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Convergence Rates for Learning Linear Operators from Noisy Data*

Maarten V. de Hoop\dagger , Nikola B. Kovachki\ddagger , Nicholas H. Nelsen\S , and Andrew M. Stuart\S 

Abstract. This paper studies the learning of linear operators between infinite-dimensional Hilbert spaces. The
training data comprises pairs of random input vectors in a Hilbert space and their noisy images under
an unknown self-adjoint linear operator. Assuming that the operator is diagonalizable in a known
basis, this work solves the equivalent inverse problem of estimating the operator's eigenvalues given
the data. Adopting a Bayesian approach, the theoretical analysis establishes posterior contraction
rates in the infinite data limit with Gaussian priors that are not directly linked to the forward
map of the inverse problem. The main results also include learning-theoretic generalization error
guarantees for a wide range of distribution shifts. These convergence rates quantify the effects of data
smoothness and true eigenvalue decay or growth, for compact or unbounded operators, respectively,
on sample complexity. Numerical evidence supports the theory in diagonal and nondiagonal settings.
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1. Introduction. The supervised learning of operators between Hilbert spaces provides a
natural framework for the acceleration of scientific computation and discovery. This frame-
work can lead to fast surrogate models that approximate expensive existing models or to
the discovery of new models that are consistent with observed data when no first principles
model exists. To develop some of the fundamental principles of operator learning, this paper
concerns (Bayesian) nonparametric linear regression under random design. Let H be a real
infinite-dimensional Hilbert space and L be an unknown---possibly unbounded and in general
densely defined on H---self-adjoint linear operator from its domain in H into H itself. We
study the following linear operator learning problem.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 481

Main Problem. Let \{ xn\} \subset H be random design vectors and \{ \xi n\} be noise vectors. Given
the training data pairs \{ (xn, yn)\} Nn=1 with sample size N \in \BbbN , where

(1.1) yn =Lxn + \gamma \xi n for n\in \{ 1, . . . ,N\} and \gamma > 0 ,

find an estimator L(N) of L that is accurate when evaluated outside of the samples \{ xn\} .
The estimation of L from the data (1.1) is generally an ill-posed linear inverse problem

[31]. In principle, the chosen reconstruction procedure should be consistent: the estimator
L(N) converges to the true L as N \rightarrow \infty . The rate of this convergence is equivalent to the
sample complexity of the estimator, which determines the efficiency of statistical estimation.
The sample complexity N(\varepsilon ) \in \BbbN is the number of samples required for the estimator to
achieve an error less than a fixed tolerance \varepsilon > 0. It quantifies the difficulty of Main Problem.

In modern scientific machine learning problems where operator learning is used, the de-
mand on data from different operator learning architectures often outpaces the availability
of computational or experimental resources needed to generate the data. Ideally, theoretical
analysis of sample complexity should reveal guidelines for how to reduce the requisite data
volume. To that end, the broad purpose of this paper is to provide an answer to the question:
what factors can reduce sample size requirements for linear operator learning?

Our goal is not to develop a practical procedure to regress linear operators between infinite-
dimensional vector spaces. Various methods already exist for that purpose, including those
based on (functional) principal component analysis (PCA) [13, 26, 39]. Instead, we aim to
strengthen the rather sparse but slowly growing theoretical foundations of operator learning.

We overview our approach to solve Main Problem in subsection 1.1. We summarize one
of our main convergence results in subsection 1.2. In subsection 1.3, we illustrate examples to
which our theory applies. Subsection 1.4 surveys work related to ours. The primary contri-
butions of this paper and its organization are given in subsections 1.5 and 1.6, respectively.

1.1. Key ideas. In this subsection, we communicate the key ideas of our methodology at
an informal level and distinguish our approach from similar ones in the literature.

1.1.1. Operator learning as an inverse problem. We cast Main Problem as a Bayesian
inverse problem with a linear operator as the unknown object to be inferred from data. Suppose
the input training data \{ xn\} from (1.1) are independent and identically distributed (i.i.d.)
according to a (potentially unknown) centered probability measure \nu on H with a finite
second moment. Let \Lambda : H\rightarrow H be the covariance operator of \nu with orthonormal eigenbasis
\{ \phi k\} . Let the \{ \xi n\} be i.i.d. \scrN (0, IdH) Gaussian white noise processes independent of \{ xn\} .
Writing Y = (y1, . . . , yN ), X = (x1, . . . , xN ), and \Xi = (\xi 1, . . . , \xi N ) yields the concatenated data
model

(1.2) Y =KXL+ \gamma \Xi .

The forward operator of this inverse problem is KX : T \mapsto \rightarrow (Tx1, . . . , TxN ). Under a Gaussian
prior L\sim \scrN (0,\Sigma ), the solution is the Gaussian posterior L | (X,Y ). For a fixed orthonormal
basis \{ \varphi j\} of H, it will be convenient to identify (1.2) with the countable inverse problem

(1.3) yjn =
\sum \infty 

k=1
xknLjk + \gamma \xi jn for j \in \BbbN and n\in \{ 1, . . . ,N\} ,

where \xi jn
\mathrm{i}\mathrm{i}\mathrm{d}\sim \scrN (0,1), xkn = \langle \phi k, xn\rangle H , and Ljk = \langle \varphi j ,L\phi k\rangle H . See subsection 2.2.2 for details.
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482 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

1.1.2. Comparison to nonparametric inverse problems. In contrast, most theoretical
studies of Bayesian inverse problems concern the estimation of a vector f \in H1 from data

(1.4) Y \prime =Kf +N - 1/2\xi , where \xi \sim \scrN (0, IdH2
)

and K : H1 \rightarrow H2 is a known bounded linear operator between Hilbert spaces H1 and H2.
This is a signal in the white noise model. Under a prior on f , the asymptotic behavior of the
posterior f | Y \prime as the noise tends to zero (N \rightarrow \infty ) is of primary interest. Many analyses of
(1.4) consider the singular value decomposition (SVD) of K [6, 8, 23, 44, 65]. Projecting f
into its coordinates \{ fk\} in the basis of right singular vectors \{ \phi \prime k\} of K and writing \{ Y \prime 

j \} for
observations of the stochastic process Y \prime on the basis of left singular vectors of K yields

(1.5) Y \prime 
j = \kappa jfj +N - 1/2\xi j for j \in \BbbN ,

where the \{ \xi j\} are i.i.d. \scrN (0,1) and \{ \kappa j\} are the singular values of K. Obtaining a sequence
space model of this form is always possible if K is a compact operator [23, sect. 1.2].

Some notable differences between the traditional inverse problem (1.4) and the operator
learning inverse problem (1.2) are evident. Equation (1.2) is directly tied to (functional)
regression, while (1.4) is not. The unknown f is a vector while L is an unknown operator.
A more major distinction is that K in (1.4) is deterministic and arbitrary, while KX in (1.2)
is a random forward map defined by point evaluations. Their sequence space representations
also differ. Equation (1.5) is diagonal with a singly indexed unknown \{ fj\} , while (1.3) is
nondiagonal (because the SVD of KX was not invoked) with a doubly indexed unknown
\{ Ljk\} . Thus, our work deviates significantly from existing studies.

1.1.3. Diagonalization leads to eigenvalue learning. The technical core of this paper
concerns the sequence space representation (1.3) of Main Problem in the ideal setting that a
diagonalization of L is known.

Assumption 1.1 (diagonalizing eigenbasis given for L). The unknown linear operator L from
Main Problem is diagonalized in the known orthonormal basis \{ \varphi j\} j\in \BbbN \subset H.

Under this assumption and denoting the eigenvalues of L by \{ lj\} , (1.3) simplifies to

(1.6) yjn = \langle \varphi j , xn\rangle H lj + \gamma \xi jn for j \in \BbbN and n\in \{ 1, . . . ,N\} .

In general, the random coefficient \langle \varphi j , xn\rangle H depends on every \{ xkn\} k\in \BbbN from (1.3). To sum-
marize, under Assumption 1.1 we obtain a white noise sequence space regression model with
correlated random coefficients. Inference of the full operator is reduced to only that of its
eigenvalue sequence. Equation (1.6) is at the heart of our analysis of linear operator learning.
The convergence results we establish for this model may also be of independent interest.

Our proof techniques in this diagonal setting closely follow those in the paper [44], which
studies posterior contraction for (1.5) in a simultaneously diagonalizable Bayesian setting.
However, our work exhibits some crucial differences with [44] which we now summarize.

(D1) (forward map) The coefficients \{ \langle \varphi j , xn\rangle H\} in our problem (1.6) are random variables
(r.v.s), while in [44] the singular values \{ \kappa j\} in (1.5) are fixed by K. Also, the law of
\{ \langle \varphi j , xn\rangle H\} may not be known in practice; only the samples \{ xn\} may be given.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 483

(D2) (link condition) Unlike in [44], our prior covariance operator \Sigma is not linked to the SVD
of the forward map KX . That is, we do not assume simultaneous diagonalizability.

(D3) (prior support) The Gaussian prior we induce on \{ lj\} is supported on a (potentially)
much larger sequence space in the scale \scrH s (relative to \{ \varphi j\} with s \in \BbbR ),1 instead of
just the space \ell 2(\BbbN ;\BbbR ) (relative to \{ \phi \prime k\} ) charged by the prior on \{ fj\} in [44].

(D4) (reconstruction norm) Solution convergence for (1.6) is in \scrH  - s norms relative to \{ \varphi j\} ,
while only the \ell 2(\BbbN ;\BbbR ) norm relative to \{ \phi \prime k\} (i.e., the H1 norm) is considered in [44].

These differences deserve further elaboration.
Item (D1): If xn \in H almost surely (a.s.), then \langle \varphi j , xn\rangle H \rightarrow 0 a.s. as j\rightarrow \infty in (1.6), just

as \kappa j \rightarrow 0 if K in (1.4) is compact. However, we later observe that our KX is not compact .
Item (D2): The authors in [44] assume that the eigenbasis of the prior covariance of f is

precisely \{ \phi \prime k\} , the right singular vectors of K in (1.4). This direct link condition between
the prior and K ensures that the implied prior (and posterior) on \{ fj\} is an infinite product
measure. Our analysis of (1.6) still induces an infinite product prior on \{ lj\} without using the
SVD of the forward operator KX . Instead, we make mild assumptions that only weakly link
KX to the prior covariance operator \Sigma . See (1.7) for a relevant smoothness condition.

Item (D3): The reason we work with a sequence prior having support on sets larger than
\ell 2 is to include unbounded operators (with eigenvalues | lj | \rightarrow \infty as j\rightarrow \infty ) in the analysis.2

Item (D4): Only the H1 estimation error is considered in [44] because the unknown quan-
tity is a vector f \in H1. Since our unknown is an operator, we also consider the prediction
error [21] on new test inputs (see subsection 2.2.5). This relates to the \scrH  - s norms in (D4).

1.2. Main result. Here and in the following we assume that there is some fixed ground
truth operator that underlies the observed output data.

Assumption 1.2 (true linear operator). The data Y , observed as \{ yjn\} in (1.6), are generated

according to (1.2) for a fixed self-adjoint linear operator L=L\dagger with eigenvalues \{ l\dagger j\} .
Under (1.6), we study the performance of the posterior \{ lj\} | (X,Y ) (and related point

estimators) for estimating the true \{ l\dagger j\} in the limit of infinite data. The following concrete
theorem is representative of more general convergence results established later in the paper.

Theorem 1.3 (asymptotic convergence rate with Gaussian design). Suppose Assumptions 1.1
and 1.2 hold with \{ l\dagger j\} \in \scrH s for some s\in \BbbR . Let \nu =\scrN (0,\Lambda ) be a Gaussian measure satisfying

(1.7) c - 1
1 j - 2\alpha \leq \langle \varphi j ,\Lambda \varphi j\rangle H \leq c1j

 - 2\alpha for all sufficiently large j \in \BbbN 

for some c1 \geq 1 and \alpha > 1/2. Let
\bigotimes \infty 

j=1\scrN (0, \sigma 2j ) be the prior on \{ lj\} in (1.6) with variances

\{ \sigma 2j \} satisfying c - 1
2 j - 2p \leq \sigma 2j \leq c2j

 - 2p for all sufficiently large j \in \BbbN for some c2 \geq 1 and

1The Sobolev-like sequence Hilbert spaces \scrH s =\scrH s(\BbbN ;\BbbR ) are defined for s\in \BbbR by

\scrH s(\BbbN ;\BbbR ) := \{ v : \BbbN \rightarrow \BbbR | 
\sum \infty 

j=1
j2s| vj | 2 <\infty \} .

They are equipped with the natural \{ js\} -weighted \ell 2(\BbbN ;\BbbR ) inner-product and norm. We will usually interpret
these spaces as defining a smoothness scale [38, sect. 2] of vectors relative to the orthonormal basis \{ \varphi j\} of H.

2Note, however, that unbounded operators with continuous spectra [25] are beyond the scope of this paper.
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Figure 1. Fundamental principles of linear operator learning. The theoretical convergence rate exponents
(from Theorem 3.5) corresponding to unbounded ( - \Delta , s <  - 2.5), bounded (Id, s <  - 1/2), and compact
(( - \Delta ) - 1, s < 1.5) true operators are displayed (see principle (P1) and subsection 4.1). With p = s + 1/2,
Figure 1(a) (\alpha \prime = 4.5) and Figure 1(b) (\alpha = 4.5) illustrate the effects that varying input training data and test
data smoothness have on convergence rates, respectively (principles (P2) and (P3)). Figure 1(c) shows that
learning the unbounded ``inverse map""  - \Delta (with \alpha = \alpha \prime = 4.5) is always harder than learning the compact
``forward map"" ( - \Delta ) - 1 (with \alpha = \alpha \prime = 2.5) as the shift z = p - s - 1/2 in prior regularity is varied (subsection
1.4).

p \in \BbbR . Denote by PDN the posterior distribution for \{ lj\} arising from the observed data
DN := (X,Y ). Fix \alpha \prime \in [0, \alpha + 1/2). If min\{ \alpha ,\alpha \prime \} +min\{ p - 1/2, s\} > 0, then there exists a
constant C > 0, independent of the sample size N , such that

(1.8) \BbbE DN\BbbE \{ l(N)
i \} \infty 

i=1\sim PDN
\sum \infty 

j=1
j - 2\alpha \prime | l\dagger j  - l

(N)
j | 2 \leq CN - (\alpha \prime +\mathrm{m}\mathrm{i}\mathrm{n}\{ p - 1/2,s\} 

\alpha +p
)

for all sufficiently large N . The first expectation in (1.8) is over the joint law of DN .

Equation (1.8) shows that, on average, posterior sample eigenvalue estimates converge in
\scrH  - \alpha \prime 

to the true eigenvalues of L\dagger in the infinite data limit. The hypothesis (1.7), which
controls the regularity of the data \{ xn\} , is immediately satisfied if, e.g., \Lambda is a Mat\'ern-like
covariance operator with eigenvectors \{ \varphi j\} . Theorem 1.3, whose proof is in Appendix A, is a
consequence of Theorem 3.3, which is valid for a much larger class of input data measures.

Nonetheless, Theorem 1.3 nearly tells the whole story. The convergence rate exponent in
(1.8) shows that the regularity of the ground truth, data, and prior each have an influence
on sample complexity. Figure 1 summarizes this complex relationship. The figure, and this
paper more generally, reveals three fundamental principles of (linear) operator learning:

(P1) (smoothness of outputs) The ground truth operator becomes statistically more efficient
to learn whenever the smoothness of its (noise-free) outputs increases. Moreover, as
the degree of smoothing of the operator increases, sample complexity improves.

(P2) (smoothness of inputs) Decreasing the smoothness of input training data improves sam-
ple complexity (in norms that do not depend on the training distribution itself).3

(P3) (distribution shift) As the smoothness of samples from the input test distribution in-
creases, average out-of-distribution prediction error improves.

3If the norm used to measure error depends on the training data distribution, this may no longer be true.
For example, in-distribution error (train and test on the same distribution) would correspond in Theorem 1.3
to setting \alpha \prime = \alpha (see section 2.2.5). In this case, increasing \alpha would improve sample complexity.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 485

Below, we discuss how the principles (P1) to (P3) manifest in Theorem 1.3 and Figure 1.
Item (P1): In Theorem 1.3, the left side of (1.8) is equivalent to the expected prediction

error over some input test distribution (see subsection 2.2.5 for details). Increasing \alpha \prime increases
the regularity of test samples. Assuming for simplicity that s= p - 1/2, the convergence rate
in (1.8) is N - (\alpha \prime +s)/(\alpha +s+1/2) as N \rightarrow \infty . Thus, besides large \alpha \prime , it is beneficial to have
large regularity exponents \alpha \prime + s of the operator's evaluation on sampled test inputs or large
regularity exponents s of the true operator's eigenvalues. Indeed, Figures 1(a) to 1(c) suggest
that unbounded operators (whose eigenvalues grow without bound) are more difficult to learn
than bounded (eigenvalues remain bounded) or compact ones (eigenvalues decay to zero).

Item (P2): Training inputs with low smoothness are favorable. This is quantified in
Theorem 1.3 by decreasing \alpha , which means that the \{ xn\} become ``rougher"" (Figure 1(a)).

Item (P3): Figure 1(b) illustrates that increasing \alpha \prime in Theorem 1.3 improves the error.
We reinforce Items (P1) to (P3) throughout the rest of the paper.

1.3. Examples. Although quite a strong assumption, the known diagonalization from
Assumption 1.1 is still realizable in practice. For instance, there may be prior knowledge
that the data covariance operator commutes with the true operator (and hence shares the
same eigenbasis) or that the true operator obeys known physical principles (e.g., commutes
with translation or rotation operators). Regarding the latter, in [62] the authors infer the
eigenvalues of a differential operator closure for an advection-diffusion model from indirect
observations. As in [72], the operator could be known up to some uncertain parameter.
This is the case for several smoothing forward operators that define commonly studied linear
inverse problems, including the severely ill-posed inverse boundary problem for the Helmholtz
equation with unknown wavenumber parameter [8, sect. 5] or the inverse heat equation with
unknown scalar diffusivity parameter [72, sect. 6.1]. In both references, the eigenbases are
already known. Thus, our learning theory applies to these uncertain operators: taking s and
p large enough in (1.8) yields prediction error rates of convergence as close to N - 1 as desired.

More concretely, the theory in this paper may be applied directly to the following examples.

1.3.1. Blind deconvolution. Periodic deconvolution on the d-dimensional torus \BbbT d is a
linear inverse problem that arises frequently in the imaging sciences. The goal is to recover a
periodic signal f : \BbbT d \rightarrow \BbbC from noisy measurements

y= \mu \ast f + \eta , where \mu \ast f :=

\int 
\BbbT d

f(\cdot  - t)\mu (dt) and \eta is noise,

of its convolution with a filter \mu . The filter may be identified with a periodic signal or
more generally with a signed measure [72, sect. 6.2]. However, \mu is sometimes unknown;
this leads to blind or semiblind deconvolution. One path forward is to first estimate the
smoothing operator K\mu : f \mapsto \rightarrow \mu \ast f from many random (f, y) pairs under the given model. By
the known translation-invariance of the problem, K\mu is diagonalized in the complex Fourier
basis. Inference is then reduced to estimating the Fourier coefficients \{ \mu j\} of \mu , which are the
eigenvalues of K\mu . Since \{ \mu j\} \in \scrH s for some s\in \BbbR , Theorem 1.3 provides a convergence rate.

1.3.2. Radial EIT. Electrical impedance tomography (EIT) is a noninvasive imaging pro-
cedure that is used in medical, industrial, and geophysical applications [57]. Abstractly, EIT
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486 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

concerns the following severely ill-posed nonlinear inverse problem. Let \BbbD \subset \BbbR 2 be the unit
disk and let \sigma : \BbbD \rightarrow \BbbR >0 be the strictly positive electrical conductivity of a medium. With
electric potential u : \BbbD \rightarrow \BbbR governed by the elliptic partial differential equation (PDE)

 - \nabla \cdot (\sigma \nabla u) = 0 in \BbbD ,

the goal is to reconstruct the unknown conductivity \sigma in \BbbD from voltage and current boundary
measurements of u. These are modeled (to infinite precision) by the linear operators

\Lambda \sigma : u| \partial \BbbD \mapsto \rightarrow \sigma 
\partial u

\partial n

\bigm| \bigm| \bigm| 
\partial \BbbD 

or R\sigma : \sigma 
\partial u

\partial n

\bigm| \bigm| \bigm| 
\partial \BbbD 

\mapsto \rightarrow u| \partial \BbbD ,

where \partial /\partial n is the outward normal derivative. In practical EIT, either \Lambda \sigma or R\sigma must be
recovered from finite data. One way to solve this data completion step [20] involves making
random boundary measurements and employing operator learning (1.1). If \sigma is radial , then
\Lambda \sigma and R\sigma are diagonalized in the complex Fourier basis over \partial \BbbD =\BbbT 1 [57, sect. 13.1]. In this
case, the theory in this paper immediately applies to learn the eigenvalues of both operators.

1.4. Related work. A natural setting to apply operator learning is one in which the am-
bient Hilbert space H comprises real-valued functions over a domain D \subset \BbbR d. For example,
there is an emerging body of work focused on learning surrogates for forward, typically non-
linear, solution operators of PDEs [3, 13, 45, 47, 51, 58, 60, 67]. In the context of dynamical
systems, there is literature focused on learning the Koopman operator or its generator, both
linear operators, from time series data [18, 34, 41, 42, 61]. There also is interest in speeding
up (Bayesian) inversion techniques with forward surrogates [47] and in directly learning regu-
larizers for inversion [9, 11] (or even entire regularized inverse solution operators [12, 24, 30]).
However, more theory is needed to quantify the difficulty of learning forward versus inverse
operators that arise in these contexts. Some sharp theory already exists for nonlinear operator
learning. For example, the authors of [22, 64] establish optimal convergence rates for direct
and inverse least squares regression problems with both infinite-dimensional input and output
spaces under the condition that point evaluation is a Hilbert--Schmidt operator. However, this
condition never holds when H is infinite-dimensional in our linear operator setting (1.1).

We now highlight three subfields that are closely linked to our statistical framework.
Linear operator learning. The study of linear function-to-function models within functional

data analysis (FDA) [63] is well established [26, 39, 66, 75]. Much of this work concerns the
setting H = L2((0,1);\BbbR ) and linear models based on kernel integral operators under colored
noise. Operator estimation is then reduced to learning the kernel, usually in a reproducing
kernel Hilbert space (RKHS) framework. Linear operator learning has also been considered
in machine learning [1], particularly in the context of conditional expectation operators [54]
and conditional mean embeddings [37, 40, 68]. The authors of [39, 66] study functional
linear regression with a spectral operator estimator. This allows them to obtain consistency
of the prediction error assuming only boundedness of the true operator [39], rather than
compactness as assumed in much of the FDA literature. Convergence rates are established
in [66]. While unbounded operators are not considered in these two works, their approaches
could likely be modified to handle them. Relatedly, the authors of [71] and [17] share our
motivations. The former establishes sample complexities for learning Schatten-class compact
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LEARNING LINEAR OPERATORS FROM NOISY DATA 487

operators (motivated by inverse problem solution operators) while the latter for learning
compact operators associated with Green's functions of elliptic PDEs (motivated by PDE
discovery). Our theory also treats these types of operators but goes further by proving sample
complexities for the direct learning of unbounded operators, which are of primary interest in
these papers (the inverse operator in the former and the partial differential operator in the
latter).

Inverse operator learning. The direct learning of solution operators of inverse problems is
currently a popular research area, catalyzed by the success of deep neural networks [11, 19, 30,
32]. However, theoretical analysis in this area is lacking. One difficulty is the interplay between
the ill-posedness of the learning and ill-posedness of the inverse problem itself. For a compact
operator T , our diagonal theory suggests that learning L = T under model (1.1) is easier
than learning the unbounded inverse operator L= T - 1 under the same model (Figure 1(c)).
Although less common than the former, the latter setting could arise from noisy differentiation
of time series in PDE system identification, for example. One limitation of our theory is that
it does not account for errors-in-covariates that distinguishes true inverse operator learning,
where (a regularized version of) T - 1 must be estimated only from noisy forward map samples
(1.1) with L= T . Total least squares [36] is one solution approach in finite dimensions. The
infinite-dimensional setting was considered in [15] but with non-Bayesian methods. Regardless,
inverse operator learning in this challenging setting is an important area for future research.

Bayesian nonparametric statistics. Although the theoretical analysis of inverse problems
with linear operator unknowns is largely absent from the Bayesian nonparametrics literature
(see subsections 1.1.2 and 1.1.3), this literature still has some similarities with (1.1) and (1.2).
Many works go beyond [44] by deriving posterior contraction rates for problem (1.4) without
assuming simultaneous diagonalizability of the prior covariance and the forward operator. In
[65], the author studies linear inverse problems in a nonconjugate setting. However, knowledge
of the forward map's SVD is used heavily in the analysis even though the prior is (in one
case) represented in a non-SVD basis (one comprised of finite linear combinations of singular
vectors). These ideas are generalized in [38] to priors linked to smoothness scales instead of the
SVD. For Gaussian priors not linked to the SVD, new methods were introduced in [55] that
yield optimal posterior performance for X-ray transform inverse problems. These techniques
were refined for general linear inverse problems in [35]. However, the previous two papers
focused on semiparametric inference (i.e., linear functionals) instead of full nonparametric
reconstruction (our main interest). The closest work to ours is [72]. There, the author studies
a linear inverse problem in which the forward map is only known up to an uncertain parameter
\theta . Given a noisy observation of \theta in addition to data of the form (1.4), the author analyzes a
Bayesian joint reconstruction procedure. Other papers that use Gaussian priors not linked to
the SVD include [5, 7, 43]. While notable, all of these works mentioned do not help us extend
the results in this paper for (1.6) to nondiagonal linear operator learning (1.3) because our
framework already avoids the SVD from the start ; see Item (D2) in subsection 1.1.3. Removing
Assumption 1.1 while preserving sharp rates will likely require new ideas; see section 5. Last,
although the three papers [2, 16, 56] develop powerful new methods, these methods are specific
to the particular nonlinear inverse problem studied. In contrast, the aim of this paper is to
develop widely applicable theoretical insights into operator learning. We view [2, 16, 56] as
being more relevant to follow-up work in the area of nonlinear inverse operator learning.
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488 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

1.5. Contributions. This paper provides a unified framework for the supervised learning
of compact, bounded, and unbounded linear operators. The analysis is performed in the ideal
situation that the eigenvectors of the true operator are known. Thus, much like the work in
[44] on Bayesian posterior contraction for linear inverse problems, our results give a theoretical
roadmap for linear operator learning. Although we do not explicitly learn solution maps of
inverse problems from data, our theory provides insight into the difficulty of learning operators
defined by both forward and inverse problems. Our primary contributions are now listed:

(C1) we formulate linear operator learning as a nonparametric Bayesian inverse problem
with a linear operator as the unknown quantity, generalizing [44] to operators;

(C2) under a known eigenbasis assumption, in the large sample limit we prove convergence
of the full posterior eigenvalues to the truth by deriving in-expectation and high prob-
ability upper and lower bounds for the generalization error under distribution shift;

(C3) we establish analogous convergence rate guarantees for the posterior mean eigenvalues
with respect to learning-theoretic notions of excess risk and generalization gap;

(C4) we present numerical results for learning compact, bounded, and unbounded operators
arising from canonical linear PDEs in a diagonal setting, which directly support the
theory, and in a nondiagonal setting, which support the conjecture that our theoretical
insights remain valid beyond the confines of the theory.

A consequence of these contributions are the theoretical principles (P1) to (P3) (visualized
in Figure 1). Although only proved for linear operators, these may still inform state-of-the-art
nonlinear operator learning techniques used in practice [13, 47, 51, 60]. Indeed, the influence
of output space smoothness on sample complexity, reflecting (P1), has been observed in neural
operators [29, 46, 49]. Item (P2) implies that training on Gaussian random field data with
the commonly chosen squared exponential covariance (leading to infinitely smooth samples)
is actually statistically disadvantageous. Regarding robustness of models under distribution
shift, (P2) and (P3) suggest that it may be misleading to only report prediction errors on test
data with the same smoothness as the training data. Further exploration of these and related
issues is crucial to guide the development of operator learning as an emerging field.

1.6. Outline. The remainder of the paper is organized as follows. Contribution (C1)
(summarized in subsection 1.1) is described in section 2, where we give a full functional-
analytic problem setup and characterize the posterior. Our main theoretical results, items (C2)
and (C3), are presented and discussed in section 3. Numerical experiments (C4) that illustrate,
support, and extend beyond the theory are provided in section 4. Concluding remarks follow
in section 5. Appendix A is devoted to proofs of the main results, with supporting lemmas in
Appendix B. Remaining proofs of auxiliary results are located in Appendix C.

2. Setup. After overviewing some notation in subsection 2.1, we detail our Bayesian
inverse problems approach to (1.1) in subsection 2.2. Subsection 2.3 gives an optimization
perspective and defines expected risk and generalization gap in the infinite-dimensional setting.

2.1. Preliminaries. We now detail the conventions used in this paper.
Linear spaces. Let (H, \langle \cdot , \cdot \rangle ,\| \cdot \| ) be a real, separable, infinite-dimensional Hilbert space.

For any self-adjoint positive-definite linear operator A on H, we define A - 1/2 by functional
calculus, \langle \cdot , \cdot \rangle A := \langle A - 1/2\cdot ,A - 1/2\cdot \rangle , and \| \cdot \| A := \| A - 1/2\cdot \| . The set \scrL (H1;H2) is the space
of bounded linear operators mapping Hilbert spaces H1 into H2, and when H1 = H2 = H,
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LEARNING LINEAR OPERATORS FROM NOISY DATA 489

we write \scrL (H). The separable Hilbert space of Hilbert--Schmidt operators from H1 to H2

is denoted by HS(H1;H2) with inner-product \langle \cdot , \cdot \rangle \mathrm{H}\mathrm{S}(H1;H2). When H1 = H2 = H, we write
(HS(H), \langle \cdot , \cdot \rangle \mathrm{H}\mathrm{S},\| \cdot \| \mathrm{H}\mathrm{S}). For any a \in H2 and b \in H1, the map a\otimes H1

b \in HS(H1;H2) denotes
the outer product (a\otimes H1

b)c := \langle b, c\rangle H1
a for any c\in H1. We use the shorthand a\otimes b\in HS(H)

when H1 =H2 =H. For a possibly unbounded linear operator T on H, we denote its domain
by the subspace \scrD (T )\subseteq H. The identity map on H is written as Id\in \scrL (H).

Probability. We primarily consider centered Borel probability measures \Pi on H with finite
second moment \BbbE h\sim \Pi \| h\| 2 <\infty . Such a \Pi has a covariance operator Cov[\Pi ] := \BbbE h\sim \Pi [h\otimes h]
in \scrL (H) that is symmetric, nonnegative, and trace-class. This leads to the Karhunen--Lo\`eve
(KL) expansion h =

\sum \infty 
j=1 \theta j\xi j\psi j \sim \Pi [69]. The \{ \xi j\} are zero mean, unit variance, pairwise

uncorrelated, real r.v.s on a complete probability space denoted by (\Omega ,\scrF ,\BbbP ). The \{ \psi j\} are
the eigenvectors of Cov[\Pi ], extended to form an orthonormal basis of H, and \{ \theta 2j\} are its
nonnegative eigenvalues. If \Pi is a Gaussian measure, then the \{ \xi j\} are i.i.d. \scrN (0,1) [70].
When appropriate, expectations are taken in the sense of Bochner integration. We use \BbbE 
with no additional scripts to denote an average over all sources of randomness. We implicitly
justify the exchange of expectation and infinite summation with the Fubini--Tonelli theorem.

Notation. For real p and q, we write p \wedge q := min\{ p, q\} and p \vee q := max\{ p, q\} . For two
nonnegative real sequences \{ an\} and \{ bn\} , we write an \simeq bn if \{ an/bn\} is bounded away from
zero and infinity and an \lesssim bn if there exists C > 0 such that an/bn \leq C for all n. We use
computer science asymptotic notation. This means that we write an = O(bn) as n \rightarrow \infty if
limsupn\rightarrow \infty an/bn < \infty , an = \Omega (bn) as n \rightarrow \infty if bn = O(an), an = \Theta (bn) as n \rightarrow \infty if both
an =O(bn) and an =\Omega (bn), and an = o(bn) as n\rightarrow \infty if limn\rightarrow \infty an/bn = 0. We sometimes use
an \asymp bn as convenient shorthand for an =\Theta (bn) and an \ll bn for an = o(bn).

2.2. Bayesian inference. In this subsection, we continue the development of operator
learning as an inverse problem. We adopt the following conventions. Define DN to be the
collection of all the data, DN := (X,Y ). We equip the N -fold product space HN with the
inner product \langle U,V \rangle HN = 1

N

\sum N
n=1\langle un, vn\rangle for any U = (u1, . . . , uN ) and V = (v1, . . . , vN ) \in 

HN . This makes HN a Hilbert space. For any symmetric positive-definite \scrC \in \scrL (H), define
H\scrC := Im(\scrC 1/2)\subseteq H. Equipped with the inner-product \langle \cdot , \cdot \rangle \scrC , the set H\scrC is a Hilbert space.

2.2.1. Weighted Hilbert--Schmidt operators. Thus far we have not specified the space
to which the self-adjoint operator L : \scrD (L) \subseteq H \rightarrow H in Main Problem belongs. Since L
may not be bounded on H, the ideal Hilbert space HS(H) is not sufficient. Instead, we
consider particular Lebesgue--Bochner spaces. Let \nu \prime be a centered Borel probability measure
on a sufficiently large space containing H with bounded covariance \Lambda \prime := Cov[\nu \prime ] \in \scrL (H).
Then L2

\nu \prime (H;H) is defined as the set of all Borel measurable maps F : H \rightarrow H such that
\| F\| L2

\nu \prime (H;H) := (\BbbE x\sim \nu \prime \| F (x)\| 2)1/2 is finite. Linearity gives additional structure. For any
linear T : \scrD (T )\subseteq H\rightarrow H, the identity \langle v,Tu\rangle = tr(Tu\otimes v) for all u\in \scrD (T ) and v \in H yields

(2.1) \BbbE x\sim \nu \prime \| Tx\| 2 = tr(T\Lambda \prime 1/2(T\Lambda \prime 1/2)\ast ) = \| T\Lambda \prime 1/2\| 2\mathrm{H}\mathrm{S} = \| T\| 2\mathrm{H}\mathrm{S}(H\Lambda \prime ;H) .

By (2.1), linear maps with finite L2
\nu \prime Bochner norm can be identified with weighted Hilbert--

Schmidt operators. This is useful, as the next fact (proved in Appendix C) demonstrates.
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490 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

Fact 2.1 (weighted Hilbert--Schmidt spaces). Suppose there is a symmetric positive-definite
linear operator \scrK \in \scrL (H) that satisfies \scrK  - 1/2 \in HS(H\Lambda \prime ;H), where \Lambda \prime = Cov[\nu \prime ]. Then
\nu \prime (H\scrK ) = 1. Additionally, if T \in HS(H\scrK ;H), then \BbbE x\sim \nu \prime \| Tx\| 2 <\infty .

For \scrK satisfying the hypotheses of Fact 2.1, the fact suggests that HS(H\scrK ;H) is a natural
Hilbert space for L to belong to. Defining \scrD (L) := \{ h \in H : Lh \in H\} (the usual domain for
many self-adjoint operators), Fact 2.1 also implies that \nu \prime (\scrD (L)) = 1. Identifying such a valid
\scrK requires some a priori knowledge about the unknown L. For example, later in subsection
3.1 we show how to choose a \scrK ``smoothing enough"" so that L \in HS(H\scrK ;H). For now, to
make sense of the remainder of section 2 we assume that the following condition holds.

Condition 2.2 (existence of \scrK ). There exists a symmetric positive-definite linear operator
\scrK \in \scrL (H) such that \{ \scrK  - 1/2\Lambda 1/2,\scrK  - 1/2\Lambda \prime 1/2\} \subset HS(H) and L\dagger \in HS(H\scrK ;H).

Our use of weighted Hilbert--Schmidt spaces is closely related to the notion of \Pi measurable
linear operators for a probability measure \Pi , which is a common way to work with unbounded
operators; see [33, 52] and [44, sects. 3--4]. If \scrK is compact, the weighted norm is weak in
the sense that HS(H\scrK ;H)\supset \scrL (H)\supset HS(H) [33, sect. 2.2]. However, if L is already Hilbert--
Schmidt on H, then the choice \scrK = Id \in \scrL (H) in Condition 2.2 is valid (if \Lambda \prime is trace-
class).

2.2.2. Data model. Recall the statistical model Y = KXL + \gamma \Xi (1.2) from subsection
1.1.1. We now give further details about each component in this data model.

Forward map. The input data X \sim \nu \otimes N in HN defines the linear forward map KX . We
enforce that the Borel probability measure \nu has a finite second moment. Hence, its covariance
\Lambda \in \scrL (H) is symmetric, nonnegative, and trace-class on H. We take \Lambda to be strictly positive-
definite for simplicity. For \scrK as in Condition 2.2 and for any Z \in HN

\scrK (the N -fold product
of H\scrK ), we define the forward map KZ \in \scrL (HS(H\scrK ;H);HN ) by T \mapsto \rightarrow KZT := (Tz1, . . . , T zN ).
Fact 2.3, proved in Appendix C, addresses the compactness of this map.

Fact 2.3 (noncompact). If Z \in HN
\scrK \setminus \{ 0\} , then KZ \in \scrL (HS(H\scrK ;H);HN ) is not compact.

Noise. Define \pi :=\scrN (0, Id). Since Id\in \scrL (H) is not trace-class on H, the white noise \xi \sim \pi 
is not a proper random element in H. It is instead defined as the H-indexed centered Gaussian
process \xi := \{ \xi h : h \in H\} with covariance (h,h\prime ) \mapsto \rightarrow \BbbE [\xi h\xi h\prime ] = \langle h,h\prime \rangle [44, sect. 2]. For \gamma > 0,
the noise is then \gamma \Xi , where \Xi \sim \pi \otimes N is assumed independent of X and L. Finally, we interpret
Y in (1.2) as N independent stochastic processes Yn := \{ \langle yn, h\rangle : h \in H\} for n \in \{ 1, . . . ,N\} ,
such that for h\in H, it holds that \langle yn, h\rangle | X,L\sim \scrN (\langle Lxn, h\rangle , \gamma 2\| h\| 2). Observing Y entrywise
on the indices \{ \varphi j\} leads to (1.3). The case of general Cov[\pi ] = \Gamma \in \scrL (H) may be handled by
prewhitening the data (1.2) [6, sect. 1]; see also the related Corollary 3.6.

Prior. We assume that L \sim \mu is a priori Gaussian, where \mu := \scrN (0,\Sigma ) is conjugate to
the likelihood, and independent of X and \Xi . Since we view the r.v. L : \scrD (L) \subseteq H \rightarrow H
as a densely defined operator, the sense in which \mu is a proper Gaussian measure requires
some care. Specifically, we take \Sigma \in \scrL (HS(H\scrK ;H)) to be symmetric, positive-definite, and
trace-class on HS(H\scrK ;H)\supseteq HS(H), but not necessarily trace-class on HS(H). Here \scrK ensures
that the support of \mu is large enough to encompass unbounded operators on H.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 491

Posterior. Recall that the realized data Y are given by (1.2) with L=L\dagger under Assumption
1.2. Since \Xi , X, and L are a priori independent, the posterior for L given Y and X, denoted
by \mu DN , is the same as that obtained when L is conditioned on Y with X fixed, a.s.; see [28,
Thms. 32, 13, and 37] for more justification. The Bayesian inverse problem (1.2) is linear and
Gaussian. Thus, the posterior is also a Gaussian on HS(H\scrK ;H) and is denoted by

(2.2) \mu DN =\scrN (\=L(N),\Sigma (N)) .

The posterior mean is \=L(N) = \BbbE L\sim \mu DN
L \in HS(H\scrK ;H). The posterior covariance operator is

\Sigma (N) \in \scrL (HS(H\scrK ;H)). Explicit formulas for both are known even in this infinite-dimensional
setting [44, 50, 52]. We link (2.2) to our diagonal formulation in the next three subsections.

2.2.3. Diagonalization. Recall the scalar sequence space model yjn = \langle \varphi j , xn\rangle lj+\gamma \xi jn for
j \in \BbbN and n \in \{ 1, . . . ,N\} (1.6).4 This model arises from the matrix sequence problem (1.3)
under Assumption 1.1 by noting that Ljk = \langle \varphi j ,L\phi k\rangle = lj\langle \varphi j , \phi k\rangle because L is self-adjoint.
The \{ \phi k\} are the orthonormal eigenvectors of \Lambda =Cov[\nu ]. For each n, the \{ xkn = \langle \phi k, xn\rangle \} k\in \BbbN 
are pairwise uncorrelated r.v.s by KL expansion. If L and \Lambda commute, then \{ \phi k =\varphi k\} can be
taken as the eigenbasis for L. For each n, the scalar model's coefficients \{ \langle \varphi j , xn\rangle \} are pairwise
uncorrelated in this case. However, in general L and \Lambda do not commute, so the coefficients
are correlated. For n\in \{ 1, . . . ,N\} , it is useful to write these as

(2.3) gjn := \langle \varphi j , xn\rangle =
\sum \infty 

k=1
\langle \varphi j , \phi k\rangle xkn and \vargamma 2j := Var[gj1] = \langle \varphi j ,\Lambda \varphi j\rangle for j \in \BbbN .

Our proofs use some independence-agnostic methods to deal with the dependent, correlated
family \{ gjn\} j\in \BbbN . Nonetheless, \{ gjn\} Nn=1 is still i.i.d. for fixed j and \BbbE [gjngjn\prime ] = 0 for n \not = n\prime .

2.2.4. Posterior characterization. For two sequences \{ ajn\} and \{ bjn\} , we henceforth use

the averaging notation ajbj
(N)

:= 1
N

\sum N
n=1 ajnbjn. For (1.6), we assume a prior \{ lj\} \sim \mu \mathrm{s}\mathrm{e}\mathrm{q} :=\bigotimes \infty 

j=1\scrN (0, \sigma 2j ). We will identify L \sim \mu with l := \{ lj\} \sim \mu \mathrm{s}\mathrm{e}\mathrm{q} in subsection 2.2.5. Under this
product prior, (1.6) decouples (i.e., \{ lj\} | DN = \{ lj | DN\} ) into an infinite number of random
scalar Bayesian inverse problems that are equivalent to the full infinite-dimensional problem
(1.2). By completing the square [70, Ex. 6.23], we obtain the following Gaussian posterior.

Fact 2.4 (posterior). The law of \{ lj\} | DN is \mu DN
\mathrm{s}\mathrm{e}\mathrm{q} =

\bigotimes \infty 
j=1\scrN (\=l

(N)
j , (\sigma 

(N)
j )2), where

(2.4) \=l
(N)
j =

N\gamma  - 2\sigma 2j yjgj
(N)

1 +N\gamma  - 2\sigma 2j gjgj
(N)

and (\sigma 
(N)
j )2 =

\sigma 2j

1 +N\gamma  - 2\sigma 2j gjgj
(N)

for j \in \BbbN .

2.2.5. Bayesian test error. The true L\dagger is naturally approximated by the posterior mean

estimator \=l(N) := \{ \=l(N)
j \} and the posterior sample estimator l(N) := \{ l(N)

j \} \sim \mu DN
\mathrm{s}\mathrm{e}\mathrm{q} . Defining

the linear bijection B : \{ lj\} \mapsto \rightarrow 
\sum \infty 

j=1 lj\varphi j \otimes \varphi j , it follows that the actual posterior \mu DN (2.2)

on L is the pushforward of \mu DN
\mathrm{s}\mathrm{e}\mathrm{q} under B, that is, L(N) \sim \mu DN =B\sharp \mu 

DN
\mathrm{s}\mathrm{e}\mathrm{q} =\scrN (\=L(N),\Sigma (N)).

4In the absence of noise \{ \gamma \xi jn\} , determination of \{ lj = l\dagger j\} is trivial: the diagonalizable structure arising from

Assumption 1.1 means that \{ l\dagger j\} may be recovered from a single input-output pair, say (x1,L
\dagger x1). However, our

nondiagonal simulation studies in section 4.2 will demonstrate the relevance of our theory beyond Assumption
1.1. In this setting, determination of \{ l\dagger j\} is no longer trivial in the noise-free case.
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Recall the measure \nu \prime from subsection 2.2.1 that has bounded covariance \Lambda \prime \in \scrL (H) (e.g.,
\Lambda \prime = Id is allowed). Assume \Lambda \prime has an orthonormal eigenbasis \{ \phi \prime k\} of H. We now view
\nu \prime as an arbitrary test data distribution that we are interested in predictions on. A useful
representation of the weighted norm (2.1) is T \mapsto \rightarrow \BbbE x\sim \nu \prime \| Tx\| 2 =

\sum 
j,k \lambda k(\Lambda 

\prime )\langle \varphi j , T\phi 
\prime 
k\rangle 2, where

\{ \lambda k(\Lambda \prime )\} denotes the eigenvalues of \Lambda \prime . In our setting, L is diagonal in \{ \varphi j\} which leads to

(2.5) \| L\| 2L2
\nu \prime (H;H) =

\sum \infty 

i=1
\vargamma \prime 2i l

2
i , where \vargamma 

\prime 2
j :=

\sum \infty 

k=1
\lambda k(\Lambda 

\prime )\langle \varphi j , \phi 
\prime 
k\rangle 2 = \langle \varphi j ,\Lambda 

\prime \varphi j\rangle 

for j \in \BbbN . We can now define a notion of test error (i.e., prediction or ``generalization"" error).

Definition 2.5 (test error: posterior). The test error of the posterior sample estimator is

(2.6) \BbbE DN\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =\BbbE DN\BbbE l(N)\sim \mu 

DN
\mathrm{s}\mathrm{e}\mathrm{q}

\sum \infty 

j=1
\vargamma 

\prime 2
j | l

\dagger 
j  - l

(N)
j | 2 .

The outer expectation is with respect to the data, and the inner expectation is with respect to
the Bayesian posterior. The definition of test error for the posterior mean is similar.

Definition 2.6 (test error: mean). The test error of the posterior mean estimator is

(2.7) \BbbE DN\| L\dagger  - \=L(N)\| 2L2
\nu \prime (H;H) =\BbbE DN

\sum \infty 

j=1
\vargamma 

\prime 2
j | l

\dagger 
j  - \=l

(N)
j | 2 .

We say that (2.6) or (2.7) tests in-distribution if \nu \prime = \nu and out-of-distribution or under
distribution shift otherwise. If \Lambda \prime = Id, then the L2

\nu \prime Bochner norm equals the familiar
unweighted HS(H) norm. In section 3, we study the N \rightarrow \infty asymptotics of (2.6) and (2.7).

2.3. Statistical learning. We briefly adopt a statistical learning theory perspective to
complement the Bayesian approach of subsection 2.2. Let \scrP denote the joint distribution on
(x, y) implied by y =L\dagger x+ \gamma \xi , where x\sim \nu and \xi \sim \pi =\scrN (0, Id) independently. The data in
(1.1) are then (xn, yn)\sim \scrP i.i.d., n\in \{ 1, . . . ,N\} . Since regression is our focus, it is natural to
work with the square loss function onH. Then \BbbE (x,y)\sim \scrP 1

2\| y - Lx\| 2 and 1
N

\sum N
n=1

1
2\| yn  - Lxn\| 2

define the expected risk and empirical risk for L, respectively. However, these expressions are
not well-defined because an infinite-dimensional H implies \| y\| = \| \xi \| =\infty a.s. [70, Rem. 3.8].
Inspired by the negative log likelihood of \mu DN as in [9, 59], we redefine the risks as follows.

Definition 2.7 (expected risk). Given L, the expected risk (or population risk) is

(2.8) \scrR \infty (L) :=\BbbE (x,y)\sim \scrP [12\| Lx\| 
2  - \langle y,Lx\rangle ] .

Definition 2.8 (empirical risk). Given L, the empirical risk is

(2.9) \scrR N (L) :=
1

N

\sum N

n=1

\Bigl[ 
1
2\| Lxn\| 

2  - \langle yn,Lxn\rangle 
\Bigr] 
= 1

2\| KXL\| 2HN  - \langle Y,KXL\rangle HN ,

and the regularized empirical risk is

(2.10) \scrR N,W (L) :=\scrR N (L) + 1
2N \| W - 1/2L\| 2\mathrm{H}\mathrm{S}(H\scrK ;H) ,

where W \in \scrL (HS(H\scrK ;H)) is symmetric positive-definite and \scrK is as in Condition 2.2.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 493

Equations (2.8) and (2.9) are well-defined because the ``infinite constants"" 1
2\| y\| 

2 and
1
2\| yn\| 

2 from the original risk expressions are subtracted away and the linear cross terms
\langle y,Lx\rangle and \langle yn,Lxn\rangle , viewed as actions under stochastic processes (see subsection 2.2.2), are
finite a.s.

The role of risk is to quantify the accuracy of an hypothesis L. By the independence
of x and \xi plus the stochastic process definition of \pi in subsection 2.2.2, \BbbE (x,y)\sim \scrP \langle y,Lx\rangle =
\BbbE x\sim \nu \langle L\dagger x,Lx\rangle so that \scrR \infty (L) = 1

2\BbbE 
x\sim \nu \| L\dagger x - Lx\| 2  - 1

2\BbbE 
x\sim \nu \| L\dagger x\| 2. Thus, the infimum of

\scrR \infty is achieved at the regression function [22] \BbbE [y | x = \cdot ] = L\dagger \in HS(H\scrK ;H). Minimizers
of the empirical risk over the RKHS hypothesis class L = Im(W 1/2) are point estimates
of the true L\dagger (but we do not require L\dagger \in L ). Our focus is the minimizer \^L(N,W ) of the
convex functional (2.10) over L . It may be identified as the posterior mean \=L(N) from (2.2)
whenever \gamma 2W equals the prior covariance \Sigma [27]. We enforce this and write \^L(N,W ) \equiv \=L(N).
To quantify the performance of \=L(N), we employ the following notions of error from statistical
learning.

Definition 2.9 (excess risk). The excess risk of the posterior mean is defined by

(2.11) \scrE N := 2\scrR \infty (\=L(N)) - 2\scrR \infty (L\dagger ) =\BbbE x\sim \nu \| L\dagger x - \=L(N)x\| 2 .

The excess risk is always nonnegative and provides a notion of consistency for \=L(N). In
subsection 3.5, we control (2.11) either in expectation, \BbbE DN\scrE N , or with high probability over
the input training samples, \BbbE Y | X\scrE N . The last expectation is over the noise only, under (1.2).

Next, we define the generalization gap. It can take any sign and, as the difference between
test and training errors, controls the amount of ``overfitting"" that \=L(N) can exhibit.

Definition 2.10 (generalization gap). The generalization gap of the posterior mean is

(2.12) \scrG N :=\scrR \infty (\=L(N)) - \scrR N (\=L(N)) .

Equation (2.12) may be written in terms of L\dagger instead of y (see (A.4) in the proof of
Theorem 3.11). In subsection 3.6, we bound the expected generalization gap \BbbE DN | \scrG N | .

3. Convergence rates. We are now ready to study the sample complexity of the posterior
estimator (2.4) with respect to the notions of error defined in subsections 2.2.5 and 2.3. In
subsection 3.1, we list and interpret our main assumptions. In subsection 3.2, under fourth
moment conditions we establish asymptotic convergence rates of both the posterior sample and
mean estimators and related lower bounds. Posterior contraction is discussed in subsection
3.3. Analogous high probability results are developed in subsection 3.4 for sub-Gaussian
design. Last, both upper and lower bounds are established in expectation for the excess risk
and generalization gap in subsections 3.5 and 3.6. We collect all of the proofs in Appendix A.

3.1. Main assumptions. In the setting of the sequence model (1.6), our convergence
theory for diagonal linear operator learning is primarily developed under five assumptions.

Assumption 3.1 (eigenvalue learning assumptions). The following conditions hold true.

(A1) (diagonal true operator) Assumptions 1.1 and 1.2 hold, so that L\dagger =
\sum \infty 

j=1 l
\dagger 
j\varphi j \otimes \varphi j .

(A2) (smoothness of true operator) The true eigenvalues satisfy l\dagger := \{ l\dagger j\} \in \scrH s for some
s\in \BbbR .
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494 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

(A3) (smoothness of prior) The prior variance sequence \{ \sigma 2j \} in \mu \mathrm{s}\mathrm{e}\mathrm{q} =
\bigotimes \infty 

j=1\scrN (0, \sigma 2j )
satisfies

(3.1) \sigma 2j =\Theta (j - 2p) as j\rightarrow \infty for some p\in \BbbR .

(A4) (smoothness of data) The trace-class covariance operator \Lambda \in \scrL (H) of the input train-
ing data distribution \nu satisfies

(3.2) \vargamma 2j = \langle \varphi j ,\Lambda \varphi j\rangle =\Theta (j - 2\alpha ) as j\rightarrow \infty for some \alpha > 1/2 .

The input test data distribution \nu \prime is a centered Borel probability measure with a
bounded covariance operator \Lambda \prime \in \scrL (H) that satisfies

(3.3) \vargamma 
\prime 2
j = \langle \varphi j ,\Lambda 

\prime \varphi j\rangle =\Theta (j - 2\alpha \prime 
) as j\rightarrow \infty for some \alpha \prime \geq 0 .

(A5) (smoothness range) It holds that (\alpha \wedge \alpha \prime ) + s > 0 and (\alpha \wedge \alpha \prime ) + (p - 1/2)> 0.

These assumptions are interpreted as follows.
Item (A1): The diagonalization allows us to identify L\dagger with its eigenvalues l\dagger . The domain

\scrD (L\dagger ) := \{ h\in H : \| L\dagger h\| 2 =
\sum \infty 

j=1| l
\dagger 
j | 2\langle \varphi j , h\rangle 2 <\infty \} ensures that L\dagger is self-adjoint on H.

Item (A2): The regularity condition l\dagger \in \scrH s implicitly determines the sense in which the
series expansion for L\dagger in (A1) converges. If s\geq 0, then L\dagger \in HS(H). Otherwise, there exists
\scrK \in \scrL (H) such that L\dagger \in HS(H\scrK ;H). For example, define \scrK s\prime :=

\sum 
j \kappa 

2
j\varphi j \otimes \varphi j with \kappa 

2
j = j2s

\prime 
.

Then \| L\dagger \| \mathrm{H}\mathrm{S}(H\scrK 
s\prime 
;H) = \| l\dagger \| \scrH s\prime , so L\dagger converges in HS(H\scrK s\prime ;H) for any s\prime \leq s < 0.

Item (A3): The exponent p \in \BbbR in (3.1) adjusts the regularity of prior draws l \sim \mu \mathrm{s}\mathrm{e}\mathrm{q}:
l \in \scrH s\prime a.s. for every s\prime < p - 1/2. The choice p= s+1/2 thus gives the closest match to the true
regularity of l\dagger \in \scrH s. Relating back to subsection 2.2.2, the full prior is \mu =B\sharp \mu \mathrm{s}\mathrm{e}\mathrm{q} =\scrN (0,\Sigma ).
With, e.g., \scrK =\scrK s\prime as above, \Sigma then satisfies \Sigma \varphi i \otimes \varphi j = \kappa 2j\sigma 

2
j \delta ij\varphi i \otimes \varphi j for all i, j.

Item (A4): Equations (3.2) and (3.3) reflect algebraic spectral decay of the input data
covariance operators with respect to the eigenbasis \{ \varphi j\} of L\dagger . This provides a weak link
between the data distributions and the prior; see item (D2). Although sharp bounds such as
(3.2) and (3.3) may be difficult to verify when \Lambda or \Lambda \prime is not diagonalized in \{ \varphi j\} , Figure 2
provides strong numerical evidence that the exact power law decay can still exist in this setting.

Item (A5): The first inequality in (A5) ensures that L\dagger has finite L2
\nu and L

2
\nu \prime Bochner norms

(2.5). In particular, \nu (\scrD (L\dagger )) = \nu \prime (\scrD (L\dagger )) = 1.5 The second inequality ensures that the prior
covariance \Sigma is trace-class on both HS(H\Lambda ;H) and HS(H\Lambda \prime ;H). This means L\sim \mu =\scrN (0,\Sigma )
has finite L2

\nu and L2
\nu \prime Bochner norms a.s. It follows that the latter two assertions also hold

for the posterior \mu DN =\scrN (\=L(N),\Sigma (N)), a.s. with respect to DN .

3.2. Expectation bounds. To develop error bounds in expectation, we only require mild
polynomial moment conditions on the input training data measure \nu .

5Notice that we do not invoke the \scrK -weighted Hilbert--Schmidt formulation from sections 2.2.1 and 2.2.2
in Assumption 3.1. Such abstraction is unnecessary for our straightforward diagonal approach (item (A1)). In
particular, the scalar sequence space model (1.6) is well-defined without reference to any \scrK . However, work
going beyond diagonal operators may need to use HS(H\scrK ;H) spaces, with \scrK satisfying Condition 2.2.
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Figure 2. Example of exact power law spectral decay (3.2) when \Lambda is not diagonalized by \{ \varphi j\} . Here we
choose \Lambda =\Lambda (\~\alpha ) such that its eigenpairs \{ (\lambda 2

k, \phi k)\} satisfy \lambda 2
k = 152\~\alpha  - 1((k\pi )2 + 225) - \~\alpha =\Theta (k - 2\~\alpha ) with \~\alpha \in \BbbR 

and z \mapsto \rightarrow \phi k(z) =
\surd 
2 sin(k\pi z). We choose output basis z \mapsto \rightarrow \varphi j(z) =

\surd 
2cos((j  - 1

2
)\pi z). Both \{ \phi k\} and \{ \varphi j\} 

are orthonormal bases of H = L2((0,1);\BbbR ). One can show that \vargamma 2
j = \langle \varphi j ,\Lambda (\~\alpha )\varphi j\rangle =

\sum \infty 
k=1 64\pi 

 - 2\lambda 2
kk

2(4(j(j  - 
1)  - k2) + 1) - 2. For select j \leq 221, we sum the first 221 terms of this series to approximately compute the
\{ \vargamma 2

j\} . Figure 2(a) shows that \vargamma 2
j decays asymptotically as a power law (with magenta lines being linear least

squares fits) for various \~\alpha (saturating near 2\~\alpha = 4). Figure 2(b) suggests that \Lambda satisfies assumption (A4) with
\alpha = \~\alpha \wedge 2.

Assumption 3.2 (expectation: training data). The training data distribution \nu is a centered
Borel probability measure on H with KL expansion x =

\sum \infty 
k=1 \lambda k\zeta k\phi k \sim \nu . The eigenvalues

\{ \lambda 2k\} of Cov[\nu ] = \Lambda are ordered to be nonincreasing, and the zero mean and unit variance
r.v.s \{ \zeta k\} are independent, have finite fourth moments, and satisfy \BbbE [\zeta 4j ] = O(1) as j \rightarrow \infty .

In particular, \BbbE x\sim \nu \| x\| 4 < \infty . Last, the r.v.s \{ gjgj(N)\} j,N\in \BbbN , defined in subsection 2.2.4 as

gjgj
(N) = 1

N

\sum N
n=1\langle \varphi j , xn\rangle 2, satisfy limsupN\rightarrow \infty \BbbE [(gjgj(N)) - 4]\lesssim \langle \varphi j ,\Lambda \varphi j\rangle  - 4 for all j \in \BbbN .

Henceforth, it is useful to define the parametrized sequences \{ JN\} N\in \BbbN and \{ \rho N\} N\in \BbbN by

(3.4) JN (\alpha ,p) :=
\Bigl\lfloor 
N

1

2(\alpha +p)

\Bigr\rfloor 
and \rho N (\alpha ,\alpha \prime , p) :=

\left\{       
N - (1 - \alpha +1/2 - \alpha \prime 

\alpha +p
) if \alpha \prime <\alpha + 1/2 ,

N - 1 logN if \alpha \prime = \alpha + 1/2 ,

N - 1 if \alpha \prime >\alpha + 1/2 ,

respectively, for N \in \BbbN . Notice that JN \rightarrow \infty (if \alpha +p > 0) and \rho N =\Omega (N - 1) as N \rightarrow \infty . Our
main result gives asymptotic convergence rates of the test errors from subsection 2.2.5.

Theorem 3.3 (expectation: upper bound). Let the ground truth L\dagger , prior \mu on L, training
data distribution \nu , and test data distribution \nu \prime satisfy Assumptions 3.1 and 3.2. Let \rho N =
\rho N (\alpha ,\alpha \prime , p) in (3.4) with \alpha , \alpha \prime , and p as in Assumption 3.1. Denote by \mu DN the posterior
distribution (2.2) for L arising from the observed data DN = (X,Y ) in (1.2). Then

(3.5) \BbbE DN\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =O(\rho N ) + o(N

 - 
\Bigl( 

\alpha \prime +s

\alpha +p

\Bigr) 
) as N \rightarrow \infty ,

where the constants in this upper bound depend on L\dagger or, equivalently, on l\dagger . Furthermore,

(3.6) sup
\| l\dagger \| \scrH s\lesssim 1

\BbbE DN\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =O(\rho N +N

 - 
\Bigl( 

\alpha \prime +s

\alpha +p

\Bigr) 
) as N \rightarrow \infty .

Both assertions also hold for the test error (2.7) of the posterior mean \=L(N).
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496 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

Theorem 3.3 has the same implications as Theorem 1.3, namely, principles (P1) to (P3).
The effect of distribution shift (P3) in (3.5) is apparent: increasing \alpha \prime always improves the
sample complexity (until the rateN - 1 is achieved). We note that the three smoothness cases in
the \rho N term from (3.5) are similar to those in functional linear regression [21]. The ``matching""
prior smoothness choice p= s+1/2 leads to asymptotically balanced contributions from both
error terms in (3.6). The rate is then N - (2\alpha \prime +2s)/(1+2\alpha +2s) if \alpha \prime < \alpha + 1/2 (which for \alpha \prime = \alpha 
is minimax optimal [23, 43, 44]) or N - 1 (up to logarithms) if \alpha \prime \geq \alpha + 1/2. Principles (P1)
and (P2) are evident: as s decreases (L\dagger becomes ``less compact"" and possibly unbounded)
and \alpha increases (the \{ xn\} become smoother), the rates degrade. Figure 1 visualizes these
rates in various settings. Last, we note that the rate of convergence in (3.5) can be strictly
faster when L\dagger is fixed as opposed to when L\dagger is varying for the worst case error (3.6).
Our interest is mainly in individual bounds (i.e., fixed L\dagger ) because these are more useful in
practice.

Next, we provide a lower bound corresponding to a given L\dagger , equivalently, l\dagger .

Theorem 3.4 (expectation: lower bound). Let the hypotheses of Theorem 3.3 be satisfied.
Let JN = JN (\alpha ,p) in (3.4) with \alpha and p as in Assumption 3.1. Then for any positive sequence
\{ \tau n\} such that \tau n \rightarrow 0 and n\tau n \rightarrow \infty as n\rightarrow \infty , the posterior mean test error satisfies

(3.7) \BbbE DN\| L\dagger  - \=L(N)\| 2L2
\nu \prime (H;H) =\Omega 

\Bigl( 
\tau N\rho N +

\sum 
j>JN

j - 2\alpha \prime | l\dagger j | 
2
\Bigr) 

as N \rightarrow \infty .

The same assertion holds for the test error (2.6) of the full posterior \mu DN , but without \{ \tau n\} .
The tail series term in (3.7) is closely related to the lower bound in [49, Thm. 3.4] for

nonlinear operator learning because both involve the spectral decay of the covariance operator
of the pushforward measure L\dagger 

\sharp \nu 
\prime . Since this tail term is order N - (\alpha \prime +s)/(\alpha +p)o(1) by (B.1) in

Lemma B.1, the lower bound (3.7) ``matches"" the corresponding terms in the individual upper
bound (3.5) up to o(1) factors. But without further conditions on l\dagger (and hence knowledge
about the o(1) factors), the bounds are not guaranteed to be sharp in the oversmoothing prior
regime p > s+ 1/2. The rates do match (up to \tau N in (3.7) for \=L(N), but \tau N is under control)
for undersmoothing priors with p\leq s+ 1/2 because the \rho N terms in both Theorems 3.3 and
3.4 dominate. The \{ \tau n\} factor is likely an artifact of our proof technique. By choosing l\dagger such
that | l\dagger j | = J - s

N \delta j - 1,JN
in (3.7), Theorem 3.4 also implies that (3.6) is truly sharp.

So far, we have assumed that l\dagger \in \scrH s for some s. However, this does not preclude the
possibility that l\dagger \in \scrH s\prime for another s\prime > s. For example, the previous theorems account for
operators with analytic spectral smoothness (see subsection 1.3): l\dagger j \asymp exp( - c1jc2) for c1 and

c2 > 0 (here l\dagger \in \scrH s for every s \in \BbbR ). Nevertheless, many scientific problems are naturally
distinguished by regularly varying eigenvalues. These behave like a power law up to a slowly
varying function S : \BbbR \geq 0 \rightarrow \BbbR \geq 0 [14] (this means that S(\lambda x)/S(x) \rightarrow 1 as x \rightarrow \infty for every
\lambda > 0; examples include logarithms or functions with positive limit). The following sharp
convergence result concerns posterior sample estimates of regularly varying true eigenvalues.
Similarly, it may be proved for the posterior mean, but the upper and lower bounds must be
considered separately as in Theorems 3.3 and 3.4. The implications are the same.
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Theorem 3.5 (asymptotically sharp bound for regularly varying eigenvalues). Let the hypothe-
ses of Theorem 3.3 be satisfied, but instead of (A2), let L\dagger be such that | l\dagger j | =\Theta (j - 1/2 - sS(j))
as j\rightarrow \infty for some slowly varying function S at infinity. Let JN = JN (\alpha ,p) in (3.4). Then

(3.8) \BbbE DN\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =\Theta (\rho N +N

 - 
\Bigl( 

\alpha \prime +s

\alpha +p

\Bigr) 
S2(JN )) as N \rightarrow \infty .

Although we have thus far restricted our attention to the Gaussian white noise model
(1.2), the next corollary shows that our theory remains valid for smoother Gaussian noise.

Corollary 3.6 (colored noise). Suppose that the Gaussian distribution of the \{ \xi n\} deter-
mining the data Y in (1.2) is not necessarily white, but is instead given by \pi = \scrN (0,\Gamma ),
where \Gamma \in \scrL (H) is symmetric positive-definite with eigenbasis \{ \varphi j\} shared with L\dagger and ei-
genvalues \lambda j(\Gamma ) = \Theta (j - 2\beta ) as j \rightarrow \infty for some \beta \geq 0. Let \mu DN

\mathrm{s}\mathrm{e}\mathrm{q} be given by (2.4) ex-
cept with each \gamma 2 replaced by \gamma 2\lambda j(\Gamma ). Let the hypotheses of Theorems 3.3 to 3.5 hold,
respectively, except let \rho N = \rho N (\alpha  - \beta ,\alpha \prime , p), JN = JN (\alpha  - \beta , p), and instead of (A5), let
min\{ \alpha  - \beta ,\alpha \prime \} +min\{ p - 1/2, s\} > 0. Then the results of Theorems 3.3 to 3.5 remain valid,
respectively, if in each display (3.5)--(3.8) every instance of \alpha is replaced by \alpha  - \beta .

The corollary follows from the hypothesis that \Gamma and L\dagger commute. Indeed, prewhitening
the new output data give \Gamma  - 1/2yn = L\dagger \Gamma  - 1/2xn + \gamma \scrN (0, Id), which our existing theory can
handle. This result implies that larger \beta (smoother noise) improves convergence rates because
the input data smoothness has effectively been reduced from \alpha to \alpha  - \beta (see principle (P2)).

3.3. Posterior contraction. The performance of Bayesian procedures is often quantified
by the rate of contraction of the posterior around the true data-generating parameter as
N \rightarrow \infty . In the setting of operator learning, we follow [5, 8, 43, 44] and consider finding a
positive sequence \varepsilon N \rightarrow 0 such that for any positive sequence MN \rightarrow \infty , it holds that

(3.9) \BbbE DN\mu DN (\{ L : \| L\dagger  - L\| L2
\nu \prime (H;H) \geq MN\varepsilon N\} )\rightarrow 0 as N \rightarrow \infty .

We say that \varepsilon N is a contraction rate of the posterior \mu DN with respect to the L2
\nu \prime (H;H)

Bochner norm. By Chebyshev's inequality, (Mn\varepsilon N ) - 2 times the posterior test error (2.6) is
an upper bound for the left-hand side of (3.9). Thus, the limit in (3.9) holds true if (2.6) is
O(\varepsilon 2N ) as N \rightarrow \infty . The next corollary is then a consequence of Theorem 3.3.

Corollary 3.7 (posterior contraction). Let the hypotheses of Theorem 3.3 be satisfied. Then
any sequence \{ \varepsilon N\} N\in \BbbN such that \varepsilon 2N is of the order of the right-hand side of (3.5) as N \rightarrow \infty 
is a contraction rate of \mu DN with respect to the L2

\nu \prime (H;H) Bochner norm.

We deduce that the inverse problem (1.2) for linear operator learning is moderately ill-
posed [6, sect. 4] under Assumptions 3.1 and 3.2 because \varepsilon 2N follows a power law (3.5). Since
\mu DN is Gaussian, (2.6) admits a decomposition into three terms: the squared estimation bias,
estimation variance, and posterior spread (i.e., the trace of \Sigma (N)) [6, sect. 1.1]. Inspection of
the proof of Theorem 3.3 shows that the second term on the right of (3.5) is the contribution
from the squared estimation bias, while the first is from both the estimation variance and
posterior spread (A.1). Interpretations are similar for the remaining theorems.
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3.4. High probability bounds. A stronger assumption on the input data distribution is
needed to obtain concentration bounds. It includes Gaussian measures as a special case.

Assumption 3.8 (high probability: training data). The training data distribution \nu is a
centered Borel probability measure on H with KL expansion x =

\sum \infty 
k=1 \lambda k\zeta k\phi k \sim \nu . The

eigenvalues \{ \lambda 2k\} of Cov[\nu ] = \Lambda are ordered to be nonincreasing, and the zero mean and unit
variance r.v.s \{ \zeta k\} are independent \sigma 2\nu -sub-Gaussian for some absolute constant \sigma \nu \geq 1. In
particular, \nu is a strict sub-Gaussian measure with trace-class covariance operator proxy \Lambda .6

The next result holds with high probability over the sub-Gaussian design X \sim \nu \otimes N .

Theorem 3.9 (high probability: upper and lower bounds). Let the ground truth L\dagger , prior \mu 
on L, training data distribution \nu , and test data distribution \nu \prime satisfy Assumptions 3.1 and
3.8. Let JN = JN (\alpha ,p) and \rho N = \rho N (\alpha ,\alpha \prime , p) in (3.4) with \alpha , \alpha \prime , and p as in Assumption
3.1. Denote by \mu DN the posterior distribution (2.2) for L arising from the observed data
DN = (X,Y ) in (1.2). There is an absolute constant c1 > 0 for which the following holds.
Suppose \delta \in (0,1 \wedge c1\sigma 2\nu ). Define N\delta  - := (1 - \delta )N for N \in \BbbN . Then there exist two constants
c2 = c2(\delta )> 0 and c3 \in (0,1/(2c21\sigma 

4
\nu )) such that, as N \rightarrow \infty , it holds that

(3.10) \BbbE Y | X\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =O(( 2\delta 

1 - \delta 1\{ \alpha \prime <\alpha +1/2\} + 1)\rho N\delta  - 
) + o(N

 - 
\Bigl( 

\alpha \prime +s

\alpha +p

\Bigr) 
\delta  - )

with probability at least 1 - c2 exp( - c3N\delta 2) over X \sim \nu \otimes N and

(3.11) \BbbE Y | X\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) =\Omega 

\Bigl( 
\rho N +

\sum 
j>JN

j - 2\alpha \prime | l\dagger j | 
2
\Bigr) 

with probability at least 1 - c2 exp( - c3N\delta 2) over X \sim \nu \otimes N . Both assertions remain valid if
the inner expectations are removed and L(N) is replaced by the posterior mean \=L(N), and, for
the lower bound only, the term \rho N is multiplied by 1 - \delta on the right hand side of (3.11).

We explicitly see that the probability of failure for Theorem 3.9 is exponentially small in
the sample size. The implications of this theorem are the same as those of Theorem 3.3. The
corresponding lower bounds are analogous to the in-expectation results from Theorem 3.4.

3.5. Excess risk. In the previous two subsections, we bounded the test error (2.6) from
above and below. It follows that corresponding bounds for the excess risk \scrE N (2.11) may be
obtained by specializing to the in-distribution case \nu \prime = \nu for the posterior mean (so \alpha \prime = \alpha ).

Corollary 3.10 (expected excess risk: upper and lower bounds). Let the hypotheses of Theo-
rems 3.3 and 3.4 be satisfied. Then the expected excess risk \BbbE DN\scrE N satisfies the bounds

(3.12) \BbbE DN\BbbE x\sim \nu \| L\dagger x - \=L(N)x\| 2 =O(N
 - 
\Bigl( 

\alpha +p - 1/2

\alpha +p

\Bigr) 
) + o(N

 - 
\Bigl( 

\alpha +s

\alpha +p

\Bigr) 
) as N \rightarrow \infty ,

and for any positive sequence \{ \tau n\} such that \tau n \rightarrow 0 and n\tau n \rightarrow \infty as n\rightarrow \infty , it holds that

(3.13) \BbbE DN\BbbE x\sim \nu \| L\dagger x - \=L(N)x\| 2 =\Omega 
\Bigl( 
\tau NN

 - 
\Bigl( 

\alpha +p - 1/2

\alpha +p

\Bigr) 
+
\sum 

j>JN

j - 2\alpha | l\dagger j | 
2
\Bigr) 

as N \rightarrow \infty .

6A centered real-valued r.v. Z is \sigma 2-sub-Gaussian, denoted by Z \in SG(\sigma 2), if \BbbE exp(tZ) \leq exp(\sigma 2t2/2)
for all t \in \BbbR [74]. On a Hilbert space (H, \langle \cdot , \cdot \rangle ), a centered H-valued r.v. x is sub-Gaussian with respect
to trace-class covariance operator proxy Q \in \scrL (H), denoted by x \in SG(Q), if there exists q \geq 0 such that
\BbbE exp(\langle h,x\rangle )\leq exp(q2\langle h,Qh\rangle /2) for all h\in H [10]. It is strictly sub-Gaussian if Q\preccurlyeq c\BbbE [x\otimes x] for some c > 0.
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LEARNING LINEAR OPERATORS FROM NOISY DATA 499

Corollary 3.10 is proved as a consequence of Theorems 3.3 and 3.4. A similar result may
be established for \BbbE Y | X\scrE N by using Theorem 3.9. We omit the details for brevity. It is
also interesting that fast rates for the excess risk (i.e., faster than N - 1/2 [53]) are attained
by the posterior mean eigenvalue estimator in certain regimes. The usual statistical learning
techniques based on bounding suprema of empirical processes typically yield slow N - 1/2 rates
or worse [71]. Our results are sharper because we use explicit diagonal calculations.

3.6. Generalization gap. Last, we estimate the generalization gap (2.12) in L1
\BbbP (\Omega ;\BbbR ).

Theorem 3.11 (expected generalization gap: upper and lower bounds). Let the hypotheses of
Theorem 3.3 be satisfied. Then for \scrG N as in (2.12), it holds that

(3.14) \BbbE DN | \scrG N | =O(N
 - 
\Bigl( 

1

2
\wedge \alpha +p - 1/2

\alpha +p

\Bigr) 
) as N \rightarrow \infty .

Additionally, for any positive sequence \{ \tau n\} such that \tau n \rightarrow 0 and n1/2\tau n \rightarrow \infty as n\rightarrow \infty ,

(3.15) \BbbE DN | \scrG N | =\Omega (\tau NN
 - 
\Bigl( 

\alpha +p - 1/2

\alpha +p

\Bigr) 
) as N \rightarrow \infty 

if (\alpha + s)/(\alpha + p) \geq 2. Otherwise, the previous assertion (3.15) remains valid provided that
p < 1 + \alpha + 2s and \tau n \gg n - 1/2 \vee n - (1+\alpha +2s - p)/(2\alpha +2p) as n\rightarrow \infty .

We see that the expected generalization gap decays at least as fast as the standard Monte
Carlo rate N - 1/2 if \alpha + p\geq 1. Otherwise, it decays at a slower rate that is arbitrarily slow as
\alpha + p approaches 1/2 from above. The lower bound only matches the latter contribution.

4. Numerical studies. We now instantiate our operator learning framework numerically,
both according to the theory (section 4.1) and beyond (section 4.2). For clarity, we only
implement the posterior mean estimator \=L(N). Our conceptually infinite-dimensional problem
must be carefully discretized to avoid obscuring the theoretical infinite-dimensional behavior
[4, sect. 1.2]. We use spectral truncation [4, 7] to finite-dimensionalize infinite sequence
spaces. For v = \{ vj\} \in \BbbR \infty , its truncation is v(J) := \{ vj\} j\leq J \in \BbbR J for J \in \BbbN ``Fourier"" modes.
We use the relative expected squared L2

\nu \prime Bochner norm as a numerical error metric, given by

(4.1) \BbbE DN\BbbE x\sim \nu \prime \| L\dagger x - \=L(N)x\| 2/\BbbE x\sim \nu \prime \| L\dagger x\| 2 =\BbbE DN

\sum \infty 

j=1
\vargamma 

\prime 2
j | l

\dagger 
j  - \=l

(N)
j | 2/

\sum \infty 

k=1
\vargamma \prime 2k | l

\dagger 
k| 

2 .

4.1. Within the theory. We now confirm the theoretical results of this paper with sim-
ulation studies. Define A : \scrD (A) \subset H \rightarrow H by h \mapsto \rightarrow Ah :=  - \Delta h with domain \scrD (A) :=
H1

0 (I;\BbbR ) \cap H2(I;\BbbR ), where I := (0,1), H := L2(I;\BbbR ), and \Delta is the Laplacian (i.e., second
derivative). We consider truths L\dagger = A, Id, and A - 1 corresponding to unbounded, bounded,
and compact self-adjoint operators on H, respectively. The map A is diagonalized in the
orthonormal basis \{ \varphi j\} of H given by z \mapsto \rightarrow \varphi j(z) =

\surd 
2 sin(j\pi z). This is the output space basis

used henceforth. Then L\dagger = A, Id, and A - 1 have eigenvalue sequences l\dagger = \{ (j\pi )2\} ,\{ 1\} , and
\{ (j\pi ) - 2\} \in \scrH s for any s < s \star , where s \star = - 5/2, - 1/2, and 3/2, respectively. These eigenvalues
are regularly varying (with S \equiv 1) as in Theorem 3.5.

We work in the Gaussian setting of Theorem 1.3. We choose Mat\'ern-like covariances

(4.2) \Lambda = \tau 2\alpha  - 1
1 (A+ \tau 21 Id)

 - \alpha and \Lambda \prime = \tau 2\alpha 
\prime  - 1

2 (A+ \tau 22 Id)
 - \alpha \prime 
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500 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

for \nu and \nu \prime . Here \{ \tau i\} i=1,2 are inverse length scales. Draws from \nu (resp., \nu \prime ) are in \scrH s\prime for all
s\prime <\alpha  - 1/2 (resp., s\prime <\alpha \prime  - 1/2). Notice that L\dagger , \Lambda , and \Lambda \prime are simultaneously diagonalizable
in \{ \phi j \equiv \varphi j\} . The eigenvalues are \lambda j(\Lambda ) = \vargamma 2j = \tau 2\alpha  - 1

1 ((j\pi )2 + \tau 21 )
 - \alpha \asymp j - 2\alpha and similarly for

\lambda j(\Lambda 
\prime ) = \vargamma 

\prime 2
j \asymp j - 2\alpha \prime 

. These satisfy assumption (A4). We directly define the prior covariance

\Sigma in sequence space according to assumption (A3), choosing \sigma 2j := \tau 2p - 1
3 ((j\pi )2+ \tau 23 )

 - p \asymp j - 2p

for \tau 3 > 0. We enforce assumption (A5) for the values of \alpha ,\alpha \prime , and p.
An independent random dataset DN (as in (1.6)) is generated for each sample size N \in \BbbN 

to construct \=l(N). For each N , this is repeated 250, 500, or 1000 times for L\dagger =A, Id, and A - 1,
respectively, to approximate the outer expectation in (4.1) by sample averages. Convergence
rates are produced by linear least squares fits to the logarithm of computed errors. We fix the
noise scale to be \gamma = 10 - 1,10 - 3, and 10 - 5 for L\dagger =A, Id, and A - 1, respectively.

4.1.1. In-distribution. We set \alpha = \alpha \prime = 4.5 (in-distribution), \tau 1 = \tau 2 = 15, \tau 3 = 1, and
define the prior smoothness p= p(L\dagger ) = 1/2+s \star (L\dagger )+z, where z = - 0.75,0, or 0.75 is a fixed
shift to replicate rough, matching, or smooth priors, respectively. Sequences are discretized
by keeping up to J = 216 = 65,536 Fourier modes. The sample size is N \in \{ 24,25, . . . ,214\} .
Table 1 empirically verifies our sharp theoretical predictions from Theorem 3.5 for \BbbE DN\scrE N .
The convergence as N increases is visualized in Figure 3(a) for the smooth prior case.

Moving on to study the rates of convergence of \BbbE DN\scrE N and \BbbE DN | \scrG N | for unbounded
L\dagger = A in more detail, we now use N -dependent spectral truncation. For each N , we only
take Fourier modes from the set \{ j \in \BbbN : j \leq cJN\} , where c > 0 is a tunable constant and

Table 1
Matching test measure. Theoretical versus experimental (in parentheses) convergence rate exponents r in

O(N - r) of the relative expected squared L2
\nu (H;H) in-distribution error (i.e., the scaled excess risk \BbbE DN \scrE N ).

L\dagger \{ Operator class\} Rough prior Matching prior Smooth prior

A \{ Unbounded\} 0.714 (0.714) 0.800 (0.809) 0.615 (0.616)
Id \{ Bounded\} 0.867 (0.865) 0.889 (0.889) 0.762 (0.762)
A - 1 \{ Compact\} 0.913 (0.913) 0.923 (0.920) 0.828 (0.830)
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Figure 3. Within the theory. Figure 3(a) (corresponding to Table 1 column four) shows that convergence
improves with increased operator smoothing (the logarithmic vertical axis is rescaled to ease comparison of the
slopes). Figures 3(b) to 3(d) are such that z = 0 (matching p = s \star + 1/2) and the test measures \nu \prime are either
equal to (\alpha \prime = \alpha ), rougher than (\alpha \prime < \alpha ), or smoother than (\alpha \prime > \alpha ) the training measure \nu . For fixed L\dagger , the
same \=L(N) achieves smaller relative error (4.1) as \alpha \prime increases, that is, when testing against smoother input
functions. In all cases, the observed rates closely match the theoretical ones (see Tables 1 and 2).
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LEARNING LINEAR OPERATORS FROM NOISY DATA 501

Table 2
Distribution shift. Theoretical versus experimental (in parentheses) convergence rate exponents r in

O(N - r) of the relative expected squared L2
\nu (H;H) out-of-distribution error (4.1) for rougher and smoother test

measures.

Rougher Test Measure: \alpha \prime = 4<\alpha = 4.5 Smoother Test Measure: \alpha \prime = 5.25>\alpha = 4.5

L\dagger Rough Prior Matching Prior Smooth Prior Rough Prior Matching Prior Smooth Prior

A 0.429 (0.428) 0.600 (0.607) 0.462 (0.462) 1.000 (0.992) 1.000 (0.996) 0.846 (0.849)
Id 0.733 (0.734) 0.778 (0.788) 0.667 (0.667) 1.000 (0.986) 1.000 (0.979) 0.905 (0.905)
A - 1 0.826 (0.837) 0.846 (0.861) 0.759 (0.764) 1.000 (0.981) 1.000 (0.975) 0.931 (0.926)
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Figure 4. The numerical influence of data noise variance \gamma 2 for L\dagger =A. For two distinct \gamma 2 values, Figures
4(a) and 4(b) show convergence rate exponents for \BbbE DN \scrE N versus z, with z = p+2 being the prior smoothness
shift parameter, while Figures 4(c) and 4(d) display rates for \BbbE DN | \scrG N | versus z. Throughout, the solid magenta
``theory"" curves denote the theoretical upper bound rate exponents, and the shaded regions denote one standard
deviation from the mean rate exponent computed from 250 repetitions of the numerical experiment.

JN := N1/(2\alpha +2p) \ll N . This approach is justified because it is more stable numerically and
the results in section 3 remain valid with this N -dependent truncation. Contributions from
the tail set \{ j \in \BbbN : j > cJN\} are of equal order or negligible, asymptotically, relative to those
from the truncated set (Appendix A). Figure 4 shows results with N up to 221 and c such that
cJ221 \approx 214 (maximal truncation level). The influence of discretization manifests itself through
\gamma . For \BbbE DN\scrE N , the undersmoothing prior region (z < 0) is relatively insensitive to \gamma and the
rate exponents closely match (3.12). But in the oversmoothing prior region z > 0 for large
\gamma , the rates begin to deviate from the theory because large constants mask the theoretical
asymptotic behavior in this finite sample regime. Similarly, for finite N , the noise scale can
alter the correct behavior of the competing terms in the bound (3.14) for \BbbE DN | \scrG N | . For small
\gamma , terms O(N - 1/2) have large hidden constants that obscure terms \gg N - 1/2 for small z < 0
(Figure 4(c)). For large \gamma , this behavior is reversed (Figure 4(d)).

4.1.2. Out-of-distribution. We now vary \alpha \prime to simulate distribution shift. With J = 216

and \tau 2 = 15, our results in Table 2 show near perfect agreement with Theorem 3.5 for out-of-
distribution regimes on both sides of the boundary case \alpha \prime = \alpha + 1/2. In the matching prior
setting (z = 0), Figures 3(b) and 3(d) show the decay of the test error (4.1) with N . The
magenta lines are least squares fits and the shaded regions denote one standard deviation from
the mean with respect to resampling DN . The excellent numerical fits verify our assertions.
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Figure 5. Beyond the theory. Analogous to Figure 4 except with the nondiagonal elliptic operator Aa.

4.2. Beyond the theory. In this subsection, we consider truths L\dagger \in HS(H\scrK ;H) (with \scrK 
satisfying Condition 2.2) that are not necessarily diagonalized by \{ \varphi j\} . So, the infinite matrix

L\dagger := \{ L\dagger jk\} from (1.3) must be estimated instead of l\dagger . Recall that \Lambda has eigenpairs \{ (\lambda 2k, \phi k)\} .
By Fact 2.1, L\dagger \in HS(H\Lambda ;H) so the expansion L\dagger =

\sum 
i,j(\lambda jL

\dagger 
ij)\varphi i\otimes H\Lambda 

(\lambda j\phi j) =
\sum 

i,j L
\dagger 
ij\varphi i\otimes \phi j

always exists and is unique. Yet, we have no theory for posterior estimators of L\dagger . To derive
the posterior mean, we notice that the inverse problem for L | DN decouples along rows of
L = \{ Ljk\} , which are denoted by Lj: for j \in \BbbN . We assume a Gaussian prior Lj: \sim \scrN (0,\Sigma j),
where \Sigma j = diag(\{ \sigma 2jk\} k\in \BbbN ) is diagonal for simplicity. Thus (Lj:)k = Ljk \sim \scrN (0, \sigma 2jk). By
deriving the normal equations, we obtain for j, k, and \ell \in \BbbN the posterior mean

(4.3) \=L
(N)
j: = (A(N) + \gamma 2

N \Sigma  - 1
j ) - 1b

(N)
j , where A

(N)
\ell k := x\ell xk

(N) and (b
(N)
j )\ell := yjx\ell 

(N) .

We use the same covariances (4.2) diagonalized in Fourier sine input basis \{ \phi j\} , but now
use Volterra cosine output basis \{ \varphi j\} as in Figure 2, where z \mapsto \rightarrow \varphi j(z) :=

\surd 
2cos((j  - 1

2)\pi z).
Define the divergence form elliptic operator Aa : \scrD (Aa)\subset H\rightarrow H by h \mapsto \rightarrow Aah := - \nabla \cdot (a\nabla h),
where \scrD (Aa) = \scrD (A) as before and z \mapsto \rightarrow a(z) := exp( - 3z) is smooth. We learn (via \=L(N))
unbounded, bounded, and compact self-adjoint operators L\dagger =Aa, Id, and A

 - 1
a , respectively.

For each of the three L\dagger , we pick prior variance sequences \sigma 2jk = \sigma 2jk(L
\dagger ) given by

(4.4) \sigma 2jk(L
\dagger ) :=

\left\{       
(jk) - (z - 2)( 1+(k/j)2

1+(j - k)2 )
2 if L\dagger =Aa ,

(jk) - z( k+k/j
1+j+(j - k)2 )

2 if L\dagger = Id ,

(jk) - (z+2)( 1+j/k
1+(j - k)2 )

2 if L\dagger =A - 1
a .

These priors ensure that L matches the exact asymptotic behavior (as j \rightarrow \infty , k \rightarrow \infty , and
j = k \rightarrow \infty ) of L\dagger when z = 0. Our simulation setup follows section 4.1, except now with
J = 212, N up to 214, and only 100 Monte Carlo repetitions. Although Aa is not diagonal in
\varphi j \not = \phi j (each L\dagger is dense) and the posterior mean estimator is now a doubly indexed sequence,
our results in Figure 5 support the same conclusions previously asserted.

5. Conclusion. This paper concerns the supervised learning of linear operators between
Hilbert spaces. Learning is framed as a Bayesian inverse problem with a linear operator as the
unknown quantity. Working in the best-case scenario of known eigenvectors, the analysis es-
tablishes convergence rates in the infinite data limit. The main results reveal useful theoretical
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insights about operator learning, including what types of operators are harder to learn than
others, what types of training data lead to reduced sample complexity, and how distribution
shift affects error. The work opens up the following directions for future research.

Extensions in diagonal setting. One immediate extension of our diagonal approach involves
generalizing it from self-adjoint operators with known eigenvectors to non-self-adjoint opera-
tors with known singular vectors. Another involves taking the simultaneous large data and
small noise limit. Although our approach requires Gaussian conjugacy, Gaussian priors are
not suitable for all problems. Recent work using non-conjugate priors may prove useful in
our setting [38, 43, 65, 72]. To exploit the Bayesian posterior beyond just theoretical con-
traction performance, exploration of uncertainty quantification via credible sets is also of
interest.

Beyond diagonal operators. In the linear setting, it is desirable to remove the known eigen-
basis assumption but retain rates of convergence. The proof of Fact 2.3 in Appendix C implies
that the SVD of the random forward map KX in (1.2) is determined by the functional PCA
of X. Thus, the SVD approach in section 1.1.2 and [44] could be used to recover the doubly-
indexed infinite matrix coordinates of the true operator in the (random) SVD basis. Another
approach is to directly study the non-diagonal problem (1.3) as in section 4.2. Nonlinear
operators also deserve attention, as the experimental results in [29] demonstrate. Central to
their statistical analysis will be the modern architectures (beyond kernel methods [22, 64])
that parametrize the unknown operators and their inherent problem-dependent structure.

Appendix A. Proofs of main results. In this appendix, we provide proofs of the theorems
from the main body of the paper, in order of appearance. We begin with Theorem 1.3.

Proof of Theorem 1.3. Theorem 1.3 is a special case of Theorem 3.3 in the case \alpha \prime <\alpha +1/2
in \rho N (\alpha ,\alpha \prime , p) (3.4). It remains to show that the Gaussian measure \nu = \scrN (0,\Lambda ) satisfies
Assumption 3.2. The KL expansion coefficients certainly satisfy the fourth moment condition.
The final condition on \{ gjgj(N)\} is verified by Lemma B.7 because \{ gjn\} Nn=1 \sim \scrN (0, \vargamma 2j )

\otimes N .

A.1. Proofs for subsection 3.2. Under Assumptions 3.1 and 3.2, we calculate from (2.4)

and (2.5) that \BbbE Y | X\BbbE L(N)\sim \mu DN \| L\dagger  - L(N)\| 2L2
\nu \prime (H;H) = \scrI 1 + \scrI 2 + \scrI 3 for N \in \BbbN , where

\scrI 1 =
\infty \sum 
j=1

\vargamma 
\prime 2
j | l

\dagger 
j | 2

(1 +N\gamma  - 2\sigma 2j gjgj
(N))2

, \scrI 2 =
\infty \sum 
j=1

N\vargamma 
\prime 2
j \gamma 

 - 2\sigma 4j gjgj
(N)

(1 +N\gamma  - 2\sigma 2j gjgj
(N))2

, and(A.1a)

\scrI 3 =
\infty \sum 
j=1

\vargamma 
\prime 2
j \sigma 

2
j

1 +N\gamma  - 2\sigma 2j gjgj
(N)

.(A.1b)

This is the test error averaged only over the posterior and noise distributions, keeping the
random design X fixed. The posterior mean test error (2.7) is given by \BbbE [\scrI 1+\scrI 2] only. Recall
from Assumption 3.1 that \vargamma 

\prime 2
j (3.3) decays as j - 2\alpha \prime 

(determining the test distribution \nu \prime ) and

\sigma 2j (3.1) decays (or grows) as j - 2p (determining the prior on L). The three series depend
on X = \{ xn\} through the correlated r.v.s \{ gjn = \langle \varphi j , xn\rangle \} (2.3). These are mean zero with
variance \vargamma 2j (3.2) decaying as j - 2\alpha . The truth is l\dagger \in \scrH s, as in item (A2). All of the following
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504 M. DE HOOP, N. KOVACHKI, N. NELSEN, AND A. STUART

proofs involve estimating the three random series (A.1), which converge \BbbP -a.s. by item (A5)
in Assumption 3.1 (and by Lemma B.3 for \scrI 2). For convenience, we set u := 2(\alpha + p)> 1 and

write gjgj
(N) =: \vargamma 2jZ

(N)
j . Thus, \BbbE Z(N)

j = 1. We also set \gamma \equiv 1 without loss of generality.

Proof of Theorem 3.3. We split each of the three series (A.1) into sums over two disjoint
index sets \{ j \in \BbbN : j \leq N1/u\} and \{ j \in \BbbN : j > N1/u\} . We denote such sums by \scrI \leq 

i and \scrI >
i ,

respectively, for each i\in \{ 1,2,3\} . We must estimate their expectations over X \sim \nu \otimes N to prove
the assertion (3.5). Notice that Nj - u \simeq 1 +Nj - u whenever j \leq N1/u.

Beginning with \BbbE \scrI 2, its partial sum \BbbE \scrI \leq 
2 satisfies

\BbbE 
\sum 

j\leq N1/u

N\vargamma 
\prime 2
j \sigma 

4
j gjgj

(N)

(1 +N\sigma 2j gjgj
(N))2

\leq 
\sum 

j\leq N1/u

\vargamma 
\prime 2
j \BbbE [(gjgj(N)) - 1]

N
\lesssim 

\sum 
j\leq N1/u

\vargamma 
\prime 2
j \vargamma 

 - 2
j

N
\asymp 

\sum 
j\leq N1/u

j - 2(\alpha \prime +p)

1 +Nj - u

as N \rightarrow \infty . We used Assumption 3.2 and Lyapunov's inequality to bound the negative
moment. By applying (B.3b) in Lemma B.2 (with t = 2(\alpha \prime + p), v = 1, and condition t > 1
satisfied by item (A5)) to the last sum, we deduce that \BbbE \scrI \leq 

2 =O(\rho N ). The tail series satisfies

\BbbE \scrI >
2 \leq 

\sum 
j>N1/u

N\vargamma 
\prime 2
j \sigma 

4
j\BbbE [\vargamma 2jZ

(N)
j ]\asymp N

\sum 
j>N1/u

j - 2(\alpha \prime +\alpha +2p) \asymp N - (1 - (\alpha +1/2 - \alpha \prime )/(\alpha +p))

as N \rightarrow \infty by (B.3a) in Lemma B.2 (applied with t= 2(\alpha \prime + \alpha + 2p)> 1 by item (A5)). This
is always the same order as, or negligible compared to, the upper bound on \BbbE \scrI \leq 

2 .
By the same argument used for \BbbE \scrI \leq 

2 (bounding its denominator by one and using As-
sumption 3.2 plus Lyapunov's inequality), we deduce that \BbbE \scrI \leq 

3 = O(\rho N ) also. The tail \BbbE \scrI >
3

is bounded above by
\sum 

j>N1/u \vargamma 
\prime 2
j \sigma 

2
j \asymp 

\sum 
j>N1/u j - 2(\alpha \prime +p). This sum is the same order as the

bound on \BbbE \scrI >
2 by (B.3a) in Lemma B.2 (with t= 2(\alpha \prime + p)> 1 by item (A5)).

Last, again by Assumption 3.2 and Lyapunov's inequality, \BbbE \scrI \leq 
1 is bounded above by

(A.2)
\sum 

j\leq N
1
u

\vargamma 
\prime 2
j | l

\dagger 
j | 2\BbbE [(gjgj(N)) - 2]

(N\sigma 2j )
2

\lesssim 
\sum 

j\leq N
1
u

\vargamma 
\prime 2
j | l

\dagger 
j | 2(\vargamma 2j ) - 2

(N\sigma 2j )
2

\asymp 
\sum 

j\leq N
1
u

j - 2\alpha \prime | l\dagger j | 2

(1 +Nj - u)2

as N \rightarrow \infty . Application of (B.2) in Lemma B.1 (with \xi = l\dagger , t= 2\alpha \prime , q= s, v= 2, and t\geq  - 2q
satisfied by item (A5)) shows that this last sum is o(N - (\alpha \prime +s)/(\alpha +p)) if (\alpha \prime + s)/(\alpha + p)< 2 or
\Theta (N - 2) otherwise. The tail sum matches this bound in the first case and is strictly smaller
otherwise because \BbbE \scrI >

1 \leq 
\sum 

j>N1/u \vargamma 
\prime 2
j | l

\dagger 
j | 2 \asymp 

\sum 
j>N1/u j - 2\alpha \prime | l\dagger j | 2 (apply (B.1) in Lemma B.1

with \xi = l\dagger , t = 2\alpha \prime , and q = s). All together, we deduce that \BbbE \scrI 2 and \BbbE \scrI 3 have the same
upper bound \rho N \gg N - 2. This implies (3.5). The uniform bound over \| l\dagger \| \scrH s \lesssim 1 follows from
the first assertion in [44, Lem. 8.1] (this turns the little-o into a big-O as claimed) The final
assertion follows because the posterior mean test error only corresponds to \scrI 1 and \scrI 2.

Proof of Theorem 3.4. The proof proceeds by developing lower bounds on each of the
three series (A.1), using the same disjoint index sets approach in the proof of Theorem 3.3.
For \BbbE \scrI 3, since r \mapsto \rightarrow (1 + ar) - 1 is convex on [0,\infty ) for all a\geq 0, Jensen's inequality yields

(A.3) \BbbE 
\infty \sum 
j=1

\vargamma 
\prime 2
j \sigma 

2
j

1 +N\sigma 2j gjgj
(N)

\geq 
\infty \sum 
j=1

\vargamma 
\prime 2
j \sigma 

2
j

1 +N\sigma 2j\BbbE [\vargamma 2jZ
(N)
j ]

\asymp 
\infty \sum 
j=1

j - 2(\alpha \prime +p)

1 +Nj - u
as N \rightarrow \infty .
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LEARNING LINEAR OPERATORS FROM NOISY DATA 505

The last sum is \Theta (\rho N ) by (B.3b) in Lemma B.2 (with t= 2(\alpha \prime + p)> 1 by (A5) and v= 1).

Next, \BbbE \scrI 2 \geq \BbbE \scrI \leq 
2 by nonnegativity. For any positive \tau N \rightarrow 0, define the events A

(N)
j :=

\{ \omega \in \Omega : Z
(N)
j (\omega )\geq \tau N\} for every j and N \in \BbbN . The law of total expectation yields

\BbbE \scrI \leq 
2 =

\sum 
j\leq N1/u

N\vargamma 
\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbE 

\Biggl[ 
Z

(N)
j

(1 +N\sigma 2j\vargamma 
2
jZ

(N)
j )2

\bigm| \bigm| \bigm| \bigm| A(N)
j

\Biggr] 
\BbbP (A(N)

j )

+
\sum 

j\leq N1/u
N\vargamma 

\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbE 

\Biggl[ 
Z

(N)
j

(1 +N\sigma 2j\vargamma 
2
jZ

(N)
j )2

\bigm| \bigm| \bigm| \bigm| (A(N)
j )c

\Biggr] 
\BbbP (A(N)

j )c .

The second term in the above display is nonnegative, so we obtain

\BbbE \scrI \leq 
2 \geq 

\sum 
j\leq N1/u

\tau NN\vargamma 
\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbE [(1 +N\sigma 2j\vargamma 

2
jZ

(N)
j ) - 2 | A(N)

j ]\BbbP (A(N)
j )

\geq 
\sum 

j\leq N1/u

\tau NN\vargamma 
\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbP (A

(N)
j )

(1 +N\sigma 2j\vargamma 
2
j\BbbE [Z

(N)
j | A(N)

j ])2
=

\sum 
j\leq N1/u

\tau NN\vargamma 
\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbP (A

(N)
j )3

(\BbbP (A(N)
j ) +N\sigma 2j\vargamma 

2
j\BbbE [1A

(N)
j
Z

(N)
j ])2

.

We applied the conditional Jensen's inequality to yield the second inequality because r \mapsto \rightarrow 
(1 + ar) - 2 is convex on [0,\infty ) for any a\geq 0. Next, Markov's inequality plus Assumption 3.2
give

sup
j\geq 1

\BbbP (A(N)
j )c = sup

j\geq 1
\BbbP \{ (Z(N)

j ) - 1 > \tau  - 1
N \} \leq sup

j\geq 1
\tau N\BbbE [(Z(N)

j ) - 1]\rightarrow 0 as N \rightarrow \infty .

This implies infj\geq 1 \BbbP (A
(N)
j )\rightarrow 1 as N \rightarrow \infty . Using this and the facts \BbbE [1AZ

(N)
j ]\leq \BbbE [Z(N)

j ] = 1

and \BbbP (A)\leq 1 for any A\in \scrF and applying 1 +Nj - u \simeq Nj - u for j \leq N1/u twice yields

\BbbE \scrI \leq 
2 \gtrsim 

\sum 
j\leq N1/u

\tau NN\vargamma 
\prime 2
j \sigma 

4
j\vargamma 

2
j\BbbP (A

(N)
j )3

(1 +N\sigma 2j\vargamma 
2
j )

2
\gtrsim \tau N

\sum 
j\leq N1/u

j - 2(\alpha \prime +p)

1 +Nj - u
as N \rightarrow \infty .

Comparing to (A.3), we deduce \BbbE \scrI 2 =\Omega (\tau N\rho N ). This is negligible relative to \BbbE \scrI 3 =\Omega (\rho N ).
Last, by Jensen's inequality, we lower bound \BbbE \scrI 1 by the rightmost sum in (A.2), which

is always \Omega (N - 2) (if l\dagger \not = 0), plus the tail of the same sum, which gives the second term in
(3.7) by (B.1) in Lemma B.1 (with \xi = l\dagger , t= 2\alpha \prime , q= s, and v= 2). The \Omega (N - 2) contribution
from the first sum is dominated by both \rho N = \Omega (N - 1) and \tau N\rho N if \tau N \gg N - 1. Therefore,
the posterior sample test error (2.6) enjoys the asserted rate, while the posterior mean test
error \BbbE [\scrI 1 + \scrI 2] only admits the bound (3.7) with the \tau N factor as claimed.

Proof of Theorem 3.5. The \rho N term (corresponding to \scrI 2 and \scrI 3 in (A.1)) in the assertion
(3.8) follows from Theorems 3.3 and 3.4 for the posterior sample estimator. It remains to
obtain the second term in (3.8). Following the argument from the proof of Theorem 3.3, \BbbE \scrI \leq 

1

is asymptotically bounded above by the last sum in (A.2). Now given | l\dagger j | \asymp j - 1/2 - sS(j), by the

full version of [44, Lem. 8.2] (applied with \xi = l\dagger , t= - 2\alpha \prime , v= 2, q= s, \scrS = S, and t > - 2q by
item (A5)) this sum has the exact order of the second term in (3.8) if (\alpha \prime +s)/(\alpha +p)< 2 and
is negligible relative to \rho N otherwise. The tail \BbbE \scrI >

1 is always bounded above by the second
term in (3.8) by the proof of [44, Lem. 8.2]. After an application of Jensen's inequality, the
argument leading to a matching lower bound for \BbbE \scrI 1 is the same as the one above.
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A.2. Proof for section 3.4. We follow Appendix A.1 by letting u := 2(\alpha +p)> 1, gjgj
(N) =:

\vargamma 2jZ
(N)
j , and \gamma \equiv 1, but instead of Assumption 3.2 we now enforce Assumption 3.8, which

defines our \Lambda -sub-Gaussian data. This yields gjn = \langle \varphi j , xn\rangle \in SG(\sigma 2\nu \vargamma 
2
j ). Henceforth, let

SE(v2, a) denote the set of real subexponential (SE) r.v.s with parameters (v, a) \in \BbbR 2
\geq 0. The

inclusion X \in SE(v2, a) is characterized by the moment generating function (MGF) bound
\BbbE exp(\theta (X  - \BbbE X))\leq exp(v2\theta 2/2) for all | \theta | < 1/a [74]. Using [73, Lem. 2.7.6] gives g2jn/\vargamma 

2
j \in 

SE(c2\sigma 4\nu , c\sigma 
2
\nu ) for an absolute constant c > 0. By independence, Z

(N)
j \in SE(c2\sigma 4\nu /N, c\sigma 

2
\nu /N)

[74, sect. 2.1.3]. The following proof relies on the SE concentration from Appendix B.

Proof of Theorem 3.9. We prove the upper and lower concentration bounds separately.

Upper bound. Fix \delta \in (0,1 \wedge c\sigma 2\nu ) and define N\delta  - := (1  - \delta )N . We follow the disjoint

index sets approach from Theorem 3.3, except now we sum over \{ j \in \BbbN : j \leq N
1/u
\delta  - \} and

\{ j \in \BbbN : j >N
1/u
\delta  - \} . Denote these sums by \scrI \leq ,\delta 

i and \scrI >,\delta 
i , respectively (A.1). We first bound

\scrI \leq ,\delta 
1 \leq 

\sum 
j\leq N

1/u

\delta  - 

\vargamma 
\prime 2
j | l

\dagger 
j | 2

(1 +N\delta  - \sigma 
2
j\vargamma 

2
j )

2
\asymp 
\sum 

j\leq N
1/u

\delta  - 

j - 2\alpha \prime | l\dagger j | 2

(1 +N\delta  - j - u)2
as N \rightarrow \infty 

with probability at least 1 - N
1/u
\delta  - exp( - N\delta 2/(2c2\sigma 4\nu )) by Lemma B.4 (with n = N , X

(N)
j =

Z
(N)
j , v = a = c\sigma 2\nu , J = \lfloor N1/u

\delta  - \rfloor , and the lower tail only). The remaining bounds for \scrI 1
(including the almost sure bound for \scrI >,\delta 

1 ) are the same as those in the proof of Theorem 3.3,
except with N replaced by N\delta  - . This gives the second term in (3.10).

Following the arguments in the proof of Theorem 3.3 for \BbbE \scrI \leq 
2 and by a similar ap-

plication of Lemma B.4, we deduce that \scrI \leq ,\delta 
2 = O(\rho N\delta  - 

) with probability at least 1  - 
N

1/u
\delta  - exp( - N\delta 2/(2c2\sigma 4\nu )). For the infinite tail series \scrI >,\delta 

2 , bounding its denominator by one
yields

\scrI >,\delta 
2 \leq 

\sum 
j>N

1/u

\delta  - 
N\vargamma 

\prime 2
j \vargamma 

2
j\sigma 

4
jZ

(N)
j \lesssim N(1 + \delta )

\sum 
j>N

1/u

\delta  - 
j - 2(\alpha \prime +\alpha +2p) as N \rightarrow \infty 

with probability at least 1 - exp( - N\delta 2/(2c2\sigma 4\nu )). The second inequality is from Lemma B.6

(with n = N , X
(N)
j = Z

(N)
j , v = a = c\sigma 2\nu , \{ wj = \vargamma 

\prime 2
j \vargamma 

2
j\sigma 

4
j \} , and the upper tail only), where

\{ \vargamma \prime 2
j \vargamma 

2
j\sigma 

4
j \} is in \ell 1 because \alpha \prime + \alpha + 2p > 1 by item (A5). We deduce \scrI >,\delta 

2 = O((1 + \delta )/(1 - 
\delta )N

 - (1 - (\alpha +1/2 - \alpha \prime )/(\alpha +p))
\delta  - ) by the same argument used for \BbbE \scrI >

2 in the proof of Theorem 3.3.

Along similar lines as the proof of Theorem 3.3, the posterior covariance term \scrI \leq ,\delta 
3 has the

same order as \scrI \leq ,\delta 
2 with the same probability (by Lemma B.4). The tail \scrI >,\delta 

3 is bounded above
a.s. by the first case in \rho N\delta  - 

(3.4) as N \rightarrow \infty . Since a+b(1+\delta )/(1 - \delta )\lesssim (1+\delta )/(1 - \delta ) for any
a, b > 0, we deduce \scrI 2 + \scrI 3 has order the first term in (3.10). The asserted total probability
follows by combining the individual event probabilities with the union bound and the fact that
there exists c2(\delta )> 0 and 0< c3 < c\prime := 1/(2c2\sigma 4\nu ) such that supn\gtrsim 1 n

1/u exp( - (c\prime  - c3)n\delta 
2)<

c2(\delta ). The assertion about the upper bound for \=L(N) follows by ignoring \scrI 3.
Lower bound. Since 1 + \delta \in (1,2) is bounded, we do not track this factor in what follows.

The proof proceeds by splitting all series at the critical index JN = \lfloor N1/u\rfloor (since (1+\delta )N \simeq N)
as in Theorem 3.3. By nonnegativity, we lower bound the error (A.1) by \scrI >

1 + \scrI \leq 
2 + \scrI \leq 

3 . The
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tail term \scrI >
1 is bounded below by the second term in (3.11) with high probability by Lemma

B.4 and (B.1) in Lemma B.1. The remaining calculations showing that \scrI \leq 
2 and \scrI \leq 

3 are \Omega (\rho N )
with high probability follow directly from Lemma B.4 and (B.3b) in Lemma B.2 and are
omitted. For \=L(N), the only variance contribution is from \scrI \leq 

2 . Its lower bound has the small
prefactor 1 - \delta as asserted. Combining the individual event probabilities as was done for the
upper bound completes the proof of Theorem 3.9.

A.3. Proof for section 3.6. This subsection proves Theorem 3.11 by bounding the gener-
alization gap \scrG N (2.12), which only involves in-distribution notions of error. We work in the
setting of Appendix A.1, letting u := 2(\alpha + p) > 1 and \gamma \equiv 1 and enforcing Assumptions 3.1
and 3.2. Then, the L1

\BbbP (\Omega ;\BbbR ) norm of \scrG N satisfies \BbbE DN | \scrG N | =\BbbE DN | \scrJ 1 +\scrJ 2 +\scrJ 3| , where

(A.4)
1

2

\infty \sum 
j=1

(\vargamma 2j  - gjgj
(N))| \=l(N)

j  - l\dagger j | 
2,

1

2

\infty \sum 
j=1

(gjgj
(N)  - \vargamma 2j )| l

\dagger 
j | 
2, and

\infty \sum 
j=1

gj\xi j
(N)\=l

(N)
j

define \scrJ 1, \scrJ 2, and \scrJ 3, respectively. In (A.4), the r.v.s \{ \xi jn\} from (1.6) are i.i.d. \scrN (0,1).

Using the explicit form (2.4) of the posterior mean \{ \=l(N)
j \} , we find that \BbbE DN | \scrG N | equals

(A.5) \BbbE 

\bigm| \bigm| \bigm| \bigm| \bigm| 12
\infty \sum 
j=1

(\vargamma 2j  - gjgj
(N))

| l\dagger j | 2 +N\sigma 4j gjgj
(N)

(1 +N\sigma 2j gjgj
(N))2

+\scrJ 2 +

\infty \sum 
j=1

(gj\xi j
(N)

)2 + l\dagger jgjgj
(N)gj\xi j

(N)

N - 1\sigma  - 2
j + gjgj(N)

\bigm| \bigm| \bigm| \bigm| \bigm| .
The following proof and Lemma B.3 imply the convergence of (A.4) \BbbP -a.s. and (A.5).

Proof of Theorem 3.11. We prove the upper and lower bounds on \BbbE DN | \scrG N | separately.
Upper bound. By the triangle inequality, (A.5) is bounded above by five terms Gi for

i\in \{ 1, . . . ,5\} . Here, \{ G1,G2\} corresponds to \BbbE | \scrJ 1| , G3 to \BbbE | \scrJ 2| , and \{ G4,G5\} to \BbbE | \scrJ 3| .
By the triangle and Jensen's inequality, G3 = \BbbE | \scrJ 2| \leq 1

2

\sum \infty 
j=1| l

\dagger 
j | 2(Var[gjgj(N)])1/2. Inde-

pendence of \{ xn\} yields Var[gjgj
(N)]\leq 1

N\BbbE x\sim \nu \langle \varphi j , x\rangle 4. Using (2.3) and Assumption 3.2 (\{ \zeta j\} 
are zero mean, unit variance, and independent), \BbbE x\sim \nu \langle \varphi j , x\rangle 4 \simeq 

\sum 
k c

4
jk\BbbE \zeta 4k +

\sum 
k\prime \not =k c

2
jkc

2
jk\prime ,

where cjk := \langle \Lambda 1/2\varphi j , \phi k\rangle . The second term is bounded above by a constant times
(
\sum 

k c
2
jk)

2 = \vargamma 4j and so is the first term (using limsupj\rightarrow \infty \BbbE \zeta 4j < \infty and \ell 2 \subset \ell 4). Thus,

G3 \lesssim \| L\dagger \| 2L2
\nu (H;H)N

 - 1/2.

Using the disjoint index sets approach from the proof of Theorem 3.3, G\leq 
1 is bounded above

by 1
2

\sum 
j\leq N1/u(N\sigma 2j )

 - 2| l\dagger j | 2\BbbE [| \vargamma 2j  - gjgj
(N)| (gjgj(N)) - 2]. By the Cauchy--Schwarz inequality

and Assumption 3.2, the expectation on the right is bounded above by (Var[gjgj
(N)])1/2\vargamma  - 4

j

for sufficiently large N . It follows that G\leq 
1 is of the order N - 1/2 times the rightmost sum in

(A.2) with \alpha \prime = \alpha , which all together is o(N - 1/2). This contribution is negligible relative to
G3. A similar argument shows that the tail sum G>

1 is never bigger than G\leq 
1 .

The other term associated with \scrJ 1, which is G2, satisfies

G\leq 
2 \leq 1

2

\sum 
j\leq N1/u

N - 1\BbbE 
\Bigl[ \bigm| \bigm| \bigm| \vargamma 2j  - gjgj

(N)
\bigm| \bigm| \bigm| (gjgj(N)) - 1

\Bigr] 
=O

\Bigl( 
N - 1/2N - (1 - 1/u)

\Bigr) 
= o

\Bigl( 
N - 1/2

\Bigr) 
(since u> 1) by an argument similar to the one used for G1. The Cauchy--Schwarz inequality
and the variance bound used for G1 yields G>

2 \leq 1
2

\sum 
j>N1/u N\sigma 4j\BbbE [| \vargamma 2j  - gjgj

(N)| gjgj(N)] \lesssim 
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N - 1/2
\sum 

j>N1/u N\sigma 4j\vargamma 
4
j . The last sum is asymptotic to N - 1/2

\sum 
j>N1/u Nj - 2u as N \rightarrow \infty ,

which is the same order as G\leq 
2 by (B.3a) in Lemma B.2 (with t = 2u > 1). Thus, G2 is also

negligible relative to G3.
Moving on to G4 from \BbbE | \scrJ 3| , we first average out the noise \{ \xi jn\} to obtain

G4 =\BbbE 
\infty \sum 
j=1

(gj\xi j
(N)

)2

N - 1\sigma  - 2
j + gjgj(N)

=\BbbE X
\infty \sum 
j=1

N\sigma 2j\BbbE 
Y | X [(gj\xi j

(N)
)2]

1 +N\sigma 2j gjgj
(N)

=\BbbE X
\infty \sum 
j=1

\sigma 2j gjgj
(N)

1 +N\sigma 2j gjgj
(N)

.

Since the map r \mapsto \rightarrow r(1 + ar) - 1 is concave on [0,\infty ) for all a \geq 0, Jensen's inequality yields
G4 \lesssim 

\sum \infty 
j=1 j

 - u/(1+Nj - u) =O(N - (\alpha +p - 1/2)/(\alpha +p)) as N \rightarrow \infty by (B.3b) in Lemma B.2 (with
t= u> 1 and v= 1, satisfying the first case).

Last, Jensen's inequality applied to the entire series G5 from \BbbE | \scrJ 3| yields

G5 \leq 

\left(  \BbbE X\BbbE Y | X

\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 
j=1

N\sigma 2j l
\dagger 
jgjgj

(N)gj\xi j
(N)

1 +N\sigma 2j gjgj
(N)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right)  1/2

=

\left(  \BbbE X
\infty \sum 
j=1

N | l\dagger j | 2\sigma 4j (gjgj(N))3

(1 +N\sigma 2j gjgj
(N))2

\right)  1/2

because \BbbE Y | X [(gj\xi j
(N)

)(gj\prime \xi j\prime 
(N)

)] = 1
N2

\sum 
n,n\prime \leq N gjngj\prime n\prime \BbbE [\xi jn\xi j\prime n\prime ] =

\delta jj\prime 
N ( 1

N

\sum N
n=1 gjngj\prime n) for

any j and j\prime \in \BbbN . Thus, G5 \leq (
\sum \infty 

j=1N
 - 1| l\dagger j | 2\vargamma 2j )1/2 = \| L\dagger \| 2L2

\nu (H;H)N
 - 1/2. Comparing each

\{ Gi\} i=1,...,5, we conclude that \BbbE DN | \scrG N | =O(N - 1/2 +G4) as N \rightarrow \infty as asserted.
Lower bound. By the triangle inequality, \BbbE DN | \scrG N | \geq \BbbE | \scrJ 3 +\scrJ 2|  - \BbbE | \scrJ 1| \geq | \BbbE \scrJ 3 +\BbbE \scrJ 2|  - 

\BbbE | \scrJ 1| = | \BbbE \scrJ 3|  - \BbbE | \scrJ 1| . We first develop a lower bound on | \BbbE \scrJ 3| , which equals G4 by the
zero mean property of the \{ \xi jn\} . By an argument similar to the one used to lower bound
\BbbE \scrI 2 in the proof of Theorem 3.4, | \BbbE \scrJ 3| \gtrsim \tau N

\sum 
j\leq N1/u j - u/(1 +Nj - u) = \Omega (\tau NN

 - (1 - 1/u)) as
N \rightarrow \infty for any positive \tau N \rightarrow 0. This is the asserted lower bound in (3.15). To conclude
the proof, we claim that the upper bounds previously developed for \BbbE | \scrJ 1| (i.e., for G1 and
G2) are asymptotically negligible relative to \tau NN

 - (1 - 1/u) under the hypotheses. Enforcing
\tau N \gg N - 1/2 ensures that this is true for the G2 bound. By (A.2), if (\alpha + s)/(\alpha + p) \geq 2,
then the G1 contribution is N - 1/2N - 2 \ll \tau NN

 - (1 - 1/u). Otherwise, G1 is strictly smaller
than N - 1/2N - (\alpha +s)/(\alpha +p). This term is negligible relative to the | \BbbE \scrJ 3| contribution if \tau N \gg 
N - (1+\alpha +2s - p)/(2\alpha +2p) \rightarrow 0, which requires p < 1 + \alpha + 2s as assumed in the hypotheses.

Appendix B. Supporting lemmas. Our first two results, which are variations of [44, Lems.
8.1--8.2], develop sharp asymptotics for certain series that arise from \mu DN

\mathrm{s}\mathrm{e}\mathrm{q} in (2.4).

Lemma B.1 (series asymptotics: Sobolev regularity). Let q \in \BbbR , t\geq  - 2q, u > 0, and v \geq 0.
Then for every \xi \in \scrH q(\BbbN ;\BbbR ), it holds that

(B.1)
\sum 

j>N1/u

j - t\xi 2j
(1 +Nj - u)v

\simeq 
\sum 

j>N1/u
j - t\xi 2j \leq N - ( t+2q

u )
\Bigl( \sum 

j>N1/u
j2q\xi 2j

\Bigr) 
for all N \in \BbbN . Additionally, for every fixed \xi \in \scrH q(\BbbN ;\BbbR ), it holds that

(B.2)
\sum 

j\leq N1/u

j - t\xi 2j
(1 +Nj - u)v

=

\Biggl\{ 
o(N - ( t+2q

u )) if (t+ 2q)/u< v ,

N - v \| \xi \| 2\scrH (uv - t)/2 (1 + o(1)) if (t+ 2q)/u\geq v

as N \rightarrow \infty . The previous assertion (B.2) remains valid for the full infinite series.
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Proof. The claims follow from [44, Lem. 8.1, p. 2653] and its proof therein.

Lemma B.2 (series asymptotics: sharp). Let t > 1, u> 0, and v\geq 0. Then as N \rightarrow \infty ,

\sum 
j>N1/u

j - t

(1 +Nj - u)v
\simeq 
\sum 

j>N1/u
j - t =\Theta (N - ( t - 1

u )) and(B.3a)

\infty \sum 
j=1

j - t

(1 +Nj - u)v
\asymp 

\sum 
j\leq N1/u

j - t

(1 +Nj - u)v
=

\left\{     
\Theta (N - ( t - 1

u )) if (t - 1)/u< v ,

\Theta (N - v logN) if (t - 1)/u= v ,

\Theta (N - v) if (t - 1)/u> v .

(B.3b)

Proof. The claims follow from [44, pp. 2654--2655]. Choose the slowly varying function
used there to be identically constant, q= - 1/2, and use the fact that

\sum J
j=1 1/j \asymp logJ .

The next lemma justifies the a.s. convergence of various random series in our proofs.

Lemma B.3 (almost sure convergence of series). Let \{ Xj\} j\geq 1 be a sequence of (possibly

dependent) real r.v.s. If
\sum \infty 

j=1\BbbE | Xj | <\infty , then
\sum J

j=1Xj
\mathrm{a}.\mathrm{s}. -  - \rightarrow 

\sum \infty 
j=1Xj as J \rightarrow \infty .

Proof. An application of monotone convergence shows that
\sum 

j | Xj | converges a.s..
We now turn to some useful concentration inequalities for subexponential r.v.s.

Lemma B.4 (SE: union). For n\in \BbbN , let \{ X(n)
j \} j\geq 1 be a (possibly dependent) family of unit

mean SE(v2/n,a/n) r.v.s. Fix \delta \in (0,min\{ 1, v2/a\} ) and J \in \BbbN . Then with probability at least

1 - 2J exp( - n\delta 2/(2v2)), it holds that (1 - \delta )\leq X
(n)
j \leq (1 + \delta ) for all j \leq J .

Proof. The result follows from application of the union bound to [74, Prop. 2.9].

To develop tighter concentration for SE series, we need the next two lemmas.

Lemma B.5 (SE: closure under addition). Let J \in \BbbN . If \{ Xj\} j=1,...,J are (possibly dependent)
real-valued r.v.s such that Xj \in SE(v2j , aj) for every j \in \{ 1, . . . , J\} , then

(B.4)

J\sum 
j=1

Xj \in SE

\left(  \left(  J\sum 
j=1

vj

\right)  2

,

\left(  J\sum 
j=1

vj

\right)  max
1\leq i\leq J

ai
vi

\right)  .

Proof. Defining the centered r.v. Yj :=Xj  - \BbbE Xj for each j \in \{ 1, . . . , J\} , we estimate

\BbbE exp

\left(  \theta J\sum 
j=1

Yj

\right)  =\BbbE 
J\prod 

j=1

exp(\theta Yj)\leq 
J\prod 

j=1

(\BbbE exp(\theta Yjpj))
1/pj

\leq 
J\prod 

j=1

(exp(v2j \theta 
2p2j/2))

1/pj = exp

\left(  \left(  J\sum 
j=1

vj

\right)  2

\theta 2/2

\right)  .

We used the generalized H\"older's inequality to yield the first inequality with
\sum J

i=1 1/pi = 1

and pi := v - 1
i

\sum J
j=1 vj . The SE MGF bound applied for each j \in \{ 1, . . . , J\} yields the second

inequality, which is valid for all | \theta | <mini\leq J(piai)
 - 1 = (maxi\leq J piai)

 - 1 as asserted.
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Lemma B.6 (SE: series). For n \in \BbbN , let \{ X(n)
j \} j\geq 1 be a (possibly dependent) family

of nonnegative unit mean SE(v2/n,a/n) r.v.s. Let w \in \ell 1(\BbbN ;\BbbR ) be nonnegative. Fix
\delta \in (0,min\{ 1, v2/a\} ). Then with probability at least 1 - 2exp( - n\delta 2/(2v2)), it holds that

(B.5) (1 - \delta )

\infty \sum 
j=1

wj \leq 
\infty \sum 
j=1

wjX
(n)
j \leq (1 + \delta )

\infty \sum 
j=1

wj .

Proof. For any J \in \BbbN , define YJ :=
\sum 

j\leq J wjX
(n)
j . It follows from Lemma B.5 that YJ \in 

SE(v
2

n \| \{ wj\} j\leq J\| 21, an\| \{ wj\} j\leq J\| 1). Since
\sum \infty 

j=1\BbbE | wjX
(n)
j | =

\sum \infty 
j=1wj <\infty holds by hypothesis,

we deduce that YJ \rightarrow Y\infty as J \rightarrow \infty \BbbP -a.s. by monotone convergence (Lemma B.3). Fatou's
lemma applied to the YJ SE MGF bound yields Y\infty \in SE(v

2

n \| w\| 2\ell 1 ,
a
n\| w\| \ell 1). Thus, the fact that

\BbbE Y\infty = \| w\| \ell 1 and the SE tail bound (Lemma B.4) establish that \BbbP \{ | Y\infty  - \BbbE Y\infty | \leq \BbbE Y\infty \delta \} \geq 
1 - 2exp( - n\delta 2/(2v2)) for all \delta \in (0,min\{ 1, v2/a\} ) as asserted.

Our last result, specific to Gaussian design, is used in the proof of Theorem 1.3.

Lemma B.7 (chi-square moments). Let W \sim \chi 2(n) be a chi-square r.v. with n \in \BbbN degrees

of freedom. Then for any q > - n/2, \BbbE [W q] = 2q \Gamma (q+n/2)
\Gamma (n/2) , where \Gamma is Euler's gamma function.

Proof. A direct calculation with the PDF of \chi 2(n) yields the moment in closed form.

Appendix C. Proofs of auxiliary results. We prove the facts asserted in section 2.2.

Proof of Fact 2.1. By (2.1), \scrK  - 1/2 \in HS(H\Lambda \prime ;H) if and only if \BbbE x\sim \nu \prime \| x\| 2\scrK <\infty . Hence,
\nu \prime (H\scrK ) = 1 as claimed. For the second claim, for any orthonormal basis \{ \psi j\} ofH we compute

\| T\Lambda \prime 1/2\| 2\mathrm{H}\mathrm{S} =
\sum 
i,j

\langle \psi i, T (\scrK 1/2\scrK  - 1/2)\Lambda \prime 1/2\psi j\rangle 2 =
\sum 
i,j

\langle (T\scrK 1/2)\ast \psi i,\scrK  - 1/2\Lambda \prime 1/2\psi j\rangle 2 .

Applying the Cauchy--Schwarz inequality to the rightmost equality yields the upper bound
\| (T\scrK 1/2)\ast \| 2\mathrm{H}\mathrm{S}\| \scrK  - 1/2\Lambda \prime 1/2\| 2\mathrm{H}\mathrm{S}. This is finite by hypothesis. So, we deduce \BbbE x\sim \nu \prime \| Tx\| 2 <\infty .

Proof of Fact 2.3. For N \in \BbbN , let Z = (z1, . . . , zN ) \in HN
\scrK \setminus \{ 0\} . By the definition of

KZ , the map K\ast 
ZKZ \in \scrL (HS(H\scrK ;H)) acts as the right multiplication operator T \mapsto \rightarrow T\scrC (N)

\scrK ,

where \scrC (N)
\scrK = 1

N

\sum N
n=1 zn\otimes H\scrK zn \in \scrL (H\scrK ) \setminus \{ 0\} is the empirical covariance of Z on H\scrK . Thus,

K\ast 
ZKZ = IdH\otimes \scrC (N)

\scrK is a tensor product operator on H\otimes H\scrK . But IdH \in \scrL (H) is not compact
on H. By [48, Cor. 1], K\ast 

ZKZ is not compact. Thus, KZ is not compact either.
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