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Abstract. Fully resolving dynamics of materials with rapidly varying features involves expensive
fine-scale computations which need to be conducted on macroscopic scales. The theory of homoge-
nization provides an approach for deriving effective macroscopic equations which eliminates the small
scales by exploiting scale separation. An accurate homogenized model avoids the computationally
expensive task of numerically solving the underlying balance laws at a fine scale, thereby render-
ing a numerical solution of the balance laws more computationally tractable. In complex settings,
homogenization only defines the constitutive model implicitly, and machine learning can be used
to learn the constitutive model explicitly from localized fine-scale simulations. In the case of one-
dimensional viscoelasticity, the linearity of the model allows for a complete analysis. We establish
that the homogenized constitutive model may be approximated by a recurrent neural network that
captures the memory. The memory is encapsulated in the evolution of an appropriate finite set of
hidden variables, which are discovered through the learning process and dependent on the history of
the strain. Simulations are presented which validate the theory. Guidance for the learning of more
complex models, such as arise in plasticity, using similar techniques, is given.

Key words. homogenization, operator learning, viscoelasticity, surrogate modeling, machine
learning
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1. Introduction. Many problems in continuum mechanics lead to constitutive
laws which are history dependent. This property may be inherent to physics beneath
the continuum scale (for example, in plasticity [35, 36]) or may arise from homoge-
nization of rapidly varying continua [3, 28] (for example, in the Kelvin--Voigt (KV)
model of viscoelasticity [11]). When history dependence is present, Markovian mod-
els that capture the history dependence are desirable for both interpretability and
computability. In some cases theory may be used to justify Markovian models which
capture this history dependence, but in many cases data plays a central role in find-
ing such models. The goal of this paper is to study data-driven methods to learn
Markovian models for history dependence and to provide theoretical underpinnings
for understanding them.
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The paper [20] adopted a data-driven learning approach to uncovering history-
dependent homogenized models arising in crystal plasticity. However, the resulting
constitutive model is not causal and instead learns causality approximately from com-
putations performed at the level of the cell problem. The paper [21] introduces a
different approach, learning causal constitutive models of plasticity. In order to give
rigorous underpinnings to the empirical results therein, the present work is devoted
to studying the methodology from [21] in the setting of linear one-dimensional vis-
coelasticity. Here we can use theoretical understanding to justify and validate the
methodology; we show that machine-learned homogenized models can accurately ap-
proximate the dynamics of multiscale models at much cheaper evaluation cost. We
obtain insight into desirable choice of training data to learn the homogenized consti-
tutive model, and we study the effect of the multiple local minimizers which appear
in the underlying optimization problem. Furthermore, the rigorous underpinnings
enable us to gain insight into how to test model hypotheses. We demonstrate that
hypothesizing the correct model leads to robustness with respect to changes in time
discretization in the causal model: the model can be trained at one time-step and
used at others, and the model can be trained with one time-integration method and
used with others. In contrast, hypothesizing an incorrect model leads to intolerable
sensitivity with respect to the time-step. Thus training at one time-step and testing
at other levels of resolution provides a method for testing model form hypotheses.
We work primarily with the one-dimensional KV model for viscoelasticity for which
the constitutive model depends only on strain and strain rate. We will also briefly
touch upon the standard linear solid (SLS) model for which the constitutive relation
depends only on the strain and the strain history and perform numerical experiments
in a one-dimensional elasto-viscoplastic material; in so doing we show that the ideas
presented extend beyond the specifics of the one-dimensional KV setting.

In subsection 1.1 we describe the overarching mathematical framework adopted,
and subsection 1.2 contains a detailed literature review. This is followed, in subsection
1.3, by a statement of our contributions and an overview of the paper. In subsection
1.4 we summarize notation used throughout the remainder of the paper.

1.1. Setup. Consider the problem of material response on an arbitrary spatial
domain \scrD \subset \BbbR d where the material properties vary rapidly within the domain. We
denote by u\epsilon \in \BbbR d the displacement, where \epsilon : 0 < \epsilon \ll 1 denotes the scale of the
material fluctuations. Denote by \scrT = (0, T ) the time domain of interest. We consider
continuum models which satisfy dynamical equations of the form

\rho \partial 2
t u\epsilon =\nabla \cdot \sigma \epsilon + f, (x, t)\in \scrD \times \scrT ,(1.1a)

\sigma \epsilon (x, t) =\Psi \dagger 
\epsilon 

\bigl( 
\nabla u\epsilon (x, t), \partial t\nabla u\epsilon (x, t),\{ \nabla u\epsilon (x, \tau )\} \tau \in \scrT , x, t

\bigr) 
, (x, t)\in \scrD \times \scrT ,(1.1b)

u\epsilon = u\ast , \partial tu\epsilon = v\ast , (x, t)\in \scrD \times \{ 0\} ,(1.1c)

u\epsilon = 0, x\in \partial \scrD , (x, t)\in \partial \scrD \times \scrT .(1.1d)

From these equations we seek u\epsilon : \scrD \times \scrT \mapsto \rightarrow \BbbR d. Equation (1.1a) is the balance
equation with inertia term \rho \partial 2

t u\epsilon for known parameter \rho \in \BbbR +, resultant stress term
\nabla \cdot (\sigma \epsilon ) where \sigma \epsilon \in \BbbR d\times d is the internal stress tensor, and known external forcing
f \in \BbbR d; equations (1.1c) and (1.1d) specify the initial and boundary data for the
displacement. Equation (1.1b) is the constitutive law relating properties of the strain
\nabla u\epsilon to the stress \sigma \epsilon via map \Psi \dagger 

\epsilon . In this paper we will consider this model with inertia
(\rho > 0) and without inertia (\rho \equiv 0).
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 643

1.1.1. Constitutive model. The constitutive model is defined by \Psi \dagger 
\epsilon :\BbbR d\times d \times 

\BbbR d\times d \times C(\scrT ;\BbbR d\times d) \times \scrD \times \scrT \rightarrow \BbbR d\times d. It takes time t as input, which enables the
stress at time t to be expressed only in terms of the strain history up to time t,
\{ \nabla u\epsilon (x, \tau )\} t\tau =0, and not on the future of the strain for \tau \in (t, T ]. It takes x as input
to allow for material properties which depend on the rapidly varying x/\epsilon ; it is also
possible to allow for material properties which exhibit additional dependence on the
slowly varying x, but we exclude this case for simplicity.

Such constitutive models include a variety of plastic, viscoelastic, and viscoplas-
tic materials. In this paper we focus mainly on the one-dimensional KV viscoelas-
tic setting in order to highlight ideas; in this case \Psi \dagger 

\epsilon is independent of the history
of the strain. However, we will briefly demonstrate that similar concepts relating
to the learning of constitutive models also apply to the case of an SLS, for which
\Psi \dagger 

\epsilon is independent of the strain rate but does depend on the history of the strain;
the SLS contains the KV and Maxwell models of viscoelasticity as special cases.
We also provide a demonstrative application of our methodology to the setting of
elasto-viscoplasticity. Furthermore, the paper [21] includes empirical evidence that
similar concepts relating to the learning of constitutive models also apply in higher
dimensions.

1.1.2. Homogenized constitutive model. The goal of homogenization is to
find constitutive models which eliminate small-scale dependence. To this end, we first
discuss the form of a general homogenized problem: we seek the equation satisfied
by u0, an appropriate limit of u\epsilon as \epsilon \rightarrow 0. Then map \Psi \dagger 

0 defines the constitutive
relationship in a homogenized model for u0 of the form

\rho \partial 2
t u0 =\nabla \cdot \sigma 0 + f, (x, t)\in \scrD \times \scrT ,(1.2a)

\sigma 0(x, t) =\Psi \dagger 
0

\bigl( 
\nabla u0(x, t), \partial t\nabla u0(x, t),\{ \nabla u0(x, \tau )\} \tau \in \scrT , t

\bigr) 
, (x, t)\in \scrD \times \scrT ,(1.2b)

u0 = u\ast , \partial tu0 = v\ast , (x, t)\in \scrD \times \{ 0\} ,(1.2c)

u0 = 0, (x, t)\in \partial \scrD \times \scrT .(1.2d)

The key property of this homogenized model is that parameter \epsilon no longer appears.
Furthermore, since we assumed that the multiscale model material properties depend
only on the rapidly varying scale x/\epsilon and not on x, we have that \Psi \dagger 

0 does not depend
explicitly on x; it does, however, still have spatial dependence through the local values
of strain, strain rate, and strain history: \Psi \dagger 

0 :\BbbR d\times d\times \BbbR d\times d\times C(\scrT ;\BbbR d\times d)\times \scrT \rightarrow \BbbR d\times d.
If the homogenized model is identified correctly, then dynamics under the multi-

scale model \Psi \dagger 
\epsilon , i.e., u\epsilon , can approximated by dynamics under the homogenized model

\Psi \dagger 
0, i.e., u0. This potentially facilitates cheaper computations since length-scales of

size \epsilon need not be resolved. We observe, however, that for KV viscoelasticity, the ho-
mogenized model contains history dependence (memory) even though the multiscale
model does not. Markovian history dependence is desirable for two primary reasons:
first, Markovian models encode conceptual understanding, representing the history
dependence in a compact, interpretable form; second, Markovian expression reduces
computational cost from \scrO (| \scrT | 2) in the general memory case to \scrO (| \scrT | ) in the Mar-
kovian case. In the general media setting, for a multitude of models in viscoelasticity,
viscoplasticity, and plasticity, the homogenized model will depend on the memory in
a non-Markovian manner. However, it is interesting to determine situations in which
accurate Markovian approximations can be found.

1.1.3. Markovian homogenized constitutive model. We will seek to iden-
tify hidden variables \xi , closely related to the internal variables used in the mechanics
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644 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

literature [21], and functions \scrF ,\scrG such that, for B \in C(\scrT ;\BbbR d\times d), \Psi \dagger 
0 can be approxi-

mated by

\Psi 0

\bigl( 
B(t), \partial tB(t),\{ B(\tau )\} \tau \in \scrT , t

\bigr) 
=\scrF (B(t), \partial tB(t), \xi (t)) ,(1.3a)

\partial t\xi (t) = \scrG (\xi (t),B(t)) ,(1.3b)

\xi (0) = 0.(1.3c)

Note that \xi carries the history dependence on B through its Markovian evolution. We
assume that \xi \in C(\scrT ;\BbbR r) for some integer r and hence that \scrF :\BbbR d\times d \times \BbbR d\times d \times \BbbR r \rightarrow 
\BbbR d\times d and that \scrG :\BbbR r\times \BbbR d\times d \rightarrow \BbbR r. In dimension d> 1 there will be further symmetries
that should be built into the model, but as the concrete analysis in this paper is in
dimension d= 1 we will not detail these symmetries here [34].

In general such a Markovian model can only approximate the true model, and
the nature of the physics leading to a good approximation will depend on the specific
continuum mechanics problem. To determine \scrF and \scrG in practice we will parame-
terize them as neural networks, which enables us to use general purpose optimization
software to determine suitable values of the parameters. Within computational im-
plementations of the learned homogenized models, the neural networks \scrF and \scrG act
pointwise in time to generate the stress and time derivatives of the hidden variables
at each time-step. In doing so we identify an operator class \Psi 0(\cdot ;\theta ) and parameter
space \Theta such that, for some judiciously chosen \theta \ast \in \Theta , \Psi 0(\cdot ;\theta \ast )\approx \Psi \dagger 

0.
In this paper we will concentrate on justifying a Markovian homogenized approxi-

mation in the context of one-dimensional KV viscoelasticity. Our justification will use
theory that is specific to one-dimensional linear viscoelasticity, and we demonstrate
that the approach also works for the general SLS, which includes the KV model as
a particular limit. Furthermore, the paper [21] contains evidence that the ideas we
develop apply beyond the confines of one-dimensional linear viscoelasticity and into
nonlinear plasticity in higher spatial dimensions.

The specific property of one-dimensional viscoelasticity that we exploit to under-
pin our analysis (and which applies to the SLS and therefore also to the KV model) is
that, for piecewise-constant media, the homogenized model has a memory term which
can be represented in a Markovian way. Therefore, to justify our strategy of approxi-
mating by Markovian models we will do the following: first, approximate the rapidly
varying medium by a piecewise-constant rapidly varying medium; second, homoge-
nize this model to find a Markovian description; and, finally, demonstrate how the
Markovian description can be learned from data at the level of the unit cell problem,
using neural networks. For more general problems we anticipate a similar justification
holding, but with different specifics leading to the existence of good approximate Mar-
kovian homogenized models. The benefit of the one-dimensional viscoelastic setting
is that, through theory, we obtain underpinning insight into the conceptual approach
more generally, and in particular for plasticity; this theory underpins the numerical
experiments which follow.

1.2. Literature review. The continuum assumption for physical materials ap-
proximates the inherently particulate nature of matter by a continuous medium and
thus allows the use of partial differential equations to describe response dynamics.
We refer the reader to [13, 37, 12] for a general background. In continuum mechanics,
the governing equations are derived by combining universal balance laws of physics
(balance of mass, momenta, and energy) with a constitutive relation that describes
the properties of the material being studied. This is typically specified as the relation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 645

between a dynamic quantity like stress or energy and kinematic quantities like strain
and its history. The constitutive relation of many materials are history dependent,
i.e., the state of stress at an instant depends on the history of deformation. It is
common in continuum mechanics to incorporate this history dependence through the
introduction of internal variables, which are referred to as hidden variables in com-
puter science and throughout this paper. We refer the reader to [32] for a systematic
formulation of internal variable theories.

Of particular interest in this work are viscoelastic materials. We refer the reader
to [7, 18] for a general background. In viscoelastic materials, the state of stress at
any instant depends on the strain and its history. There are various models where
the stress depends only on strain and strain rate (Kelvin--Voigt), internal variables
(standard linear solids), convolution kernels, and fractional time derivatives.

While constitutive laws were traditionally determined empirically, more recently
there has been a systematic attempt to understand them from more fundamental
solids, and this has given rise to a rich activity in multiscale modeling of materials
[10, 39, 41]. Materials are heterogeneous on various length (and time) scales, and it is
common to use different theories to describe the behavior at different scales [30]. The
goal of multiscale modeling of materials is to use this hierarchy of scales to understand
the overall constitutive behavior at the scale of applications. The hierarchy of scales
includes a number of continuum scales. For example, a composite material is made of
various distinct materials arranged at a scale that is small compared to the scale of
application but large enough compared to an atomistic/discrete scale, so the behavior
is adequately described by continuum mechanics. Or, for example, a polycrystal is
made of a large collection of grains (regions of identical anisotropic material but with
differing orientation) that are small compared to the scale of application but large
enough for a continuum theory. Homogenization theory leverages the assumption of
the separation of scales to average out the effects of fine-scale material variations. To
estimate macroscopic response of heterogeneous materials, asymptotic expansion of
the displacement field yields a set of boundary value problems whose solution produces
an approximation that does not depend on the microscale [3, 33]. The fundamentals of
asymptotic homogenization theory are well established [28, 8, 1]. Milton [23] provides
a comprehensive survey of the effective or homogenized properties.

Homogenization in the context of viscoelasticity was initiated by Sanchez-Palencia
[33, Chapter 6], who pointed out that the homogenization of a KV model leads to a
model with fading memory. Further discussion of homogenization theory in (thermo-)
viscoelasticity can be found in Francfort and Suquet [11], and a detailed discussion
of the overall behavior including memory in Brenner and Suquet [5]. A broader
discussion of homogenization and memory effects can be found in Tartar [40]. It
is now understood that homogenization of various constitutive models gives rise to
memory.

As noted above, according to homogenization theory, the macroscopic behavior
depends on the solution of a boundary value problem at the microscale. Evaluating the
macroscopic behavior by the solution of a boundary value problem computationally
leads to what has been called computational micromechanics [43]. These often involve
periodic boundary conditions, and fast Fourier transform--based methods have been
widely used since Moulinec and Suquet [26] (see [24, 25] for recent summaries). While
these enable us to compute the macroscopic response for a particular deformation
history, one needs to repeat the calculation for all possible deformation histories.

Therefore, recent work in the mechanics literature addresses the issue of learn-
ing homogenized constitutive models from computational data [27, 42, 20, 21] or

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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experimental data [2]. This learning problem requires determination of maps that
take as inputs functions describing microstructural properties and leads into the topic
of operator learning.

Neural networks on finite-dimensional spaces have proven effective at solving long-
standing computational problems. A natural question which arises from this success
is whether neural networks can be used to solve partial differential equations (PDEs).
From a theoretical standpoint, the classical notion of neural networks as maps be-
tween finite-dimensional spaces is insufficient. Indeed, a differential operator is a map
between infinite-dimensional spaces. Similarly to the case of finite-dimensional maps,
universal approximation results for nonlinear operator learning have been developed
[6]. In one approach to operator learning, model reduction methods are applied to the
operator itself. In this setting, a low-dimensional approximation space is assumed,
and the operator approximation is constructed via regression using the latent basis
[29, 31]. In a second method, classical dimension reduction maps are applied to the
input and output spaces, and an approximation map is learned between these finite-
dimensional spaces [4]. An important result of this method is its mesh-invariance
property. Data for any operator-learning problem must consist of a finite discretiza-
tion of the true input and output functions. One side effect of this practical fact is
that some existing methods for operator learning depend critically on the choice of
discretization. Mesh-invariant methods are desirable for both practical and theoreti-
cal purposes. Practically, it would be expensive to train a new model to accommodate
a finer data resolution. From a theoretical standpoint, since the true map between
infinite-dimensional spaces is inherently resolution independent, the operator approx-
imation ought to have this property as well. Mesh invariance allows the operator
approximation to be applied in the use of various numerical approximation methods
for PDEs, which is of particular importance when the operator is being used as a
surrogate model for the overall PDE system [19]. Invariance with respect to time
discretization is also leveraged in work on data-driven learning of PDEs in [17, 16].

Surrogate modeling bypasses expensive simulation computations by replacing part
of the PDE with a neural network. In several application settings, including fluid flows
and solid mechanics computations, surrogate modeling has met empirical success in
approximating the true solution [38, 15]. This work continues to use ideas from
physics-informed machine learning; in [15] in particular, the differential operator is
incorporated into the cost function via automatic differentiation. Other work in sur-
rogate modeling for solid mechanics proposes a hierarchical network architecture that
mimics the heterogeneous material structure to yield an approximation to the ho-
mogenized solution [22]. The work of [14] also leverages automatic differentiation and
approaches the problem of surrogate modeling of constitutive laws via a parameter
identification learning perspective. In our work, we consider parameterized models
for the purpose of justifying theory, but the learning framework does not rely on
parameter identification.

In this paper we use a recurrent neural network (RNN) as a surrogate model for
the constitutive relation on the microscale. Our RNN architecture takes the form of
two feed-forward neural networks: one which computes the time derivative of hidden
variables, and one which outputs the stress pointwise in space and time. In this
manner, the history dependence is contained entirely in the hidden variables rather
than directly in the neural network. This leads to an interpretable model. The RNN
can then be used to evaluate the forward dynamic response on the microscale cells,
whose results are combined with traditional numerical approximation methods to
yield the macroscale response. Furthermore, the RNN that we train at a particular
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 647

time discretization is also accurate when used at other time discretizations if the
correct model form is proposed. However, the RNN is trained for a particular choice
of material parameters, and the resulting model cannot be used at different material
parameter values; simultaneously learning material parameter dependence is left for
future work.

1.3. Our contributions and paper overview. Our contributions are as
follows:

1. We provide theoretical underpinnings for the discovery of Markovian homoge-
nized models in viscoelasticity and plasticity; the methods use data generated
by solving cell problems to learn constitutive models of the desired form.

2. We prove that in the one-dimensional KV setting, any solution of the multi-
scale problem can be approximated by the solution of a homogenized problem
with Markovian structure.

3. We prove that the constitutive model for this Markovian homogenized system
can be approximated by an RNN operator learned from data generated by
solving the appropriate cell problem.

4. We provide simulations which numerically demonstrate the accuracy of the
learned Markovian model.

5. We offer guidance for the application of this methodology, beyond the setting
of one-dimensional viscoelasticity, into multidimensional plasticity.

In section 2, we formulate the KV viscoelastic problem and its homogenized solu-
tion. In section 3, we present our main theoretical results, addressing contributions 1,
2, and 3; these are in the setting of one-dimensional KV viscoelasticity. We prove that
solution of the multiscale problem can be approximated by solution of a homogenized
Markovian memory-dependent model that does not depend on small scales, and we
prove that an RNN can approximate the constitutive law for this homogenized prob-
lem. Section 4 contains numerical experiments which address contributions 4 and 5;
the start of that section details the findings.

1.4. Notation. We define notation that will be useful throughout the paper.
Recall that \scrT = (0, T ) is the time domain of interest, and in the one-dimensional
setting we let \scrD = [0,L] be the spatial domain. Let \langle \cdot , \cdot \rangle and \| \cdot \| denote the standard
inner product and induced norm operations on the Hilbert space L2(\scrD ;\BbbR ). Addition-
ally, let \| \cdot \| \infty denote the L\infty (\scrD ;\BbbR ) norm.

It will also be convenient to define the \xi -dependent quadratic form

(1.4) q\xi (u,w) :=

\int 
\scrD 
\xi (x)

\partial u(x)

\partial x

\partial w(x)

\partial x
dx

for arbitrary \xi \in L\infty (\scrD ; (0,\infty )); furthermore we define

(1.5) \xi + := ess sup
x\in \scrD 

\xi (x)<\infty 

and

(1.6) \xi  - := ess inf
x\in \scrD 

\xi (x)\geq 0.

In this paper we always work with \xi such that \xi  - > 0. Under these assumptions
q\xi (\cdot , \cdot ) defines an inner product, and we can define the norm

\| u\| 2H1
0 ,\xi 

:= q\xi (u,u)

from it; note also that we may define a norm on H1
0 (\scrD ;\BbbR ) by
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648 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

\| u\| 2H1
0
:= q1(u,u),

where 1(\cdot ) is the function in L\infty (\scrD ; (0,\infty )) taking value 1 in D a.e. The resulting
norms are all equivalent on the space H1

0 (\scrD ;\BbbR ); this is a consequence of the following
lemma.

Lemma 1.1. For any \xi 1, \xi 2 \in L\infty (\scrD ; (0,\infty )) satisfying properties (1.5) and (1.6),
the norms \| u\| H1

0 ,\xi 1
and \| u\| H1

0 ,\xi 2
are equivalent in the sense that

\xi  - 2
\xi +1

\| u\| 2H1
0 ,\xi 1

\leq \| u\| 2H1
0 ,\xi 2

\leq \xi +2
\xi  - 1

\| u\| 2H1
0 ,\xi 1

.

Proof. For i= 1,2,

\xi  - i

\int 1

0

\bigm| \bigm| \bigm| \bigm| \partial u\partial x
\bigm| \bigm| \bigm| \bigm| 2 dx\leq 

\int 1

0

\xi i(x)

\bigm| \bigm| \bigm| \bigm| \partial u\partial x
\bigm| \bigm| \bigm| \bigm| 2 dx\leq \xi +i

\int 1

0

\bigm| \bigm| \bigm| \bigm| \partial u\partial x
\bigm| \bigm| \bigm| \bigm| 2 dx.

The result follows.

We denote by V the Hilbert space H1
0 (\scrD ;\BbbR ) noting that, as a consequence of the

preceding lemma, we may use q\xi (u,w) as the inner product on this space for any \xi 
satisfying (1.5) and (1.6). We also define

\scrZ =L\infty (\scrT ;L2(\scrD ;\BbbR )), \scrZ 2 =L2(\scrT ;L2(\scrD ;\BbbR ))
with norms

\| r\| \scrZ = ess sup
t\in \scrT 

(\| r(\cdot , t)\| ), \| r\| \scrZ 2 =
\Bigl( \int \scrT 

0

\| r(\cdot , t)\| 2dt
\Bigr) 1

2

.

We note that \scrZ is continuously embedded into \scrZ 2.

2. One-dimensional Kelvin--Voigt viscoelasticity. This paper is focused on
one-dimensional KV viscoelasticity because the model is amenable to rigorous analy-
sis. The resulting analysis sheds light on the learning of constitutive models more
generally. In section 2.1 we present the equations for the model in an informal fashion
and in a weak form suitable for analysis; in section 2.2 we homogenize the model and
define the operator defining the effective constitutive model.

2.1. Governing equations and weak form. The one-dimensional KV model
for viscoelasticity postulates that stress is affine in the strain and strain rate, with
affine transformation dependent on the (typically spatially varying) material proper-
ties. For a multiscale material varying with respect to x/\epsilon we thus have the following
definition of \Psi \dagger 

\epsilon from (1.1), in the one-dimensional KV model:

\sigma \epsilon =E\epsilon \partial xu\epsilon + \nu \epsilon \partial 
2
xtu\epsilon ,

where E\epsilon (x) = E(x\epsilon ) and \nu \epsilon (x) = \nu (x\epsilon ) are rapidly varying material elasticity and
viscosity, respectively. Both E and \nu are assumed to be 1-periodic. Then equations
(1.1) without inertia (\rho \equiv 0) become

 - \partial x
\bigl( 
E\epsilon \partial xu\epsilon + \nu \epsilon \partial 

2
xtu\epsilon 

\bigr) 
= f, (x, t)\in \partial \scrD \times \scrT ,(2.1a)

u\epsilon (0, x) = u\ast , \partial tu\epsilon (0, x) = v\ast , x\in \partial \scrD ,(2.1b)

u\epsilon (x, t) = 0, x\in \partial \scrD .(2.1c)
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 649

Any classical solution to equations (2.1) will also solve the corresponding weak form:
find u\epsilon \in \scrC (\scrT ;V ) such that

(2.2) q\nu \epsilon 
(\partial tu\epsilon ,\varphi ) + qE\epsilon 

(u\epsilon ,\varphi ) = \langle f,\varphi \rangle 

for all test functions \varphi \in V .

2.2. Homogenization. In the inertia-free setting \rho = 0 we perform homoge-
nization to eliminate the dependence on the small scale \epsilon in (2.1). First, we take the
Laplace transform of (2.1), which, for Laplace parameter s and with the hat symbol
denoting Laplace transform, gives

 - \partial x ((E\epsilon + \nu \epsilon s)\partial x\widehat u\epsilon ) = \widehat f, x\in \scrD ,\widehat u\epsilon (x, s) = 0, x\in \partial \scrD .

The initial condition u\epsilon (0, x) = u\ast is applied upon Laplace inversion. Since \epsilon \ll 1, we
may apply standard techniques from multiscale analysis [3, 28] and seek a solution in
the form \widehat u\epsilon = \widehat u0 + \epsilon \widehat u1 + \epsilon 2\widehat u2 + \cdot \cdot \cdot .

For convenience, define \widehat a(s, y) = E(y) + \nu (y)s. Note that \widehat a(s, \cdot ) is 1-periodic. The
leading order term in our approximation, \widehat u0, solves the following uniformly elliptic
PDE with Dirichlet boundary conditions:

(2.3a)  - \partial x (\widehat a0(s)\partial x\widehat u0) = \widehat f for x\in \scrD ,

(2.3b) \widehat u0 = 0 for x\in \partial \scrD .

Here the coefficient \widehat a0 is given by

\widehat a0(s) = \int 1

0

(\widehat a(s, y) + \widehat a(s, y)\partial y\chi (y)) dy
and \chi (y) : [0,1]\rightarrow \BbbR satisfies the cell problem

(2.4a)  - \partial y (\widehat a(s, y)\partial y\chi (y)) = \partial y\widehat a(s, y),
(2.4b) \chi is 1-periodic,

\int 1

0

\chi (y)dy= 0.

Using this, the coefficient \widehat a0 can be computed explicitly as the harmonic average of
the original coefficient \widehat a [28]:

\widehat a0(s) = \bigl\langle \widehat a(s, y) - 1
\bigr\rangle  - 1

=

\biggl( \int 1

0

dy

s\nu (y) +E(y)

\biggr)  - 1

,(2.5)

where \langle \cdot \rangle denotes spatial averaging over the unit cell.
Equations (2.3) indicate that the homogenized map \Psi \dagger 

0 appearing in (1.2) is, for
one-dimensional linear viscoelasticity, defined from

(2.6) \Psi \dagger 
0

\bigl( 
\partial xu0(x, t), \partial 

2
xtu0(x, t),\{ \partial xu0(x, \tau )\} \tau \in \scrT , t

\bigr) 
=\scrL  - 1

\Bigl( \widehat a0(s)\partial x\widehat u0

\Bigr) 
;
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650 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

here \scrL  - 1 denotes the inverse Laplace transform. Note that (2.5) shows that \widehat a0 grows
linearly in s\rightarrow \infty , and computing the constant term in a regular power series expan-
sion at s=\infty shows that we may write

\widehat a0 = \nu \prime s+E\prime + \widehat \kappa (s),
where \widehat \kappa (s) decays to 0 as s\rightarrow \infty . Here

\nu \prime =
\Bigl( \int 1

0

1

\nu (y)
dy
\Bigr)  - 1

, E\prime =
\Bigl( \int 1

0

E(y)

\nu (y)2
dy
\Bigr) \Big/ \Bigl( \int 1

0

1

\nu (y)
dy
\Bigr) 2

.

Details are presented in Appendix B.1. Laplace inversion of \widehat a0(s)\partial x\widehat u0 then yields the
conclusion that

\Psi \dagger 
0(\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT .t;\theta ) =E\prime \partial xu0(t) + \nu \prime \partial 2

xtu0(t)

+

\int t

0

\kappa (t - \tau )\partial xu0(\tau ) d\tau .(2.7)

Remark 2.1. When \rho = 0, the homogenized solution provably approximates u\epsilon in
the \epsilon \rightarrow 0 limit; see Theorem 3.7. However, although we derived it with inertia set
to zero, the homogenized solution given by (2.8) is also valid when the inertia term
\rho \partial 2

t u\epsilon generates contributions which are \scrO (1) with respect to \epsilon .

The homogenized PDE for one-dimensional viscoelasticity follows by combining
equations (1.2) with (2.7) to give

\rho \partial 2
t u0 =\nabla \cdot \sigma 0 + f, (x, t)\in \scrD \times \scrT ,(2.8a)

\sigma 0(t) =E\prime \partial xu0(t) + \nu \prime \partial 2
xtu0(t) +

\int t

0

\kappa (t - \tau )\partial xu0(\tau ) d\tau (x, t)\in \scrD \times \scrT ,(2.8b)

u0 = u\ast , \partial tu0 = v\ast , (x, t)\in \scrD \times \{ 0\} ,(2.8c)

u0 = 0, (x, t)\in \partial \scrD \times \scrT .(2.8d)

The price paid for homogenization is dependence on the strain history. We will
show in the next section, however, that we can approximate the general homogenized
map with one in which the history dependence is expressed in a Markovian manner.

3. Main theorems: Statement and interpretation. In this section we pres-
ent theoretical results of three types. First, in subsection 3.1, we show that the
solution u\epsilon to (2.1) is Lipschitz when viewed as a mapping from the unit cell ma-
terial properties E(\cdot ), \nu (\cdot ) in L\infty into \scrZ ; hence, an \scrO (\delta ) approximation of E,\nu by
piecewise-constant functions leads to an \scrO (\delta ) approximation of u\epsilon . Second, in sub-
section 3.2, we demonstrate that the homogenized model based on piecewise-constant
material properties can be represented in a Markovian fashion by introducing hidden
variables; hence, combining with the first point, we have a mechanism to approxi-
mate u\epsilon by solving a Markovian homogenized model. Third, in subsection 3.3, we
show the existence of neural networks which provide arbitrarily good approximation
of the constitutive law arising in the Markovian homogenized model; this suggests a
model class within which to learn homogenized, Markovian constitutive models from
data. Subsection 3.4 establishes our framework for the optimization methods used to
learn such constitutive models; this framework is employed in section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/1

9/
23

 to
 1

31
.2

15
.2

20
.1

65
 b

y 
M

ar
ga

re
t T

ra
ut

ne
r 

(m
tr

au
tn

e@
ca

lte
ch

.e
du

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 651

Assumptions 3.1. We will make the following assumptions on E, \nu , and f through-
out:

1. f \in L2(\scrD ;\BbbR ) for all t\in \scrT ; thus \| f\| \scrZ <\infty ;
2. E+, \nu + <\infty , and E - , \nu  - > 0.

Note that E+ = E+
\epsilon and \nu + = \nu +\epsilon , so we will drop the \epsilon superscript in this

notation.

3.1. Approximation by piecewise-constant material. Consider (2.1) with
continuous material properties E and \nu . We show in Theorem 3.4 that we can ap-
proximate the solution u\epsilon to this system by a solution uPC

\epsilon which solves (2.1) with
suitable piecewise-constant material properties EPC and \nu PC , in such a way that u\epsilon 

and uPC
\epsilon are close. To this end we make precise the definition of piecewise-constant

material properties.

Definition 3.2 (piecewise constant). A material is piecewise constant on the
unit cell with L pieces if the elasticity function E(y) and the viscosity function \nu (y)
both take constant values on L intervals [0, a1), [a1, a2), . . . , [aL - 1,1]. In particular,
E(y) and \nu (y) have discontinuities only at the same L - 1 points in the unit cell. We
use the terminology L-piecewise constant to specify the number of pieces.

Remark 3.3. The situation in which E(y) and \nu (y) have discontinuities at different
values of y \in (0,1) can be reduced to the case in Definition 3.2 by increasing the value
of L.

Theorem 3.4 (piecewise-constant approximation). Let E and \nu be piecewise-
continuous functions, with a finite number of discontinuities, satisfying Assumptions
3.1; let u\epsilon be the corresponding solution to (2.1). Then, for any \delta > 0, there exist
piecewise-constant EPC and \nu PC (in the sense of Definition 3.2) such that solution
uPC
\epsilon of equations (2.1) with these material properties satisfies

\| uPC
\epsilon  - u\epsilon \| \scrZ < \delta .

Note that Theorem 3.4 is stated in the setting of no inertia. The proof depends
on the following lemma; proof of both the theorem and the lemma may be found in
Appendix A.1. We observe that, since the Lipschitz result is in the L\infty norm with
respect to the material properties, it holds with constant C independent of \epsilon , in the
case of interest where the material properties vary rapidly on scale \epsilon .

Lemma 3.5 (Lipschitz solution). Let ui be the solution to

 - \partial x
\bigl( 
Ei\partial xui + \nu i\partial 

2
xtui

\bigr) 
= f, (x, t)\in \partial \scrD \times \scrT ,(3.1)

ui(x, t) = u\ast , (x, t)\in \scrD \times \{ 0\} ,(3.2)

ui(x, t) = 0, (x, t)\in \partial \scrD \times \scrT ,(3.3)

associated with material properties Ei, \nu i for i \in \{ 1,2\} , and forcing f , all satisfying
Assumptions 3.1. Then

\| u1  - u2\| \scrZ \leq C (\| \nu 1  - \nu 2\| \infty + \| E1  - E2\| \infty )

for some constant C \in \BbbR + dependent on f,E+
i ,E - 

i , \nu +i , \nu  - i , and L and independent
of \epsilon .
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652 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

3.2. Homogenization for piecewise-constant material. We show in Theo-
rem 3.6 that for piecewise-constant material properties E(\cdot ) and \nu (\cdot ), the homogenized
map \Psi \dagger 

0 given in (2.7) can be written explicitly with a finite number of parameters,
and in particular the memory is expressible in a Markovian form. This Markovian
form implicitly defines a finite number of hidden variables.

Theorem 3.6 (existence of exact parametrization). Let \Psi \dagger 
0 be the map from

strain history to stress in the homogenized model, as defined by (2.7), in a piecewise-
constant material with L\prime + 1 pieces. Define \Psi PC

0 : \BbbR 2 \times C(\scrT ;\BbbR ) \times \scrT \times \Theta \rightarrow \BbbR by

\Psi PC
0 (\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t;\theta ) =E0\partial xu0(t) + \nu 0\partial 

2
xtu0(t) - 

L0\sum 
\ell =1

\xi \ell (t),

(3.4a)

\partial t\xi \ell (t) = \beta \ell \partial xu0(t) - \alpha \ell \xi \ell (t), \xi \ell (0) = 0, \ell \in \{ 1, . . . ,L0\} ,
(3.4b)

with parameter space

(3.5) \Theta =
\Bigl( 
E0 \in \BbbR +, \nu 0 \in \BbbR +, L0 \in \BbbZ +, \alpha 0 \in \BbbR L0

+ , \beta 0 \in \BbbR L0

\Bigr) 
.

Then, under Assumptions 3.1, there exists \theta \ast \in \Theta with (E0, \nu 0,L0, \alpha 0, \beta 0) =
(E\prime , \nu \prime ,L\prime , \alpha ,\beta ) such that

\Psi \dagger 
0(\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t) =\Psi PC

0 (\partial xu0(t), \partial 
2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t;\theta 

\ast )

for all u0 \in \scrC 2(\scrD \times \scrT ;\BbbR ) and t\in \scrT .

The proof of the above theorem may be found in Appendix A.2. The parameters
E0, \nu 0, \alpha 0, and \beta 0 are determined via an appropriate decomposition of \widehat a0 in (2.5);
details are in the proof. In particular, E0 and \nu 0 are homogenized elasticity and
viscosity coefficients, respectively, \alpha 0 are decay rates for the hidden variables \xi , and
\beta 0 are coefficients for each decay term. Note that the model in equations (3.4) is
Markovian. Furthermore, although the model in (3.4) requires an input of t for
evaluation, the spatial variable x only enters implicitly through the local values of
\partial xu0 and \partial 2

xtu0; the model acts pointwise in space. Thus we have not included x
explicitly in the theorem statement, for economy of notation. In what follows it is
useful to define uPC

0 to be the solution to the following system defined with constitutive
model \Psi PC

0 :

\rho \partial 2
t u

PC
0  - \partial x\sigma 0 = f, (x, t)\in \scrD \times \scrT ,(3.6a)

\sigma 0(t) =\Psi PC
0

\Bigl( 
\partial xu

PC
0 (t), \partial 2

xtu
PC
0 (t),

\bigl\{ 
\partial xu

PC
0 (\tau )

\bigr\} 
\tau \in \scrT , t

\Bigr) 
, (x, t)\in \scrD \times \scrT ,(3.6b)

uPC
0 | t=0 = u\ast , \partial tu

PC
0 | t=0 = v\ast , (x, t)\in \scrD \times \{ 0\} ,(3.6c)

uPC
0 = 0, (x, t)\in \partial \scrD \times \scrT .(3.6d)

Using a homogenization theorem, together with approximation by piecewise-
constant material properties, we now show that u\epsilon can be approximated by uPC

0 ;
this will follow from the inequality

\| u\epsilon  - uPC
0 \| \scrZ 2

\leq \| u\epsilon  - uPC
\epsilon \| \scrZ 2

+ \| uPC
\epsilon  - uPC

0 \| \scrZ 2
.
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 653

The first term on the right-hand side may be controlled using Theorem 3.4. The
fact that dynamics under constitutive law \Psi \dagger 

\epsilon converge to those under \Psi \dagger 
0 as \epsilon \rightarrow 0

may be used to control the second term; this fact is a consequence of the following
theorem.

Theorem 3.7. Under Assumptions 3.1, the solution u\epsilon to equations (2.1) con-
verges weakly to u0, the solution to equations (2.8) with \rho = 0, in W 1,2(\scrT ;V ). Thus,
for any \eta > 0 there exists \epsilon crit > 0 such that for all \epsilon \in (0, \epsilon crit),

(3.7) \| u\epsilon  - u0\| \scrZ 2 < \eta .

Proof. Since f \in \scrZ , continuous embedding gives f \in \scrZ 2. Applying Theorem 3.1
of [11] (noting that the work in that paper is set in dimension d = 3, but is readily
extended to dimension d= 1) establishes weak convergence of u\epsilon to u0 in W 1,2(\scrT , V ).
Hence strong convergence in \scrZ 2 follows by compact embedding of W 1,2(\scrT ;V ) into
\scrZ 2.

The following corollary is a consequence of Theorem 3.7.

Corollary 3.8. Under Assumptions 3.1 and assuming E,\nu are piecewise con-
stant, the solution uPC

\epsilon to equations (2.1) converges weakly to uPC
0 , the solution to

equations (3.6) with \rho = 0, in W 1,2(\scrT ;V ). Thus, for any \eta > 0 there exists \epsilon crit > 0
such that for all \epsilon \in (0, \epsilon crit),

(3.8) \| uPC
\epsilon  - uPC

0 \| \scrZ 2 < \eta .

Combining this result with that of Theorem 3.4, noting continuous embedding of
\scrZ into \scrZ 2, allows us to approximate u\epsilon by uPC

0 :

Corollary 3.9. Let E and \nu be piecewise-continuous functions, with a finite
number of discontinuities satisfying, along with f , Assumptions 3.1; let u\epsilon be the
corresponding solution to (2.1). Then for any \eta > 0, there exists Lcrit and \epsilon crit with
the property that for all L\geq Lcrit there are L-piecewise-constant EPC and \nu PC such
that for all \epsilon \in (0, \epsilon crit), the solution to uPC

0 to (3.6) with \rho = 0 satisfies

(3.9) \| u\epsilon  - uPC
0 \| \scrZ 2 < \eta .

3.3. Neural network approximation of constitutive model. For the spe-
cific KV model in dimension d = 1 we know the postulated form of \Psi PC

0 and can in
principle use this directly as a constitutive model. However, in more complex prob-
lems we do not know the constitutive model analytically, and it is then desirable to
learn it from data from within an expressive model class. To this end we demonstrate
that \Psi PC

0 can be approximated by an operator \Psi RNN
0 which has a similar form to

that defined by equations (3.4) but in which the right-hand sides of those equations
are represented by neural networks, leading to an RNN structure. Note that with
this structure, the neural network outputs the stress at a single point in space and
time; in practice, repeated evaluation generates output stress trajectories from the
spatio-temporal dynamics. As such, the architecture is not the same as standard long
short-term memory (LSTM) RNN models. Instead, the feed-forward neural network
\scrG produces time derivatives of the hidden variables \xi , which are used in a forward
Euler step to generate the updated hidden variable value. In this manner, the model
acts pointwise but incorporates memory through a hidden variable. Since the model
acts pointwise, the feed-forward networks \scrF and \scrG are the same at every time-step,
justifying the ``recurrent"" terminology.
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654 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

Recall the definitions of (E\prime , \nu \prime ,L\prime ) and \theta \ast in Theorem 3.6. We first define the
linear functions \scrF PC :\BbbR \times \BbbR \times \BbbR L\prime \rightarrow \BbbR and \scrG PC :\BbbR L\prime \times \BbbR \rightarrow \BbbR by

\scrF PC (b, c, r) =E\prime b+ \nu \prime c - \langle 1, r\rangle ,(3.10a)

\scrG PC(r, b) = - Ar+ \beta b,(3.10b)

where A=diag(\alpha \ell )\in \BbbR L\prime \times L\prime 
and \beta = \{ \beta 1, . . . , \beta \ell \} \in \BbbR L\prime 

. We then have

\Psi PC
0 (\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t;\theta 

\ast ) =\scrF PC
\bigl( 
\partial xu0(t), \partial 

2
xtu0(t), \xi (t)

\bigr) 
,(3.11a)

\.\xi (t) = \scrG PC(\xi (t), \partial xu0(t)), \xi (0) = 0(3.11b)

as in Theorem 3.6.
We seek to approximate this map by \Psi RNN

0 defined by replacing the linear func-
tions \scrF PC and \scrG PC by neural networks \scrF RNN : \BbbR \times \BbbR \times \BbbR L\prime \rightarrow \BbbR and \scrG RNN :
\BbbR L\prime \times \BbbR \rightarrow \BbbR to obtain

\Psi RNN
0 (\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t) =\scrF RNN

\bigl( 
\partial xu0(t), \partial 

2
xtu0(t), \xi (t)

\bigr) 
,

(3.12a)

\.\xi (t) = \scrG RNN (\xi (t), \partial xu0(t)), \xi (0) = 0.(3.12b)

Let R> 0 and define the bounded set \sansZ R = \{ w :\BbbR + \rightarrow \BbbR | supt\in \scrT | w(t)| \leq R\} .
Theorem 3.10 (RNN approximation). Consider \Psi PC

0 defined as by (3.10) and
(3.11). Assume that there exist \rho > 0 and 0 \leq B < \infty such that \rho < min\ell | \alpha \ell | and
max\ell | \beta \ell | \leq B. Then, under Assumptions 3.1, for every \eta > 0 there exists \Psi RNN

0 of
the form (3.12) such that

sup
t\in \scrT ,b,c\in \sansZ R

\bigm| \bigm| \Psi PC
0

\bigl( 
b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t;\theta \ast 

\bigr) 
 - \Psi RNN

0

\bigl( 
b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t

\bigr) \bigm| \bigm| < \eta .

The proof of Theorem 3.10 can be found in Appendix A.3.
Note that \Psi RNN

0 both avoids dependence on the fine-scale \epsilon and is Markovian.
The nonhomogenized map \Psi \dagger 

\epsilon is local in time, while the homogenized map \Psi RNN
0 is

nonlocal in time and depends on the strain history. Let uRNN
0 be the solution to the

following system with constitutive model \Psi RNN
0 :

\rho \partial 2
t u

RNN
0  - \partial x\sigma 0 = f, (x, t)\in \scrD \times \scrT ,

(3.13a)

\sigma 0(t) =\Psi RNN
0

\Bigl( 
\partial xu

RNN
0 (t), \partial 2

xtu
RNN
0 (t),

\bigl\{ 
\partial xu

RNN
0 (\tau )

\bigr\} 
\tau \in \scrT , t

\Bigr) 
, (x, t)\in \scrD \times \scrT ,

(3.13b)

uRNN
0 | t=0 = u\ast , \partial tu

RNN
0 | t=0 = v\ast , (x, t)\in \scrD \times \{ 0\} ,

(3.13c)

uRNN
0 = 0, (x, t)\in \partial \scrD \times \scrT .

(3.13d)

Ideally we would like an approximation result bounding \| u\epsilon  - uRNN
0 \| \scrZ 2

, the
difference between solution of the multiscale problem (2.1) and the Markovian RNN
model (3.13), in the case \rho = 0. Using Corollary 3.9 shows that this would follow from
a bound on \| uPC

0  - uRNN
0 \| \scrZ , where uPC

0 solves (3.6), in the case \rho = 0. We note,
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 655

however, that although Theorem 3.10 gives us an approximation result between \Psi PC
0

and \Psi RNN
0 , proving that uPC

0 and uRNN
0 are close requires developing a new theory

for the fully nonlinear PDE for uRNN
0 ; developing such a theory is beyond the scope

of this work and is difficult for two primary reasons: (i) the monotonicity property
of \Psi RNN

0 with respect to strain rate is hard to establish globally for a trained model;
(ii) the functions \scrF RNN ,\scrG RNN may not be differentiable. As a result, existence and
uniqueness of uRNN

0 remain unproven; however, numerical experiments in section 4
indicate that in practice, uRNN

0 does approximate u\epsilon well.

Remark 3.11.
\bullet Monotonicity of \Psi RNN

0 with respect to strain rate is a particular issue when
\rho = 0 (no inertia), as in this case it is needed to define an (implicit) equation
for \partial tu0 to determine the dynamics. It is for this reason that our experiments
will all be conducted with \rho > 0, obviating the need for the determination
of an (implicit) equation for \partial tu0. However, this leads to the issue that the
homogenized equation is only valid for a subset of initial conditions, in the
inertial setting \rho > 0; see Remark 2.1.

\bullet In practice we will train \Psi RNN
0 using data for the inputs b, c which are ob-

tained from a random function, or set of realizations of random functions.
The choice of the probability measure from which this training data is drawn
will affect the performance of the learned model when \Psi RNN

0 is evaluated at
b = \partial xu

RNN
0 and c = \partial 2

xtu
RNN
0 , for displacement u generated by the model

given by (3.13).

3.4. RNN optimization. In the following section, we present numerical results
using a trained RNN as a surrogate model : an efficient approximation of the complex
microscale dynamics; in this section we discuss the problem of finding such an RNN.
To learn the RNN operator approximation, we are given data

(3.14)
\bigl\{ \bigl( 

\partial xu0

\bigr) 
n
,
\bigl( 
\partial 2
xtu0

\bigr) 
n
,
\bigl( 
\sigma 0

\bigr) 
n
\} Nn=1,

where the suffix n denotes the nth strain, strain rate, and stress trajectories over the
entire time interval \scrT . Each strain trajectory (\partial xu0)n is drawn i.i.d. from a measure
\mu on \scrC (\scrT ;\BbbR ). There is no need to generate training data on the same time interval
\scrT as the macroscale model; we do so for simplicity. Note that since the RNN acts
pointwise, for every nth set of trajectories, the RNN is evaluated T times, where
T = \scrT 

dt for time discretization dt.
The data for the homogenized constitutive model is given by

\sigma 0(t) =\Psi \dagger 
0(\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t),

defined via solution of the cell problem (2.4); but it may also be obtained as the
solution to a forced boundary problem on the microscale, as stated in the following
lemma.

Lemma 3.12. Let u solve the equations

\partial y\sigma (y, t) = 0, (y, t)\in \scrD \times \scrT ,(3.15a)

\sigma (y, t) =E(y)\partial yu(y, t) + \nu (y)\partial 2
tyu(y, t), (y, t)\in \scrD \times \scrT ,(3.15b)

u(0, t) = 0, u(1, t) = b(t), (y, t)\in \partial \scrD \times \scrT ,(3.15c)

u(y,0) = 0, y \in \scrD .(3.15d)
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656 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

Then

\{ \sigma (t)\} Tt=0 =\Psi \dagger 
0

\bigl( 
b(t), \partial tb(t),\{ b(t)\} Tt=0, t

\bigr) 
,

where \Psi \dagger 
0 is the map defined in (2.6).

The proof can be found in Appendix B.2 and justifies the application of data
resulting from this problem to the homogenized model. In the following, we denote

by (\widehat \sigma 0)n and
\widehat \.\xi n the output of \scrF RNN and \scrG RNN on data point n:

(\widehat \sigma 0)n(t) =\scrF RNN
\Bigl( 
(\partial xu0)n(t), (\partial 

2
xtu0)n(t), \widehat \xi n(t)\Bigr) ,\widehat \.\xi n(t) = \scrG RNN

\Bigl( 
(\partial xu0)n(t), \widehat \xi n(t)\Bigr) , \widehat \xi n(0) = 0.

To train the RNN, we use the following relative L2 loss function, which should be
viewed as a function of the parameters defining the neural networks \scrF RNN ,\scrG RNN .

Accessible Loss Function:

(3.16) L1(\{ \sigma 0\} Nn=1,\{ \widehat \sigma 0\} Nn=1) =
1

N

N\sum 
n=1

\| (\sigma 0)n  - (\widehat \sigma 0)n\| L2(\scrT ;\BbbR )

\| (\sigma 0)n\| L2(\scrT ;\BbbR )
.

Remark 3.13. To test robustness of our conclusions, we also employed relative
and absolute L2 squared loss functions. In doing so we did not observe significant
differences in the predictive accuracy of the resulting models.

In the case of a material that is 2-piecewise-constant on the microscale, we can
explicitly write down the analytic form of the solution, and thus can also know the
values of the hidden variable \{ \xi n\} Nn=1 and its derivative \{ \.\xi n\} Nn=1, for each data tra-
jectory as expressed in equation (3.11). It is intuitive that training an RNN on an
extended data set which includes the hidden variable should be easier than using the
original data set (3.14). In order to deepen our understanding of the training process
we will include training in a 2-piecewise-constant which uses this hidden data, moti-
vating the following loss function. Since, in general, the hidden variable is inaccessible
in the data, we refer to the resulting loss as the inaccessible relative loss function.

Inaccessible Loss Function:

L2(\{ (\sigma 0)n\} Nn=1,\{ (\widehat \sigma 0)n\} Nn=1,\{ \.\xi n\} Nn=1,\{ 
\widehat \.\xi n\} Nn=1)(3.17a)

=
1

N

N\sum 
n=1

\left(  \| (\sigma 0)n  - (\widehat \sigma 0)n\| L2(\scrT ;\BbbR )

\| (\sigma 0)n\| L2(\scrT ;\BbbR )
+

\| \.\xi n  - \widehat \.\xi n\| L2(\scrT ;\BbbR )

\| \.\xi n\| L2(\scrT ;\BbbR )

\right)  .(3.17b)

This inaccessible loss function helps identify the RNN whose existence in proved
in previous sections.

4. Numerical results. The numerical results reach the following conclusions,
all of which guide the use of machine-learned constitutive models within complex
nonlinear problems beyond the one-dimensional linear viscoelastic setting considered
in this work:

I. Machine-learned constitutive models. We can find RNNs that yield
low-error simulations when used as a surrogate model in the macroscopic
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 657

system (1.2), (1.3) to approximate the multiscale system (1.1) in the one-
dimensional KV setting with inertia. We also discuss how in some material
parameter settings, inertial effects lead to higher error in the homogenized
approximation.

II. Choice of training data. We describe our choice of data sampling distri-
bution \mu and show that it exhibits desirable properties.

III. Effect of nonconvex optimization. When the inaccessible loss function is
used for training, the trained RNN exhibits desirable properties of (approx-
imate) linearity in its arguments in the domain of interest, as is proved for
the homogenized constitutive model (3.10) for piecewise-constant materials.
When using the accessible loss function, the trained RNN may perform well
as a surrogate model without exhibiting linearity in the equation for evolu-
tion of the hidden variables. This is attributable to the existence of local
minimizers of the loss function and highlights the need for caution in training
constitutive models.

IV. Model choice. The correct choice of architecture for the RNN leads to
discretization-robustness in time: a model learned with one choice of time
discretization dt performs well when tested on another dt; this is not true for
poor model choices. Discretization-robustness can thus be used as a guide to
model choice.

In subsection 4.1 we demonstrate that in appropriate settings the solution uRNN
0

obtained under the dynamics of a trained RNN approximates the true solution u\epsilon 

well when used in the macroscopic setting; furthermore, this RNN is shown to exhibit
linearity in its arguments in the domain of interest. We also discuss the error arising
from inertial effects. In subsection 4.2 we discuss the performance of an RNN learned
using the accessible loss function. In subsection 4.3 we discuss the discretization-
robustness property of the RNN and the choice of data sampling distribution \mu . In
subsection 4.4, we perform experiments on media with more piecewise-constant pieces
and analyze the number of hidden variables required to capture the behavior. In
subsection 4.5, we extend the methodology to the case of elasto-viscoplasticity.

4.1. RNN as surrogate model. In this subsection we discuss two RNNs: RNN
``A,"" trained using only the inaccessible loss function in (3.4), and RNN ``B,"" trained
with the standard loss function in (3.16), but initialized at parameters obtained via
training with the inaccessible loss function. Descriptions of these RNNs, and others
we introduce in subsequent subsections, may be found in Table 1. A visualization of
typical input and output trajectories from the data used for training and testing may
be found in Figure 1. For details on RNN training, see Appendix C.1.

In the first surrogate model experiment, we subject the material to sinusoidal
boundary forcing of b(t) = 0.1 sin(2\pi t) starting from 0 initial displacement and ve-

Table 1
RNN descriptions.

RNN Description

A Trained on 2-piecewise-constant media only with inaccessible loss function (3.4)

B Trained on 2-piecewise-constant media; initialized at solution found with

inaccessible loss function then trained with accessible loss function (3.16)
C Trained on 2-piecewise-constant media only with accessible loss function

D Trained on continuous media with accessible loss function
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658 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

Fig. 1. Representative data: input strain trajectories and output stress trajectories for three
randomly chosen test data samples. The RNN approximation shown was generated with RNN ``C.""

(a) RNN ``A"" (b) RNN ``B"" (c) RNN ``C""

Fig. 2. Analytic cell and RNN relative error versus FEM solution using sinusoidal forcing; this
supports conclusion I.

locity. As a ground-truth comparison, we use a traditional finite element solver with
periodic domain of width 0.04, spatial resolution of h = 0.005, and time discretiza-
tion dt = 0.1h2; we refer to this solution as u\epsilon and name it FEM. In contrast, the
RNN-based macroscale computation employs spatial resolution of hcell = 0.04, with a
time discretization of dt = 0.4h2

cell; for economy of notation; this solution is denoted
uRNN
0 and named RNN. We also compare the results to the displacement obtained

using as macroscale constitutive model the analytic solution to the cell problem. To
make comparisons we use the relative error given by

(4.1) e(uRNN
0 , u\epsilon )(t) =

\| u\epsilon (t) - uRNN
0 (t)\| L2(\scrD ;\BbbR )

\| u\epsilon (t)\| L2(\scrD ;\BbbR ) + 0.01
.

The relative error plots for RNNs ``A"" and ``B"" are shown in Figures 2a and 2b. In
a second experiment, we subject the material to integrated Brownian motion forcing
starting from null initial conditions. The FEM solver uses the same discretizations as
in the sinusoidal forcing experiment, and the RNN spatial discretization was hcell =
0.05 with time discretization of dt= 0.4h2

cell. The results for RNNs ``A"" and ``B"" are
shown in Figures 3a and 3b.

Both sets of experiments show that the RNN-based macroscopic models accu-
rately reproduce the microscale FEM simulation at far lower computational cost.
The RNN-based results have some errors in comparison with the microscale simula-
tion, but the errors are of the same order of magnitude as the errors arising when the
exact homogenized constitutive model is used. The initial error between the analytic
solution and the FEM solution is due to inertial effects discussed in Remark 2.1. The
inertial errors become more significant as the ratio between E and \nu varyies more
across the interval. Relative error results for an RNN trained on a material with more
inertial effects is shown in Figure 4.
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 659

(a) RNN ``A"" (b) RNN ``B"" (c) RNN ``C""

Fig. 3. Analytic cell and RNN relative error versus FEM solution using integrated Brownian
motion forcing; this supports conclusion I.

(a) Sinusoidal forcing (b) Integrated Brownian motion forcing

Fig. 4. Relative error of RNN trained on material parameters with higher inertial effects in
response to sinusoidal and integrated Brownian motion forcing; this demonstrates conclusion I.

Both RNNs also exhibit the desirable property of linearity in the inputs in an
appropriate domain as discussed in subsection 3.4; this is presented in Figure 5.

4.2. RNN trained with standard loss. We also train a third RNN, denoted
RNN ``C,"" using only the accessible loss function. Details of training may be found in
Appendix C.1. The performance of this RNN as a surrogate model in the macroscale
simulation experiments may be seen in Figures 2c and 3c. While this RNN performs
well as a surrogate model, and indeed is comparable in errors to those of RNNs ``A""
and ``B,"" it does not exhibit a close linear match to the known analytic expression
for \scrG , as shown in Figure 5. In the figure, all three RNNs approximate the linear
structure of \scrF well; the difficulty is in obtaining the correct linear dependence in the
hidden variable rate, \.\xi . Interestingly, by changing the material parameter \nu 2 from
0.2 to 2, training via the method of RNN ``C"" with only the accessible loss function
yields an RNN that matches the true linear dependence in \scrG very well. However,
in this parameter regime, inertial effects perturb the simulations on the macroscale
to an unacceptable degree, meaning that the homogenization theory that we use as
benchmark is not valid, and so we avoid this regime. The inability of RNN ``C"" to
capture the exact linear dependence in \scrG is unsurprising; indeed, had we guaranteed
convergence to the optimal function for any choice of material parameters, we would
have entirely sidestepped the problem of high-dimensional optimization inherent to
machine learning. In the case of continuous material properties, we do not have a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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660 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

Fig. 5. RNN outputs versus the truth (dashed) for each of the three candidate RNNs. The
columns correspond to RNNS ``A,"" ``B,"" and ``C,"" respectively. The first row shows the strain-stress
dependence for five fixed strain rate inputs. The second row shows the strain rate-stress dependence
for five fixed strain inputs. The third row shows the \xi , stress relationships for hidden variable \xi for
five fixed strain inputs. The fourth row shows the strain, \.\xi relationship for five different fixed values
of \xi . Finally, the fifth row shows the \xi , \.\xi relationship for five fixed strain inputs. This supports
conclusion III.

known analytic solution to the microscale problem and thus do not have access to
the hidden variable \xi in the train and test data; in this case, we may only use the
accessible loss function. We train RNNs, denoted RNN type ``D,"" on continuous media
with different numbers of hidden variables \xi \ell and use the trained RNNs as surrogate
models in the macroscale system subjected to boundary forcing. Training details may
be found in Appendix C.2. The relative error of RNN ``D"" for the sinusoidal and
Brownian motion forcing experiments described previously is shown in Figure 6. We
note that a similar error is found with all dimensions of the hidden variable, suggesting
that 1 hidden variable suffices in this case; the fact that the error does not decrease
suggests that the error we see is primarily from homogenization rather than piecewise-
constant approximation. In subsection 4.4 we explore the choice of hidden variable
count in greater depth.

4.3. Time discretization and RNN training. Discretization-robustness is a
desirable feature of an RNN surrogate model. To test robustness to changes in time
discretization we work in the piecewise-constant media setup leading to RNNs ``A,""
``B,"" and ``C"". We evaluate the test error when employing each of the three RNNs
using values of time-step dt different from those used in the training. Additionally, to
demonstrate the value of postulating the correct model form, we train three additional
RNNs via the same methods as described in subsection 4.2 but without strain rate
dependence. Figure 7 shows that all three RNNs trained with strain rate as an input
parameter were more robust to changes in time discretization than their non-strain-
rate counterparts.

To generate the training strain, we sampled trajectories as follows: first, we ran-
domly partitioned the time interval \scrT into 10 pieces; second, at each point between
these time intervals, we generated a value of strain via a balanced random walk from
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 661

(a) Sinusoidal forcing (b) Integrated Brownian motion forcing

Fig. 6. Relative error of continuous-material RNNs ``D"" with different numbers of hidden vari-
ables when used as a surrogate model in a the macroscale system; this supports conclusion I.

(a) RNN ``A"" (b) RNN ``B"" (c) RNN ``C""

Fig. 7. Time discretization error for RNNs ``A,"" ``B,"" and ``C."" This supports conclusion IV.

the previous value scaled by the length of the time interval; third, we used a piecewise
cubic hermite interpolating polynomial (pchips) function to interpolate between these
values of strain. This choice of distribution has the desirable property that it gen-
erates data with a variety of strain/strain-rate pairings evenly dispersed throughout
the domain of interest rather than introducing large correlations between the two.
A scatterplot of the associated values is shown in Figure 8.

4.4. Additional piecewise-constant experiments. We claim that to approx-
imate an N -piecewise-constant material, the RNN ought to have at least N - 1 hidden
variables. Therefore, we train RNNs with different numbers of hidden variables on
data from piecewise-constant materials with 3, 5, and 10 pieces. The results are shown
in Figure 9. For the 3- and 5-piecewise-constant cases, the error flattens out after 2
and 4 hidden variables, respectively, as expected. For the 10-piecewise-constant case,
the error flattens out first at 4 hidden variables and then again at 9 hidden variables,
and this can be explained by examining the analytic solution. For the choices of E
and \nu used, the constitutive law takes the approximate form of

\sigma 0(t) =E\prime \partial xu0(t) + \nu \prime \partial t\partial xu0(t) - 
\int t

0

\partial xu0(\tau )
\Bigl( 
0.09e - 1.83(t - \tau ) + 0.16e - 2.92(t - \tau )

+ 0.02e - 4.44(t - \tau ) + 0.20e - 5.13(t - \tau ) + 0.12e - 8.18(t - \tau ) + 0.08e - 9.29(t - \tau )

+ 0.39e - 11.3(t - \tau ) + 0.67e - 15.30(t - \tau ) + 0.06e - 18.41(t - \tau )
\Bigr) 
d\tau .
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662 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

Fig. 8. Strain and strain rate distributions in the training data generated by \mu ; this supports
the choice of training data discussed in conclusion II.

Fig. 9. Absolute L2 error of RNNs trained with different numbers of hidden variables on dif-
ferent piecewise-constant materials.

Note that the exponential decay terms each correspond to one of the nine hidden
variables \xi \ell , and they are written in order of decreasing exponential term  - \alpha \ell . From
this we can see that terms with higher magnitudes of | \alpha \ell | will be negligible compared
to the terms with smaller magnitude. The experimental results align with these
values; there is a large jump from the fourth exponent ( - 5.13) to the fifth exponent
( - 8.18), so the behavior is well captured with only four hidden variables. However,
with 9 hidden variables, the model can completely capture the decay terms. This
result further justifies the practical use of the piecewise-constant approximation for
smooth materials. Analyzing the homogenization decay rates as they relate to the
spectrum of the differential operator is an interesting area of future work.

4.5. Elasto-viscoplasticity. The purpose of this example is to demonstrate
that the ideas developed in this work have implications beyond linear viscoelasticity.
The same RNN architecture is able to learn elastic-viscoplastic dynamics. We present
the results of a simple experiment with isotropic rate hardening in one spatial dimen-
sion, noting that more detailed studies of the problem, in two and three dimensions,
can be found in [21].

Consider the following equations:

\partial y\sigma (y, t) = 0, \sigma (y, t) =E(y) (\partial yu(y, t) - \epsilon p(y, t)) , (y, t)\in \scrD \times \scrT ,(4.2a)

\.\epsilon p(y, t) = \.\epsilon p0 sign(\sigma (y, t))

\biggl( 
| \sigma (y, t)| n

\sigma h

\biggr) 
, (y, t)\in \scrD \times \scrT ,(4.2b)

u(0, t) = 0, u(1, t) = b(t), (y, t)\in \partial \scrD \times \scrT ,(4.2c)

u(y,0) = 0, \epsilon p(y,0) = 0, y \in \scrD ,(4.2d)
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 663

Fig. 10. RNN trained on elasto-viscoplastic data; a comparison between the true solution and
the RNN-predicted solution for three random test samples. Top row: stress trajectories in time.
Bottom row: stress-strain trajectories for the same samples.

Fig. 11. Error evaluations of all train and test data points for the elasto-viscoplastic experi-
ments. Solid lines indicate mean error values, which are computed separately for the train and test
sets.

where u is the displacement, \epsilon p is the plastic strain, \sigma is the stress, and \.\epsilon p0, \sigma h, and
n are constants. We seek to learn the map

\{ \sigma (t)\} Tt=0 =\Psi \dagger 
0

\bigl( 
b(t),\{ b(t)\} Tt=0, t

\bigr) 
.

Note that the homogenized constitutive map does not depend on the rate as in the
viscoelastic case. Development of the homogenization theory for which these equations
arise as cell problems can be found in [21].

We train an RNN with one hidden variable and the same architecture as pre-
scribed for the viscoelastic case but without strain rate dependence, and we use data
generated via a numerical solution of equations (4.2). As shown in Figure 10, the
RNN is able to learn plastic behavior. Specifically, the strain-stress trajectories ex-
hibit plastic transition. Figure 11 gives a comprehensive picture of the error of this
experiment. The mean relative L2 error is \approx 7\%, which is reasonable for plastic ex-
periments. Additionally, the performance on the test set is on par with that of the
train set. Further experiments demonstrating discretization-invariance of the correct
learning architecture may be found in [21].
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664 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

5. Conclusions. In this paper, we develop theory underlying the learning of
Markovian models for history-dependent constitutive laws. The theory presented
applies to the one-dimensional KV case, but the underlying ideas extend to more
complex systems, as demonstrated with an experiment with elasto-viscoplasticity. In
[21], numerical experiments suggest that the methodology can be useful in higher
dimensions as well. Conclusions drawn from our numerical experiments, underpinned
by the theory of this paper and enumerated at the start of section 4, provide useful
guidance for these more complex nonlinear models in higher spatial dimensions.

Several research directions are suggested by this work. First, when inertial effects
are significant, the homogenization theory used in this paper, and underlying the
computational work in [21], is not valid; extending the methodology to this setting
would be useful. Second, the development of theoretical guidance and methodology for
choice of training measure \mu will be very important in this field. Third, as is the case
with most machine learning applications, convergence of the RNN to the globally
optimal solution is not guaranteed; considering learning techniques from reservoir
computing could be useful to alleviate this issue as they lead to convex quadratic
optimization problems.

Appendix A. Proofs.

A.1. Proof of Theorem 3.4 The proof of Lemma 3.5, which underlies the proof
of Theorem 3.4, uses the following two propositions.

Proposition A.1. Under Assumptions 3.1, for all solutions u of (2.2) the fol-
lowing bounds hold for some constant C1:

1. supt\in \scrT \| u\| 2
H1

0 ,\nu 
\leq \| u| t=0\| 2H1

0 ,\nu 
+ ( \nu +

E - )2 1
\nu  - C2

1\| f\| 2\scrZ .
2. supt\in \scrT \| u\| 2

H1
0 ,E

\leq E+

\nu  - 
\| u| t=0\| 2H1

0 ,\nu 
+ ( \nu +

E - )2 E+

(\nu  - )2C
2
1\| f\| 2\scrZ .

3. \| \partial tu\| H1
0 ,\nu 

\leq C1\| f\| \scrZ 
\nu  - + E+

\nu  - \| u\| H1
0 ,E

for all t\in \scrT .

Proof. To show the first bound, let \varphi = u in (2.2). We have

q\nu (\partial tu,u) + qE(u,u) = \langle f,u\rangle 

so that

1

2

d

dt
\| u\| 2H1

0 ,\nu 
+ \| u\| 2H1

0 ,E
\leq \| f\| H - 1\| u\| H1

0

\leq C1\| f\| \| u\| H1
0

for some constant C1, by compact embedding. Then, using Lemma 1.1,

1

2

d

dt
\| u\| 2H1

0 ,\nu 
+

E - 

\nu +
\| u\| 2H1

0 ,\nu 
\leq C1

2\delta 2
\| f\| 2 + \delta 2

2\nu  - 
\| u\| 2H1

0 ,\nu 

for any \delta > 0 by Young's inequality. Letting \delta 2 = E - \nu  - 

\nu + , we have

d

dt
\| u\| 2H1

0 ,\nu 
+

E - 

\nu +
\| u\| 2H1

0 ,\nu 
\leq C2

1\nu 
+

E - \nu  - 
\| f\| 2\scrZ .

Finally, Gronwall's inequality yields

sup
t\in \scrT 

\| u\| 2H1
0 ,\nu 

\leq \| u| t=0\| 2H1
0 ,\nu 

+

\biggl( 
\nu +

E - 

\biggr) 2
C2

1

\nu  - 
\| f\| 2.
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 665

The second bound follows from Lemma 1.1. For the third bound, let \varphi = \partial tu in (2.2).
Then

q\nu (\partial tu,\partial tu) + qE(u,\partial tu) = \langle f, \partial tu\rangle 

so that, again using Lemma 1.1, and using the Poincar\'e inequality,

\| \partial tu\| 2H1
0 ,\nu 

\leq C1

\nu  - 
\| f\| \| \partial tu\| H1

0 ,\nu 
+

E+

\nu  - 
\| u\| H1

0 ,E
\| \partial tu\| H1

0 ,\nu 

and

\| \partial tu\| H1
0 ,\nu 

\leq C1

\nu  - 
\| f\| \scrZ +

E+

\nu  - 
\| u\| H1

0 ,E
.

Additionally, we need to bound the difference between two solutions u1 and u2

of the PDE in Lemma 3.5 with different material properties. Notice that u1 and u2

satisfy

\partial 

\partial x

\biggl( 
E1

\biggl( 
\partial 

\partial x
u1

\biggr) 
+ \nu 1

\biggl( 
\partial 2

\partial t\partial x
u1

\biggr) \biggr) 
= - f,

\partial 

\partial x

\biggl( 
E1

\biggl( 
\partial 

\partial x
u2

\biggr) 
+ \nu 1

\biggl( 
\partial 2

\partial t\partial x
u2

\biggr) \biggr) 
= - f +

\partial 

\partial x

\biggl[ 
(E1  - E2)

\partial 

\partial x
u2 + (\nu 1  - \nu 2)

\partial 2

\partial t\partial x
u2

\biggr] 
.

Subtracting yields

\partial x
\bigl[ 
E1\partial x\gamma + \nu 1\partial 

2
t,x\gamma 

\bigr] 
= - \partial x

\bigl[ 
(\Delta E)\partial xu2 + (\Delta \nu )\partial 2

t,xu
\bigr] 
,

where \gamma = u1  - u2, \Delta E = E1  - E2, and \Delta \nu = \nu 1  - \nu 2. We can rewrite this as an
equation for \gamma in weak form: for all test functions \varphi \in V

(A.1) q\nu 1
(\partial t\gamma ,\varphi ) + qE1

(\gamma ,\varphi ) = \langle g, \partial x\varphi \rangle , \gamma | t=0 = 0,

where g=\Delta E\partial xu2+\Delta \nu \partial 2
t,xu2. For the following discussion of bounds including both

u1 and u2, let E+ = max\{ E+
1 ,E+

2 \} , \nu + = max\{ \nu +1 , \nu +2 \} , E - = min\{ E - 
1 ,E - 

2 \} , and
\nu  - =min\{ \nu  - 1 , \nu  - 2 \} .

Proposition A.2. Under Assumptions 3.1, for all solutions \gamma of (A.1), the fol-
lowing bounds hold:

1. supt\in \scrT \| \gamma \| 2
H1

0 ,\nu 1
\leq ( \nu +

E - )2 1
\nu  - \| g\| 2\scrZ .

2. supt\in \scrT \| \gamma \| 2
H1

0 ,E1
\leq ( \nu +

E - )2 E+

(\nu  - )2 \| g\| 
2
\scrZ .

3. supt\in \scrT \| \partial t\gamma \| H1
0 ,\nu 1

\leq \| g\| \scrZ 
\nu  - + E+

\nu  - \| \gamma \| H1
0 ,E

.

Proof. To show the first bound, let \varphi = \gamma in (A.1). We have

q\nu (\partial t\gamma , \gamma ) + qE(\gamma , \gamma ) = \langle g, \partial x\gamma \rangle 
so that

1

2

d

dt
\| \gamma \| 2H1

0 ,\nu 
+ \| u\| 2H1

0 ,E
\leq \| g\| \| \gamma \| H1

0
.

Then

1

2

d

dt
\| \gamma \| 2H1

0 ,\nu 
+

E - 

\nu +
\| \gamma \| 2H1

0 ,\nu 
\leq 1

2\delta 2
\| g\| 2 + \delta 2

2\nu  - 
\| \gamma \| 2H1

0 ,\nu 

for any \delta > 0 by Young's inequality. Letting \delta 2 = E - \nu  - 

\nu + , we have
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666 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

d

dt
\| \gamma \| 2H1

0 ,\nu 
+

E - 

\nu +
\| \gamma \| 2H1

0 ,\nu 
\leq \nu +

E - \nu  - 
\| g\| 2\scrZ .

Finally, since \gamma (0) = 0, Gronwall's inequality yields

sup
t\in \scrT 

\| \gamma \| 2H1
0 ,\nu 

\leq 
\biggl( 
\nu +

E - 

\biggr) 2
1

\nu  - 
\| g\| 2.

The second bound follows from Lemma 1.1. For the third bound, let \varphi = \partial t\gamma in (A.1).
Then

q\nu (\partial t\gamma ,\partial t\gamma ) + qE(\gamma ,\partial t\gamma ) = \langle g, \partial 2
xt\gamma \rangle 

so that, again using Lemma 1.1,

\| \partial t\gamma \| 2H1
0 ,\nu 

\leq 1

\nu  - 
\| g\| \| \partial t\gamma \| H1

0 ,\nu 
+

E+

\nu  - 
\| \gamma \| H1

0 ,E
\| \partial t\gamma \| H1

0 ,\nu 

and

\| \partial t\gamma \| H1
0 ,\nu 

\leq 1

\nu  - 
\| g\| \scrZ +

E+

\nu  - 
\| \gamma \| H1

0 ,E
.

To prove the Lipschitz property of the solution in Theorem 3.4, we will need the
following lemma.

Lemma 3.5 (Lipschitz solution). Let ui be the solution to

 - \partial x
\bigl( 
Ei\partial xui + \nu i\partial 

2
xtui

\bigr) 
= f, (x, t)\in \partial \scrD \times \scrT ,(3.1)

ui(x, t) = u\ast , (x, t)\in \scrD \times \{ 0\} ,(3.2)

ui(x, t) = 0, (x, t)\in \partial \scrD \times \scrT ,(3.3)

associated with material properties Ei, \nu i for i \in \{ 1,2\} , and forcing f , all satisfying
Assumptions 3.1. Then

\| u1  - u2\| \scrZ \leq C (\| \nu 1  - \nu 2\| \infty + \| E1  - E2\| \infty )

for some constant C \in \BbbR + dependent on f,E+
i ,E - 

i , \nu +i , \nu  - i , and L and independent
of \epsilon .

Proof. Let \gamma and g be as defined before and after (A.1). Then, by the result of
Proposition A.2,

sup
t\in \scrT 

\| \gamma \| 2H1
0
\leq 1

\nu  - 
sup
t\in \scrT 

\| \gamma \| 2H1
0 ,\nu 1

\leq 
\biggl( 

\nu +

E - \nu  - 

\biggr) 2

\| g\| 2\scrZ .

To bound the right-hand side,

\| g\| \scrZ = \| (\Delta E)\partial xu2 + (\Delta \nu )\partial 2
t,xu2\| \scrZ 

\leq \| (\Delta E)\partial xu2\| \scrZ + \| (\Delta \nu )\partial 2
t,xu2\| \scrZ 

\leq \| \Delta E\| \infty \| \partial xu2\| \scrZ + \| \Delta \nu \| \infty \| \partial 2
t,xu2\| \scrZ 

\leq sup
t\in \scrT 

\| u2\| H1
0
\| \Delta E\| \infty + sup

t\in \scrT 
\| \partial tu2\| H1

0
\| \Delta \nu \| \infty 

\leq 1

(\nu  - )
1
2

\Bigl( 
sup
t\in \scrT 

\| u2\| H1
0 ,\nu 2

\| \Delta E\| \infty + sup
t\in \scrT 

\| \partial tu2\| H1
0 ,\nu 2

\| \Delta \nu \| \infty 
\Bigr) 
.

To bound \| \partial xu2\| \scrZ and \| \partial 2
t,xu2\| , note that any solution u2 will satisfy (2.2) for

(u,E,\nu ) \mapsto \rightarrow (u2,E2, \nu 2). The analysis of Proposition A.1 yields
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 667

sup
t\in \scrT 

\| u2\| H1
0 ,\nu 2

\leq \| u| t=0\| H1
0 ,\nu 

+

\biggl( 
\nu +

E - 

\biggr) 
C1

(\nu  - )1/2
\| f\| \scrZ 

and

sup
t\in \scrT 

\| \partial tu2\| H1
0 ,\nu 2

\leq C1\| f\| \scrZ 
\nu  - 

+
E+

\nu  - 
\| u2\| H1

0 ,E

\leq C1

\nu  - 
\| f\| \scrZ +

\biggl( 
E+

\nu  - 

\biggr) 3/2

\| u| t=0\| H1
0 ,\nu 

+
(E+)3/2

(\nu  - )2
\nu +

E - C1\| f\| \scrZ .

By the Poincar\'e inequality, \| \gamma \| \scrZ \leq Cp supt\in \scrT \| \gamma \| H1
0
for some constant Cp and setting

C =Cp

\biggl( 
\nu +

E - (\nu  - )
3
2

\biggr) 
max

\biggl\{ 
\| u| t=0\| H1

0 ,\nu 
+

\biggl( 
\nu +

E - 

\biggr) 
C1

(\nu  - )1/2
\| f\| \scrZ ,

C1

\nu  - 
\| f\| \scrZ +

\biggl( 
E+

\nu  - 

\biggr) 3/2

\| u| t=0\| H1
0 ,\nu 

+
(E+)3/2

(\nu  - )2
\nu +

E - C1\| f\| \scrZ 
\biggr\} 

gives the result.

Now we can prove the piecewise-constant approximation theorem.

Theorem 3.4 (piecewise-constant approximation). Let E and \nu be piecewise-
continuous functions, with a finite number of discontinuities, satisfying Assumptions
3.1; let u\epsilon be the corresponding solution to (2.1). Then, for any \delta > 0, there exist
piecewise-constant EPC and \nu PC (in the sense of Definition 3.2) such that solution
uPC
\epsilon of equations (2.1) with these material properties satisfies

\| uPC
\epsilon  - u\epsilon \| \scrZ < \delta .

Proof. Let \scrA E and \scrA \nu be the finite sets of discontinuities of E\epsilon and \nu \epsilon , respec-
tively, and let \scrA =\scrA E\cup \scrA \nu with elements a1, a2, . . . , aK . Partition the interval \scrD into
intervals D1 = (a0, a1),D2 = [a1, a2), . . . ,DK = [aK - 1, aK) such that

\bigcup K
k=1Dk = \scrD 

and
\bigcap K

k=1Dk = 0. Let Bk,\delta = \{ bk0 , bk1 , . . . , bkN(\delta )\} be a uniform partition of Dk such

that bki  - bki - 1 = \delta . Furthermore, define EPC
\epsilon and \nu PC

\epsilon via

EPC
\epsilon (x) =

K\sum 
k=1

N\sum 
n=1

1x\in (bkn - 1,b
k
n]
E

\biggl( 
1

2
bkn - 1 +

1

2
bkn

\biggr) 
,

\nu PC
\epsilon (x) =

K\sum 
k=1

N\sum 
n=1

1x\in (bkn - 1,b
k
n]
\nu 

\biggl( 
1

2
bkn - 1 +

1

2
bkn

\biggr) 
for x\in \scrD , noting that EPC

\epsilon and \nu PC
\epsilon are piecewise constant with KN(\delta ) pieces.

E\epsilon and \nu \epsilon are continuous on each interval Dk, so for each \delta \prime > 0, there exists a
mesh width \delta such that with partitions \{ Bk,\delta \} Kk=1

sup
x\in (bkn - 1,b

k
n]

\| E\epsilon 

\biggl( 
1

2
bkn - 1 +

1

2
bkn

\biggr) 
 - E\epsilon (x)\| < \delta \prime ,

sup
x\in (bkn - 1,b

k
n]

\| \nu \epsilon 
\biggl( 
1

2
bkn - 1 +

1

2
bkn

\biggr) 
 - \nu \epsilon (x)\| < \delta \prime 

for all n\in \{ 1, . . . ,N(\delta )\} . Thus, \| EPC  - E\| \infty < \delta \prime and \| \nu PC  - \nu \| \infty < \delta \prime . Since \delta \prime was
arbitrary, we can pick \delta \prime < \eta 

C1
, where C1 is as in Lemma 3.5, and the theorem follows

by use of the same lemma.
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668 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

A.2. Proof of Theorem 3.6. We will need the following lemma.

Lemma A.3 (existence of exact parametrization). For a piecewise constant ma-
terial with L\prime +1 pieces and under Assumptions 3.1, a0 in (2.5) can be written exactly
as

\widehat a0(s) =E\prime + \nu \prime s - 
L\prime \sum 
\ell =1

\beta \ell 

s+ \alpha \ell 
,

where E\prime , \nu \prime , \beta \ell \in \BbbR and \alpha \ell \in \BbbR + for all \ell \in [L\prime ].

Proof. Let E(y) and \nu (y) have L\prime + 1 constant pieces of lengths \{ d\ell \} L
\prime +1

\ell =1 , each

associated to values \{ E\ell \} L
\prime +1

\ell =1 and \{ \nu \ell \} L
\prime +1

\ell =1 of E and \nu . Then (2.5), rewritten here
for convenience,

\widehat a0(s) =\biggl( \int 1

0

dy

s\nu (y) +E(y)

\biggr)  - 1

,

becomes

\widehat a0(s) =
\left[  L\prime +1\sum 

\ell =1

d\ell 
E\ell + \nu \ell s

\right]   - 1

(A.2)

=

\prod L\prime +1
\ell =1 (E\ell + \nu \ell s)\sum L\prime +1

\ell =1 d\ell 
\prod 

j \not =\ell (Ej + \nu js)
(A.3)

=
P (s)

Q(s)
,(A.4)

where P (s) is a polynomial of degree L\prime + 1 and Q(s) a polynomial of degree L\prime .
Therefore, there exists a decomposition

(A.5)
P (s)

Q(s)
=E\prime + \nu \prime s - C(s)

Q(s)

for some constants E\prime and \nu \prime and polynomial C(s) of degree L\prime  - 1.

Let  - \alpha 1, . . . , - \alpha L\prime be the roots of Q(s). Then C(s)
Q(s) =

\sum L\prime 

\ell =1
\beta \ell 

s+\alpha \ell 
for some con-

stants \beta \ell \in \BbbC by partial fraction decomposition. We wish to show that \Re (\alpha \ell )> 0 for
all roots  - \alpha \ell of Q(s) so that we can take the inverse Laplace transform. Furthermore,
we wish to show that, in fact,  - \alpha \ell \in \BbbR for all roots  - \alpha \ell so that \beta \ell \in \BbbR as well. Since
Ej and vj are positive for all j \in [L\prime + 1], it is clear that if a root  - \alpha \ell is real, then it

cannot be positive since Q(s) =
\sum L\prime +1

\ell =1 d\ell 
\prod 

j \not =\ell (Ej + \nu js) has all positive coefficients.
We now show that all roots of Q(s) are real. Suppose a+ bi is a root of Q(s). Then

Q(a+ bi) =

L\prime +1\sum 
\ell =1

d\ell 
\prod 
j \not =\ell 

(Ej + \nu j(a+ bi))

=

\left[  L\prime +1\prod 
j=1

(Ej + \nu j(a+ bi))

\right]  \cdot 
L\prime +1\sum 
\ell =1

d\ell 
E\ell + \nu \ell (a+ bi)

=

\left[  L\prime +1\prod 
j=1

(Ej+\nu j(a+ bi))

\right]  \cdot L\prime +1\sum 
\ell =1

\biggl( 
d\ell (E\ell + \nu \ell a)

(E\ell +\nu \ell a)2+(\nu \ell b)2
 - d\ell (\nu \ell b)

(E\ell +\nu \ell a)2+(\nu \ell b)2
i

\biggr) 
.
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 669

The term
\prod L\prime +1

j=1 (Ej + \nu j(a+ bi)) is a nonzero constant for b \not = 0 since Ej , \nu j \in \BbbR +.
Therefore, forQ(a+bi) = 0, both the real and imaginary components of the sum on the
right must total 0. However, since d\ell , \nu \ell , and the denominator term (E\ell +\nu \ell a)

2+(\nu \ell b)
2

are all positive as well, b must equal 0 to make Im[Q(a+ bi)] = 0. Therefore, all roots
of Q(s) are in \BbbR  - . Returning to the decomposition, we now have

(A.6) \widehat a0(s) =E\prime + \nu \prime s - 
L\prime \sum 
\ell =1

\beta \ell 

s+ \alpha \ell 
,

where \beta \ell \in \BbbR and \alpha \ell \in \BbbR + for all \ell \in [L\prime ].

Now we may prove the theorem.

Theorem 3.6 (existence of exact parametrization). Let \Psi \dagger 
0 be the map from

strain history to stress in the homogenized model, as defined by (2.7), in a piecewise-
constant material with L\prime + 1 pieces. Define \Psi PC

0 :\BbbR 2 \times C(\scrT ;\BbbR )\times \scrT \times \Theta \rightarrow \BbbR by

\Psi PC
0 (\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t;\theta ) =E0\partial xu0(t) + \nu 0\partial 

2
xtu0(t) - 

L0\sum 
\ell =1

\xi \ell (t),

(3.4a)

\partial t\xi \ell (t) = \beta \ell \partial xu0(t) - \alpha \ell \xi \ell (t), \xi \ell (0) = 0, \ell \in \{ 1, . . . ,L0\} ,
(3.4b)

with parameter space

(3.5) \Theta =
\Bigl( 
E0 \in \BbbR +, \nu 0 \in \BbbR +, L0 \in \BbbZ +, \alpha 0 \in \BbbR L0

+ , \beta 0 \in \BbbR L0

\Bigr) 
.

Then, under Assumptions 3.1, there exists \theta \ast \in \Theta with (E0, \nu 0,L0, \alpha 0, \beta 0) =
(E\prime , \nu \prime ,L\prime , \alpha ,\beta ) such that

\Psi \dagger 
0(\partial xu0(t), \partial 

2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t) =\Psi PC

0 (\partial xu0(t), \partial 
2
xtu0(t),\{ \partial xu0(\tau )\} \tau \in \scrT , t;\theta 

\ast )

for all u0 \in \scrC 2(\scrD \times \scrT ;\BbbR ) and t\in \scrT .

Proof. By Lemma A.3, we have that

\widehat \sigma 0 = \widehat a0(s)\partial x\widehat u0

=

\left(  E\prime + \nu \prime s - 
L\prime \sum 
\ell =1

\beta \ell 

s+ \alpha \ell 

\right)  \partial x\widehat u0,

where \beta \ell \in \BbbR and \alpha \ell \in \BbbR + for all \ell \in [L\prime ]. Taking an inverse Laplace transform, we
get

(A.7) \sigma 0(t) =E\prime \partial xu0(t) + \nu \prime \partial t\partial xu0(t) - 
L\prime \sum 
\ell =1

\beta \ell 

\int t

0

\partial xu0(\tau ) exp[ - \alpha \ell (t - \tau )] d\tau .

The above may be reexpressed as equations (3.4) with a choice of parameters \theta =
(E\prime , \nu \prime ,L\prime , \alpha ,\beta ) and auxiliary variable \xi .
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670 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

A.3. Proof of RNN approximation Theorem 3.10. In this subsection we
use | \cdot | ,\| \cdot \| to denote the modulus and Euclidean norms, respectively, and \langle \cdot , \cdot \rangle to
denote the Euclidean inner product. This overlap with the notation from subsection
1.4 should not lead to any confusion as it is confined to this subsection.

To prove Theorem 3.10 we first study the simple case where \scrF PC ,\scrG PC are uni-
formly approximated across all inputs; subsequently we will use this to establish
Theorem 3.10 as stated.

Assumptions A.4. For any \delta > 0, there exist \scrF RNN and \scrG RNN such that

sup
z\in \BbbR 2+L\prime 

\bigm| \bigm| \scrF PC(z) - \scrF RNN (z)
\bigm| \bigm| \leq \delta ,

sup
z\in \BbbR 1+L\prime 

\bigm\| \bigm\| \scrG PC(z) - \scrG RNN (z)
\bigm\| \bigm\| \leq \delta .

Proposition A.5. Under Assumptions A.4, if \{ \alpha \ell \} in equations (3.10) are
bounded such that 0<\rho <\alpha \ell for some \rho for all \ell \in [L\prime ], then for any \eta > 0, there exists
a map \Psi RNN

0 defined as in equations (3.12) such that for \Psi PC
0 defined in equations

(3.11), for any t\in \BbbR + and functions b, c :\BbbR + \rightarrow \BbbR ,\bigm| \bigm| \Psi PC
0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t;\theta 

\ast ) - \Psi RNN
0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t)

\bigm| \bigm| \leq \eta .

Proof. Note that the main difficulty in this proof results from the fact that \scrF RNN

and \scrF PC act on different hidden variables \xi , which we will denote \xi RNN and \xi PC ,
and whose first order time derivatives are given by \scrG RNN and \scrG PC , respectively. We
write \bigm| \bigm| \Psi PC

0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t;\theta 
\ast ) - \Psi RNN

0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t)
\bigm| \bigm| 

= | \scrF PC(b(t), c(t), \xi PC(t)) - \scrF RNN (b(t), c(t), \xi RNN (t))| 
\leq | \scrF PC(b(t), c(t), \xi RNN (t)) - \scrF RNN (b(t), c(t), \xi RNN (t))| 
+ | \scrF PC(b(t), c(t), \xi PC(t)) - \scrF PC(b(t), c(t), \xi RNN (t))| 

\leq \delta + | \scrF PC(b(t), c(t), \xi PC(t)) - \scrF PC(b(t), c(t), \xi RNN (t))| 

by Assumptions A.4 since \scrF PC and \scrF RNN share arguments in the first term. To
bound the second term,

| \scrF PC(b(t), c(t), \xi PC(t)) - \scrF PC(b(t), c(t), \xi RNN (t))| = | \langle 1, \xi PC(t) - \xi RNN (t)\rangle | 
\leq 
\surd 
L\prime \| \xi PC(t) - \xi RNN (t)\| 

using the known form of \scrF PC where \| \cdot \| is the Euclidean norm in \BbbR L\prime 
.

Let e\xi (t) = \xi PC(t) - \xi RNN (t). Note that \xi PC(0) = \xi RNN (0) = 0, so e\xi (0) = 0. We
wish to bound \| e\xi (t)\| . To do so, we first bound \| \.e\xi (t)\| , where \.e\xi (t) =

d
dte\xi (t):

\.e\xi (t) = \.\xi PC(t) - \.\xi RNN (t)

= \scrG PC(\xi PC(t), b(t)) - \scrG PC(\xi RNN (t), b(t)) - \scrG RNN (\xi RNN (t), b(t))

+ \scrG PC(\xi RNN (t), b(t))

= \scrG PC(\xi PC(t), b(t)) - \scrG PC(\xi RNN (t), b(t)) + q(t),

where we have defined q(t) = \scrG PC(\xi RNN (t), b(t)) - \scrG RNN (\xi RNN (t), b(t)) and \| q(t)\| \leq 
\delta by Assumptions A.4. Now note that \.e\xi (t) = - Ae\xi (t) + q(t) by the form of \scrG PC , so
we can bound
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LEARNING MARKOVIAN HOMOGENIZED CONSTITUTIVE MODELS 671

1

2

d

dt
\| e\xi (t)\| 2 = \langle e\xi (t), \.e\xi (t)\rangle = - \langle e\xi (t),Ae\xi (t)\rangle + \langle q(t), e\xi (t)\rangle 

\leq  - \alpha min\| e\xi (t)\| 2 +

\Biggl\langle 
1

\alpha 
1/2
min

q(t), \alpha 
1/2
mine\xi (t)

\Biggr\rangle 
\leq  - \alpha min\| e\xi (t)\| 2 +

1

2\alpha min
\| q(t)\| 2 + \alpha min

2
\| e\xi (t)\| 2

d

dt
\| e\xi (t)\| 2 \leq  - \alpha min\| e\xi (t)\| 2 +

\delta 2

\alpha min

by Young's inequality. Then by Gronwall's inequality

\| e\xi (t)\| 2 \leq 
\delta 2

\alpha 2
min

\bigl( 
1 - e - \alpha \mathrm{m}\mathrm{i}\mathrm{n}t

\bigr) 
(A.8)

so \| e\xi (t)\| < \delta 
\rho for all time. Returning to the main proof narrative,

\bigm| \bigm| \Psi PC
0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t;\theta 

\ast ) - \Psi RNN
0 (b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t)

\bigm| \bigm| 
\leq \delta +

\surd 
L\prime \| \xi PC(t) - \xi RNN (t)\| \leq \delta +

\surd 
L\prime \delta 

\rho 
.

Since by Assumptions A.4 \delta is arbitrarily small, the theorem result is shown.

Although we did not need to restrict the inputs t, b, and c in Proposition A.5 to
compact sets in order to prove it, we will argue that the statement holds under weaker
assumptions if the inputs are also bounded. The following weaker assumptions follow
from the Universal Approximation Theorem for RNNs [9].

Assumptions A.6. If D1 \in \BbbR 2+L\prime 
and D2 \in \BbbR 1+L\prime 

are compact sets, then for any
\delta > 0, there exist \scrF RNN and \scrG RNN such that

sup
z\in D1

\bigm| \bigm| \scrF PC(z) - \scrF RNN (z)
\bigm| \bigm| \leq \delta ,

sup
z\in D2

\bigm\| \bigm\| \scrG PC(z) - \scrG RNN (z)
\bigm\| \bigm\| \leq \delta .

Theorem 3.10 (RNN approximation). Consider \Psi PC
0 defined as by (3.10),

(3.11). Assume that there exist \rho > 0 and 0 \leq B < \infty such that \rho < min\ell | \alpha \ell | 
and max\ell | \beta \ell | \leq B. Then, under Assumptions 3.1, for every \eta > 0 there exists \Psi RNN

0

of the form (3.12) such that

sup
t\in \scrT ,b,c\in \sansZ R

\bigm| \bigm| \Psi PC
0

\bigl( 
b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t;\theta \ast 

\bigr) 
 - \Psi RNN

0

\bigl( 
b(t), c(t),\{ b(\tau )\} \tau \in \scrT , t

\bigr) \bigm| \bigm| < \eta .

Proof. Notice first that Assumptions A.6 are a weaker version of Assumptions
A.4. We will prove the theorem by showing that, for inputs bounded via t \in \scrT 
and b, c \in \sansZ R, we never need the stronger assumption in the proof of Proposition
A.5 because the function arguments of \scrF PC ,\scrF RNN ,\scrG PC , and \scrG RNN never leave a
compact set. First we show that supt\in \scrT \| \xi PC(t)\| \leq R3 for some R3 > 0. For any
\ell \in \{ 1, . . . ,L\prime \} , we have
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672 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

\.\xi PC
\ell (t) = \beta \ell b(t) - \alpha \ell \xi 

PC
\ell (t),

| \xi PC
\ell (t)| \leq e - \alpha \ell t\beta \ell 

\biggl( 
sup
t\in \scrT 

| b(t)| 
\biggr) \int t

0

e\alpha \ell t
\prime 
dt\prime 

\leq e - \alpha \ell t\beta \ell 

\biggl( 
sup
t\in \scrT 

| b(t)| 
\biggr) 

1

\alpha \ell 
e\alpha \ell t,

sup
t\in \scrT 

| \xi PC
\ell (t)| \leq B

\rho 
R,

so that supt\in \scrT \| \xi PC(t)\| \leq 
\surd 
L\prime BR
\rho . Let R3 =

\surd 
L\prime BR
\rho . Define R4 =max\{ R3 +

\delta 
\rho ,R\} for

\delta in Assumptions A.6. We will show that supt\in \scrT \| \xi RNN (t)\| \leq R4 for \xi 
RNN defined by

\xi RNN in equations (3.12). Then the proof of Proposition A.5 will apply for bounded
t, b, and c with the weaker assumptions since all inputs to \scrF PC ,\scrF RNN ,\scrG PC , and
\scrG RNN---b(t), c(t), \xi PC(t), and \xi RNN (t)---will remain in a compact set for t\in \scrT .

Suppose for the sake of contradiction that there exists a time t\prime \in \scrT at which
\| \xi RNN (t\prime )\| > R4. Then there exists a time T \prime < t\prime < T and \epsilon > 0 such that for
t\in [0, T \prime ], \| \xi RNN (t)\| \leq R4 for t\in (T \prime , T \prime +\epsilon ), \| \xi RNN (t)\| >R4, and \| \xi RNN (T \prime )\| =R4

by continuity. In other words, T \prime is the time at which \xi RNN first crosses the R4 radius.
Then

\| e\xi (T \prime )\| := \| \xi RNN (T \prime ) - \xi PC(T \prime )\| \geq R4  - R3 \geq 
\delta 

\rho 

by the triangle inequality. Since \| \xi RNN (t)\| \leq R4 for t\in [0, T \prime ], the bound on \| e\xi (t)\| 
in (A.8) in the proof of Proposition A.5 applies on the interval t \in [0, T \prime ] under the
weaker Assumptions A.6, and \| e\xi (T \prime )\| < \delta 

\rho . This is a contradiction. Therefore,

supt\in \scrT \| \xi RNN (t)\| \leq R4, and the proof of Proposition A.5 holds with the weaker
Assumptions A.6 for bounded inputs t\in \scrT and b, c\in \sansZ R.

The bounds on \alpha and \beta required in Theorem 3.10 are justified because for known
material properties E and \nu , \alpha and \beta are determined and finite-dimensional, so they
have maximum and minimum values.

Appendix B. Special case solutions.

B.1. Laplace transform limit. Here we derive the form of \Psi \dagger 
0 in (2.7) via a

power series expansion of the Laplace transform at s=\infty . Starting from the definition
in (2.6),

\Psi \dagger 
0 =\scrL  - 1

\Biggl( \biggl( \int 1

0

dy

s\nu (y) +E(y)

\biggr)  - 1

\partial x\widehat u0

\Biggr) 
.

For s\gg 1, we have that\biggl( \int 1

0

dy

s\nu (y) +E(y)

\biggr)  - 1

\approx 
\biggl( \int 1

0

dy

s\nu (y)

\biggr)  - 1

= s

\biggl( 
dy

\nu (y)

\biggr)  - 1

.

Setting \nu \prime =
\bigl( 

dy
\nu (y)

\bigr)  - 1
, we now subtract out the linear dependence on s and let

z = 1
s . We define

F (z) = \^a0(s) - \nu \prime s
\bigm| \bigm| \bigm| 
s=z - 1
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to obtain

F (z) = \^a0
\bigl( 
z - 1

\bigr) 
 - \nu \prime z - 1

=

\biggl( \int 1

0

z dy

\nu (y) + zE(y)

\biggr)  - 1

 - 
\biggl( \int 1

0

z dy

\nu (y)

\biggr)  - 1

=

\int 1

0

\Bigl( 
z

\nu (y)  - 
z

\nu (y)+zE(y)

\Bigr) 
dy\Bigl( \int 1

0
z dy

\nu (y)+zE(y)

\Bigr) \Bigl( \int 1

0
z dy
\nu (y)

\Bigr) 
=

z2
\int 1

0
E(y)

\nu (y)(\nu (y)+zE(y)) dy

z2
\Bigl( \int 1

0
dy

\nu (y)+zE(y)

\Bigr) \Bigl( \int 1

0
dy
\nu (y)

\Bigr) 
=

\int 1

0
E(y)

\nu (y)(\nu (y)+zE(y)) dy\Bigl( \int 1

0
dy

\nu (y)+zE(y)

\Bigr) \Bigl( \int 1

0
dy
\nu (y)

\Bigr) .
Since infy\in (0,1) \nu (y)> 0,

lim
z\rightarrow 0

F (z) =

\int 1

0
E(y)
\nu 2(y) dy\Bigl( \int 1

0
dy
\nu (y)

\Bigr) 2 =:E\prime .

From this same computation, we see that for \widehat a0(s) = s\nu \prime +E\prime +\kappa (s), the contribution
\kappa (s) consists of lower order terms in s and is such that lims\rightarrow \infty \kappa (s) = 0. Using the
fact that the inverse Laplace transform of a product (if it exists) is a convolution, we
justify the form of the integral term in (2.7).

Forced boundary problem.

Lemma 3.12. Let u solve the equations

\partial y\sigma (y, t) = 0, (y, t)\in \scrD \times \scrT ,(3.15a)

\sigma (y, t) =E(y)\partial yu(y, t) + \nu (y)\partial 2
tyu(y, t), (y, t)\in \scrD \times \scrT ,(3.15b)

u(0, t) = 0, u(1, t) = b(t), (y, t)\in \partial \scrD \times \scrT ,(3.15c)

u(y,0) = 0, y \in \scrD .(3.15d)

Then

\{ \sigma (t)\} Tt=0 =\Psi \dagger 
0

\bigl( 
b(t), \partial tb(t),\{ b(t)\} Tt=0, t

\bigr) 
,

where \Psi \dagger 
0 is the map defined in (2.6).

Proof. Taking the Laplace transform of (3.15) yields

\widehat \sigma (s) = (E(y) + \nu (y)s)\partial y\widehat u(y, s).
Spatially averaging and noting that b(t) = \langle \partial yu(y, t)\rangle , we have

(B.1) \widehat b(s) = \int 1

0

dy

(E + s\nu )(y)
\widehat \sigma (s).

Then \widehat \sigma (s) = (
\int 1

0
dy

(E+s\nu )(y) )
 - 1\widehat b(s), which is equivalent to \widehat \sigma (s) = \widehat a0(s)\widehat b(s) using (2.5).

The definition of \Psi \dagger 
0 in (2.6) completes the proof.

Lemma 3.12 justifies the use of data arising from the system (3.15) to train the
map \Psi 0.
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Appendix C. Macroscale numeric comparisons.

C.1. RNN training and testing: Piecewise-constant case. We trained
three RNNs using the same dataset for the setting of a 2-piecewise-constant material
with material parameters E1 = 1, E2 = 3, \nu 1 = 0.1, and \nu 2 = 0.2. The data was
generated using a forward Euler method with time discretization dt = 0.001 up to
time T = 4 on the known analytic solution for the 2-piecewise-constant cell problem.
Denote the data by \{ (\partial xu0)n, (\sigma 0)n\} Nn=1 as discussed in section 3.4. We repeat the
two loss functions here.

Accessible Loss Function:

L1(\{ \sigma 0\} Nn=1,\{ \widehat \sigma 0\} Nn=1) =
1

N

N\sum 
n=1

\| (\sigma 0)n  - (\widehat \sigma 0)n\| 
\| (\sigma 0)n\| 

.

Inaccessible Loss Function:

L2(\{ \sigma 0\} Nn=1,\{ \widehat \sigma 0\} Nn=1,\{ \xi \} Nn=1,\{ \widehat \xi 0\} Nn=1) =
1

N

N\sum 
n=1

\Biggl( 
\| (\sigma 0)n  - (\widehat \sigma 0)n\| 

\| (\sigma 0)n\| 
+

\| (\xi )n  - (\widehat \xi )n\| 
\| (\xi )n\| L2(\scrD ,\BbbR )

\Biggr) 
.

For each of the following RNNs, the architecture for \scrF RNN and \scrG RNN consists
of three internal layers of SELU units of 100 nodes separated by linear layers, all
followed by a final linear layer. The SELU function is applied elementwise as

SELU(x) = s(max(0, x) +min(0, \alpha (exp(x) - 1))),

where \alpha = 1.67326 and s = 1.05070.1 We trained three different RNNs on the same
dataset in the following manner:

\bullet RNN ``A"": Using only the inaccessible loss function L2, we trained on N =
400 data points with subsampled time discretization of dt= 0.004 up to T = 4
for 1500 epochs with a batch size of 50.

\bullet RNN ``B"": First we used the inaccessible loss function L2 to train on N =
200 data points with subsampled time discretization of dt= 0.004 up to T = 2
for 1500 epochs with a batch size of 40. Then we initialized a new RNN at
the parameters of this RNN and trained with the accessible loss function L1

for 1000 epochs on 200 data with batch size of 40.
\bullet RNN ``C"": Using only the accessible loss function L1, we trained on N = 500

data points with subsampled time discretization of dt= 0.004 up to T = 4 for
3000 epochs with a batch size of 50.

The train and test errors are shown for the three RNNs in Figure 12.

C.2. RNN training and testing: Continuous case. We trained several
RNNs on data \{ (\partial xu0)n, (\sigma 0)n\} Nn=1 for continuous material parameters given by E(y) =
2 + tanh(y - 0.5

0.2 ) and \nu (y) = 0.5 + 0.1 tanh(y - 0.5
0.2 ). Each of the four RNNs had 1, 2,

5, and 10 hidden variables (L0, or the dimension of \xi ), respectively. The data was
generated by solving the cell problem using a finite difference method with 200 spatial
nodes and dt = h2, where h is the spatial discretization. The RNN was trained for
3000 epochs on 500 data. The macroscale simulations were performed with a spatial
discretization of hcell = 0.05 and a time discretization of dt = 0.4h2

cell. They were
compared to an FEM solution computed with a spatial discretization of h = 0.004
with a material period of 0.04 and time discretization of dt= 0.1h2.

1https://pytorch.org/docs/stable/generated/torch.nn.SELU.html
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(a) RNN ``A"" trained using
inaccessible loss function

(b) RNN ``B"" initialized at
inaccessible loss solution

(c) RNN ``C"" trained using
only standard loss function

Fig. 12. Train and test errors for the three RNNs.

C.3. RNN training and testing: Additional piecewise-constant
experiments. The piecewise constant data was generated by solving the cell problem
using a finite difference method with 300 spatial nodes and dt = 0.005 over a time
length of T = 10 for the trajectories. In the training, we sliced the data trajectories by
a slice of 2. For the 3-piecewise-constant model, we trained on 500 data points for 3000
epochs with the squared relative loss function. For the 5- and 10-piecewise-constant
models, we trained on 600 data points for 4000 epochs with the squared relative loss
function. The piecewise constant values were E1 = 2, E2 = 8, E3 = 1, E4 = 3, E5 = 7,
E6 = 3, E7 = 5, E8 = 6, E9 = 9, E10 = 4, \nu 1 = 0.1, \nu 2 = 0.9, \nu 3 = 0.7, \nu 4 = 0.4, \nu 5 = 1.5,
\nu 6 = 1.2, \nu 7 = 0.5, \nu 8 = 1.4, \nu 9 = 0.5, and \nu 10 = 0.3. (first 3 for 3-piecewise constant,
first 5 for 5-piecewise constant, all 10 for 10-piecewise constant).

C.4. RNN training and testing: Elasto-viscoplasticity experiments. The
data for the elasto-viscoplasticity case was generated using a fixed-point iteration
scheme with dt= 0.0001, 100 spatial elements, and a termination threshold of 0.001.
The constant values used were n = 10, E1 = 5, E2 = 1, E3 = 3, E4 = 2, E5 = 4,
E6 = 6, E7 = 1, E8 = 3, E9 = 4, \.\epsilon p0,1 = 0.05, \.\epsilon p0,2 = 0.1, \.\epsilon p0,3 = 0.15, \.\epsilon p0,4 = 0.07,
\.\epsilon p0,5 = 0.02, \.\epsilon p0,6 = 0.08, \.\epsilon p0,7 = 0.04, \.\epsilon p0,0.12, \.\epsilon p0,0.03, and each \sigma 0,i = Ei \.\epsilon p0,i. The
RNN was trained without the strain rate variable on 400 data trajectories with a time
slice of 8. The model trained for 3000 epochs with absolute error. The samples shown
in Figure 10 were chosen using a random number generator.

Appendix D. One-dimensional standard linear solid. In this section we
address the model of the one-dimensional Maxwell version of the SLS, whose consti-
tutive law depends only on the strain and strain history. The analysis for the SLS
model demonstrates that the ideas presented for the KV model extend beyond that
particular setting. In section D.1, we present the governing equations, and in section
D.2 we homogenize the system.

D.1. Governing equations. In the setting without inertia, the displacement
u\epsilon , strain e\epsilon , and inelastic strain ep\epsilon are related by

 - \partial x\sigma \epsilon = f,(D.1a)

e\epsilon = \partial xu,(D.1b)

\sigma \epsilon =E1,\epsilon e\epsilon +E2,\epsilon (e\epsilon  - ep\epsilon ),(D.1c)

\partial te
p
\epsilon =

E2,\epsilon 

\nu \epsilon 
(e\epsilon  - ep\epsilon ),(D.1d)
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676 K. BHATTACHARYA, B. LIU, A. STUART, AND M. TRAUTNER

where f : \scrD \times \scrT \mapsto \rightarrow \BbbR is a known forcing, and we impose initial condition u(x,0) = 0
and boundary conditions u(x, t) = 0 for x \in \partial \scrD . We seek a solution u\epsilon :\scrD \times \scrT \mapsto \rightarrow \BbbR .
Once more we have small-scale dependence in the material properties through \epsilon : we
have Ei,\epsilon (x) =Ei(

x
\epsilon ) for i= 1,2 and \nu \epsilon (x) = \nu (x\epsilon ) for 0< \epsilon \ll 1.

D.2. Homogenization. First, we take the Laplace transform of (D.1) and com-
bine the transformed expressions of (D.1c) and (D.1d) to arrive at

(D.2) \widehat \sigma \epsilon =E1,\epsilon \widehat e\epsilon +E2,\epsilon s

\biggl( 
s+

E2,\epsilon 

\nu \epsilon 

\biggr)  - 1 \widehat e\epsilon .
Letting \widehat a(s) = E1,\epsilon + E2,\epsilon s(s +

E2,\epsilon 

\nu \epsilon 
) - 1, the homogenization theory of section 3.2

applies, and we can use the harmonic averaging expression in (2.5) to write

(D.3) \widehat a0(s) = \bigl\langle (a(s)) - 1
\bigr\rangle  - 1

=

\Biggl( \int 1

0

s+ E2

\nu 

(E1 +E2)s+
E1E2

\nu 

dy

\Biggr)  - 1

,

where the homogenized solution u0 solves system 1.2 with \Psi \dagger 
0 defined as

(D.4) \Psi \dagger 
0 =\scrL  - 1 [\widehat a0(s)\partial x\widehat u0] ,

analogous to the KV case. However, in the case of piecewise-constant E1, E2, and \nu 
the inverse Laplace transform yields a different form in the SLS case:

\Psi PC
0 (\partial xu0, t;\theta ) =E\prime \partial xu0(t) - 

L\sum 
\ell =1

\xi \ell (t),(D.5a)

\partial t\xi \ell (t) = \beta \ell \partial xu0(t) - \alpha \ell \xi \ell (t), \ell \in \{ 1, . . . ,L\} ,(D.5b)

for a material with L pieces. Note that this model does not have dependence on the
strain rate, but it has one more hidden variable than the piecewise-constant case for
the KV model. The value of E\prime follows from taking the limit s\rightarrow \infty and is given by

E\prime =

\biggl( \int 1

0

1

(E1 +E2)
dy

\biggr)  - 1

.

Full derivation may be found in Appendix D.3.

D.3. SLS derivation. Here we show that the SLS model has one more hidden
variable in the piecewise-constant case than the KV model does. This is the analogue
of Theorem 3.6 for the SLS model. Starting from (D.3) for \^a0(s),

\widehat a0(s) = \langle \widehat a(s) - 1\rangle  - 1

=

\left(  \int 1

0

s+ E2(y)
\nu 

(E1(y) +E2(y))s+
E1(y)E2(y)

\nu (y)

dy

\right)   - 1

\Biggl( 
L\sum 

i=1

(s+
E2,i

\nu i
)di

(E1,i +E2,i)s+
E1,iE2,i

\nu i

\Biggr)  - 1
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for L-piecewise-constant E1, E2, and \nu with pieces of length di. Let ci =
E2,i

\nu i
, ki =

E1,i +E2,i, and pi =
E1,iE2,i

\nu i
. Continuing,

=

\Biggl( 
L\sum 

i=1

(s+ ci)di
kis+ pi

\Biggr)  - 1

=

\prod L
i=1(kis+ pi)\sum L

i=1 di(s+ ci)
\prod 

j \not =i(kjs+ pj)
:=

P (s)

Q(s)
.

Note that both P (s) and Q(s) have degree L. There is a unique constant E\prime such
that

P (s)

Q(s)
=E\prime +

C(s)

Q(s)
,

where C(s) has degree L. Then C(s)
Q(s) decomposes uniquely as

\sum L
\ell =1

\beta \ell 

s+\alpha \ell 
. Note that

this is one more pole than the decomposition for the KV model in Theorem 3.6
has. We will now show that roots of Q are real and negative, which will lead to the
expression in (D.5). First notice that if the roots of Q(s) are real, then they must
be negative since ki, ci, di, and pi are strictly positive for all i \in [L]. Suppose for
the sake of contradiction that Q(s) has a root with a nonzero imaginary component:
s= a+ bi, where b \not = 0. Then

Q(a+ bi) =

L\sum 
\ell =1

di(a+ bi+ c\ell )
\prod 
j \not =\ell 

(kj(a+ bi) + pj)

=

\left(  \prod 
j

(kj(a+ bi) + pj)

\right)  L\sum 
\ell =1

d\ell (a+ bi+ c\ell )

k\ell (a+ bi) + p\ell 

=

\left(  \prod 
j

(kj(a+ bi) + pj)

\right)  L\sum 
\ell =1

\biggl( 
d\ell a+ d\ell c\ell + d\ell bi

k\ell a+ p\ell + k\ell bi

\biggr) \biggl( 
k\ell a+ p\ell  - k\ell bi

k\ell a+ p\ell  - k\ell bi

\biggr) 

=

\left(  \prod 
j

(kj(a+ bi) + pj)

\right)  
\times 

L\sum 
\ell =1

d\ell 
(k\ell a+ p\ell )2 + (k\ell b)2

\bigl[ \bigl( 
(a+ c\ell )(k\ell a+ p\ell ) + k\ell b

2
\bigr) 
+ ( - k\ell bc\ell + bp\ell ) i

\bigr] 
.

If a+ bi is a root of Q, then we need b
\sum L

\ell =1
d\ell 

(k\ell a+p\ell )2+(k\ell b)2
( - k\ell c\ell + p\ell ) = 0. Notice

that  - k\ell c\ell + p\ell =  - E2
2,\ell 

\nu \ell 
, which is strictly negative, so for b \not = 0, \Im (Q(a + bi)) < 0,

which is a contradiction. Therefore, b= 0, and all the roots of Q are real and negative.
Inverting the Laplace transform, we arrive at (D.5).
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