in nature, and applied interest usually
focuses on some chemically interesting coordinates, the reaction coordinates,
which are of much lower dimension than the simulated system. Such data typ-
ically evolves on a large range of timescales from fast and small vibrations of
the distance between neighbouring atoms joined by a chemical bond (so-called
bond-length vibrations) with characteristic timescale ¢ ~ 10™'3s to large-scale
conformational changes, like the folding of a protein molecule on timescales of
at least ¢ ~ 10 %s. This creates an extremely challenging computational prob-
lem. See Schlick (2000) for an accessible overview of this application area.

Molecular dynamics data can be available at inter-observation times as low as
t ~ 10155 but because the data may itself be deterministic it is clear that suc-
cessfully fitting a stochastic model at those timescales is unlikely. At slightly
larger timescales, fits to SDEs are routinely attempted and fitting the special
class of hypoelliptic SDEs can be advantageous, as it allows for some smooth-
ness (i.e. the paths being of greater regularity than that e.g of Brownian motion)
of the input path as well as imposing physically meaningful structures, like that
of a damped-driven Hamiltonian system.

Furthermore, as the diffusivity is most affected by information from small
timescales, it is interesting to note that in non-parametric drift estimation, local
time (or, more generally, the empirical measure) can be an almost sufficient
statistic, so that time-ordering of the data is not relevant and hence, drift esti-
mation performed in this way will be less affected by inconsistencies at small
timescales.

It may also be advantageous to model the separation in timescales between
e.g. bond-length vibrations and large scale conformational changes explicitly
by a system of SDEs operating at different timescales. In the limit of infinite
separation of these timescales, effective SDEs for the slow process can be de-
rived through the mathematical techniques of averaging and homogenization
for diffusions.

If the fitted SDEs are of convenient type, it is then possible to glean informa-
tion of applied interest, concerning e.g. effective energy barriers to a conforma-
tional transition, relative weights of transition paths, number and importance
of metastable states, etc.

We illustrate the issues arising from multiscale data, first through studying
some illustrative examples in Section 7.2, including a toy-example from molec-
ular dynamics, and then more generally in the context of averaging and homog-
enization for diffusions in Section 7.3. In Section 7.4 we show how subsam-
pling may be used to remove some of the problems arising from multiscale
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data. Sections 7.5 and 7.6 treat the use of hypoelliptic diffusions and ideas
stemming from non-parametric drift estimation, respectively.

The material in this overview is based, to a large extent, on the papers of Papa-
spiliopoulos, Pokern, Roberts, and Stuart (2009), Papavasiliou, Pavliotis, and
Stuart (2009), Pavliotis and Stuart (2007), Pokern, Stuart, and Vanden-Eijnden
(2009), and Pokern, Stuart, and Wiberg (2009). We have placed the material in
a common framework, aiming to highlight the interconnections in this work.
The details, however, are in the original papers, including the proofs where we
do not provide them.

7.2 Illustrative examples

In this section we start with four examples to illustrate the primary issue arising
in this context. To understand these examples it is necessary to understand
the concept of the quadratic variation process for a diffusion. Consider the
stochastic differential equation (SDE)

dz

dw
T F h(z) + 7(2)7, z(0) = zp: (7.1

Here 2(t) € Z with Z = R? or T, the d-dimensional torus*. We assume
that h,y are Lipschitz on Z. To make the notion of solution precise we let
F; denote the filtration generated by {W (s)}o<s<: and define z(t) to be the
unique F;-adapted process which is a semimartingale defined via the integral
equation

2(t) =zo+/0 h(z(s))ds-{-/0 Y(z(s))dW (s). (7.2

The stochastic integral is interpreted in the Itd sense. It is an F; —martingale
and we write

m(t) = / Y(2(5))dW (s). (1.3)

A matrix valued process Q(t) is increasing if Q(¢) — Q(s) is non-negative for
all t > s > 0. The quadratic variation process of z, namely (z); := Q(¢) is
defined as the unique adapted, increasing and continuous process for which

m(t)m(t)" — Q(t)

is an F;—martingale, see Da Prato and Zabczyk (1992) for a definition. The
quadratic variation is non-zero precisely because of the lack of regularity of
sample paths of diffusion processes. It is given by the expression

Q) = / Y(2(s)y(2(s))Tds.

* See Appendix 2 for a definition.
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It is possible to give a corresponding differential statement, namely that

}_E)I(l); (Z(ti+1) = Z(tl)) (Z(ti+1) S Z(ti))T = Q(T) ian‘Ob. (74)

where the ordered times tp = 0 < t; < ... < ty,—1 < t, = T on [0,7]
are such that their largest distance 7 = max;—1, . (t; — t;—1) decreases like
O(1/n). An easily accessible treatment for one-dimensional continuous local
martingales including this result (Theorems 2.3.1 and 2.3.8) is given in Durrett
(1996). The issue of the required decay of 7 is treated more carefully in Marcus
and Rosen (2006).

If 7 is constant then

Qt) =tn".
Notice that, for ordinary differential equations (ODEs) where v = 0 the qua-
dratic variation is zero. The definition we have given here may be generalized
from solutions of SDEs to It6 processes where the drift depends upon the past

history of z(¢). In this fashion, it is possible to talk about the quadratic variation
associated with a single component of a system of SDEs in several dimensions.

7.2.1 Example 1. SDE from ODE

This example is taken from Melbourne and Stuart (2011).

Consider the scale-separated system of ODEs

fi_f " -1€—fo(y)+f1(x,y), z(0) = ¢,
d
D= Saw), v0)=n

where 2 € R%. We make some technical assumptions on y (detailed in Mel-
bourne and Stuart (2011)) which imply that it is mixing with invariant measure
L. We assume that

E* fo(y) = 0.
This ensures that the first term on the right-hand side of the equation for =
gives rise to a well-defined limit as e — 0. In fact this term will be responsible
for the creation of white noise in the limiting equation for x. The technical
assumptions imply that

3 / Foly(s))ds = VZEW (£)
€Jo

for some covariance matrix ¥ € R%*%, and W a standard d-dimensional Brow-
nian motion. Here, = denotes weak convergence in C([0, 7], R%) and we use
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uppercase letters for effective quantities (like diffusivity) arising from averag-
ing or homogenization here and throughout the remainder of the chapter.

Intuitively, this weak convergence follows because y has correlation decay with
timescale 1/¢? so that £ fo(y) has an autocorrelation function which approxi-
mates a Dirac delta distribution.

Now define
F(z) = E*f1(z,y),
which will become the mean drift in the limiting equation for z.

Theorem 7.1 (Melbourne and Stuart (2011)) Let n ~ . Then, under some
technical conditions on the fast process y, = X in C([0,T],R?) as € — 0,
where

dx dw
= =PE)+ @E’ X(0)=¢.

The important point that we wish to illustrate with this example is that the limit
of X, and z itself, have vastly different properties at small scales. In particular,
the quadratic variations differ:

() =0; (X)) =2%t.

Any parameter estimation procedure which attempts to fit an SDE in X to data
generated by the ODE in z will have to confront this issue. Specifically, any
parameter estimation procedure which sees small scales in the data will have
the potential to incorrectly identify an appropriate SDE fit to the data.

7.2.2 Example 2. Smoluchowski from Langevin

The situation arising in the previous example can also occur when considering
scale-separated SDEs. We illustrate this with a physically interesting example
taken from Papavasiliou et al. (2009): consider the Langevin equation for x €
Ré:

dz  dz dw
2
— + — =V2o—.
€ =3 + 5 + VV(z) o—3
As a first order system this is

dz 1

@ 2

dy 1 1 20 dW
— =—--VV(z) - = \ ==
dt ev 2] 62y+ € dt

Using the method of homogenization the following may be proved:
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Theorem 7.2 (Pavliotis and Stuart (2008)) As € — 0, z = X in C ([0, T],R%)
where X is the solution of the Smoluchowski equation
dX

aw
= -VV(X) + \/ZEW'

Thus, similarly to the previous example,

Again, any parameter estimation procedure for the SDE in X, and which sees
small scales in the data z, will have the potential to incorrectly identify an
appropriate homogenized SDE fit to the data.

7.2.3 Example 3. Butane

The two previous examples both possessed a known effective equation which
may be untypical of many practical applications. In this example, an effective
equation is not known; neither is the range of timescales at which such an equa-
tion would be approximately valid. This can, however, be assessed empirically
to some extent, which is typical of practical applications of multiscale diffu-
sions. The data presented in this example is taken from Pokern (2006). We
consider a classical molecular dynamics model for butane. The model com-
prises the positions z and momenta of four (extended) atoms interacting with
one another through various two, three and four body interactions, such as bond
angle, bond stretch and dihedral angle interactions all combined in a potential
V(x). The equations of motion are
2

M(flT: + 'yMlji—f +VV(z) = QWkBTM(fi—I:. (7.5)
The choice v = 0 gives deterministic dynamics, whilst for v > 0 stochastic
dynamics are obtained. A typical configuration of the molecule is shown in
Figure 7.1. The dihedral angle ¢ is the angle formed by intersecting the planes
passing through the first three atoms and through the last three atoms respec-
tively. The molecule undergoes conformational changes which can be seen in
changes in the dihedral angle. This is shown in Figure 7.2 which exhibits a
time series for the dihedral angle, as well as its histogram, for v > 0. Clearly
the dihedral angle has three preferred values, corresponding to three different
molecular conformations. Furthermore, the transitions between these states is
reminiscent of thermally activated motion in a three well potential. This fact
concerning the time series remains true even when y = 0.

T In molecular dynamics, this equation would be termed Brownian Dynamics, whereas in the
statistical literature it is sometimes called the Langevin equation.
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Figure 7.1 The butane molecule

Butane sample path x10°
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t/ps Dihedral Angle

Figure 7.2 The dihedral angle (time series and histogram)

It is hence natural to try and fit an SDE to the dihedral angle, and we consider
an SDE of the form

e , aw
® e v@)+ o (7.62)
g j
¥(9) =3 0;(cos(s)), (7.6b)
j=1

where {6; }?=1 and o are the parameters to be estimated. However, the fit to
such an SDE is highly sensitive to the rate at which the data is sampled, as
shown in Figure 7.3. Here the diffusion coefficient is estimated exploiting (7.4),
and the maximum likelihood principle is used to estimate 6.

The behaviour of the estimator at different scales is caused by the fact that the
data is again incompatible with the diffusion approximation at small scales.
The true dihedral angle ¢ has zero quadratic variation because it is a function
of the positions of z only, and not the momenta M z; only the momenta are di-
rectly forced by noise. Thus (¢); = 0. In contrast, for the model (7.6), we have
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Figure 7.3 Parameter fits to 04 and o from (7.6) given data from Figure 7.2.

(®); = o?t. Notice that the estimated ¢ in Figure 7.3 tends to zero as the sam-
pling rate increases, reflecting the smoothness of the data at small scales. When
the invariant measure is to be preserved, a direct link between the maximum
likelihood estimator for the drift to the maximum likelihood estimator for the
diffusion arises for this diffusion, see Pavliotis and Stuart (2007). Therefore,
the drift estimator is inconsistent between different scales of the data, too.

The situation is even more complex in the case where data is taken from (7.5)
with v = 0, a Hamiltonian ODE - see Figure 7.4 for a typical time series and
Figure 7.5 for estimated diffusivities. Again the data is inconsistent at small
scales, leading to estimates of drift and diffusion which tend to zero. But at
intermediate scales oscillations caused by bond length stretches between atoms
cause inflated, large diffusion coefficient estimates — a resonance effect.

7.2.4 Example 4. Thermal motion in a multiscale potential

All of the previous examples have the property that the quadratic variation
of the data at finest scales is zero, and this is incompatible with the assumed
diffusion. Here we present an example (taken from Pavliotis and Stuart (2007))
where, at small scales the quadratic variation of the data is larger than that of
the desired model to be fitted to the data.
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Figure 7.4 The dihedral angle time series for v = 0
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Figure 7.5 Parameter fits to o from (7.6) given data from (7.5) with v = 0
Consider the equation
d aw
d—’t” = —K*(2)VV*(2) + V2K @) —, a.n

where 2 € R%. Here, for K, p 1—periodic functions we define

Ko (z)= K(z/e),
Ve(z) = V(z) + p(z/e).

We also assume that K is symmetric positive-definite, so that its square-root
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Figure 7.6 V¢(z) and V ().

is defined, and divergence-free in the sense that each row of the matrix K is a
vector with zero divergence.

By applying standard techniques from homogenization theory it is possible to
prove the following theorem:

Theorem 7.3 (Pavliotis and Stuart (2008)) There exist matrices K and K*
such that as € — 0, x = X in C([0,T],R%), where X satisfies the equation

% =-KVV(X)+ V2K %. (7.8)

Furthermore

Jdl T
lim/ (aYedti= KO'T, / (X);dt =KT; K < K*.
e—0 0 0

Here, K < K* means that (K* — K) is positive definite. A typical potential
is shown in Figure 7.6. Notice that the rapid oscillations persist at O(1) in
the limit e — 0. Thus, although the oscillatory part of the potential, p, is not
present in the homogenized equation, its effect is felt in slowing down the
diffusion process, as the particle must cross the energy barriers caused by this
oscillation.

Once again we expect that parameter estimation which sees the small scales
will fail. However, the situation differs from the three previous examples: here



AVERAGING AND HOMOGENIZATION 439

the quadratic variation of the data z is larger than that of the desired homoge-
nized model X.

7.3 Averaging and homogenization
7.3.1 Orientation

In this section we probe the phenomenon exhibited in the preceding examples
by means of the study of scale-separated SDEs. These provide us with a set
of model problems which can be used to study the issues arising when there
is a mismatch between the statistical model and the data at small scales. The
last example in the preceding section illustrates such a model problem. Many
coupled systems for (z,y) contain a parameter ¢ < 1 which characterizes
scale-separation. If y evolves more quickly than z, then it can sometimes be
eliminated to produce an equation for X ~ z alone. Two important situations
where this arises are averaging and homogenization. We will be interested in
fitting parameters in an effective averaged or homogenized equation for X,
given data z from the coupled system for z,y. All proofs from this section
may be found in the paper by Papavasiliou et al. (2009).

7.3.2 Set-up

In the following we set X = T' and ) = T%"'. Let ¢ (y) denote the Markov
process which solves the SDE

2 (W) = w6 k) +BE AWM Y. =y @9

Here £ € X is a fixed parameter and, foreach ¢ > 0, cpé (y) €V,g0: XxY —

R4, B2 X x Y — RED*™ and V is a standard m—dimensional Brownian
motion. The generator of the process is

1
go(f) =90(€,y) 'Vy+§B(§ay) : vyvy (7.10)

with B(€,y) := B(£,y)B(€,y)T and equipped with periodic boundary condi-
tions and : denotes the matrix inner product, see Appendix 2. Notice that Gy is
a differential operator in y alone.

Our interest is in data generated by the projection onto the = coordinate of
systems of SDEs for (z,y) in X x Y. In particular, for U, a standard Brownian
motion in R™, we will consider either of the following coupled systems of
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SDEs:

L hen D taE@yd,  an
> = o0(e9) + () G (7.11b)
or the SDEs
E o lhEn +hy) tonS taEn, @12
% - ;290(% y) + %gl(l‘,y) + %ﬂ(z, y)‘fi—‘:~ (7.12b)

Here f; : X xY > RhLag : X xY - R*? 0y : X xY = RX™,

g1 : X xY — R¥* ! and gg, B are as above. Note that in (7.11) (resp. (7.12))

the equation for y with  frozen has solution ¢ “(y(0)) (resp. tp;/ a (y(0)) with

g1 = 0). Of course z is not frozen, but since it evolves much more slowly than
vy, intuition based on freezing = and considering the process (7.9) is useful. In
addition to the generator Gy, we also define the operator G as follows:

gl =f0'vz+gl 'Vy"'C:vyv:c’
where the matrix-valued function C is defined as

C(z7 y) = al(‘z’ y)ﬁ(‘t? y)T'

Assumptions 7.4 e All the functions f;, g;, ; and /3 are C* on the torus T
e The equation

—Go(&)p(y;§) =0, /yp(y; §dy =1
has a unique non-negative solution p(y;€) € L*(Y) for every £ € X;

furthermore p(y;€) is C* in y and £. Here as throughout, we use -* to
denote the adjoint operator.

e Define the weighted Hilbert space Lf,(y) with inner-product

(a,b), = /y p(y; €)a(y)b(y)dy.

The Poisson equation
G056 = hwi©), [ ol O )y =0

has a unique solution ©(y; &) € L%(y), provided that

/yp(y; &)h(y; §)dy = 0.
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e If h(y; &) and all its derivatives with respect to y, £ are uniformly bounded
in X x ) then the same is true of © solving the Poisson equation above.

The second assumption is an ergodicity assumption. It implies the existence of

an invariant measure p¢ (dy) = p(y; §)dy for ¢ (-). From the Birkhoff ergodic
theorem it follows that, for y—almost all y € ),

T
Jm 7 [ ote cbwae = /y 9(€,1)o(y; 2)dy.

The averaging and homogenization theorems we now state arise from the cal-
culation of appropriate averages against the measure p,.(dy).

7.3.3 Averaging
Starting from model (7.11), we define F(z) by
Fa)= [ A votia)ay
and X(z) to be the matrix satisfying
25(z) = /y (co(@, W)ao(@, 1) + a1 (z, y)as (,9)7) ply; 2)dy.

We note that X(z) is positive semidefinite and hence its square root is well-
defined.

Theorem 7.5 (Papavasiliou et al. (2009)) Let Assumptions 7.4 hold. Then
z = X in C([0,T), X) where X solves the SDE

B - )+ VED S (7.13)

with W a standard |—dimensional Brownian motion.

7.3.4 Homogenization

In order for the equations (7.12) to produce a sensible limit as e — 0 it is neces-
sary to impose a condition on fy. Specifically we assume the following which,
roughly, says that fo(z,y) averages to zero against the empirical measure of
the fast y process.

Assumptions 7.6
/y p(y;z) fo(z, y)dy = 0.
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Let ®(z,y) € L?,(y) be the unique solution of the equation

—Go®(y; ) = fo(z,y), /yp(y; z)®(y; z)dy = 0.

This has a unique solution by Assumptions 7.4 and 7.6 (by the Fredholm Al-
ternative, see Evans (1998) or a presentation in context in Pavliotis and Stuart
(2008)). Define

F(z) = Fo(z) + Fi(x)
where

Fo(z) = / ((qu’fo)(w,y) + (Vy®a1)(z,y)
Y
+ (BT : Vy V@) (2, y))p(y;x)dy,
Fi@) = | fiewp( o).
y
Also define £(z) to be the matrix satisfying

25(z) = Ay (z) + As(z)

where

@)= [ (9588 + ) (7,06 +0)" ) (. )0tz )y

Ag(z) = /y a0l y)einle, 5)0ly; £)dy.

By construction X(z) is positive semidefinite and so its square root is well-
defined.

Theorem 7.7 (Papavasiliou et al. (2009)) Let Assumptions 7.4, 7.6 hold. Then
z = X in C([0,T], X) where X solves the SDE

dX aw
with W a standard |—dimensional Brownian motion.

7.3.5 Parameter estimation

A statistical approach to multiscale data {x(t)}+c[o,7) might consist of simply
using equations of the form

dX

= =F(X;0)+ \/22(X)d—dv; (7.15)

(which is just (7.13) or (7.14) but with an unknown parameter 6 and we assume
X(X) is uniformly positive definite on X) to fit multiscale data that may not
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necessarily arise from that diffusion, so that the diffusion is a good description
only at some timescales.

If we assume that the data is actually generated by the particular multiscale
systems (7.11) or (7.12) we can analyze how classical maximum likelihood es-
timators behave in the presence of multiscale data. Naturally, this only covers
one particular instance of model-misspecification due to the presence of mul-
tiscale data but it has the advantage of being amenable to rigorous analysis.

Suppose that the actual drift compatible with the data is given by F/(X) =
F(X;00). We ask whether it is possible to correctly identify § = 0, by finding
the maximum likelihood estimator (MLE) when using a statistical model of
the form (7.15), but given data from (7.11) or (7.12). We assume that (7.15)
is ergodic with invariant measure 7(z) at & = 6. This enables us to probe
directly the question of how parameter estimators function when the desired
model-fit is incompatible with the data at small scales.

Given data {2(t) }sc[o,7), application of the Girsanov theorem shows that the
log likelihood for 6 satisfying (7.15) is given by

T T
1
£(6:2) = / (F(z36), de)zesco) — 3 / F(50)3dt,  (1.16)
0 0
where :
<’I"1, T2>E(z)*1 = 5(?"1, Z(Z)*lT’z).
The MLE is a random variable given by
0 = argmax,L(0; z).

Before analyzing the situation which arises when data and model are incompat-
ible, we first recap the situation that occurs when data is taken from the model
used to fit the data, in order to facilitate comparison. The following theorem

shows how the log likelihood behaves, for large 7', when the data is generated
by the model used to fit the data itself.

Theorem 7.8 (Papavasiliou et al. (2009)) Assume that (7.15) is ergodic with
invariant density w(X) at 6 = 0o, and that { X () },c[o, 1) is a sample path of
(7.15) with 6 = 6. Then
el 2
Jim 2£6:X) = [ |F(Z:00) 1 z)7(2)d2

- /y |F(Z36) — F(Z;60)3-1y7(2)dZ,

where convergence takes place in L*(W) (square integrable random variables
on the probability space for the Brownian motion W) and is almost sure wrt.
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the initial condition X (0). The above expression is maximized by choosing
6 = 6o.

‘We make three observations: (i) for large 7" the likelihood is asymptotically in-
dependent of the particular sample path chosen — it depends only on the invari-
ant measure; (ii) as a consequence we see that, asymptotically, time-ordering
of the data is irrelevant to drift parameter estimation — this is something we
will exploit in our non-parametric estimation in Section 7.6; (iii) the large T°
expression also shows that choosing data from the model which is to be fitted
leads to the correct estimation of drift parameters, in the limit 7" — oo.

In the following we make:

Assumptions 7.9 Equation (7.11) (resp. (7.12)) is ergodic with invariant mea-
sure p¢(z,y)dzdy. This measure converges weakly to the measure 7(z)p(y; x)
dzdy where p(y; x) is the invariant density of the fast process (7.9) and 7 (z)
is the invariant density for (7.13) (resp. (7.14)).

This assumption may be verified under mild assumptions on the drift and dif-
fusion coefficients of the SDEs.

We now ask what happens when the MLE for the averaged equation (7.15)
is confronted with data from the original multiscale equation (7.11). The fol-
lowing result explains what happens if the estimator sees the small scales of
the data and shows that, in the averaging scenario, there is no problem arising
from the incompatibility. Specifically the large 7" and small € limit of the log-
likelihood with multiscale data converges to the likelihood arising with data
taken from the statistical model itself.

Theorem 7.10 (Papavasiliou et al. (2009)) Let Assumptions 7.4 and 7.9 hold.
Let {x(t) }sc(o,1) be a sample path of (7.11) and X (t) a sample path of (7.15)
at 6 = 6y. 1
sl . il
53455, A0 = g, 7O X,
where convergence takes place in the same sense as in Theorem 7.8.

‘We now ask what happens when the MLE for the homogenized equation (7.15)
is confronted with data from the original multiscale equation (7.12). In con-
trast to the situation with averaging, here there is a problem arising from the
incompatibility at small scales. Specifically the large 7" and small e limit of
the log-likelihood with multiscale data differs from the likelihood arising with
data taken from the statistical model at the correct parameter value.

In order to state the theorem we introduce the Poisson equation

—Gol' = (F(z;0), fo(,y)) 5-1(a)» /yp(y;é)l“(y; r)dy=0 (7.17)
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which has a unique solution I'(y;&) € L%(y) (as for @, by the Fredholm
Alternative). Note that

I = (F(z;0), ®(z,y))s-1()-
Then define

E= [ (0@ - (F@:0), (6:8(,0))s(0) 1(@)plyie)dady.
XxY

Theorem 7.11 Let Assumptions 7.4, 7.6 and 7.9 hold. Let {x(t)}:c[0,) be a
sample path of (7.12) and X (t) a sample path of (7.15) at = 6. Then

S | o4l

i TR = e FLO X+ B,

where convergence is in the sense given in Theorem 7.8 and the order in which
limits are taken is, of course, crucial.

This theorem shows that the correct limit of the log likelihood is not obtained
unless G; is a differential operator in y only, in which case we recover the
averaging situation covered in the Theorem 7.5. The paper Papavasiliou et al.
(2009) contains examples in which F can be calculated explicitly. These exam-
ples demonstrate that E is non-zero and leads to a bias. This bias indicates that
fitting multiscale data to an effective homogenized model equation can lead
to incorrect identification of parameters if the multiscale data is interrogated
at the fastest scales. We now investigate methods designed to overcome this
problem.

7.4 Subsampling

In the previous section we demonstrated that, in the situation where homoge-
nization pertains, using classical MLE on multiscale data may result in conver-
gent estimates of the homogenized coefficients, but the estimated homogenized
coefficients can be incorrect!

In this section we illustrate the first of three ideas which can be useful in over-
coming the fact that data may be incompatible with the desired diffusion at
small scales. In other words, the basic idea is to use subsampling of the data,
at an appropriate rate, to ensure that the data is interrogated on a scale where
it “behaves like” data from the homogenized equation. This section is based
on Pavliotis and Stuart (2007). Similar ideas relating to the role of subsam-
pling are encountered in the market microstructure noise models discussed in
Chapter 2.

We present results of an analysis for the special case of linear dependence of
the drift on the unknown parameter 6, i.e. we assume that the vector field has
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the form F(z;0) = 6F(z) for some scalar § € R. This simplifies the results
considerably, but the observation that subsampling at the correct rate leads to
correct estimates of the homogenized coefficients is valid more generally; see
Papavasiliou et al. (2009).

In the numerical experiments that we will present, the data will be in discrete
time: it will be in the form of a sequence z = {2, }2_, which we will view
as approximating a diffusion process, whose parameters we wish to estimate,
at time increment 6. The maximum likelihood estimator derived from (7.16)
gives

T
.[0 (F(Z)»dz>o(z)
L,

fo |F(z)|(2,(z)dt
A natural discrete time analogue of this estimator, which we will use in this
paper, is

6=

Zg;ol <F(Zn), Zn+1 — zn)a(zn)

N-1 2
Zn:O 5|F(Zn)|g(zn)
Although we concentrated in the previous section on drift parameter estima-
tion, in numerical experiments presented here we will also investigate the esti-

mation of the diffusion coefficient. Specifically, in the case where ¥ is constant,
given a discrete time-series {z, }Y_, we estimate ¥ by

Ons(2) = (7.18)

N-1
o il T
Ens(2) = 57 D (541 = ) (1 — ) (7.19)
=0
where z; = z(jé) and N = | £|. This is derived from equation (7.4).

For our numerical investigations we revisit Example 4 in one dimension. Con-
sider the equation

dz aw

— = —aVV*© 20 —. :

p aVVeé(z) + V20 7 (7.20)
Here V¢(z) = V(x) + p(z/e€) and p is 1—periodic. To write this in the form
to which homogenization applies notice that setting y = /¢ we obtain

dx o dw

dy a o 20 dW
@ = @ gvVe Ty g G
This is now a specific case of (7.12).

Theorem 7.3 shows that the homogenized equation is

X

AW
— = —0VV(X) + V2% o (7.21)
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Furthermore, the theorem shows that
<o X<o.

In fact §/X = a/o. It may be shown that ¥ is exponentially small in ¢ — 0
Campillo and Pitnitski (2002). Thus the relative discrepancy between the orig-
inal and homogenized diffusion coefficients is enormous in the small diffusion
limit.

The numerical experiments that we now describe concern the case where

V(z)= 32 p(y) = cos(y).

The experiments are conducted in the following way. We generate the data by
simulating the multiscale process x using a time-step At which is small com-
pared to €2 so that the data is a fully resolved approximation of the multiscale
process. We then use this data in the estimators (7.18), (7.19) which are based
on a homogenized model. We study two cases: in the first we take data sam-
pled at time-step 6 = At so that the data is high frequency relative to the small
scales in the equation; we anticipate that this scenario should be close to that
covered by the theory in the previous section where we take continuous time
data as input. We then show what happens if we subsample the data and take a
step & which is comparable to ¢; as the fast process has time-scale €2 the hope
is that, on the scale ¢, which is long compared with €2, the data will “look like”
that of the homogenized process.

The time-interval used is ¢ € [0,10%] and the data is generated with time-
step At = 5 - 10~*. Figure 7.7 shows the maximum likelihood and quadratic
variation estimators (7.18) and (7.19), for the drift and diffusion coefficients
respectively, with data z = z at the fine-scale § = At. The figure clearly shows
that the estimators fail to correctly identify coefficients in the homogenized
equation (7.14) for X when employing multiscale data . Indeed the estimator
finds « and o, from the unhomogenized equation, rather than 6 and 3. Hence
it overestimates.

Figure 7.8 shows that, if subsampling is used, this problem may be overcome
by interrogating the data at scale ¢; this is shown for ¢ = 0.1 and using the
time interval ¢ € [0,2 - 10*] and again generating data with a timestep of
At = 5-107%, by choosing § = 256 x At, 512 x At and § = 1024 x At and
showing that, with these choices, the correct parameters are estimated for both
drift and diffusion, uniformly over a wide range of o.

The following theorem justifies the observation that subsampling, at an appro-
priate rate, results in correct estimators.

Theorem 7.12 (Papavasiliou et al. (2009)) Consider the parameter estima-
tors (7.18) and (7.19) for drift and diffusion parameters in the statistical model
(7.21). Define x = {z(né)}\=} where {z(t)} is a sample path of (7.20).
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o Letd =e*witha € (0,1), N = |e7],v > o Then

lim Oy s5(x) = 0 in distribution.
e—0

o FixT = N6 with§ = €* with o € (0,1). Then

lin% 5 ~N,s5(x) =2 indistribution.
E=
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7.5 Hypoelliptic diffusions

In this section we return to the Butane molecule considered in Section 7.2.3. In
that example we showed problems arising from trying to fit a scalar diffusion
to the raw time series data from the dihedral angle. Amongst several problems
with the attempted fit, we highlighted the fact that the data came from a time
series with zero quadratic variation, derived as a nonlinear function of the time-
series z(t) from (7.5), whilst the equation (7.6) which we attempted to fit had
non-zero quadratic variation. In this section we show how we may attempt to
overcome this problem by fitting a hypoelliptic diffusion process to the dihedral
angle data. Technical details can be found in the paper Pokern, Stuart, and
Wiberg (2009).

Specifically we attempt to fit to the data {¢,}2_,, where observations are
made at small but fixed inter-sample time ¢ so that ¢, = ¢(nd), a model
of the form

?q d aw

q / ok
Et—r;'i‘”Ya—V(Q)—U et (7.22a)
5 .
QA
V=Y 7 (cos(q))J, (7.22b)
Jj=1

q here plays the same role as @ in (7.6): it describes the dihedral angle in a
postulated lower dimensional stochastic fit to data derived from a higher di-
mensional dynamical model. The statistical task at hand is then to use the data
¢n, to infer the value of the parameters {6, }?=1 as well as y and 0.

This task is problematic because

1. observations of only ¢ rather than ¢ and its time derivative %‘té are assumed
to be available, so a missing data problem is to be dealt with;

2. the two components of the process, namely ¢ and id% have different smooth-
ness rendering straightforward statistical models ill-conditioned.

Velocities for ¢ may be available in practice (molecular dynamics codes can
certainly produce such output if desired) but it may be preferable to ignore
them — such data may be incompatible with SDE models.

It should be emphasized that both the missing data aspect (1. above) and the
different degrees of differentiability (2. above) are serious problems regardless
of whether a frequentist or a Bayesian approach is developed. For simplicity,
we will explain these problems further using the maximum likelihood principle
and only later introduce a full (Bayesian) estimation algorithm.

In order to better understand these problems we rewrite (7.22) as a damped-
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driven Hamiltonian system as follows:

dq = pdt, (7.23a)
5

dp= | —yp— Y _ 0;sin(g) cos’*(q) | dt + odB, (7.23b)
=1

where we have used the new variable p(t) = %‘tl. To understand how the two
problems 1. and 2. enumerated above come about, consider one of the most
widespread discrete time approximations to this SDE, the Euler-Maruyama
approximation:

Qit1 = Qi+ 0P (7.24a)

5
Pip1=PF - |vF+ Zej sin(Q;) cos’ 1 (Q;) | 6+ 0V (7.24b)

=1

where & ~ N(0,1) is a sequence of iid. standard normal random variables
and we have used capital variable names to indicate that this is the discretised
version of a continuous time system. It is possible to estimate all desired pa-
rameters using this model, by first using (7.24a) to obtain P; = %(Qu—l - Qi)
and then estimating o from the quadratic variation of the path {P;}Y ! and
the drift parameters can then be estimated by applying the maximum likeli-
hood principle to (7.24b).

Using this approximation to estimate o given the data {¢, }2_, for {Q:} X,
and no data for {P;}¥ ; leads to gross mis-estimation. In fact for the simpler

example of stochastic growth

dq = pdt
dp = o0dB

it is straightforward to show that in the limit of infinitely many observations
N — oo (both in the case when ¢ is fixed and in the case when T" = N is
fixed!) the maximum likelihood estimator & converges to an incorrect estimate
almost surely:
gt — 202 a.s.
3

This failure can be traced back to the fact that (7.24) effectively uses numerical
differentiation of the time series @); to solve the missing data problem, i.e. to
estimate P;. This approximation neglects noise contributions of order O (8§ %) in
(7.24a) which are of the same order as the contributions obtained via numerical
differentiation of @;.

Understanding the source of the error suggests that replacing the Euler-Muru-
yama scheme with a higher order discretization scheme that propagates noise
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to both rows of the equation (7.23) results in successful estimators for o. One
such scheme is given by

Qit+1 Qi| | [ P ] [51]
- +46 . 2 +0VéR
[Pz'+l P > 51 0;sin(Qs) cos’1(Qy)) — VPi &2
(7.25)
where the matrix R is given as
54
R = |[VB 2 7.26
{ 0 1] (7.26)
and &; and & are again independent standard normal random variables. Gen-

erally, It6-Taylor expansions of sufficiently high order should be used to prop-
agate noise to all components of the process.

The approximation (7.25) can be used not only to infer o but also to infer the
missing component of the path.

Finally, it remains to estimate the drift parameters {«9]-}§=1 and vy and it turns
out that the approximation (7.25) yields results with a large bias that does not
decay as d decreases or the observation time 7 increases. In fact, for the simpler
case of a harmonic oscillator
dg = pdt

{ dp = —6qdt —ypdt+ cdB. ah
it is possible to compute by It6-Taylor-expansion that the maximum likelihood
estimator for 6 and -y based on an analogous model to (7.25) satisfies:

Ef = ie +0(5)

1:

This can be traced back to the fact that such an estimator assumes the drift pa-
rameters in the first row of (7.27) to be known exactly whereas the discrete time
path only satisfies (7.25) (or the analogous model for the harmonic oscillator)
approximately. The ill-conditioning of the inverse of the matrix R introduced
in (7.26) as 6 — 0 causes small errors to be amplified to O(1) deviations in
the drift parameter estimates. Using the Euler-Maruyama approximation (7.24)
instead delivers satisfactory results.

Having used a maximum likelihood framework to highlight both the fact that
the missing data problem adds significant difficulty and that the different de-
grees of differentiability of ¢ and %? produce ill-conditioning, we now proceed
to a Bayesian algorithm to infer the missing data {Pj};"=0 as well as the dif-
fusion and drift parameters o and {6; }5?:1 and 7. The sequential Gibbs algo-
rithm suggested to produce approximate samples (%), {9§i) ¥o_i, 0 and P
indexed by i = 1, 2, . .. thus reads as follows:
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1. Sample 90D ~(+D) from P({6;}01,7{@;} 0, {Pj(i)}f'zo, o) using
(7.24).

2. Sample o+ from P(a]{Q;} g, {PV} o, {65V }5;,7(+D) using
(1.25).

3. Sample { P{""D} I from P({ P} Lo [{Q1} Lo, {657V 15, A0 0 (HD))
using (7.25).

Note that we have omitted the initialization stage and that sampling the missing
path, stage 3, is simplified by the fact that p only ever enters the SDE linearly,
so that a direct Gaussian sampler can be used. Stage 1 is also Gaussian, whereas
stage 2 is not, and an MCMC method, for example, can be used.

The status of Gibbs samplers, such as this one, combining different approxi-
mate likelihoods, especially in the presence of ill-conditioning which renders
some approximations unsuitable for some of the estimation tasks, is not yet the-
oretically understood. In the particular case of the SDE being fitted, the method
has been subjected to very careful numerical studies detailed in Pokern, Stuart,
and Wiberg (2009) and found to be convergent.

Finally, the method can be applied to the data given as Example 3 in Section
7.2.3 and Figure 7.9 shows posterior mean parameter estimates as a function
of sampling interval J.

We have shown in this section how to extend parameter estimation from the
elliptic case (7.6) to the hypoelliptic case (7.22) and we have highlighted how
to do this in the case of missing velocities. This is useful e.g. when neglecting
the velocities is viewed as a means to decrease the fitting process’ sensitivity
to incompatibility between the model and the data at the short timescales. Still,
Figure 7.9 shows that the fitted drift and diffusion parameters are far from
independent of the timescale on which we look at the data. It is natural to
ask why this is so. Since the dihedral angle is a nonlinear transformation of
the Cartesian coordinates in (7.5) and hence (as a brief application of the Itd
formula readily shows) will exhibit multiplicative rather than additive noise, it
will not be well-described by a hypoelliptic diffusion with constant diffusivity.
It is this problem with model fit that results in the timescale dependence of
fitted parameters evidenced in Figure 7.9.

7.6 Non-parametric drift estimation

Theorem 7.8 illustrates the fact that, for large times, drift parameter estimation
does not see path properties of the data, but rather just sees the invariant mea-
sure. This suggests an approach to drift parameter estimation which exploits
this property directly and uses only the empirical measure of the data, thereby
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avoiding issues relating to incompatibility at small scales. These ideas are pur-
sued in Pokern, Stuart, and Vanden-Eijnden (2009) and then, building on this

in a Bayesian context, in Papaspiliopoulos et al. (2009).

Here we illustrate the basic ideas in the context of the one-dimensional equa-
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tion d aw
X !

In Pokern, Stuart, and Vanden-Eijnden (2009) we treat the multidimensional
case, matrix diffusion coefficients and the second order Langevin equation.
We note for later use that the SDE (7.28) has invariant measure with density

p x exp (—2V), (7.29)
provided exp (—2V) € L*(R).

Our strategy is a non-parametric one. We write down the log likelihood for this
equation which, from (7.16), has the form

V& T
e /0 V/(@)do ~ 3 /0 V' () [2dt. (7.30)

Notice that now we view the log likelihood as being a functional of the un-
known drift with potential V. This reflects our non-parametric stance. Apply-
ing the It6 formula to V' (z(t)) we deduce that

- /0  Vie)de = % /0 V@)t + (V(2(0)) - V(a(T)).

Thus we obtain

i
L(V;z) = V(2(0) - V(2(T)) + % /0 (V@) - V'@)?) dt. (1.31)

With the goal of expressing the likelihood independently of small-timescale
structure of the data we now express the log likelihood in terms of the local
time L% of the process. Recall that the local time L% measures the time spent
at ¢ up to time 7', so L% /T is proportional to an empirical density function for
the path history up to time 7. Note that use of the local time L% of the process
indeed removes any time-ordering in the data and thus makes drift estimation
independent of the dynamical information contained in the data. Since time-
ordered data at small scales is at the root of the problems we are confronting
in this paper, taking this point of view is likely to be beneficial.

To make the notion of local time as a scaled empirical density rigorous, con-
sider Theorem 2.11.7 in Durrett (1996) which states that for z being a 1-d

continuous semimartingale with local time L% and quadratic variation process
(z), the following identity holds for any Borel-measurable, bounded function

g:

00 T
/ 29(a)ds = / o0 l),s. 1.32)
- 0

o0

Note that for the process (7.28) we have
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/:: L}g(a)da = /Ot g(zs)ds.

In terms of the local time we have

£(Via) == (V(a(D) = V() + 5 [ (V@) = V/(@)*) Lyda
(@-33)

so that

To make the mathematical structure of this functional more apparent, we re-
express the likelihood in terms of the drift function b = —V”. To do this, we
first introduce the signed indicator function

1 fXg<a< Xp
X(a; Xo, Xr)=<{ -1 ifXr<a<Xp
0 otherwise

The expression for the likelihood then takes the following form:

L(Viz) = —% /R (V'@ = V"(a)) L2 + 2(a; Xo, Xr)V'(a)) da.

Having eliminated V' by expressing everything in terms of its derivatives, we
replace those derivatives by the drift function b as planned. We abuse notation
and now write £ as a functional of b instead of V:

Lilig) = —% /R (82(a) L% + V(@) L% — 2%(a; Xo, X7)b(a)) da. (7.34)

We would like to apply the likelihood principle to £(b; ) to estimate b. Purely
formally, seeking a critical point of the functional (7.34) is possible, i.e. one
asks that its functional derivative with respect to b be zero:
0L(b;x) 1 0
&b
To carry this out, integrate by parts to obtain

£tia) = =3 [ (F(@)L§ — W@ Li(a) — 28(a Xo, X)) d.

Expand this expression at b(¢) = b+eu where u is an arbitrary smooth function
to compute the functional derivative:
Al(b)l _ )
Equating the functional derivative to zero yields the formal maximum likeli-
hood estimate
s Uy _ X(:XoXr)

5Ly s (7.35)
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Note the derivative of the local time figures prominently in this estimate —
however, it is not defined since L is not differentiable. It can be shown that,
in one dimension, the local time L is jointly continuous in (¢, a), but that it is
not in general differentiable; it is only c-Holder continuous up to but excluding
exponent & = 1/2. Therefore, the likelihood functional in (7.34) would not be
expected to be bounded above and the estimate (7.35) is not a proper maximiser
of the likelihood.

To get an idea of why this is, consider the case where local time is replaced by
a Brownian bridge (which has essentially the same Holder regularity as local
time) where it is possible to show the following theorem (see Appendix 1):

Theorem 7.13 Letw € C([0, 1], R) be a realisation of the standard Brownian
bridge on [0, 1]. Then with probability one, the functional

I(b;w) = —%/0 (b*(s)w(s) + V' (s)w(s)) ds

is not bounded above for b € H([0, 1)).

If L(b; z) given by (7.34) is not bounded above, then application of the maxi-
mum likelihood principle will fail. To remedy this problem, several options are
available. One can introduce a parametrization b(z,6) for 6 € © C R™ for
some finite /m with the attendant problems of choosing a set of basis functions
that make the parameters well-conditioned and easy to interpret. Alternatively,
one can work with a mollified version of the local time, L%, which is smooth
enough to ensure existence of a maximizer of the likelihood functional. Fi-
nally, it is possible to use Tikhonov regularization and then, taking this further,
to adopt a Bayesian framework and use a prior to ensure sufficient regularity.
In Section 7.6.1, we will investigate the use of mollified local time in detail and
in Section 7.6.2 we briefly introduce the Bayesian non-parametric approach.

7.6.1 Mollified local time

To start using mollified local time, we proceed in three steps adopting a tradi-
tional regularization and truncation approach. Firstly, in (7.34) we replace L.
by a mollification L. which is assumed to be compactly supported and non-
negative just like the original local time. Additionally, we assume that it has
Sobolev regularity L, € H'(R). Secondly, we integrate by parts exploiting
the smoothness and compact support of I:%:

L(b;z) = —%/R (62(a)1:4% — b(a) (f/%), — 2x(a; XO,XT)b(a)) ((Z;L i3
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Thirdly, we restrict attention to a bounded open interval U C R on the real line
which is chosen such that

Je>0VaecU: [&>e (1.37)
This leads to the final approximation of £(b; z) by the following functional:

Eeo)=-; [ (b%a)i% ~ba) (£2) - 2¥(a Xo,xT>b<a>) Zz;g)

This functional is quadratic in b and it is straightforward to prove the following
theorem:

Theorem 7.14 The functional [Z(b; x) is almost surely bounded above on b €
L2(U) and its maximum is attained at
;1 70\ _ X(a; Xo, X1)
b=5 (log LT) Loy aem (1.39)

Proof. We rewrite the mollified likelihood functional by completing the square
as follows:
2

Fi% —
é(b;@:-%/u{ b— ( T) _ X(@Xo, Xr) | ;g (7.40)

213, L3

2

=2 !

L% Sl .

( ) 4 ¥la; Xo, Xo) i%|da (7.41)
2L i

Observe that the first summand in the integrand is always non-negative. To
avoid potentially subtracting two infinite terms from each other, we verify that
the second summand in the integrand has a finite integral:

2

L%da

- !
/ (Li‘r) , Xa; X0, Xr)
v | 218 7
2

~al
g )
Uz% 2 x\a; Ag, AT

1 1= N 3
o= =(is “(a:
< e/U(Z (LT) +x(a,X0,XT)> 5 e

where we have used condition (7.37) in the penultimate inequality and the fact
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that U is compact and that L. is smooth (and hence it and its derivative are
square-integrable on U). All that remains is to read off the maximizer (7.39)
from the brackets in (7.40). O

The last term in (7.39) is integrable on U (since L is bounded away from zero
on U and U is bounded), the integrated version of that MLE thus reads

~ 1 ~ % x(s; Xo, X
V(a) = —=log L% +/ Mds, aecl.
2 inf(U) Iz

Furthermore, we expect that L. scales like O(T). Thus the first term gives the
dominant term in the estimator for large 7". Retaining only the first term gives
the approximation

V(a) = —% log L%.

If we make the reasonable assumption that %flﬁ} — p(a) as T — oo where p
is the invariant measure for the process we deduce that, for this approximation,

. 1
A V(a) = 2 log p(a).

But the invariant density is given by (7.29) and so we deduce that, under these
reasonable assumptions, N
lim V(a) = V(a)
T—oc0

as expected.

7.6.2 Regularized likelihood functional

Another way to regularize the functional (7.33) is to add a penalty function to
the logarithm of the likelihood to obtain

Lo(b;z) = L(b;z) — |[b— boll%; -

Here H is a suitable Hilbert subspace and we call by the centre of regulariza-
tion. We refer to this procedure as Tikhonov regularization; in the case by = 0
it coincides with the standard usage — see Kaipio and Somersalo (2005). If the
additional term ||b — by ||i{ is chosen to penalize roughness it is possible to en-
sure that the combined logarithm has a unique maximum. We will outline that
in the sequel that since the penalization is quadratic, this may be linked to the
introduction of a Gaussian prior. The posterior will be seen to be Gaussian,
too, because the likelihood is quadratic in b, and all densities and probabilities
arising can be given a fully rigorous interpretation. We leave technical and im-
plementation details to Papaspiliopoulos, Pokern, Roberts, and Stuart (2011)
and Papaspiliopoulos et al. (2009) and merely outline the key calculations first
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concentrating on the viewpoint of the Tikhonov regularization £,, of the likeli-
hood functional £, then introducing the Bayesian viewpoint at the end.

Tikhonov regularization

We first state a theorem to show that regularization using the Hilbert space
norm

61 =2 [ 8(0)? + (@) + (@) da
R
on the Sobolev space H = H?(R) is indeed possible:

Theorem 7.15 For any fixed ¢ > 0, the functional
Ly (b;z) = L(b; ) — cl|b — bol|Fr2(r)
is almost surely bounded above on b € H?(R) for any by € H?(R).

Proof. The proof follows along the same lines as the proof of Theorem 7.17
which will be given in full. [

Showing that a maximizer exists and that it is the solution of the accompanying
Euler-Lagrange equations requires a more detailed analysis which is easier to
carry out in the periodic setting. Thus, we henceforth consider It6 SDEs with
constant diffusivity on the circle parametrized by [0, 27,

dz = b(z)dt + dW, z(0)==z¢ on][0,2n].

The state space of the diffusion process is now compact. Also note that using
the circle as a state space introduces another linear term into £(b; x) so that we
now have

27
L(bio) =~ /0 (5%(@) L3 + V(@)L — 20 + (@i Xo, X1))b(a) ) da,

(7.42)

where M € Z is the winding number of the process z, i.e. the number of times
x has gone around the circle in [0, 7).

Let us now consider the Tikhonov regularization of £ by the H?-seminorm as
follows:
1
Ly(biz) =L(Biz) — 5 lb—bolza  bEH(0.27]),  (7.43)

where H Ifer([O, 27]) refers to the Sobolev space of twice weakly differentiable

periodic functions on [0, 27] and |b| g2 = (;? ™ (b(a))? da. Note that the pref-
actor -;— in front of the seminorm can be replaced by an arbitrary positive con-
stant, allowing an adjustment of the strength of regularization. To analyze this



460 PARAMETER ESTIMATION FOR MULTISCALE DIFFUSIONS

regularized functional, we separate off its quadratic terms by introducing the
bilinear form q(u, v) defined for u, v € H2,.([0, 2]) as follows:

27

q(u,v) = % ) Au(a)Av(a) + u(a)Liv(a)da, (7.44)

where we denote second derivatives by the Laplace operator, A = 3‘%27. Impor-
tant properties of this bilinear form are given in the following Lemma whose
proof is slightly technical and can be found in Papaspiliopoulos et al. (2009).

Lemma 7.16 If the local time Ly is not identically zero on [0, 27), then the
form q, defined in (7.44), is a continuous, coercive, symmetric bilinear form,
i.e. there are constants o, C € R which may depend on Lt but not on u,v
such that the following relations hold:

a[lu“?,vz < q(u,u) Yue ng,([O, 27]) (7.45)
q(u,v) < Cllul|g2||vllgz  Vu,v € Hier ([0, 27])

q(u,v) = q(v,u) Yu,v € ngr([O, 2r])
‘We now state an analogous theorem to Theorem 7.14:

Theorem 7.17 The functional L, (b) defined in (7.43) is almost surely bounded

above on b € HZ . ([0,27]) and its maximum is attained at be H2.([0,2n])
which is given by the unique weak solution of the boundary value problem

&1
(A2+Lr)b= L7 + M +X(; Xo, Xr) + Ao, (7.46)

Proof. We present a heuristic calculation first that simply proceeds by com-
pleting the square and reading off the answer. We then indicate how this can
be approached rigorously. To simplify notation we assume that the centre of
regularization is identically zero: by = 0.

1 i 2 a 2 / a
o) — —5/0 <b (a)L% + (Ab(a))” + V' (a) LT

-2 (%(a; Xo, XT) + M) b(a)) da

To simplify the notation we drop the arguments. To formally derive the maxi-
mizer we repeatedly integrate by parts, pretending that the local time is suffi-
ciently regular.

1

‘Cp=_§

/(b(A"’ + Ly)b — b(Lly + 2(% + M))da
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‘We now introduce the abbreviations
D=A%+ Ly (7.47)
1
c=— §Li_p—()"<+M) (7.48)

and the following notational convention for the square root of the operator D
and its inverse:

L 2
lDfu‘ = (u,Du) u € ngr([O, 2m])

2

}D_%u = (u, D) u € HZ,.([0,2r]),

where (-, -) denotes the inner product on the Hilbert space L?([0, 27]). These
conventions are intended to make the following calculation more transparent,
so we rewrite £, first of all:

Ly(:7) = ~5(6,Db) - (b,)

Now we complete the square

1 2 1 2
Ly(biz) = — [P} (b+D7e)| + 5 [Dde

and note that the maximizer of the regularized functional can be seen to be
given by

b=-Dlc

This is identical to (7.46) which can be seen by inserting the terms from (7.47)
and (7.48); boundedness from above is also apparent.

‘We rigorously establish boundedness from above (again in the case by = 0)
and leave the rest of the proofs to Papaspiliopoulos et al. (2009). To do this,
we first rewrite the Tikhonov-regularized likelihood using the quadratic form
(7.44) as follows:

27
L) =5 [ (V(@LE +2(M + %(ai Xo, X)) b)) da— 4(6,1)

Now bound the linear term in £,, as follows:

v ¥ (a)L% — 2b(a)(M + x(a; Xo, XT))da

27 il Tk
< / e (V' (a)® + = (E5) + esb?(a) + = (M + %(a; Xo, X1))* da
0 1 2

which holds for any €;,e2 € (0,00). Now choose € = €; = €3 < « where
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« is given by (7.45) from Lemma 7.16. Exploit coercivity (i.e. (7.45)) in the
following way:

e 1 3
Lp(b) < — q(b,b) + €l|bl|7 + ;IILTIIiz + =M + % Xo, X1) 172
< — (a — €)||b||32 + const.
The case by # 0 presents mainly notational complications, whereas deriving
the PDE (7.46) requires a little variational calculus and showing existence and

uniqueness of its solutions is an application of standard PDE theory given in
Papaspiliopoulos et al. (2009). [

Bayesian viewpoint

In this subsection we show that the Tikhonov regularization given above un-
derpins the adoption of a Bayesian framework and we briefly outline some
speculation concerning the limit 7" — oo.

To introduce a prior, we decompose the space HZ,, ([0, 27]), into the direct sum
of the (one-dimensional) space of constant functions and the space of Sobolev
functions with average zero (denoted by H2..([0, 2]):

HZ,.([0,2n]) = {al|a € R} P HZ..([0,2n]),

where we use 1 to denote the constant function with value one. We now define
the prior measure as the product measure found from Lebesgue measure on the
space of constant functions and the Gaussian measure N (b, A) on the space

. -2

H2,.([0,27]) where A = (— di:,-) subject to periodic boundary conditions:
Po=A ®N(bo, A).

This is the prior measure. Note that as this is a degenerate Gaussian, we are

using an improper prior. Purely formally, this prior can be written as a density
with respect to (non-existing) Lebesgue measure on HZ,, ([0, 27]):

27
w®) ~ e (-3 [ G6-m@O0-n)@d). 049

Having defined a prior we now use the Radon Nikodym derivative £(b; z) as
the likelihood just as before. The posterior measure then follows the Bayes
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formula:
P (bl{we}io) o< P({z¢}{—olb)po(b)

27
—ep (-3 /0 L&b*(a) - b(a) (L3)' — 2b(a) (M + %(a; Xo, X)) da

1 27
5 | (6(a) = bo(@)A%(b(a) - bo(a))da)
0

where M again corresponds to the number of times the path {z;}7_, winds
around the circle. Note that this is just the straightforward product of the like-
lihood (7.42) with the prior measure (7.49). We simplify this expression by
considering the case by = 0 and by dropping the arguments:

27
P (b{z:}{—o) o exp ( — %/ |Ab|%2 + Lrb® — b(Lly + 2M + 2%) da>.
0

Formally completing the square in the exponent as in the proof of Theorem
7.17 one finds that this posterior measure is again a Gaussian with formal den-

sity
)

where we have used the abbreviations (7.47) and (7.48) to shorten notation. Its
mean is given by (7.46) and its covariance is

2
P (b|{z:},) ~ exp (—% ]D"% (b+ D‘lc)’ % % [D*%c

Co=(A2+Ly) " (7.50)
This establishes the usual connection between regularization of the likelihood
and the mean of an appropriate Bayesian posterior. It is possible to prove exis-
tence and robustness of these measures against small errors in the local time,
including stability of a numerical implementation, see Papaspiliopoulos et al.
(2009) for details.

Finally, let us rewrite (7.46) in a suggestive form:

~ = 1
B (A% 4+ L) ™ (—2-L’T + M + (5 Xo, X7) + A2b0> . asy

Heuristically we expect that Ly is O(T') for large 7', and since A% is O(1)
on low frequencies we expect that equation (7.50) defines a small operator, at
least on low frequencies, and that the covariance of the posterior tends to the
zero operator as 7' — oo. Likewise the mean, given by (7.47), will approach

1
3 (log LE)'
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for large T'. Note that we have a similar result for the maximizers of the likeli-
hood for regularized local times, see (7.39).

In summary, these heuristics indicate that the Bayesian framework should be
amenable to a posterior consistency result with the posterior measure converg-
ing to a Dirac distribution centred at the true drift function.

7.7 Conclusions and further work

In this overview we have illustrated the following points:

e At small scales, data is often incompatible with the diffusion process that
we wish to fit.
e In Section 7.3 we saw that

1. this situation can be understood in the context of fitting averaged/homo-
genized equations to multiscale data,

2. in the averaging situation fine-scale data produces the correct averaged
equation,

3. in the homogenization situation fine-scale data produces an incorrect ho-
mogenized equation.

e In Section 7.4 we saw that

1. to estimate the drift and diffusion coefficients accurately in the homoge-

nization scenario it is necessary to subsample,

2. there is an optimal subsampling rate, between the two characteristic time-
scales of the multiscale data,

3. the optimal subsampling rate may differ for different parameters.

e In Section 7.5 we observed that in the case where the data is smooth at small
scales a useful approach can be to fit hypoelliptic diffusions; such models
are often also dictated by physical considerations.

e In Section 7.6 we observed that when fitting the drift, another approach is to
use estimators which do not see time-ordering of the data and use, instead,
the local time (or empirical measure) of the data.

There are many open questions for further investigation:

Section 7.3: How to identify multiscale character from time-series?

Section 7.4:

1. If subsampling is used, then what is the optimal subsampling rate?

2. Is subsampling at random helpful?
3. Is it possible to optimize the data available by combining shifts?
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4. How to estimate diffusion coefficients from low frequency data?
Section 7.5:

1. A theoretical understanding of the conditions under which hybrid Gibbs
samplers, using different approximate likelihoods for different parts of the
sampling problem, yield approximately correct samples from the true pos-
terior is yet to be attained.

2. While the recipe described in this section extends to higher order hypoellip-
ticity, the method is still to be tested in this region.

Section 7.6:

1. How to obtain estimates of the local time L% for all a which are good in a
suitable norm, e.g. L??

2. What is the convergence behaviour as 7" — oo for the mollified maximum
likelihood and the Bayesian estimators?

3. How to extend the Bayesian approach to higher dimensions where the em-
pirical measure is even less regular than in the one dimensional case?

Acknowledgements We gratefully acknowledge crucial contributions from all
our co-authors on work we cited in this chapter.

7.8 Appendix 1

Let us consider the random functional
1
Tbw) = / b (z)w(z) + b (z)w(x)dz. (7.52)
0

where b(-) € H'(0, 1) and w(z) is a standard Brownian bridge. We claim that
this functional is not bounded below and state this as a theorem:

Theorem 7.18 There almost surely exists a sequence b™ (-) € H*(0,1) such
that

lim Z(b™;w) = —c0 a.s.
n—oo
Proof. For the Brownian bridge we have the representation

o0

wz) =" —Sin(z:m) & (1.53)
=1

where the {&;}32, are a sequence of iid normal A/ (0, 1) random variables. This
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series converges in L?(; L2((0,1),R)) and almost surely in C([0, 1], R), see
Kahane (1985).

Now consider the following sequence of functions b(™):

b™(z) = Z = cos(imx). (7.54)

We think of a fixed realization w € 2 of (7.53) for the time being and note
that {w(z) : = € [0, 1]} is almost surely bounded in L>((0, 1), R), so if there
exists a C' > 0 (which may depend on {¢;}2) such that

6|2 < C VYneN (7.55)

the first integral in (7.52) will stay finite. By Parseval’s identity, it is clear that
for the sequence of functional (7.54) this will be the case if the coefficients %
are square-summable.

Computing the second summand in (7.52) is straightforward, since the series
terminates due to orthogonality:

1 2
/0 (Z sm(zrr.z') ) Z & i e = = . Z 5

i=1

It can now be seen that (7.52) is unbounded from below if the following two
conditions are fulfilled:

R

lim Zl 76 =00 (7.56)
lim 37 L2 757
LB .57

We finally allow w to vary and seek to establish that the conditions (7.56)
and (7.57) are almost surely fulfilled. To do this, first note that the random
variables being summed are independent. Thus, by the Kolmogorov 0-1 law
the probability for convergence is either zero or one. We proceed by applying
Kolmogorov’s Three-Series Theorem (Theorem 12.5 in Williams (1991)) to
each of the three sequences to establish (7.56) and (7.57).

We start by treating (7.56). Denote by X; |¥ the truncation of the random
variable for some K > 0 in the sense:

_ [ X)) S K
%I (‘”)‘{ o Xl > K
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To abbreviate notation, define the following two sequences of random vari-
ables:

1
X; = =£2
J ]J

il
= =¢2
3T 525

Now consider the summability of expected values for the sequence X;: since

5_72 follows a x-squared distribution with one degree of freedom, its expected

value is one. For the truncated variable X; |X, for any K > 0, there will be
some j* so that for all 7 > 5* we have that

B 1) =E 1@ )] > o

¢ J 2j

Therefore, the expected value summation fails as follows:

ZE(X IK)—Z —B{g? |**)
j=1 ]—-1
0 1 3
j=] %

Therefore, the series 2311 X; diverges to infinity almost surely, thus (7.56) is
established.

Now let us establish (7.57) using the Three-series theorem. First check the
summability of the expected values:

Zw < B =) <o
=1 J=1

Now let us establish the summability of the variances:

ZVar(Y [ < ZVarY

where we used that §J2- follows a x-squared distribution with one degree of free-
dom and hence has variance Varg;‘-’ = 2. Finally, to establish the summability



468 PARAMETER ESTIMATION FOR MULTISCALE DIFFUSIONS

of the tail probabilities we use the following argument for any K > 0:

oo oo
1
d_P(Y; > K) < 3 EIY;|
j=1 7=1

oty

where we have used the Markov inequality and the previous calculation of the
expected value of Y; = |Y].

To put everything together, let us reconsider the functional I [b]:

I5[b™] = /O 1 (b<n>)2 (@)w(e) + (b<">)' (i el
1 n
< < sup w(x)) | () @z - g;;g

z€[0,1]
1 T
< | sup w(w)) =Y X;—=>) Y
(ze[o,l] 2 ; 2 JZ-‘;

Now use the almost surely true convergence and divergence statements (7.56)
and (7.57) to conclude:

lim Ig[b™] = —c0 as.
n—oo

O
7.9 Appendix 2
Torus

We denote by T¢ the d-dimensional torus. We parameterise the torus by d
variables z; € [0, 2] where we identify the end points 0 and 27 so as to obtain
periodicity in each direction z;.

Matrix inner product

Given two matrices A, B € R™*™ we define their inner product as

n m
ATB= ZEAMBi»J"

i=1 j=1
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This defines a positive-definit symmetric bilinear form on R™*™ and turns this
space into an inner product space (also known as a finite dimensional Hilbert
space).
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