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It has been proved inter alia in part I of the present paper (Iserles et al., 1991)
that irreducible multistep methods for ordinary differential equations may possess
period-2 solutions as asymptotic states if and only if o(—1)+#0, where the
underlying method is

2 PiYns=h Z O (Yni)
k=0 k=0

and o(z):= Y7o 0.z*. We provide an alternative proof of that statement and
examine in detail properties of methods that obey ¢(—1) = 0. By using a variation
of the original proof of the first Dahlquist barrier (Henrici, 1962), we establish an
attainable upper bound on the order of zero-stable multistep methods with the
aforementioned feature. Moreover, we modify the concept of backward
differentiation formulae (BDF) to require that a(~1) = 0. A zero-stability bound
on the ensuing methods is produced by extending the method of proof in (Hairer
& Wanner, 1983).

Introduction

This paper returns to the theme already investigated in (Iserles, 1990; Iserles et
al., 1991; Stuart, 1990), namely the asymptotic behaviour of multistep methods
for ordinary differential equations. The objective is to characterise and study
methods which correctly reproduce the asymptotic behaviour of the underlying
differential equation. The numerical method is considered as a map, para-
meterised by the (constant) step length £ > 0. It is known from the general theory
of multistep methods (Henrici, 1962) that, as h— 0 and subject to consistency
and zero-stability, the numerical trajectories on finite time-intervals converge to
the trajectories of the differential system. Furthermore, recent analysis has shown
that as h— 0, many of the asymptotic states (w and o limit sets) of differential
equations are faithfully reproduced by multistep methods (Beyn, 1987; Eirola,
1988; Hale et al., 1988; Kloeden and Lorenz, 1986). However, for fixed values of
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h, the numerical solution trajectory may behave in a qualitatively different way
from the true solution trajectory as the number of steps becomes unbounded.
This occurs for instance when the numerical method has spurious asymptotic
states (possibly including infinity) which are not close to the asymptotic states of
the differential equations (Griffiths and Mitchell, 1988; Iserles, 1990; Stuart and
Peplow, 1989). For this reason it is interesting to examine the asymptotic states of
multistep methods for fixed values of 4 so that methods can be constructed which
do not have spurious asymptotic states.

There are three classes of spurious asymptotic states which are of particular
importance. Their existence can be motivated by a simple bifurcation argument
detailed in (Iserles et al., 1991): as h varies, a numerical method can undergo
spurious bifurcations from a genuine fixed point inherited from the differential
equation. These bifurcations occur when the eigenvalues of the Jacobian of the
variational equation at the fixed point cross the unit circle (Guckenheimer &
Holmes, 1983) with varying h. The three main bifurcations of this kind occur
when an eigenvalue crosses +1 (giving rise to a steady bifurcation of a spurious
fixed point), when it crosses —1 (leading to a flip bifurcation of a period 2, or
sawtooth, solution) or when a complex conjugate pair of eigenvalues crosses the
unit disc away from the real axis (a Hopf bifurcation of a spurious invariant
curve.) Although these bifurcations typically occur at values of A above those
used in practice (for example, bifurcation occurs at the linear stability limit of the
method), the branches of spurious solutions can extend back to values of & used
in practice. Hence it may be important to avoid the existence of spurious
solutions introduced by discretization.

Consider the multistep method

2 Piyusk=h 2 0cf(ynri)  Pm#0, (L1)
k=0 k=0
for the numerical solution of the autonomous differential system
y' =f(y). (1.2)

The polynomials p and o are defined by

p(2):= D puz% o(z):= D, o.z%.
k=0 k=0

It is proved in (Iserles, 1990) that the multistep metod (1.1) cannot possess
spurious steady solutions, assuming exact solution of the nonlinear equations in
the presence of implicitness. This property is not shared by most Runge-Kutta
methods (Hairer et al., 1990) and confers an important advantage on multistep
schemes. Moreover it is demonstrated inter alia in (Iserles et al., 1991) that the
multistep method (1.1) cannot possess period 2 solutions in n if and only if
p(—=1)#0, o(—1)=0. The concern of the present paper is in investigating the
ramifications of the condition p(—1)#0, o(—1) =0 on various features of the
underlying multistep method (1.1), in particular stability.

In Section 2 we prove that a period 2 solution of an irreducible multistep
method may exist if and only if o(—1) #0. This result has already been proved in
(Iserles et al., 1991) as the corollary of result concerning spurious bifurcations of
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period 2 solutions; here we present a direct, and hence substantially shorter,
proof of the result. We employ classical techniques of numerical analysis, rather
than bifurcation theory.

A multistep method should be zero-stable since, by a celebrated theorem of
Dahlquist, zero-stability and consistency are equivalent to convergence on a finite
time-interval (Hairer et al., 1987; Henrici, 1962). The so-called first Dahlquist
barrier establishes the maximal order of a zero-stable multistep method as
2[m/2] +2 (Henrici, 1962; Iserles & Ngrsett, 1984). Under the additional
condition that o(—1)=0 this bound is too generous: in Section 3 we derive
2[(m + 1)/2] as the order barrier for zero-stable multistep methods satisfying
o(—1)=0.

The methods of choice for the integration of stiff equations are the backward
differentiation formulae (BDF), becaue of their superior damping at infinity. For
such methods o(z) = Cz™ for some C # 0; thus o(—1) # 0 and period 2 solutions
in n may occur. The obvious remedy is to consider methods with o(z) =
Cz™ '(z +1). Schemes of this form are investigated in Section 3, where
coefficients of maximal-order schemes are presented for m=1,2, ..., 10.

It has been first observed by Mitchell and Craggs (1953) that BDF schemes are
zero-stable if and only if m <6. This has been subsequently proved by Cryer
(1971, 1972). Of course, zero-stability is the sine qua non for the applicability of
a multistep method. Thus, it is central to our analysis to characterise all the
zero-stable methods with o(z)=Cz™"'(z+1). The very elegant approach
applied to the BDF in (Hairer & Wanner, 1983) is extended in Section 4 to
investigate the methods from Section 3. For greater generality (and no extra
difficulty!) we let o(z)=Cz""'(z+ «) for any ae(—1,1] (we term these
BDF-like methods) and prove that zero-stability, in unison with order m, implies
that m <15, m+#14. In particular, the inspection of the finite number of
outstanding cases when o =1 implies that the bound m <6 is valid within this
framework.

Further in Section 4 we sketch and examine linear stability domains of
BDF-like methods for relevant values of m. It transpires that @ =1 leads to
similar linear stability properties as the classical BDF. However, for example, the
value a = —3 (which, of course, cannot be justified by the dynamical considera-
tions of Section 2) produces zero-stability and non-trivial linear stability domains
forall m=7.

Implementation of multistep methods involves in practice techniques for error
control and step-variation. Our framework excludes these phenomena, hence the
impact of our results is limited. Initial analysis of asymptotic behaviour of
numerical methods for ordinary differential equations that incorporates error
control strategies has been presented by (Griffiths, 1987).

2. Multistep methods with o(—1)=0
Let the method (1.1) be irreducible (thus, p and o do not share zeros),

zero-stable and of order p = 1. If we assume that a period 2 solution {9, @i}, ¥ # &,

exists then we may take
Ya=@ and y,,,, =17
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Substituting in (1.1) for even n gives

[m22) [(¢n=1)r2] . [ms2] ([m=1)2] R
2 Pyt + 2 Pox+1U = {2 ouf(D) + E 02k+1f(")}- (2.1)
k=0 k=0 k=0
Likewise, odd values of n yield
[(m=-1)72] . [m22] . [((m=1)2) 1m/2] .
punt+ 3 pui=h{ 3 ounf@)+ 3 ouf@) (22
k=0 k=0 = k=0
But
[mn2] [(m=1)72|

2 P2 = 2(P(1) + p(— 1)) 2 P11~ 2(P(1) p(— 1))

and similarly for the o,. Moreover, p =1 implies that p(1) = 0. Thus, addition
and subtraction of (2.1) and (2.2) yield

p(=1)(¥ — @) = ha(-1){f (D) - f(@)} (2.3)

and
0=ho(){f(D) + f(a)} 24

respectively. Now, suppose that o(—1)=0. Thus, by irreducibility, p(—1)#0
and (2.3) implies that ¥ = &, in contradiction to our assumption. Thus, no period
2 solution is possible if o(—1) =0.

THEOREM 2.1 A period 2 solution of an irreducible multistep method (1.1) may
occur for some differential system (1.2) if and only if o(—1) #0.

Proof. The ‘only if’ part is proved above. It remains to prove that o(—1)#0
implies the existence of a period 2 solution for some ordinary differential
equation (1.2). In the case of p(—1)=0 we choose f(y)=1—y* and arbitrary
h=>0,if p(—1)o(—1)>0 we take f(y) =y, h=p(—1)/0o(—1) >0 and, finally, if
p(—1)o(-1)<0 then f(y)=-y, h=—-p(-1)/o(—1)>0. Moreover, we let
v =1, a=-1. It follows at once that both (2.3) and (2.4) are satisfied. Thus,
letting y, = 9, y, = i generates a period two solution. [

Note that in all three cases it suffices to take a simple specific scalar equation to
prove the existence of a period 2 solution. In (Iserles ef al., 1991) the existence of
spurious period 2 solutions for arbitrary nonlinearities is examined. In addition,
the réle of period 2 solutions in stability breakdown is highlighted in (Iserles et
al., 1991). Clearly, a numerical algorithm is safer when such solutions are
forbidden and Theorem 2.1 provides us with a handy and easy means to
implement a criterion to that end.

3. Zero-stability barrier

We assume again that the method (1.1) is irreducible, zero-stable and of order
p =1. We bound the order p for the method, subject to the constraint o(—1) =0,
to obtain the following theorem, which is proved as a succession of propositions
and corollaries.
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Theorem 3.1 The highest order attainable by a zero-stable multistep method
with g(-1)=01is 2[(m +1)/2]. O
Following (Henrici, 1962) we define

0= (52) (1) = £

k=0
(I8 (L S,
0 (S (D) §
and let
_C__z i c Ck
1 _1+_C k=0 =
Ogl—C
The following points are true:
(a) ao=0;
(b) c2x-1=0, ¢ <O0forallk=1,2,...;
() a,=0,k=1,2,...,m;
(d)
A (9
—p e O
Ogl—C
(e) b,,=0.

(a) is implied by p(1) =0, (b) follows by the Cauchy theorem, (c¢) comes from
zero-stability and (d) is a consequence of order p—all these are classical
observations, originally due to Dahlquist (Henrici, 1962). (e¢) is true since
a(—1) =0, because the mapping z— (1 — z)/(1 + z) takes —1 to .

We assume that p = m + 1. First we let m be even, m =2M. Thus, (a), (d) and
(e) imply that

0="boy =Coop-1+ Caloy_3+ - - + Comay.
This, in unison with (b) and (c), yields a, =as;=":--=a,y_, =0, hence r is an
even polynomial. Zero-stability implies that all the zeros of p are in the closed
complex unit disc, hence all the zeros of r must reside in the closed left
half-plane. The only even, real polynomial that possesses this feature is a

polynomial with all its zeros on iR.
Likewise, if m =2M + 1 then

0=bop+1=Coaom + CaGop2+ - - + a2, =0
implies that a, = a,=- - - = a,,, = 0. Thus, r is odd and, again, all its zeros are on
iR.
Since the invérse map takes iR to |z| =1, we have

ProrosiTioN 3.1 If p =2m + 1 then all the zeros of p are on the unit circle. O

CoroLLarY If m is even then p <m.
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Proof. If p=m + 1 then all the zeros of p are on |z| = 1. But p(1) =0, p’'(1) #0,
m is even, hence p(—1) = 0. This contradicts irreducibility. O

The remaining option is m odd, p =m + 1. Since the first Dahlquist barrier is
valid independently of the constraint on o(—1), we need only consider p =m + 1.

ProrosiTioN 3.2 If p =m + 1 then all the zeros of o are symmetric with respect
to z]=1.

Proof. Let p*(z):=z"p(z™"), 0*(z):= —z"0(z™"). Thus,
p(z) = o(z)log z + O((z - 1)™*?),
p*iz)=0*@2)logz+O0((z —1)"*?), z-1

Since all the zeros of p reside on |z| =1, we have p* = 1p. The number of steps
m being odd, irreducibility implies that p* = —p. Thus, adding, we have

(o(2) + 0*(2)) log z = O((z — 1)*?).
But log z = z + 1 + 0((z — 1)?), thus
o(z) + o*(z) = 0((z — 1)™*")
and, since g, o* are mth degree polynomials,
o*=-o.

The proposition follows. O

Note that m odd, symmetry of o with respect to |z| =1 and irreducibility of the
underlying multistep method imply o(—1) = 0, since ¢ must have an even number
of zeros in C\{+1, —1} and o(1) # 0 by irreducibility.

Let us now fix p and set

Thus,

_ p(2)
o(z) = (1+2)logz + 0((z - 1)).
Since the degree of G is (m — 1), it follows that p = m is always attainable. This,
together with Proposition 3.1, establishes Theorem 3.1 for m even.
Let m be odd and p have all its zeros on |z| =1, while the zeros of o are
symmetric with respect to the unit circle. Thus, r is odd and s is even.
Therefore, all the terms on the left of

2 D)= 60
z—1 z
l0gz+ 1

are even, implying that so is p. Provided that we choose o so that p =m (which
we can always do for a given p), it follows that p =m + 1. This establishes
Theorem 3.1 for m odd. O
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BDF methods attain maximal damping at infinity by letting o(z) = Cz™ for
some constant C #0. Thus, o(—1) # 0 and these methods might display spurious
oscillations. An alternative, that trades off superior damping for enhanced
dynamics, is to impose o(—1)=0 and to exploit the remaining degrees of
freedom in o to damp at infinity m —1 components of the linear stability
function. We do not claim that this is necessarily better than standard BDF for
stiff linear problems, but that the situation for nonlinear problems is far from
clear and so we arec suggesting a tentative alternative method which may be
superior in certain situations. Hence we choose

o(z)=Cz" ' (z+1), C=#0. 3.1

We stipulate order p = m (as is the case with BDF methods). Note that, for odd
m, this order falls short of the upper bound of Theorem 3.1. This, however, is
illusory: by Proposition 3.1 order m + 1, zero-stability and o(—1) =0 imply that
all the zeros of p reside on the unit circle, hence, subject to m =2, the scheme is
only marginally zero-stable. Our definition means that p is the mth degree
polynomial that matches the expansion of

2" Y1+ z)logz

at z=1 up to O(|z — 1|™*"), scaled so that p,, =1. For m =1 we recover the
trapezoidal rule, p(z)=z -1, o(z)=3(z+1). The case m=2 leads to re-
ducibility and, eventually, to the trapezoidal rule. Herewith we list the schemes
GB.1)form=3,...,10:

m=3:
p(z)=z3——22+iz— a(z)=—6—zz(z+1)
13 13 13’ 13
m=4
19 9 5 1
=P =2 —
() VSRRV VR VL
o(z)=z2(z+1)
m=35
235 180 140 55 9
=552, % 3 W D7
PR =2~ 0% T 97 "1a9% T19% 149
- 4
o(z) 149z(z+1).
m=6

(z)_zs_@zs+§(>_f>z4_3_(>_ozs+ﬁ 51,8
p 157 157 157 1572 157 157

a(z2)=—=2(z +1).

157
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m=17:

777 . 1050 , 3850 , 2975

483 406 50
p(2)=2"——2°+ z” - FAR P ——==z 4+ —

+ -
3837 73837 T1149° T 11497 T 383° T1149° T 1149’

o(2) _ 140 z%z +1).

383
m=28:
it
398
o(z) = % Z(z+1).
m=9:
518351 , 35280 , 8800 . 67620 1764 , 30576 ,
PR =2 =0 ? T 7a09% " Ta09 % T7a09 % 239 7400 2
11280 , 2475 245
T 7409 © T 7409% " 7409°
o(z) = 7403 8z +1).
m=10:
0 20591 , 45360 , SO0 , 114660 , 111132 ; 77616 ,
PR =2 = Y7t w0’ T 7633 1 7633 C 7633 °
38160 , 12555 , 2485 224
7633 % 7633 % "7633° T 7633
o) =222z +1),

7633

Examination of the zeros of p for different values of m demonstrates that m <6
yields zero-stability, whereas schemes (3.1) with 7<m <10 are not zero-stable.
There is but a short step from this observation to the conjecture that, like the
conventional BDF methods, the methods (3.1) are zero-stable if and only if

. m=6. This will be proved in the next section.

4. Zero-stability of BDF-like methods

In the last section we introduced order-m methods with o(z) = Cz™ '(z + 1). In
this section we analyze the zero-stability properties of BDF-like methods; the
analysis remains valid upon the introduction of an extra free parameter into such
methods. As this requires very little effort and brings about new results that are

interesting on their own merit, we extend our framework accordingly.
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DerFiNiTiON 4.1 We say that an m-step method of order m is BDF-like if

0(z) =Cz™ '(z + @), where C and « are real constants.
The order condition is equivalent to

kio pe2¥=Cz" Y a+2)logz + E(z — 1) + O(|z — 1]™+?), E+#0. (4.1)
Changing the variable z+z ™" in (4.1) and multiplying by z™ yields
kio pz" ™ =—C(1+ az)logz + E(1 —z)™*' + 0(]z — 1|™*?).
Since p(1) =0, there exist real numbers p,, . . ., p,, such that

m—k

Pk(l - Z)k Piz

uMS
Olr—*
M3z

k=0

We obtain the order condition
&, E
> p(1=-2)=—(1+az)logz +E(1 -2y + 0(z - 1™, (4.2)
k=1

ProposiTioN 4.1 The coefficients py, ..., p,, obey (4.2) if and only if p, =1+ &
and

k—-1-«

=% k=23...,m
Pe="k — 1)k "

Proof. It is a consequence of equation 4.2 that

pk(l—z) =(1+a-a(l-2)) 2 (1—z)"+ oz —1|™*")

uMi

_(1+a)2 (1—z)*—a2——(1—z)k+0(|z ™Y,  z-1,

and the statement of the lemma follows at once by comparison of coefficients. O

Herewith we assume that o=0, p,,..., p, are chosen to conform with
Proposition 4.1, and set

m moq m—1 1
P(z;a):=D puz¥=(1+a) X, ~z¥—az >, ~zF
k=1 k=lk k=1 k
=1+ a)P,(z;0)— azP, _,(z;0).

Thus, the underlying method is zero-stable if and only if all the zeros of P,(-; a)
are in {z € € :|z — 1| = 1}, with only simple zeros on the boundary.
Following Hairer and Wanner (1983), we express P,,(-;0) in an integral form,

i8

P, (re%; 0) =f (1-¢e™%s™)
o 1
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Given m = 10, we let

. 5
Fi= {re"’: ] s;’”, R_<lz| <R+},

S
where 0<R_<«K1«<R,. Let 6*= +27 be the argument along the straight-line
m

portion of &. Then ™% = —1, hence

i i _
Palre®s @) = [ ((1+ @)1 +57) - ar(e® +57 ) =T
A j1—se'”|
We deduce that
A Im P, (re'”; @) = sin 6* JrU (s) &
- 5 A m ll_sei0‘|2’

where
U,(s):=(1+ a)s™ — ars™ '+ ars + (1 + a — 2ar cos 6*).

Since @ =0 and cos 8* >0 (because m = 10), it follows from the Descartes rule
of signs (P6lya and Szeg8, 1976; Vol. II, Problem V-36) that for r > 1 U, has at
most three positive zeros.

We let

Val0)i= [ Un) =i

hence Im P(re'”; &) = sin 6*V,,(r). Since the integrand changes sign only at zeros
of U,,, it follows that the line segment (R_, R,) can be decomposed into at most
4 intervals where V,, is monotone. In particular, V,, has at most 3 zeros there.

ProrosiTion 4.2 Given a=0, m=10 and R_|0, R,Tx, the set & includes a
zero of P,(-; a).

Proof. The boundary of & is composed of four portions: the two straight lines
where the argument is 6%, as well as the small (radius R_) and the large (radius
R ) circular sections. If a zero of P, lies on the straight lines then it is in & and
there is nothing to prove. Hence we may assume that no zero of P, lies there.

We measure the variation of the argument along the positively oriented
boundary of ¥, by extending the reasoning in (Hairer & Wanner, 1983). As
R,— =, R_—0, the outer circular portion contributes 10z + o(1), since P,, has
an m-fold pole at infinity, whereas the inner circular section adds o(1), because of
a simple zero at the origin. Finally, since Im P,, has at most 6 zeros along the two
straight-line portions of the boundary, the argument there cannot decrease by
more than 7. Thus, totally, the argument along 3% increases by at least 2x and
it follows from the argument principle that there is at least one zero of P, in
& 0O
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) 13 R 05 0 05 1 15 2
FIG. 4.1. The curves w!Y! for m € {5, 10, 15, 20, 25}.
The next stage of our analysis parallels closely the work of Hairer and Wanner.
When m =20, it follows from the last proposition that there are zeros of P, in the
T . . .
wedge {z € € : |arg z| SZ}, and our purpose is to show that, subject to m being

sufficiently large, these zeros lie sufficiently near to the origin to belong to
|z — 1] <1 and infringe zero-stability. Let

b(s):=—

e
The integral representation from (Hairer & Wanner, 1983) gives

1-se’®
P.(z;a)=(1+a) f’(l —e™%™)¢(s) ds — are’® f’ (1—e" %" Np(s) ds
= K1 - Kz,
where
Koime {1+ 0) [579() ds = ar [ 57 '0(5) s}

and
K,:=P,.(z; ) + K,.
Both K, and K, can be estimated identically to the quantities

I, :=fo’ ¢(s)ds —fol e %™ p(s) ds,

L:= ei”‘ej s"@(s) ds
1

9T0Z ‘8 Afenige Uo 3oImme Jo AlseAiun e /Bio'sfeulnolpiojxoteu few//:dny wolj pspeojumoq


http://imajna.oxfordjournals.org/

498 A. ISERLES AND A. M. STUART

15

(=
T

05+

0
-
T

-2 -15 -1 0.5 0 0.5 1 1.5 2

FiG. 4.2. The curves o' for m € {5, 10, 15, 20, 25}.

in (Hairer & Wanner, 1983), since they can be expressed easily in terms of /, and
L. Let ‘

1 b 1
0<f=—,
sin @ 2

B(0)= n
1 E$0$ﬂf

Then, given a =0,

m+2 m+1
={(1+ + .
Kl <( @) p—— ar )B(B)r 4.3)
and
| rm2—-1
K>+ + ar? )
Kol > (1 + a)r 2m + 2 *r 2m (4.4)

We wish to explore conditions that ensure P,, #0. To that end, it is sufficient to
establish that |K,| > |K,|. Comparing (4.3) with (4.4),

rml—1 rm2—1 m+2 m+1
>|K + 2( + )
K| > K| €(1+ a) T +ar . ¢! a)m i +ar B(6)
& (m+(2m+ Da)r™"' = (m + 1)a(1+2(m + 1)B())r

—m(1+ a)(1+2(m +2)B(6)) =0. 4.5)
But, for sufficiently large m, it is true that

2mB(9))”('"“)
14+ 2« )

rZ((a/r+1+a')
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m=3
FiG: 4.3. Linear stability domains for & =0.
Given that r <2, this is valid if
2mB(6)\ "~
. m;=(3 +1—> , 4.6
r= o= (Ga+ ) T (4.6)

Thus, _
(1 +2a)r™ ' —2amB(6)r —-2m(1 + «)B(8) =0
and (4.5) is implied by
. ((m +1)a(1+2(m +1)B(0)r) + m(1+ a)(1 +2(m + 2)3(0)))'“"'-')'
m+(2m+1a

Stipulating again that r <2, this is in turn implied by

(m+ Bm+2)a+2(m(m+2)+ (3m2+6m+2)a)3(0))1/(m-1) 47
m+(2m+ 1) - 47

r=oll:=
Note that for &« =0 (4.6) is always true for r > 1, whereas (4.7) reduces to an
inequality in (Hairer & Wanner, 1983).

Clearly, as m— =, both w!}} and !? tend to 1. More importantly, as can be
seen in Figures 4.1-2 and can be verified by simple calculation, the curve w!,,
lies nested inside oY), i =1, 2. Thus, if for certain m, the curves constrain a
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FIG. 4.4. Linear stability domains for a = 1.

sector ¥; to have a zero in {ze(:|z—1] <1}, then so will be the case for all
m =m,. Simple calculation affirms that m,=12 is a valid choice for o =1.
Bearing in mind that we have already stipulated m =20, zero-instability follows.
Since direct calculation affirms zero-stability for m <6 and rules it out for
7<=m =19, we obtain a characterisation of zero-stable BDF-like methods with
o(—1)=0.

THEOREM 4.3 The m-step BDF-like method with & =1 is zero-stable if and only
ifm=6. O

A similar statement can be deduced for other values of a =0, although the
bound may exceed 6. For example, &« =32, m =7, are consistent with zero-
stability. Other examples of the barrier of Theorem 4.3 being exceeded occur for
« <0. A simple example is @ = —3, where 1 <m <7 produces zero-stability.

Figures 4.3-5 display linear stability domains for the ‘classical’ BDF methods
(a=0), the methods with o(-1)=0 (a=1) and, finally, the methods with
a = -1, for all relevant values of m.
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[ /m=3

FiG. 4.5. Linear stability domains for o = —1.
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