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Abstract. The term ‘surrogate modeling’ in computational science and engineering refers to the development
of computationally efficient approximations for expensive simulations, such as those arising from numer-
ical solution of partial differential equations (PDEs). Surrogate modeling is an enabling methodology for
many-query computations in science and engineering, which include iterative methods in optimization and
sampling methods in uncertainty quantification. Over the last few years, several approaches to surrogate
modeling for PDEs using neural networks have emerged, motivated by successes in using neural networks to
approximate nonlinear maps in other areas. In principle, the relative merits of these different approaches can
be evaluated by understanding, for each one, the cost required to achieve a given level of accuracy. However,
the absence of a complete theory of approximation error for these approaches makes it difficult to assess this
cost-accuracy trade-off. The purpose of the paper is to provide a careful numerical study of this issue, compar-
ing a variety of different neural network architectures for operator approximation across a range of problems
arising from PDE models in continuum mechanics.
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1 Introduction

In many problems in computational partial differential equations (PDEs) the fundamental
driver in deciding which approximation methodology to employ is the shape of the cost-
accuracy curve: this determines what computational resources are required to achieve a
desired level of accuracy, a measure of computational complexity. On this basis some
methods may be shown to clearly outperform others, guiding computational practice.
In the numerical analysis of PDEs there is a deep literature addressing this issue. This
literature comprises two main components: (i) an analysis of the error as a function of
the resolution of the finite dimensional approximation [1–5]; and (ii) analysis of the cost
of running the model, at a given level of finite-dimensional resolution, often dominated
by matrix inversion and/or matrix-vector multiplies [6, 7] and/or by time-stepping and
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iteration count for nonlinear solvers. Theoretical results in (i) and (ii) may be combined
to determine the cost-accuracy curve for different methods and thereby inform the choice
of method for a given problem. For certain classes of equations, multi-resolution methods
have emerged which are near optimal in terms of minimizing cost for a given error [8, 9].

Data-driven approximation of mappings/operators between function spaces provides
a way to learn cheap-to-evaluate surrogates which can bypass the need for employing
PDE solvers, after an initial training phase in which data are generated. These surro-
gates then enable efficient many-query analyses of PDE-based problems in computational
science and engineering. However, the theory for data-driven approximations is in its in-
fancy and cost-accuracy curves are not analytically understood. The goal of this work is
to provide a numerical study of the cost accuracy trade-off, for a range of operator neural
network architectures, including PCA-based neural networks (PCA-Net) [10, 11], Deep-
ONet [12, 13], pointwise evaluation (PARA-Net, defined in this paper), and the Fourier
neural operator (FNO) [14, 15]. The numerical studies are conducted on four test prob-
lems: (1) the two-dimensional incompressible Navier-Stokes equation, (2) the Helmholtz
equation, (3) a structural mechanics test problem, and (4) the linear advection equation.

There are four sources of error in these operator learning problems: a) discretization of
the input and output spaces; b) parameterization of the operator approximators; c) finite
data volume; d) the optimizer used in training. In this paper we concentrate on b) and c)
and study the cost-accuracy trade-off in relation to data volume and number of parame-
ters in the neural network. The reason for not studying a) in this work is that, if properly
designed, operator approximators have the property of discretization invariance, mean-
ing that they are defined to act between function spaces and training of parameters for one
discretization can therefore be used for other discretizations [11,14,15]; in this setting a sin-
gle set of parameters will provide good approximations for all resolutions for which the
discretization error is small enough. As for the role of the optimizer d), while there exists
numerical evidence that stochastic gradient descent methods can be effective in driving
the loss function (close) to its global minimum [16–18], this work is far from being theo-
retically well-understood and, furthermore, is not in the context of operator learning and
partial differential equations. There are also other optimization approaches, for example
using second-order information [19, 20], or ensemble methods [21, 22], that may produce
different results. However, in order to limit the scope of our numerical studies, we em-
ploy stochastic gradient descent using fixed standard choices of the optimization hyper-
parameters for all test cases. When there is evidence that the optimization itself limits the
accuracy achieved, we will highlight this in our discussion. With this caveat, we primarily
focus our study on b) and c) and extract clear signals from numerical experiments, laying
foundation for future studies which delve into the interactions with a) and d). Our numer-
ical experiments will disentangle the roles of errors caused by b) and by c). The seminal
work of Giles [23, 24] on multilevel Monte Carlo methods demonstrates that a theoreti-
cal understanding of errors incurred through the interaction of finite sampling and finite
dimensional approximation leads to highly efficient methods which use different sam-
ple sizes for different finite dimensional approximations of expectations. Future analysis
studying the interaction between the sources of error arising from b) and c) would be very
valuable in the field of operator approximation and could lead to improved complexity
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results, in the spirit of this work of Giles. Furthermore, although we downplay the effect
of discretization error a) in this paper, future analysis studying the interaction between the
sources of error arising from a), b) and c) could be also very valuable in minimizing the
cost of the objective evaluation during training.

1.1 Literature Review

Many-Query Motivation Many computational tasks arising in science and engineering
require repeatedly evaluating the output of an expensive computational model, which
generally involve solving parametric partial differential equations. Examples include de-
sign optimization [25–28], Bayesian calibration and inference [29–35], and multiscale com-
putation [36–42]. In some settings, this computational model may be viewed as a black
box mapping functions to functions, making the development of efficient data-driven sur-
rogate models highly desirable. Furthermore, there are increasingly complicated applica-
tion domains which are data-rich, but for which complexity limits first principles mod-
eling; thus model discovery from data is necessitated. Cyber-physical systems present a
wide-class of such problems [43]. Data-driven modeling has great potential to impact such
domains.

Data-driven Surrogate Models A variety of specific techniques for data-driven surro-
gate modeling have been developed and described in the literature, including the Koop-
man operator-based models [44–49], Gaussian process (GP) based model emulators [50–
52], and data-driven projection-based reduced models [53–61]. Some of these methods
are non-intrusive, or can be extended to non-intrusive instantiations, which can be con-
structed without prior knowledge of an underlying mechanistic model. The motivation
for such methods is to find fast but accurate replacements for expensive computational
tasks which need to be repeatedly executed.

Neural Network Based Surrogate Models Most of the aforementioned surrogate mod-
els have at their core a linear model represented as combinations of appropriate basis
functions. Composing such models with pointwise nonlinearities in layers leads to neural
network based surrogate models. The introduced nonlinearity in the surrogate models
does not lead to significant increase in evaluation cost, since it is pointwise, but can signif-
icantly improve expressivity and prediction accuracy. As a consequence, neural network
based surrogate models are being explored in different fields in science and engineering.
They are used for data-driven modeling and scientific discovery, including turbulence
modeling [62–65], material modeling [39, 66–69], quantum mechanical modeling of ma-
terials [67, 70] and the design and prediction of protein structures [71]. In addition, neu-
ral networks have been used to augment conventional data-driven surrogate modeling
frameworks. For example, proper orthogonal decomposition is coupled with neural net-
works to speed up the online stage of reduced models in [10, 72], nonlinear manifolds are
introduced and learned by convolutional autoencoders to extend projection-based model
reduction beyond approximation in linear subspaces in [73], the approximation of the
Koopman operator is enhanced by neural networks for the control of unsteady fluid flows
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[74, 75], relationships between GPs and deep neural networks are explored in [76], and
Bayesian neural networks for uncertainty quantification are investigated in [77, 78].

Neural Networks for Solving Partial Differential Equations Solving partial differen-
tial equations with neural network-based approximations provides an alternative to tra-
ditional approximation approaches (such as finite difference, finite element or spectral
methods) by introducing new forms of finite dimensional approximation spaces. Poten-
tial advantages include the fact that neural network-based approximations do not require
meshes, and also offer the possibility of exploiting nonlinear approximation spaces, both
of which may be of great benefit in the numerical solution of high-dimensional PDEs
[79–81], and in solving PDEs on complex geometries [82–84]. Moreover, well-developed
neural network libraries (i.e., TensorFlow [85] and PyTorch [86]), coupled with GPU ar-
chitecture, make the solution process both easy-to-use and efficient. The basic method-
ology in PINNs [83] introduces a loss function defined by the equation, and may be ex-
tended to inverse problems through the additional incorporation of data-related penalty
terms [87–89]. The related gradient can generally be computed automatically by these
well-developed neural network libraries, and hence the optimization or inverse solving
procedure are also both easy-to-use and efficient. Theoretical underpinnings of this frame-
work are presented in [90–93] and approaches to improving the performance with locally
adaptive activation functions are studied in [94–97].

Neural Networks for Operator Learning In many of the applications cited in the pre-
ceding paragraphs, in both surrogate modeling and in model discovery, the core task is the
mapping of one function into another. Much of the preceding work on neural networks
for PDEs can be naively extended to neural network methods which would need to be re-
trained for each different input instance; some of the reduced order modeling work pro-
ceeds by learning mappings on finite dimensional spaces without explicitly conceptualiz-
ing or recognizing the function space mapping at its core. The focus of the present work is
on infinite-dimensional formulations for learning mappings between function spaces, and
we refer to this as operator learning. There has been considerable activity in this area in
the last five years: starting with the paper [77], focused on surrogate modeling for uncer-
tainty quantification in subsurface flow using deep autoencoder networks; [98] who use
a convolutional neural network to minimize parameterized variational problems; Deep-
ONet [12] with architecture comprising two sub-networks used to represent the operator
by enforcing separation of input and output functions into the branch and trunk networks;
PCA-Net [10,11] which uses neural networks to map between PCA coefficients represent-
ing input and output functions, neural networks based on kernel integral operators [15],
and the FNO [14,99,100] which parameterizes the integral kernel directly in Fourier space.
Finally, we mention [101,102] which study the learning of Green’s functions for nonlinear
boundary value problems, [98,103–105] which propose novel neural network architectures
for solving wave and elliptic equations, and [106] which employs the attention mechanism
for operator learning. A key aspect of the work in [11,15] is that the methodology has been
designed to be robust to the resolution of the finite-dimensionalizations of the input and
output functions; this means that the computational investment in learning a model at
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one resolution, or for one particular discretization, may be transferred to other resolutions
or discretizations. There is an existing body of published work which compares resolu-
tion invariant methods such as PCA-NET, DeepONet and FNO, with methods where the
choice and training of parameters is linked to the grid resolution, such as U-NET and
other grid-adapted approaches [77]; see [11, 14] for such comparisons. These comparative
studies demonstrate the value of using resolution invariant methods.

Universal approximation theorems, stating that that neural networks can accurately
approximate wide classes of nonlinear continuous operators are starting to emerge to un-
derpin these methodologies [12, 15, 107]. The paper [13] undertakes a careful compari-
son of the relative merits of DeepONet-based and FNO-based methodologies for opera-
tor learning. The paper introduces variants on the basic methods and the results show
the impressive flexibility of DeepONet and its ability to solve problems from a variety
of physical applications and a variety of complex geometric domains, and suggest di-
rections in which the FNO will benefit from further innovations. The specific numerical
results presented, in which a fixed number of parameters is chosen for each method, and
the error compared, show smaller errors for DeepONet than for FNO in many examples;
however similarly designed experiments on different problems and with different choices
of the fixed parameters reach the opposite conclusion about the ordering of the errors in-
curred by DeepONet and FNO [15, 106]. Thus, in terms of evaluating the relative merits
of different surrogates, the papers [13, 15, 106] come up short, because they do not study
dependence of evaluation cost on the approximation error achieved. This question is the
primary focus of our paper.

1.2 Our Contributions

Neural network surrogates for operators require a significant volume of training data to
ensure reasonable predictive power. The number of parameters needs to increase with
data volume, and when the parameterization of the neural network architecture becomes
more complicated, the evaluation cost increases. Quantifying the resulting cost-accuracy
trade-off involves interaction between statistical error from data sampling and approxi-
mation error from parameterization; in particular the issue of how to choose the number
of parameters, given the amount of available data, is fundamental to success and effi-
ciency of the methodology. Understanding the trade-off between cost and accuracy, for
different neural operators, and in different parameter/data regimes, is thus of central im-
portance in guiding how this field develops; it forms the focus of this work. Because
theory in this arena is currently limited, our study is purely computational. Our belief is
that careful computational studies will provide impetus for the development of theoretical
understanding of the issues they explore. Our main contributions are as follows:

• We give a unified presentation of a variety of different operator approximators: three
have appeared in the recent literature, PCA-Net, DeepONet and FNO, whilst a fourth,
a lifting of finite dimensional neural networks via pointwise evaluation, which we la-
bel PARA-Net, is formalized in this paper.

• We numerically study these operator approximators in the context of four model
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problems: i) mapping forcing to solution in a 2D incompressible Newtonian fluid; ii)
mapping wavespeed to disturbance field in the Helmholtz equation; iii) mapping ap-
plied tension load to stress field in an elastic solid; and iv) mapping initial condition
to solution at time one in the advection equation.

• We study error as a function of data volume (for fixed number of parameters), er-
ror as a function of number of parameters (for fixed data volume), and evaluation
cost as a function of error, for all four test problems. These experiments quantify
anticipated differences in the cost-accuracy trade-off between problems with smooth
outputs (i,ii) and those with discontinuous outputs (iii,iv). The experiments also
demonstrate data limiting effects and the potential for over-fitting in some methods.

• We show that the PARA-Net approach, whilst being a natural generalization of neu-
ral networks between Euclidean spaces, is not competitive with the other three meth-
ods considered, for the problems we consider, as measured by evaluation cost per
unit accuracy. PCA-Net, DeepONet and FNO all exhibit desirable behavior, and are
all clearly viable methodologies for certain problems in certain regimes; in contrast
PARA-Net is both consistently more expensive whilst also being particularly prone to
over-fitting, except for problem (iv); as a result it does not appear to be a useful gen-
eral approach. We include PARA-Net because doing so highlights the drawbacks of
not conceptualizing operator approximation as learning a function to function map-
ping.

• For a number of test problems and operator approximations, we provide explicit
instances of the test cases which lead to the median test error and to the largest test
error, yielding insight into failure modes of the learning procedures, especially for
the non-smooth problems (iii,iv).

• We numerically study the range space of the DeepONet approximator, contrasting
it with PCA-Net, demonstrating the pros and cons of its basic implementation, and
motivating the PCA modification of the basic DeepONet method that is introduced
in [13].

Our experiments do not provide a definitive answer as to which operator approximator
is best for any given class of problems. Rather we focus our attention on the following
complexity question: how does evaluation cost scale with accuracy for these methods? Our
experiments demonstrate that the answer to this question depends on the problem. In a
similar vein, the results in [13, 15, 106] also indicate that preferred method with respect
to error at a fixed parametrization level is problem dependent. However, since [13, 15,
106] consider only fixed parameterizations, and hence fixed cost, they do not shed light
on complexity. Our experiments demonstrate the merits of considering the complexity
question, and suggest the need for theory to underpin empirical findings. We believe
conclusions as to preferred methodology for any given problem, even with respect to the
complexity measure studied here, are premature; our numerical results simply focus on
the need for theory which addresses the complexity question.
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The code and dataset are accessible online at https://github.com/Zhengyu-Huang/
Operator-Learning.

2 Problem Formulation

Consider the following Banach spaces of functions U ,V :

U = {u : Du → Rdi}, where Du ⊆ Rdx ,

V = {v : Dv → Rdo}, where Dv ⊆ Rdy .

Our goal is to determine operators Ψ† : U → V from (samples from) the probability
measure

(
Id, Ψ†)#

µ, where µ is supported on U and equipped with the Borel σ-algebra,

and the push-forward
(
Id, Ψ†)#

µ is supported on U × V , also equipped with the Borel
σ-algebra. For simplicity we will assume that Du and Dv are closed and bounded.

We approximate Ψ† by different classes of parametric operators, each of which charac-
terizes a different neural network architecture. To this end, let Θ ⊆ Rp denote the space
of parameters of the neural network and consider a family of functions from U into V de-
fined by Ψ : U ×Θ 7→ V . In the idealized case of infinite data, the parameters θ ∈ Θ are
chosen to be θ?, the minimizer of the risk defined by:

Risk: R∞(θ) := Eu∼µ‖Ψ†(u)−Ψ(u; θ)‖2
V = ‖Ψ† −Ψ‖2

L2
µ(U ,V),

where the last expression is defined with integration over U in the Bochner sense. In
practice we only have access to samples {un}N

n=1 from µ, assumed to be i.i.d. and defining
the resulting empirical measure µN , together with {Ψ†(un)}N

n=1. This enables us to define
the empirical risk:

Empirical Risk: RN(∞)(θ) := Eu∼µN‖Ψ†(u)−Ψ(u; θ)‖2
V =

1
N

N

∑
n=1
‖Ψ†(un)−Ψ(un; θ)‖2

V .

Parameter θ?,N is the value of θ which minimizes RN(∞)(θ). In practice, in view of the
non-convex nature of the optimization over θ, we may only have access to an approxima-
tion of θ?,N .

Remark 2.1. Within both the risk and the empirical risk various modifications may be
relevant; for example ‖·‖V may be replaced by the norm in any space into which V is
continuously embedded. When studying error as a function of data volume, parameter
dimension, and evaluation cost, we will also use the following relative error measure (ap-
proximated empirically):

Eµ

(‖Ψ†(u)−Ψ(u; θ?,N)‖V
‖Ψ†(u)‖V

)
. (2.1)

https://github.com/Zhengyu-Huang/Operator-Learning
https://github.com/Zhengyu-Huang/Operator-Learning


J. Mach. Learn., x(x):xx-xx 8

Remark 2.2. Many of our examples concern the case where Du = Dv = D, dx = dy =
d. Furthermore, many of our examples also concern the case where the vector-valued
functions in U and V are in fact scalar-valued so that the input and output dimensions are
1 : di = do = 1. However, since the methodology applies outside these simpler settings,
we expose basic ideas at this greater level of generality.

3 Neural Networks

In this section we describe the various neural networks that we will compare in this study.
We establish preliminary notation in Section 3.1. In Sections 3.2 to 3.5, we introduce four
classes of neural network, highlighting similarities and differences.

3.1 Preliminaries

Let H denote a Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. We then
consider the Gelfand triple U ⊆ H ⊆ U ∗ where the embedding of U in H is continuous
and U ∗ denotes the dual space of U – the space of linear functionals on U . Given Lk ∈
U ∗, k = 1, · · · du, the function u in U is partially characterized by the finite dimensional
vector Lu := {Lku}du

k=1. This will be used to characterize inputs to Ψ in the formulations
of the three neural network architectures in Sections 3.2 to 3.4.

When U ,V are themselves Hilbert spaces we may compute the mean and covariance
operator with respect to µ and (Ψ†)#µ, respectively, assuming first and second moments
exist. The eigen-decomposition of the covariance operators (PCA) gives rise to orthonor-
mal bases {φj}j∈N in U and {ψj}j∈N in V . Note that

φj : Du → Rdi , j ∈N; ψj : Dv → Rdo , j ∈N.

3.2 PCA-Net

Here it is simplest to think ofH = U = L2(Du; Rdi). Truncate the PCA basis of µ to the first
du modes, {φj}j=du

j=1 , and truncate the PCA basis of Ψ#µ to the first dv modes {ψj}j=dv
j=1 . Then

define Lk ∈ U ∗ by Lku = 〈φk, u〉 , k = 1, · · · du. Introduce function α : Rdu × Θ → Rdv

defined componentwise by

αj : Rdu ×Θ→ R j = 1, 2, · · · , dv

which maps from the PCA coefficients {Lku}du
k=1 of µ to the PCA coefficients {αj}dv

j=1 of

Ψ#µ, and is parameterized by θ ∈ Θ. Here function α denotes a finite dimensional neural
network.
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The approximating operator between U and V is then defined by

ΨPCA(u; θ)(y) =
dv

∑
j=1

αj(Lu; θ)ψj(y) = α(Lu; θ)Tψ(y) ∀u ∈ U y ∈ Dv

where Lu = {Lku}du
k=1 and ψ(y) = {ψj(y)}dv

k=1. We note that each αj is R-valued, so α may
be viewed as a column vector in Rdv , whilst each ψj is Rdo -valued, so ψ may be viewed as
a matrix in Rdv ×Rdo . Thus ΨPCA(u; θ, µ)(y) is Rdo -valued.

Remark 3.1. Note the following facts concerning this architecture which place it slightly
outside the standard training framework, using empirical risk, outlined above.

• PCA is defined on a Hilbert space, given measure µ; in practice it is implemented on
finite-dimensional approximations of a Hilbert space, using samples from measure
µ.

• The linear functionals {Lk} in U ∗ and the functions {ψj} in V , needed to define the
architecture of ΨPCA, are pre-computed using PCA and decoupled from the training
of the neural network. Thus preliminary calculations, using PCA on the dataset, are
conducted to define the risk or empirical risk.

3.3 DeepONet

Several works in recent years use the terms ‘DeepONet’ or ‘deep operator network’ to
describe related, but different neural network architectures used to approximate infinite-
dimensional operators [12, 84, 108–110]. These architectures have in common the use of
two separate networks, called the trunk and branch networks, to map input functions to
output functions, generalizing the ‘shallowONet’ architecture first proposed in [107]. The
trunk network is used learn the output space representation; the branch network learns
the input to output solution mapping in the output space spanned by the trunk network.

In this paper we employ a specific variant of the DeepONet branch/trunk architecture,
chosen in order to faciliate comparison with PCA-Net; specifically we consider a version of
DeepONet in which we use the same linear functionals in U as in PCA-Net as input to the
branch network. However, whilst PCA-Net uses fixed PCA basis functions in the output
space, DeepONet learns the representation in the output space as the trunk network. We
note that the variant on DeepONet appearing in [12, Problem 5] also uses a Karhunen-
Loeve expansion, which is equivalent to PCA, as input, but uses the information in a
different way; in particular the coefficients of the Karhunen-Loeve expansion, which in
our notation are analogous to Lu, are used in [12] as input to the trunk network, rather
than the branch network.

In summary the key difference between our implementations of DeepONet and PCA-
Net is that the functions {ψj} in the output space are given in DeepONet by a neural
network, rather than using PCA on the output space V as in PCA-Net; for DeepONet
they are learned in the training phase, rather than being precomputed from the data as
in PCA-Net. However, our implementations of DeepONet and PCA-Net both take linear
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functionals on the input PCA basis in U as input to the neural networks labelled α. We
emphasize that the original formulation of the DeepONet used pointwise evaluations of
the input function in V as inputs to the neural network, rather than PCA coefficients. A
brief discussion of pointwise evaluations, written in our general framework, may be found
in Appendix A. It is possible, indeed likely, that for some problems, our implementation
of both DeepONet and PCA-Net could show improved performance by working with
pointwise evaluation functionals as input; however, our numerical results are not focused
on this question, but rather on how the two methods perform in relation to their different
representations of the output space.

The operator between U and V is defined as follows:

ΨDEEP(u; θ)(y) =
dv

∑
j=1

αj(Lu; θα)ψj(y; θψ) = α(Lu; θα)
Tψ(y; θψ), ∀u ∈ U, y ∈ Dv,

where the functions αj : Rdu ×Θ→ R have the same structure as in PCA-Net, and are col-
lectively referred to as the “branch” of the DeepONet neural network. The functions {ψj}
are collectively referred to as the “trunk” of the DeepONet architecture, and are defined
by neural networks of the form

ψj : Dv ×Θ→ Rdo , j = 1, · · · , dv.

We denote by θ the collection of the hyperparameters θα and θψ appearing in α and ψ.
These are computed from minimizing the (empirical) risk over θ ∈ Θ. No parameters in
Θ are shared between α and ψ, but their optimal choice is coupled through the empirical
risk minimization.

Remark 3.2. Our choice of notation highlights similarities between PCA-Net and Deep-
ONet. However features that distinguish DeepONet from PCA-Net include:

• For DeepONet, both the trunk, {ψ}, and the branch, {α} are neural networks, whereas
for PCA-Net only the branch is. In particular for DeepONet ψ(·; θ) is selected via op-
timization during training, in contrast to PCA-Net for which ψ is defined by the data,
using PCA, prior to parameter selection, via optimization, for the neural network.

• In DeepONet, L may not depend on µ if pointwise evaluations are used (see Ap-
pendix A.)

• For both PCA-Net and DeepONet, the norm ‖·‖V appearing in the empirical risk, or
weaker norm in a space into which V is continuously embedded, is approximated
using pointwise evaluations at a set of points {yl}. Indeed, in the original work
underpinning DeepONet [107] a set of fixed pointwise evaluations are part of the
definition of the architecture and appear in the definition of the empirical risk used
in training. We prefer to employ an operator perspective on the method, and in
particular to define the empirical risk through a norm on V , enabling comparison
with other neural networks formulated as operator approximators.
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3.4 PARA-Net

As we do for PCA-Net, we truncate the PCA basis of µ, {φj}du
j=1, using the first du modes,

and define Lk ∈ U ∗ by Lku = 〈φk, u〉 , k = 1, · · · du. Again it is simplest to think of
H = U = L2(Du; Rdi). We introduce the real-valued neural network

ψ : Rdu × Dv ×Θ→ Rdo

and then define ΨPARA : U ×Θ→ V by

ΨPARA(u; θ)(y) = ψ(Lu, y; θ).

Remark 3.3. Note that ψ is a standard neural network between Euclidean spaces. By
defining a collection of linear functionals L in U ∗, evaluating this finite dimensional neural
network at input (Lu, y), and varying over u in U and y in Dv we create an operator. In this
sense it is a natural method. However, as we will show, it is not competitive with the other
methods presented here in terms of the cost-accuracy trade-off for the problems we con-
sider. We include it because it is a natural generalization but its poor performance serves
as a motivation to think beyond the confines of standard finite dimensional Euclidean
neural networks and to exploit structure such as PCA bases, branch-trunk decomposition
or (next subsection) Fourier representation.

Recall that the graph of Ψ is the set {Ψ(u), u ∈ U}. Both PCA-Net and DeepONet give
rise to linear approximation spaces for the graph of Ψ in that, for all u ∈ U , the approx-
imation of Ψ(u) ∈ V lies in the same finite dimensional subspace of V , independently
of u, defined by the span of the {ψj}. In contrast PARA-Net gives rise to a an approx-
imation space in V which depends nonlinearly on u. This is a potential advantage but,
as we will show for the problems we consider here, this advantage is outweighed by the
computational cost of the pointwise evaluations required to construct full output function
reconstructions. This challenge is exacerbated by multiple spatial dimensions, since the
number of grid points generally scales exponentially with spatial dimension. However it
is conceivable that, for some operator approximation problems not considered here, the
trade-off between nonlinear approximation and the cost resulting from repeated pointwise
evaluation results in PARA-Net being competitive. The potential benefits of nonlinear ap-
proximation spaces are discussed in [111].

3.5 Fourier Neural Operator (FNO)

For simplicity, we consider the setting where Du = Dv = D = [0, 1]d so that dx = dy = d.
In this setting it is simplest to think of H = L2(D; Rdi) (or a generalization to impose, for
example, the divergence-free condition) and U = V = Cper(D; Rdi), the set of continuous
periodic functions on the unit cube; alternatively U may be an RKHS, such as a Sobolev
space of periodic functions of fractional order greater than d/2, which is continuously
embedded into Cper(D; Rdi).
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Let R, Q denote standard finite dimensional neural networks

R : Rdi ×Θ→ Rd f

Q : Rd f ×Θ→ Rdo ,

where d f is the number of channels1 used in FNO-NET, typically larger than di or do. We
use R and Q to define operatorsR and Q by pointwise evaluation:

(Ru)(x, θR) = R(u(x), θR)

(Qu)(x, θQ) = Q(u(x), θQ).
(3.1)

We say the R operator lifts the input to the channels and that the Q operator projects the
channels to the output. Note thatRu is well-defined in Cper(D; Rd f ), the space of periodic
continuous functions of dimension d f , if u ∈ U and U is continuously embedded into
Cper(D; Rdi).

We now introduce notation for the l-th Fourier Neural Layer (FNL):

Ll(v)(x, θ) = σ
(
Wlv(x) + (Kv)(x; γl)

)
, (3.2)

where σ is an activation function, applied pointwise w.r.t. x ∈ D; Wl ∈ Rd f×d f is a matrix
applied pointwise to v(x); K is a parameterized non-local operator, for which a variety
of forms are commonly used [15]. In this paper we exclusively use the Fourier Neural
Operator form (FNO):

FNO : (Kv)(x; γ) = F−1(P(γ)(Fv))(x).

Here F denotes the Fourier transform of a periodic function v : D → Rd f , so that Fv :
Zd → Cd f , and F−1 denotes its inverse, and for each point in the Fourier domain Zd, the
action of P(γ) is as an element of Cd f×d f . In this paper the FNO is implemented using
a Fast Fourier Transform on a uniform lattice of pointwise evaluations of the functions v
and P(γ)F (v). When evaluating F , only the first kmax modes are kept. In this setting P
reduces to a complex-valued (kmax × d f × d f )-tensor, which is applied as an element of
Cd f×d f on each of the kmax Fourier modes. Then

ΨFNO(u; θ) = Q ◦ LL ◦ · · · L2 ◦ L1 ◦ R(u).

Here we denote by θ the collection of the hyperparameters θR and θQ and {Wl , γl} for
each Fourier neural layer l. As in the case of DeepONet, none of these hyperparameters
are shared, but their choice is coupled through the empirical risk minimization. Note
that, for simplicity, the layer width d f is fixed, but this is not necessary. Furthermore, all
numerical experiments reported here are conducted with Q and R being affine. In contrast,
the experiments in [14, 113] use linear R but nonlinear Q.

1Sometimes also referred to as features; however we avoid this terminology as the terminology random features are used
to describe a different concept [112] and we wish to avoid confusion.
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Finally, we note that in the current implementation of FNO, the number of retained
Fourier modes, kmax, scales exponentially with the spatial dimension of the problem. In
contrast, our implementations of PCA-Net and DeepONet do not have parameters that
explicitly depend on the spatial dimension of the problem. The FNO scaling with spatial
dimension may pose a computational hurdle in three spatial dimensions; however we
note that this may be overcome, e.g. by employing wavelets in higher dimensions.

4 Numerical Studies

This section compares numerically the aforementioned algorithms for approximating maps
between infinite-dimensional function spaces. Four test problems are considered:

1. Navier-Stokes equation: the map between the forcing and the vorticity field at a later
time is learned.

2. Helmholtz equation: the map between the (inhomogeneous) wavespeed field and
the disturbance field (solution) is learned.

3. Structural mechanics equation: the map between an applied boundary load and the
interior von Mises stress field is learned.

4. Advection equation: the solution operator from initial condition to solution at a later
time is learned.

In our first two tests, the output functions are smooth, while the outputs of the latter two
tests have discontinuities in the output space or its gradients.

This section is organized as follows: Section 4.1 describes our implementations of the
neural networks from Section 3. Section 4.2 details, in Sections 4.2.1 to 4.2.4, each of the
above four test problems; in the same subsection results are presented for each of the test
problems, commenting qualitatively on the results for each test problem in its subsection.
Then, Section 4.3 discusses our quantitative results for all test problems, highlighting the
cost-accuracy trade-off for learning operators by neural networks.

4.1 Neural Network Architectures

Figure 4.1 summarizes the neural network architectures considered in our numerical ex-
periments. In particular, the neural networks used in PCA-Net, PARA-Net, and the Deep-
ONet branch and trunk networks have shared internal structure: they each use fully con-
nected neural networks with three internal layers of constant fixed width w between the
input and output layers, and ReLU functions are employed. The output layer for each of
these networks is linear (no nonlinear activation function). The FNO network has three
internal Fourier Neural Layers (defined in (3.2)) in between the initial lifting layer and the
final projection layer (3.1), and uses Gaussian Error Linear Unit (GELU) activation func-
tions. PCA-Net, DeepONet and PARA-Net are initialized based on the method described
in [114] and FNO is initialized following [14, 115].
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Figure 4.1: Schematic of neural network architectures in numerical experiments. Circles represent layers; the width
of each layer is given in the circle. Edges represent transformations between layers; the type of transformation
between each layer is noted above each edge. Nonlinear and linear transformations are standard fully-connected
layers; the lift and project layers are defined in (3.1); the Fourier Neural Layer (FNL) is defined in (3.2).

To compare the online evaluation costs of the neural networks, we provide a cost analy-
sis in terms of the requisite floating point operations (FLOPs) in Appendix B.2; the result-
ing costs are tabulated in Table 4.1. DeepONet and PCA-Net have the same evaluation
cost because the DeepONet branch and PCA-Net have the same architecture in our imple-
mentations, and the DeepONet trunk defines basis functions which can be precomputed
after the network is trained, before evaluating the trained network on new data.

Architecture Evaluation cost Cost scaling
PCA-Net du(2Npdi − 1) + 2duw + 4w2 + 2dvw + 3w +

(2dv − 1)Npdo

O(Np + w2)

DeepONet du(2Npdi − 1) + 2duw + 4w2 + 2dvw + 3w +
(2dv − 1)Npdo

O(Np + w2)

PARA-Net du(2Npdi − 1) + [2(du + dy)w + 4w2 +
2wdo + 3w]Np

O(Npw2)

FNO 2Npd f (di + do) + 3(10d f Nplog(Np) +

kmax(2d2
f − d f ) + 2d2

f Np)

O(d f Nplog(Np) + Npd2
f )

Table 4.1: Evaluation cost of the four neural network architectures considered in this work.

We will study the cost and accuracy of the neural network approximations as the
amount of data and the network size are varied. For PCA-Net, DeepONet, and PARA-
Net, the widths tested are w = {16, 64, 128, 256, 512}, and the numbers of channels tested
in FNO are d f = {2, 4, 8, 16, 32}. Evaluation cost is measured in terms of FLOPs (Table 4.1).
To quantify the expressive power of each of these networks, we provide a parameter com-
plexity analysis of the networks in Table 4.2. Details can be found in Appendix B.1.
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Architecture Parameter complexity
PCA-Net 2w2 + w(du + dv) + 3w + dv
DeepONet 4w2 + w(du + dv + dy + dvdo) + 6w + dv + dvdo
PARA-Net 2w2 + w(do + du + dy) + 3w + do
FNO d f di + d f + d f do + do + 3(d2

f + d2
f kmax)

Table 4.2: Parameter complexity of the four neural network architectures considered in this work in terms of input
and output space dimensions as well as network size parameter w or d f .
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Figure 4.2: Navier-Stokes problem: sample input and output functions (left and right, respectively).

4.2 Test Problems and Qualitative Results

This section introduces the four test problems and presents the results of our numerical
comparisons of the four network architectures for each test problem. Sections 4.2.1, 4.2.2,
4.2.3 and 4.2.4, respectively, introduce the Navier-Stokes, Helmholtz, solid mechanics, and
one-dimensional advection test problems, respectively. For each test problem, we show
comparisons of the true vs. neural network predicted fields at inputs that result in median
and worst-case test errors and comment qualitatively on what these comparisons show
about the neural network performance for each problem. Detailed quantitative discussion
of the cost-accuracy trade-offs of the networks is deferred to Section 4.3.

4.2.1 Navier-Stokes Equation

Formulation We consider the vorticity-stream (ω−ψ) formulation of the incompressible
Navier-Stokes equations on a two-dimensional periodic domain, D = Du = Dv = [0, 2π]2:

∂ω

∂t
+ (v · ∇)ω− ν∆ω = f ′,

ω = −∆ψ
∫

D
ψ = 0,

v =
( ∂ψ

∂x2
,− ∂ψ

∂x1

)
.

(4.1)
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We are interested in the map from the forcing f ′ to the vorticity field ω at time t = T. The
forcing f ′ is assumed to be a centred Gaussian with covariance

C = (−∆ + τ2)−d;

here −∆ denotes the Laplacian on D subject to periodic boundary conditions on the space
of spatial-mean zero functions, τ = 3 denotes the inverse length scale of the random field
and d = 4 determines its regularity; the choice of d then leads to up to 3 fractional deriva-
tives for samples from this measure. The initial condition ω(0) is fixed and generated
from the same distribution.

Our numerical experiments are conducted in the case where ν = 0.025, similar to the
setup in [116] [117, Chapter 2.2], and we use final time T = 10. For the value of ν used
here, the solution at time 10 has decorrelated from the initial condition; it inherits the spa-
tial pattern of the forcing f ′ but has larger amplitude, and smoother small scale features.
Equation (4.1) is solved using a pseudo-spectral method on a 64× 64 grid. To eliminate
aliasing error, the Orszag 2/3-Rule [118] is applied and, therefore there are 422 Fourier
modes (padding with zeros). Time-integration is performed using the Crank–Nicolson
method with ∆t = 10−3. See Figure 4.2 for a visualization of sample input f ′ and resultant
output ω(·, T) fields.

Results Figure 4.3 shows the input, true output, neural network-predicted output, and
output errors for the inputs resulting in the median and largest test errors (left and right)
for each network architecture. The output ω(T) for this problem is well-correlated with
the input f ′, and all neural networks succeed in predicting the main features of the vor-
ticity field. Note that the vorticity fields predicted by PARA-Net are grainier than those
of other networks, which is reflected by the smaller length scale of the PARA-Net error
fields. This graininess is due to the pointwise prediction of the network. For this problem,
FNO errors are significantly lower than those of other methods, reflecting that the problem
specification is particularly well-adapted to a spectral representation.
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Figure 4.3: Navier-Stokes test problem: learned model vorticity predictions for inputs resulting in median (left)
and largest (right) test errors for networks of size w = 128 / d f = 16 trained on N = 10000 data.



J. Mach. Learn., x(x):xx-xx 18

Ω

∂Ω1

∂Ω2

∂Ω3

∂Ω4

x
0.0 0.5 1.0

x

0.0

0.5

1.0

y

c

0.0 0.5 1.0
x

u

19.8

20.0

20.2

0.03

0.00

0.03

Figure 4.4: Helmholtz test problem: Left: schematic of unit domain with labeled boundaries. Center: Sample
input wave speed field. Right: Sample output disturbance field.

4.2.2 Helmholtz Equation

Formulation We consider the Helmholtz equation on the domain D = Du = Dv = [0, 1]2

shown in Figure 4.4. Given frequency ω = 103 and wavespeed field c : Ω → R, the
excitation field u : Ω→ R solves equation(

−∆− ω2

c2(x)

)
u = 0 in Ω, (4.2a)

∂u
∂n

= 0 on ∂Ω1, ∂Ω2, ∂Ω4 (4.2b)

∂u
∂n

= uN on ∂Ω3. (4.2c)

Note that the Neumann boundary condition imposed on ∂Ω is non-zero only on the
top edge. Throughout the experiments presented here uN is fixed at 1{0.35≤x≤0.65}. The
wavespeed field c(x) is assumed to be

c(x) = 20 + tanh(c̃(x)),

where c̃ is a centred Gaussian

c̃ ∼N(0,C) and C = (−∆ + τ2)−d;

here −∆ denotes the Laplacian on Du subject to homogeneous Neumann boundary con-
ditions on the space of spatial-mean zero functions, and we choose d = 2 and τ = 3, the
choice of d then leads to up to 1 fractional derivative for samples from this measure. We
are interested in the map from the wavespeed field c to the solution u. Equation (4.2) is
solved using a finite element method on a 100× 100 grid. See Figure 4.4 for a visualization
of sample input (c) and resultant output u fields.

Results Figure 4.5 shows the input, true output, neural network-predicted output, and
output errors for the inputs resulting in the median and largest test errors (left and right
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panels) for each network architecture. For the median error cases, all neural networks
tested yield disturbance predictions that match the true disturbance field in the ‘eyeball
norm’. However, differences in their behavior are revealed by the structure of the error
fields: the error fields of PCA-Net and FNO have similar structures, length scales, and
error magnitudes, indicating that their output spaces are similar. In contrast DeepONet
and PARA-Net exhibit error fields with smaller length scales and different structures.

For the worst-case error cases, we note that all four networks achieve the worst-case
error on the same test input c. This is because for this particular c, the frequency ω is
close to an eigenfrequency of the Helmholtz operator, for which the c 7→ u map would
not be uniquely defined. In Figure 4.6, we plot the normalized differences between the
network predictions and the true solution, as well as the normalized eigenmode corre-
sponding to the smallest eigenvalue of the Helmholtz operator for this input (the last row
of the right panel of Figure 4.5 corresponds to the absolute value of the left four panels of
Figure 4.6 plotted on a log scale). Note that these differences are close to scalar multiples
of the eigenmode. A sample, c, drawn from the distribution for testing clearly can result
in an eigenfrequency close the frequency already chosen for the simulations. The solution
becomes large near eigenfrequencies, as is quantified, for example, in [119, Section 2.1];
hence, the accuracy of any prediction deteriorates accordingly independent of the archi-
tecture. This effect is visible in Figure 4.5: note that the left and right panels share a color
scale and that the true u for the median error has more washed out colors than the true u
for the largest error.
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Figure 4.5: Helmholtz test problem: learned model predictions for inputs resulting in median (left) and largest
(right) test errors for networks of size w = 128 / d f = 16 trained on N = 10000 data.
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Figure 4.6: Helmholtz test problem largest test error case: normalized differences between learned model pre-
dictions and true solution (left four panels) and comparison to normalized smallest eigenmode of the Helmholtz
operator for this test case.

4.2.3 Structural Mechanics Equation

Formulation The governing equation of an elastic solid undergoing infinitesimal defor-
mations is

∇ · σ = 0 in Ω,
u = ū on Γu,

σ · n = t̄ on Γt,
(4.3)

where u is the displacement vector and σ is the (Cauchy) stress tensor; Ω denotes the
computational domain. The prescribed displacement ū and the surface traction t̄ respec-
tively, are imposed on the domain boundaries Γu and Γt respectively, with the outward
unit normal n, where Γu ∩ Γt = ∅ and Γu ∪ Γt = ∂Ω. The unit cell problem is depicted
in Figure 4.7, which is clamped on the bottom edges. Tension traction is applied on the
top edge, and the distributed load is t̄. To solve for the displacement u from eq. (4.3), we
also need the constitutive model, which maps the deformation gradient to the stress. The
matrix is made of incompressible Rivlin-Saunders material [120] with density ρ = 0.8 and
energy density function parameters C1 = 1.863× 105, C1 = 9.79× 103 and the cylin-
drical fiber at the center is made of linear elastic material with density ρ = 3.2, Young’s
modulus E = 4× 106 and Poisson ratio ν = 0.35.

We are interested in the map from the one-dimensional load t̄ to the von Mises stress
field τvM on the two dimensional domain Ω. The load t̄ is drawn from a Gaussian random
field with mean 100 and covariance 4002C with

t̄ ∼N
(
100, 4002C

)
and C = (−∆ + τ2)−d.

Here −∆ denotes the Laplacian on D subject to homogeneous Neumann boundary condi-
tions on the space of spatial-mean zero functions, τ = 3 denotes the inverse length scale of
the random field and d = 1 determines its regularity (upto 1/2 a fractional derivative for
samples from this measure). The data is generated using the NNFEM library [121, 122]. The
mesh consists of 189 quadratic quadrilateral elements and the top edge is discretized by 10
quadratic elements and hence 21 points. The inputs are the load on the 21 points, and the
outputs are the stress field (see Figure 4.7) on Gaussian quadrature points (9× 189). Since
FNO operates on uniform grids and requires the input and output data have the same
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Figure 4.7: Solid mechanics test problem. Schematic of fiber-reinforced material and loading (left), sample load
drawn from Gaussian distribution (center), and corresponding von Mises stress field (right).

dimensions, the stress field is interpolated on a 41× 41 grid via radial basis function inter-
polation, and the load is interpolated on a 41 grid and extruded in the y direction. We note
that in generating the input and output data for this problem, the discretized input data
for the load t̄ are drawn from a Gaussian, but because the finite element solver employs
quadratic elements the effective load in the solver is smoother (as depicted in Figure 4.7).

Results Figures 4.8 and 4.9 show the input, true output, neural network-predicted out-
put, and output errors for inputs resulting in the median and largest test errors, respec-
tively, for each network architecture. For this problem with discontinuous outputs, all
four neural networks yield qualitatively similar predictions on both their median and
worst-case error inputs, as seen in the similar color scaling of the error field plots. We
call attention to the stress jump at the material interface which is generally well-captured
by all four networks. We note the FNO results have oscillations at the material interface
due to interpolation on the uniform grid.



J. Mach. Learn., x(x):xx-xx 22

250

0

250
To

p 
lo

ad
in

g 
t(x

) PCA-Net DeepONet PARA-Net FNO
Tr

ue
 st

re
ss

 fi
el

d
Pr

ed
ict

ed
 st

re
ss

 fi
el

d
St

re
ss

 fi
el

d
 e

rro
r

0

50

100

150

200

250

300

350

10 3

10 2

10 1

100

101

102

Figure 4.8: Structural mechanics test problem: learned model stress field predictions for inputs resulting in median
test errors for networks of size w = 128 / d f = 16 trained on N = 10000 data.
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Figure 4.9: Structural mechanics test problem: learned model stress field predictions for inputs resulting in largest
test errors for networks of size w = 128 / d f = 16 trained on N = 10000 data.

4.2.4 Advection Equation

Formulation The 1D advection equation in Ω = [0, 1) is

∂u
∂t

+ c
∂u
∂x

= 0 x ∈ Ω,

u(0) = u0

(4.4)

where c = 1 is the constant advection speed, and periodic boundary conditions are im-
posed. We are interested in the map from the initial u0 to solution u(·, T) at T = 0.5. The
initial condition u0 is assumed to be

u0 = −1 + 21{ũ0 ≥ 0}

where ũ0 a centered Gaussian

ũ0 ∼N(0,C) and C = (−∆ + τ2)−d;

here −∆ denotes the Laplacian on D subject to periodic conditions on the space of spatial-
mean zero functions, τ = 3 denotes the inverse length scale of the random field and d = 2
determines the regularity of ũ0, which is upto 3/2 derivatives. A pair of sample input and
output data is depicted Figure 4.10. Note that multiple discontinuities exist in this input



J. Mach. Learn., x(x):xx-xx 24

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

0.5

0.0

0.5

1.0

u0

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0

0.5

0.0

0.5

1.0

u(T)

Figure 4.10: Sample input/output functions for the advection equation, left: u0, right: u(T).

sample; in general the probability of drawing a function with a given number p of discon-
tinuities decreases with p but, in principle, draws with any number of discontinuities are
possible.

Results Equation (4.4) is solved analytically on a 200-point uniform grid. Figure 4.11
shows the input, true output, and neural network-predicted output, for inputs resulting
in the median and largest test errors (top and bottom panels) for each neural network
architecture. We note that the median test cases for all four networks are similar; they
each have just two discontinuities that are about half the domain apart. All four neu-
ral networks yield predictions which accurately reflect these discontinuities in the me-
dian case, although PCA-Net and DeepONet suffer from oscillatory Gibbs phenomena
near the discontinuities. The worst-case test cases across all four network architectures
also share similar characteristics: they have many discontinuities, including up-and-down
jumps within a length scale of about one-tenth of the domain. In these challenging cases,
the PCA-Net and DeepONet predictions suffer from Gibbs phenomena throughout the
domain due to the many discontinuities. The FNO prediction reflects discontinuities at
longer length scales as well and, additionally, suffers from significant overshooting near to
small-length-scale discontinuities. Lastly, the PARA-Net worst-case prediction outputs a
piecewise smooth solution that does not exhibit Gibbs phenomena but does not reflect the
true discontinuities of the solution. It is important to note that all of PCA-Net, DeepONet
and PARA-Net use the same input space representation, based on projection onto a finite
number of PCA modes, and this is not well-adapted to discontinuous inputs. However
DeepONet and PARA-Net have the possibility of recovering from this, since they learn
the output space representation and it is in the output space that the error is measured.

4.3 Discussion of Quantitative Results

We now consider the complexity question as measured by test errors vs. cost for each of the
neural networks. There are two main axes along which we can measure cost, training cost
and online evaluation cost. For many PDE problems, the training cost is dominated by the
cost of generating data by numerically solving the PDEs; we thus measure training cost in
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Figure 4.11: Advection test problem: learned model output predictions for inputs resulting in median (top) and
largest (bottom) test errors for networks of size w = 128 / d f = 16 trained on N = 10000 data.
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terms of available training data volume. In our experimental design, the online evaluation
cost is directly related to the network size. The network size and training data volume
have coupled influence on the network accuracy. The test error can thus be viewed as a
surface in three-dimensional space where the two independent variables are the training
volume and network size. In Section 4.3.1, we consider slices of this surface along the data
volume axis: we report and discuss the error-vs-training cost curves for each network
and test problem at different network sizes. Then, in Section 4.3.2, we consider slices of
the error in the other direction, along the network size axis, and report and discuss error-
vs-size cost curves for each of the networks and test problems. Section 4.3.3 reports and
discusses the error-vs-online evaluation cost curves. Section 4.3.4 provides a preliminary
study of out-of-distribution generalization error. Section 4.3.5 compares the output space
representations learned by PCA-Net and DeepONet. Finally, in Section 4.3.6 we comment
on the influence of optimizer performance on the neural network prediction errors.

4.3.1 Accuracy vs. Training Cost

We now begin our discussion of the cost-accuracy trade-off by focusing on studying the
test error as a function of the training cost as measured by the used training data volume.
Figure 4.12 plots the test error vs. training data volume for each of our test problems across
different network sizes and architectures, and plots the Monte Carlo rateO(N−

1
2 ) [123] for

reference.
We contrast the error-training data behavior of the two smooth problems (Navier-

Stokes and Helmholtz, with that of the two problems with discontinuous outputs (the
structural mechanics and advection problems. The paper [124] shows that for neural net-
work learning of linear operators the Monte Carlo rate is obtained when the problem
is smooth enough, but that for less smooth problems the reduction with respect to N is
slower than the Monte Carlo rate. This theoretical result is also reflected in our numerical
findings (which, with the exception of the advection problem, all concern nonlinear oper-
ators) where the smooth problems exhibit empirical error-data curves with slopes close to
theO(N−

1
2 ) rate for all but the smallest neural networks. For these small neural networks,

the expressive power of the networks limits the convergence of error with respect to the
training data. In contrast, for our non-smooth problems, the error-data curves generally
exhibit slopes that are worse than the O(N−

1
2 ) rate, and errors level out for all neural net-

work sizes tested, indicating that the expressive power of the networks is more limiting
for these non-smooth cases.

Finally, we note that PARA-Net differs from the other network types tested in that it
often yields much higher test errors for low training data volumes than the other net-
works: this indicates that PARA-Net requires greater volumes of training data to yield
good predictions. PCA-Net and DeepONet have similar error-training data curves on all
problems except the Helmholtz problem, where the DeepONet trunk struggles to capture
the high-frequency oscillations of the solution; we will discuss this in Section 4.3.5. FNO
generally yields the lowest errors for a given training data volume and for the advection
test problem actually appears to need even less data than the smallest data volume tested.



J. Mach. Learn., x(x):xx-xx 27

10 3

10 1

101

Na
vi

er
-S

to
ke

s 1/ N

w = 16 / df = 2

1/ N

w = 64 / df = 4

1/ N

w = 128 / df = 8

1/ N

w = 256 / df = 16

10 2

10 1

100

101

He
lm

ho
ltz 1/ N 1/ N 1/ N 1/ N

0.05

0.1

0.2

0.4

St
ru

ct
ur

al
 m

ec
ha

ni
cs

1/ N 1/ N 1/ N 1/ N

312 1250 5k 20k
Training data N

10 1

100

101

Ad
ve

ct
io

n

1/ N

312 1250 5k 20k
Training data N

1/ N

312 1250 5k 20k
Training data N

1/ N

312 1250 5k 20k
Training data N

1/ N

Te
st

 E
rro

r

PCA-Net DeepONet PARA-Net FNO

Figure 4.12: Test error vs. training data amount N for Navier-Stokes, Helmholtz, structural mechanical, and
advection problems (top to bottom). Network size increases left to right.

4.3.2 Accuracy vs. Network Size/Expressivity

We next consider the error behavior of our neural network predictions as a function of
the network width/number of channels, which is related both to the online evaluation
cost of the network and to the network’s expressive power. We focus initially here on
the trade-off between accuracy (as measured by test error) and expressivity (as measured
by number of parameters) and defer discussion of the accuracy-online evaluation cost
tradeoff to the next section. Figure 4.13 plots the test error vs. network width for each
problem and network type.

For the Navier-Stokes test problem, we note that PCA-Net, DeepONet, and PARA-Net
all demonstrate overfitting2 behavior—that is, error curves that increase with the size of
the network—for small training data volumes. However, FNO does not exhibit overfitting
behavior for the Navier-Stokes problem, reflecting that FNO’s spectral representation of
the solution is particularly suited to this problem. For the Helmholtz test problem, none

2The overfitting regime is one where the error grows as the network grows
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Figure 4.13: Test error vs. network size, as measured by internal layer width w for PCA-Net, DeepONet, and
PARA-Net, and as measured by number of channels d f for FNO. Different lines correspond to different training
data volumes, N.

of the network types exhibit overfitting behavior at any training data volume tested, indi-
cating that N = 2500 data are sufficient for training the networks for this specific problem.

For our structural mechanics test problem, PCA-Net, DeepONet, and PARA-Net all
exhibit overfitting behavior at all training data volumes, whereas FNO exhibits overfitting
behavior only at the smaller data volumes. For the advection test problem, both PCA-Net
and FNO exhibit slight overfitting behavior at all tested data volumes, whereas DeepONet
and PARA-Net appear more robust to this behavior. This may be because DeepONet and
PARA-Net both define the output space in terms of a learned neural network, in contrast
to PCA-Net and (our specific implementation of) FNO, for which the output space is the
result of a linear decomposition or a prescribed set of Fourier bases.
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4.3.3 Accuracy vs. Evaluation Cost

Finally, we directly consider the error behavior of our neural network predictions as a
function of their online evaluation cost (Table 4.1). Figure 4.14 plots the test error vs. net-
work evaluation cost for each network type and test problem across the range of network
sizes tested, for a fixed training data volume of N = 10000. Figure C.1 contains the com-
plete results for all training data volumes tested; however our main conclusions can be
understood from just the N = 10000 results.
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Figure 4.14: Test error vs. evaluation cost for all four test problems for fixed training data volume N = 10000.
See Figure C.1 for error vs. evaluation cost curves for all training data volumes tested.

We note first that for all test problems, the cost of PARA-Net exceeds the cost of other
networks by at least an order of magnitude with similar or worse error than the other
networks. This is because the network must be evaluated at every spatial point in the
discretization of the output function. As such it is not competitive with the other network
architectures in the setting where entire output functions are desired; it could however be
considered an alternative when outputs at only a few spatial points are desired.

Because our implementation of DeepONet uses a branch network identical to PCA-
Net, their evaluation costs are the same for a given network width. Across our test
problems PCA-Net generally yields errors similar to those of DeepONet, except for the
Helmholtz test problem where the DeepONet trunk struggles to represent the high-frequency
features of the solutions that the PCA basis captures. This motivates the use of PCA basis
functions as the output space in DeepONet as introduced in [13].

Finally, our implementation of FNO generally achieves the lowest test errors across all
four problems. For the one-dimensional advection equation, the evaluation cost of FNO
is similar to that of PCA-Net and DeepONet; however for our two-dimensional examples,
the evaluation cost of FNO is greater than that of PCA-Net and DeepONet. This is because
the cost of FNO depends on the number of Fourier modes kmax, which scales exponentially
with the spatial dimension.

Since the cost-accuracy curves for FNO and for PCA-Net/DeepONet occupy different
regions of the cost axis we cannot make definitive conclusions about the relative merits
of these three methods. However, since FNO has the clearest signal of error decay as a
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function of cost, we compute the empirical power law

test error = a(evaluation cost)−p

of the FNO. The exponents p are 1.129, 0.7254, 0.0926, and 0.002506 for Navier-Stokes,
Helmholtz, Structural mechanics and advection problems, respectively; the differences
are presumed to relate to the regularities of the output spaces for these problems.

4.3.4 Out-Of-Distribution (OOD) Generalization

Thus far, our numerical studies have exclusively focused on the ability of the neural net-
works to predict outputs for test inputs drawn from the same distribution as the training
data set. In scientific and engineering applications, it is often desirable for a model to be
able to accurately predict outputs for inputs outside of the distribution seen in training.
We emphasize that the ability of the learned models to generalize to out-of-distribution
(OOD) data will be highly dependent on both the problem and the distribution of the un-
seen data. The overall efficiency of a given surrogate model will depend on its ability to
generalize since this will govern the extent to which the cost of training can be amortized.
Here we provide an initial empirical study of the generalization error to OOD inputs,
using the Navier-Stokes and structural mechanics test problems. There is some limited
analysis of OOD test error in the linear setting [124], and our numerical experiments in
the nonlinear setting add to what is known about this issue.

In both the Navier-Stokes and structural mechanics problems, training input data are
drawn from a Gaussian random field with covariance C as described in Sections 4.2.1
and 4.2.3). To study OOD generalization error, we draw test inputs from a new Gaussian
random field with covariance C′ = 4C, such that the OOD inputs are roughly twice the
size of the training inputs. Figure 4.15 plots the test error vs. training data volume for
the largest network sizes tested, with w = 256 and d f = 16. As expected, test errors
for OOD input data are generally higher than test errors for in-distribution input data.
We note that for the smooth Navier-Stokes problem, lower training data volumes lead to
higher errors, but the gap between the in-distribution and OOD performance is smaller
in these cases. In contrast, for the non-smooth structural mechanics problem, the gap in
generalization performance remains large even for smaller data volumes. We finally note
that while increasing training data volume improves OOD test error, the convergence rate
of the OOD test error with respect to the training data volume is worse than the rate for
the in-distribution test error.
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Figure 4.15: In- vs. out-of-distribution test error comparison for Navier-Stokes (top) and structural mechanics
(bottom) test problems for largest networks tested (w = 256, d f = 16).

4.3.5 PCA-Net vs. DeepONet Output Spaces

Both PCA-Net and DeepONet construct basis functions to represent the output functions,
where PCA-Net constructs PCA bases from data directly and DeepONet learns bases from
data with the trunk net. It is instructive to compare DeepONet with PCA-Net from the
perpsective of the output space. Figures 4.16 and 4.17 visualize the basis functions used to
represent the output functions in PCA-Net and DeepONet for the four test problems we
consider. For all test problems, we note that a large number (40%-70%) of the DeepONet
basis functions after optimization are exactly zero everywhere, despite nonzero random
initialization. This may be due to our use of the ReLU activation function, and other
activation functions may yield different basis functions. However, our use of ReLU is
consistent with the experiments reported in [13]. In our visualizations, we overrepresent
the non-zero basis functions since these define the output space. Across all examples, we
note that the learned DeepONet basis functions after training tend to be local functions,
in contrast to the global functions that result when employing in PCA-Net. We therefore
also compute and visualize the PCA modes of the DeepONet bases.

For the Navier-Stokes problem, PCA-Net and DeepONet achieve similar errors; we
attribute this to the fact that the empirical PCA basis of the trained DeepONet trunk func-
tions is similar to that of the true PCA basis of the measure (Ψ†)]µ. However, for the
Helmholtz test problem, the PCA basis is able to represent the high-frequency oscillatory
nature of the solution, but the empirical PCA basis learned by DeepONet trunk net is
not (fig. 4.16). This explains why PCA-Net achieves lower errors than DeepONet for this
problem. This is interesting because in principle if the DeepONet trunk network could
learn the PCA basis functions, then DeepONet should be able to achieve similar perfor-
mance to that of PCA-Net. This raises the question of whether the failure of the trunk to
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learn the PCA basis functions is due to a lack of expressivity of the trunk or due to opti-
mization error. In our implementation, the DeepONet trunk network only has two hidden
layers. However, increasing the number of hidden layers to three actually worsened re-
sults in our tests and thus we report the results for two hidden layers. Thus it may be the
case that optimization error plays a larger role in the DeepONet error for the Helmholtz
problem than for the other three problems.

−0.02

0.00

0.02

Leading PCA basis functions

0.0

0.1

0.2

0.3

Trained DeepONet trunk functions

−0.050

−0.025

0.000

0.025

0.050
Leading PCA modes of trained DeepONet trunk functions

−0.04

0.00

0.04

Leading PCA basis functions

0.00

0.05

0.10
Trained DeepONet trunk functions

−0.04

0.00

0.04
Leading PCA modes of trained DeepONet trunk functions

Figure 4.16: Navier-Stokes (left) and Helmholtz (right) test problems: Comparison of bases used to represent
output functions in PCA-Net and DeepONet. Row 1: leading PCA basis functions of output training data. Row
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after training.
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4.3.6 Role Of Optimization

We first offer some comments on the performance of the stochastic gradient optimizer
employed in training the neural networks. Figure 4.18 plots the test error vs. training
error for all four test problems and all four neural network architectures. The different
line styles correspond to different training data volumes. The points on each line from
left to right correspond to increasing network sizes. We view the comparison between test
and training errors as an indicator of the performance of the optimization.
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Figure 4.18: Test error vs. training error for all four test problems and all four neural network architectures.
Different linestyles correspond to different training data volumes, N. The general increase in training error from
left to right corresponds with increasing network size as measured by layer width w for PCA-Net, DeepONet, and
PARA-Net, and number of channels d f for FNO. Gray dashed lines have slope 1 and intercept 0.



J. Mach. Learn., x(x):xx-xx 34

In all cases, test errors are larger than or approximately equal to training errors. Test
errors that are noticeably larger than the training error (above the dashed gray lines) are
an indication that the optimization has overfit to the training data. This effect is noticeable
for the smaller training data volumes and for larger networks, which require more data
to train effectively. When test errors are approximately the same as training errors (lying
close to the dashed gray lines), the optimization has avoided overfitting to data. Given
sufficient training data volume, all four network types avoid overfitting in the smooth
test problems (Navier-Stokes and Helmholtz), whereas they generally suffer more from
overfitting on the discontinuous test problems (structural mechanics and advection). We
note that PARA-Net has particularly bad generalization performance on the advection
problem, both compared to its performance on other problems and the performance of
other network types on the advection problem. We also note that DeepONet is the most
resistant to overfitting on the advection problem, compared to the other network types.

Finally we note that the training error is non-zero in all cases, indicating an imperfect
fit of the neural networks to the training data. This raises questions of whether differ-
ent optimization choices would be able to drive the training error lower. Such questions
are worthy of study and the subject of future work. We note however that in the cases
described above where the neural network has overfit to the training data, better opti-
mization results (in the sense of lower training losses) may not correspond to improved
generalization performance.

5 Conclusions

We have presented a numerical study of the performance of four different neural network
architectures for modeling operators (function-to-function maps) in problems that involve
the solution of a PDE. In particular, we compare test errors for the four networks across a
range of network sizes and training data volumes. Our results show that PARA-Net is not
a competitive approach in this setting. Our results also suggest that for 1D and 2D prob-
lems in simple geometries FNO may be the best approach in terms of the cost-accuracy
tradeoff, achieving the lowest errors and low-to-intermediate cost. However, FNO’s cost
does scale poorly with spatial dimension and its cost may be prohibitive in the ≥3D set-
ting, where DeepONet and PCA-Net may be preferable. It is possible that investment
in efficient software implementations, perhaps taking advantage of parallelization, may
make FNO tractable in 3D settings [125]. Special treatments of FNO for more complex
geometries, a class of problems not considered here, are introduced in [13, 100]; without,
and maybe even with, such special treatments it appears that the additional flexibility of
DeepONet gives it some advantages in such settings; a careful complexity study would
be of value to establish this.

Our comparison of DeepONet and PCA-Net fixes the PCA-Net architecture to be the
same as that of the DeepONet branch network, so that the key difference between the
approaches lies in the functions used to represent the output space. In our comparison,
PCA-Net generally yields lower or similar errors to those of DeepONet; investigation into
the output functions learned by DeepONet shows that DeepONet does not always suc-
ceed at learning a good basis in which to express the output; for the Helmholtz equation



J. Mach. Learn., x(x):xx-xx 35

the training process drives the output basis functions to highly localized bases not rep-
resentative of the output space. This result suggests the value of including PCA basis
functions in the output representation of DeepONet for some problems.

In summary, we provide some insights into the relative merits of different operator sur-
rogates, and mechanisms underlying observed behaviors; whilst we do not reach defini-
tive conclusions about the relative merits of PCA-Net, DeepONet and FNO, and indeed
we would expect any such conclusions to be problem dependent, our numerical results
highlight the need for, and can guide, future rigorous analyses of the complexity (cost-
accuracy trade-off) for these methods. We have focused on computational studies of error
as a function of number of parameters in the network (and hence cost of evaluating the
operator surrogate) and as a function of data volume (and hence cost of data acquisition).
There is some existing research that relates to these questions, and of course much more is
required.

• Regarding error as a function of number of parameters, there is profound work for
both DeepONet [126] and FNO [113] demonstrating the possibility of beating the
curse of dimensionality on some PDE-based operator learning problems; in these
works this is interpreted as sub-exponential scaling of number of parameters with
inverse error. For holomorphic maps arising in parametric elliptic PDEs there is a
body of literature establishing that certain networks (different from those considered
in this paper) can beat the curse of dimensionality [35, 127, 128]. It is important to
appreciate that these results simply concern the existence of neural networks with
stated properties; they do not address how to find them. Extending the work in
these five papers to a broader range of problems, and addressing the issue of finding
the desired parameter sets, remain open and challenging problems. The numerical
experiments reported in this paper can guide such theory.

• Regarding error as a function of data volume, the sample complexity of the problem,
there is recent theoretical work in the setting of learning linear operators [124] and
it would be desirable, though challenging, to extend this work to nonlinear operator
learning problems. The numerical experiments reports in this paper can also guide
such theory.

• The issue of linking parameterization to data volume, to optimize measures of com-
plexity, is not studied theoretically, to the best of our knowledge. Again the experi-
ments in this paper suggest the need for theoretical guidance on this issue.

• Questions concerning distribution of parameters through complex network architec-
tures are not studied in any detail, with the exception of studies of depth versus
width in neural networks [129]. It will be important to develop further theory in this
area. For example, for the FNO, how should parameter distribution between num-
ber of channels and number of Fourier modes be chosen? For DeepONet how should
parameters be distributed between trunk and branch networks? These are hard ques-
tions with answers that will be consequential for the choice and implementation of
operator learning surrogates.
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A Pointwise Inputs To DeepONet

We accommodate the case of pointwise evaluations by writing

Lku = 〈u(x`), am〉Rdi

to ensure a collection of real-valued linear functionals on U . Note that k is doubly-indexed:
k = (`, m) is a multi-index over a set with cardinality defining du; the {am}di

m=1 are canoni-
cal unit vectors in Rdi , in order to pick-out real-valued functionals, and the {x`}`

′
`=1 denote

the locations of the pointwise evaluations. Thus du = di × `′. To unify the notation with
the PCA input case we may then (abusing notation) relabel to index over k ∈ {1, · · · , du}.
In this setting it is simplest to think ofH = L2(Du; Rdi) and U = C(Du; Rdi); alternatively
U may be a RKHS, such as a Sobolev space of fractional order greater than dx/2, which is
compactly embedded into C(Du; Rdi).

B Complexity Analysis

B.1 Network parameter complexity

Here we derive the number of parameters of each of the four neural network formulations
as a function of the network input and output dimensions and of the network width w (or
for FNO, the number of features d f ). Note that a standard fully-connected nonlinear or
linear layer from Rn → Rm has nm weights and m biases (the ‘linear’ layer is technically
an affine transformation).

PCA-Net consists of an initial nonlinear layer from Rdu → Rw, two internal nonlinear
layers from Rw → Rw, and a final linear layer from Rw → Rdv . The parameter complexity
for PCA is thus 2w2 + w(du + dv) + 3w + dv. DeepONet has two networks, a branch and
a trunk. The branch network has the same complexity as PCA-Net. The trunk network
consists of an initial nonlinear layer from Rdy → Rw, two internal nonlinear layers from
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Rw → Rw, and a final linear layer from Rw → Rdvdo . The parameter complexity for
DeepONet is thus (2w2 + w(du + dv) + 3w + dv) + (2w2 + w(dy + dvdo) + 3w + dvdo) =

4w2 + w(du + dv + dy + dvdo) + 6w + dv + dvdo. PARA-Net has an initial nonlinear layer
from Rdu+dy → Rw, two internal nonlinear layers from Rw → Rw, and a final linear layer
from Rw → Rdo . The parameter complexity for PARA-Net is therefore 2w2 + w(do + du +
dy) + 3w + do. FNO has an initial lifting layer that lifts the input in Rdi at each spatial
point to channels in Rd f at each spatial point. In our implementation, the lifting is a linear
layer from Rdi → Rd f . Similarly, the final projection layer of FNO is a pointwise linear
layer from Rd f → Rdo . There are three internal Fourier operators from RNpd f → RNpd f . In
each layer, there is a linear map from Rd f → Rd f that is applied pointwise with parameter
complexity d2

f . For each of the kmax Fourier modes, there are d2
f parameters in the linear

transformation Pl . Each internal layer thus has parameter complexity d2
f kmax. The total

parameter complexity for our implementation of FNO is therefore d f di + d f + d f do + do +

3d2
f kmax + 3d2

f .
The total number of hyperparameters used in each network for each of the four test

problems we consider are tabulated in Table B.1.

Navier-Stokes Helmholtz
w / d f

Architecture 16/2 64/4 128/8 256/16 512/32 16/2 64/4 128/8 256/16 512/32
PCA-Net 5680 41152 131456 459520 1705472 4816 37696 124544 445696 1677824
DeepONet 7328 66176 230656 854528 3281920 6464 62720 223744 840704 3254272
PARA-Net 5264 33344 99456 329984 1184256 4400 29888 92544 316160 1156608
FNO 1747 6973 27865 111409 445537 1747 6973 27865 111409 445537

Structural mechanics Advection
w / d f

16/2 64/4 128/8 256/16 512/32 16/2 64/4 128/8 256/16 512/32
PCA-Net 2256 27456 104064 404736 1595904 7984 50368 149888 496384 1779200
DeepONet 3904 52480 203264 799744 3172352 9632 75392 249088 891392 3355648
PARA-Net 1840 19648 72064 275200 1074688 7568 42560 117888 366848 1257984
FNO 1747 6973 27865 111409 445537 163 637 2521 10033 40033

Table B.1: Number of parameters in our implementations of the four neural network architectures for different
network size parameters w or d f , for each test problem considered.

B.2 Network evaluation cost

Here we derive the evaluation cost of each of the four neural networks. A single standard
nonlinear layer σ(Ax + b) with A ∈ Rn,m has cost 2mn + n, due to the matrix-vector prod-
uct costing (2m− 1)n, the vector-vector sum costing n, and we approximate the activation
function cost as n. A single standard linear layer costs 2mn since no activation function
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is applied. Projecting the solution u ∈ RNp×di on du PCA bases has cost du(2Npdi − 1)
Recovering the solution v ∈ RNp×do from dv PCA coefficients has cost (2dv − 1)Npdo.

PCA-Net has 3 internal layers, the cost is du(2Npdi − 1) + 2duw + 4w2 + 2dvw + 3w +
(2dv − 1)Npdo. The DeepONet with the precomputed trunk has the same cost as PCA-
Net. PARA-Net has 3 internal layers. We need to evaluate it at Np points, and hence its
cost is du(2Npdi− 1)+ [2(du + dy)w+ 4w2 + 2wdo + 3w]Np. FNO has an initial lifting layer
: Rdi → Rd f with cost 2Npd f di, a final projection layer: Rd f → Rdo with cost 2Npdod f , and
3 Fourier layers. The cost of the Fourier operator is approximated as d f 2× 5Nplog(Np) +

kmax(2d2
f − d f ), the cost of σ is d f Np, and the cost of Wlv(x) is Np(2d2

f − d f ). Hence the

cost of FNO is 2Npd f di + 3(10d f Nplog(Np) + kmax(2d2
f − d f ) + d f Np + Np(2d2

f − d f )) +

2Npdod f .

C Error vs. cost results

We report in Figure C.1 the test error vs. online evaluation cost results for all four test
problems at all training data volumes tested. The results for each column are similar, and
thus only the third column is extracted and reported in Figure 4.14 in the main text.
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Figure C.1: Test error vs. evaluation cost for all training data volumes tested.



J. Mach. Learn., x(x):xx-xx 39

References
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