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A B S T R A C T

The recent decades have seen various attempts at accelerating the process of developing materials targeted
towards specific applications. The performance required for a particular application leads to the choice of
a particular material system whose properties are optimized by manipulating its underlying microstructure
through processing. The specific configuration of the structure is then designed by characterizing the material
in detail, and using this characterization along with physical principles in system level simulations and opti-
mization. These have been advanced by multiscale modeling of materials, high-throughput experimentations,
materials data-bases, topology optimization and other ideas. Still, developing materials for extreme applications
involving large deformation, high strain rates and high temperatures remains a challenge. This article reviews
a number of recent methods that advance the goal of designing materials targeted by specific applications.
. Introduction

The development of new materials guided by the process-structure-
roperties-performance paradigm has been the core endeavor of ma-
erials science, while the design and optimization of machines by
sing physical principles and materials characterization have been the
ore endeavor of mechanical and structural engineering. These have
radually merged as we seek to develop materials focused on particular
pplications, especially those involving extreme conditions. A general
ramework has emerged and this is described in Fig. 1.

We seek to design an application (‘‘1’’ in Fig. 1) with a particular
aterial system (‘‘2’’ in Fig. 1). In the established approach of mechan-

cal design, we characterize the material system with a constitutive
elation (‘‘3’’ in Fig. 1) and use it along with physical principles
balance laws) to design and optimize an application. The constitutive
elation is intuited from experiments to characterize the material sys-
em (‘‘4’’ in Fig. 1), qualitative knowledge from lower scale physics
‘‘5’’ in Fig. 1), symmetry, ease of implementation, history and other
onsiderations. Multiscale modeling of materials seeks to make the
onnection to lower scale models stronger. The lower scale models are
uilt on the basis of additional experiments at that scale and even lower
cale models. And so on. Thus, the modeling of materials results in
complex cascade of models at different scales addressing different

henomena at different levels of fidelity. The material system is itself
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developed and optimized through a series of experiments (‘‘6’’ in Fig. 1)
and process models (‘‘7’’ in Fig. 1). The process models may also have
their own multiscale cascade.

While this conceptual framework is widely used, the detailed imple-
mentation requires expert judgement and decisions due to limitations
in the amount of data that is available, limitations in the theoretical
and modeling tools and the prohibitive computational cost of a brute
force implementation. The goal of this paper is to review recent work that
provides ideas and tools to implement and exploit this framework for rapidly
developing and optimizing materials for particular applications.

Underlying the framework described above is the observation that
the macroscopic behavior of materials is the end result of a num-
ber of mechanisms that operate across a broad range of disparate
scales (Phillips, 2001). The paradigm of multiscale modeling seeks
to address this complexity using a ‘divide and conquer’ approach
shown in Fig. 2 (Ortiz et al., 2001; Fish, 2009; de Borst and Ramm,
2011; Van Der Giessen et al., 2020). The complex range of mate-
rial behavior is first divided into an ordered hierarchy of scales, the
relevant mechanisms at each scale are identified and analyzed using
theories/tools based on an individual scale, and the hierarchy is put
back together by passing information between scales. Importantly, the
passage of information between scales is pair-wise, with the larger-
scale model both regulating (through average kinematic constraints
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Fig. 1. The framework of application-driven materials by design.
like the boundary conditions) and averaging (the dynamic response
like the stress) the smaller-scale model. The mathematical theory of
homogenization (Bensoussan et al., 2011; Pavliotis and Stuart, 2008)
provides a concrete basis in specialized situations, but the underlying
conceptual framework is widely used.

The computational implementation of this framework requires the
repeated solution of the models at individual scales. Recent computing
platforms complement the central processing units (CPUs) with mas-
sively parallel accelerators like graphics processing units (GPUs) (Kirk
and Hwu, 2016; Kothe et al., 2019). Such accelerators contain thou-
sands of processors, but these are not independent. Instead, they are
grouped together in ‘warps’ that share a memory and execute the
same instructions but on possible different data (SIMD). Consequently,
they can provide enormous computational power if the calculations
are carefully arranged to meet the limitations of the architecture. This
raises the first question: Can we use accelerators to efficiently and rapidly
solve models at the individual scales? Section 3 reviews recent work of
Zhou and Bhattacharya (2021) that describes how such accelerators can
be effectively used in the solution of problems of micromechanics. A
key idea in this work is to note that nonlinear partial differential equa-
tions that describe micromechanical phenomena come about through
a composition of universal laws of physics (kinematic compatibility and
balance of mass, momenta, energy etc.) and the particular constitutive
models of the material under study. The former are nonlocal, but
may be interpreted as projections in appropriate function space. The
material behavior is nonlinear and may involve time derivatives, but is
spatially local. Thus each step is amenable to efficient implementation
in accelerators.

We then turn to the issue of bridging two scales. In the multiscale
paradigm, the behavior of each point at each instant of time in the
larger scale model has to be informed by a solution of the smaller scale
model. This idea is implemented directly in the concurrent multiscale
approaches like FE2 (Feyel and Chaboche, 2000). Unfortunately this is
prohibitively expensive especially if one has to study multiple scales.
So, a widely used approach is sequential multiscale or parameter pass-
ing method where the form of the larger scale model is postulated and
the parameters are evaluated from smaller scale simulations (see Cheng
et al., 2019; Fu et al., 2005; Balasubramanian and Anand, 2002 for
examples). However, this introduces an additional layer of modeling.
All of this leads to the question: Can we use use techniques from machine
learning, such as Gaussian processes, deep neural networks or other super-
vised learning techniques to link scales? Section 3 reviews the recent work
2

Fig. 2. Multiscale modeling of materials is a ‘divide and conquer’ approach to describe
the complexity of material behavior.

of Liu et al. (2022) that studies the two scale problem of the response of
polycrystalline magnesium to impact loading. The key idea is to view
the lower-scale model (a polycrystalline ensemble described by crystal
plasticity augmented to include twinning in this case) as a map from
a strain history to a stress history, and to approximate this map using
a combination of model reduction and machine learning (Bhattacharya
et al., 2021).

Section 5 describes an alternative approach to bridging scales where
the results of the micro-scale simulations are used directly in macro-
scale simulations without the introduction of any empirical or machine-
learnt models. This approach was initially developed with the goal of
directly using experimental observations in simulations without any
constitutive models (Kirchdoerfer and Ortiz, 2016, 2017, 2018). The
emergence of full-field diagnostic methods like digital image correla-
tion (McCormick and Lord, 2010) and high energy x-ray diffraction
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microscopy (Schwartz et al., 2009) has created a new environment
that is rich in experimental data. This motivates a new question: Can
we use experimental data directly in computations without the use of
any constitutive models? The approach seeks to find those stress and
strain fields that satisfy the laws of physics (kinematic compatibility
and equilibrium) and whose local relationship best approximates the
available data. Section 5 shows how this approach can be extended
to multi-scale modeling and describes the work of Karapiperis et al.
(2021) in granular media.

The complexity of the material response leads to uncertainty, and
this uncertainty is often the main source of uncertainty in engineering
applications. Therefore, it is important to quantify the integral uncer-
tainties across the various scales in order to identify adequate design
margins for the design. However, the direct estimation of integral mate-
rial uncertainties is prohibitively expensive. This leads to the question:
How do uncertainties propagate across scales, and how do we quantify the
integral material uncertainty? Section 6 reviews the recent work of Liu
et al. (2021) that provides the bounds on the integral uncertainty of
penetration of a rigid impactor through a polycrystalline magnesium
plate. The key idea is to exploit the hierarchy of multiscale modeling by
viewing the model at each scale as a function and the integral response
as a composition of the functions. We can then bound the integral
uncertainties using the uncertainty of each individual scale.

A closely related issue is to design materials focussed on particular
applications. This in turn requires an understanding of the sensitivity
of the integral response to individual mechanisms — for example the
sensitivity of the ballistic response to the critical resolved shear stress
of a particular slip system. This is not always easy to evaluate, since
the mechanism is removed by various scales from the application. The
problem of finding sensitivities is closely related to that of quantifying
uncertainties, and we can again take advantage of the hierarchical
structure of the multiscale model.

Finally, the framework described in Fig. 1 first optimizes the mate-
rial against some overall measure and then optimizes the configuration
in which the material is deployed for a given application. Thermo-
mechanical processing of an alloy can control microstructure (grain
size, texture and precipitation) which in turn controls the overall
properties (toughness and strength). Alloying can also do the same
either directly (solution hardening) or indirectly (by controlling mi-
crostructure). It has long been recognized that doing so can trade
one property to another, and this is done against some composite
material metric or Ashby plots depending on the material. The ma-
terial is then used for the application and the configuration is then
optimized. This raises the question: Can we optimize the material and
the structure simultaneously? Section 7 reviews the work of Sun et al.
(2021) that shows that the simultaneous optimization of a bi-material
plate can lead to significantly better ballistic performance compared
to a sequential optimization. The key idea is that not all parts of a
structure perform the same function, and different parts of the structure
may have different property requirements.

2. Setting and overview

Multiscale modeling follows a ‘divide and conquer’ approach where
the passage of information between scales is pair-wise as described
above. So we consider the situation shown in Fig. 3, noting that the
ideas can be extended to multiple scales using this multiscale modeling
paradigm. We consider the mechanical setting for specificity. We have a
finer microscopic scale which we take to be a scale on which the material
is heterogeneous (e.g., polycrystals, domain patterns and grains), and a
coarser macroscopic scale which we take to be the scale of application
r device.

Given a domain 𝛺 and some initial and boundary conditions, the
macroscopic problem is to solve

̄

3

∇𝑥 ⋅ 𝑆 = �̄��̄�𝑡𝑡 𝑜𝑛 𝛺 (1)
Fig. 3. The general setting.

where �̄� ∶ 𝛺 → R3 is the macroscopic deformation and �̄� ∶ 𝛺 → R3×3

is the macroscopic Piola–Kirchhoff stress. To complete the system, we
need to specify the macroscopic constitutive relation that is a map from
the deformation gradient history to the stress

𝛷 ∶ {𝐹 (𝑥, 𝜏) ∶ 0 ≤ 𝜏 ≤ 𝑡} → �̄�(𝑥, 𝑡) (2)

at each point 𝑥 at each instant 𝑡.
In the multiscale modeling framework, the map (2) is obtained

by solving the microscopic problem on a unit cell 𝑌 that describes the
heterogeneity and some complex physics. In the models of interest, we
describe the state of the solid by a microscopic deformation gradient 𝐹
and a set of microscopic internal variables 𝜆 (phase fraction, plasticity,
director field, fracture field etc.). In the absence of (micro) inertia, these
are governed by a set of coupled equations:

∇ ⋅
(

𝑊𝐹 (∇𝑢, 𝜆, 𝑦;𝑃 )
)

= 0, 𝑊𝜆(∇𝑢, 𝜆, 𝑦;𝑃 ) +𝐷𝑣(𝜆𝑡, 𝑦;𝑃 ) = 0 (3)

up to time 𝑡 subject to some initial data and the boundary condition
that 𝑢(𝑦, 𝜏) − 𝐹 (𝑥, 𝑡)𝑦 is periodic so that ⟨𝐹 (𝑦, 𝜏)⟩ = 𝐹 (𝑥, 𝜏). Above,
𝑢 ∶ 𝑌 → R3 is the microscopic deformation, 𝐹 ∶ 𝑌 → R3×3 is the
microscopic deformation gradient, 𝜆 ∶ 𝑌 → R𝑑 is the state variable,
internal variable or order parameter, 𝑃 ∈ R𝑝 is a set of material
parameters, 𝑊 ∶ R3×3 × R𝑑 × 𝛺 × R𝑝 → R is the stored (elastic)
energy density, 𝐷 ∶ R𝑑 × 𝛺 × R𝑑 → R is the dissipation potential,
and ⟨⋅⟩ denotes an average over a unit cell 𝑌 . Note that the material
properties are heterogeneous at the microscopic scale as a result of
microstructure or texture, and this is represented by the fact that the
constitutive functions 𝑊 ,𝐷 depend explicitly on 𝑦. We then obtain
�̄�(𝑥, 𝑡) = ⟨𝑊𝐹 (𝐹 (𝑦, 𝑡), 𝜆(𝑦, 𝑡))⟩. Note that 𝑥 and 𝑡 are parameters in the
microscopic problem, and the microscopic problem has to be solved at
each point 𝑥 at each instant 𝑡.

Since the macroscopic problem prescribes the boundary condition 𝐹
that solves the microscopic problem, we say that the macroscopic prob-
lem regulates the microscopic problem. Further, since the microscopic
problem returns only the average stress �̄�, we say that the macroscopic
problem also filters the results of the microscopic problem.

The direct implementation of this framework — where we actually
solve the microscopic problem at point 𝑥 at each instant 𝑡 has been
called the concurrent or FE2 approach. While this has been demon-
strated in selected examples (e.g., Feyel and Chaboche, 2000), it is
generally prohibitively computationally expensive. So it is natural to
create a surrogate that approximates the microscopic problem

𝛷 ≈ 𝛷, (4)
app



Mechanics of Materials 165 (2022) 104156N. Kovachki et al.
that is computationally more efficient. The macroscopic problem then
interacts with the surrogate of the microscopic problem. The classi-
cal approach is to postulate a parametrized macroscopic constitutive
model and use data generated by the microscopic model to fit the
parameter. However, this is limited in fidelity, especially in complex
problems involving microstructure evolution. This has motivated the
development of new approaches, and we describe two in this paper. The
first, presented in Section 4, uses deep neural networks combined with
model reduction as the surrogate, and the surrogate is trained using
data generated by repeated solution of the microscopic problem. The
second, presented in Section 5, uses the data directly as the surrogate.
The methods provide the fidelity of the microscopic problem, but with
significantly reduced (online) computational cost. Note that both these
methods require repeated solutions of the microscopic problem and
Section 3 describes an approach to use GPUs to solve this efficiently.
Section 6 seeks to quantify the uncertainties in this framework. We
have uncertainties in the microscopic model (specifically the mate-
rial parameters 𝑃 and the texture), and we seek to understand the
consequence of these uncertainties on the uncertainty in macroscopic
performance. This includes the uncertainties created by the introduc-
tion of the surrogate. Finally, Section 7 concerns design where we
seek to simultaneously optimize the material (represented through the
material parameters 𝑃 and the texture of the microscopic model) and
the configuration (domain, multiple materials).

The methods that we present are broadly applicable to phenomena
that are described by the framework above. So they are broadly ap-
plicable to polymers, metals and granular materials. They have been
developed in various contexts, and have been applied to different ma-
terial systems. This paper seeks to present the interconnections between
these various methods and systems.

3. Accelerated computations

Multiscale modeling of materials often requires the repeated solu-
tion of models at individual scales. For example, in the two-scale setting
described in Section 2, we have to repeatedly solve the microscopic
problem (3). This section describes an approach that enables the use
of accelerators or graphical processing units (GPUs) to efficiently solve
(3), i.e., efficiently compute the map 𝛷.

As described above, the microscopic problem is typically solved un-
der periodic boundary conditions. So one can exploit fast Fourier trans-
form (FFT) following Moulinec and Suquet (1994). These FFT-based
simulations have been effectively applied to a variety of applications
(e.g.thermoelasticity (Anglin et al., 2014), elasto-viscoplasticity (Leben-
sohn and Needleman, 2016), dislocations (Berbenni et al., 2020), piezo-
electric materials (Vidyasagar et al., 2017), shape-memory polycrys-
tals (Bhattacharya and Suquet, 2005), and crack prediction of brit-
tle materials (Schneider, 2020)). Various methods to accelerate the
convergence of FFT-based methods using Neumann series approxima-
tion (Monchiet and Bonnet, 2012; Milton, 2020; Moulinec and Silva,
2014; Milton, 2020) and Fourier–Galerkin method (Vondřejc et al.,
2014; Mishra et al., 2016) have been developed.

While much of the focus has been on CPUs, recent work has turned
to GPUs in parts of the algorithm (Bertin and Capolungo, 2018; Mihaila
et al., 2014; Knezevic and Savage, 2014; Eghtesad et al., 2018). Accel-
erators like GPUs contain thousands of processors, but these are not
independent. Instead, they are grouped together in ‘warps’ that share
a memory and execute the same instructions but on possible different
data (SIMD). Consequently, they can provide enormous computational
power if the calculations are carefully arranged to meet the limitations
of the architecture. This section describes how accelerators like graph-
ical processing units (GPUs) can be effectively used in rapidly solving
such problems drawing from Zhou and Bhattacharya (2021).

We adopt an implicit time discretization of (3). We introduce the
compatibility condition 𝐹 = ∇𝑢 as a constraint and treat it using the
4

augmented Lagrangian method (Glowinski, 2015) to obtain the saddle
point problem

min
𝑢𝑛+1 ,𝜆𝑛+1

max
𝛬𝑛+1 ∫𝛺

(

𝑊 (𝐹 , 𝜆, 𝑥) + 𝛥𝑡𝐷
(𝜆 − 𝜆𝑛

𝛥𝑡
, 𝑥
)

+ 𝛬 ⋅ (∇𝑢 − 𝐹 ) +
𝛽
2
|∇𝑢 − 𝐹 |

2
)

𝑑𝑥

for given 𝛽 > 0. This problem could be solved via alternating direction
method of multipliers (ADMM) (Glowinski, 2015) which is an iterative
method.

Given 𝐹 𝑛, 𝜆𝑛, 𝑢𝑛, 𝛬𝑛,

• Step 1: Local problem. Update 𝐹 , 𝑛 by solving at each 𝑥

𝑊𝐹 (𝐹 𝑛+1, 𝜆𝑛+1, 𝑥) − 𝛬𝑛 + 𝛽(∇𝑢𝑛 − 𝐹 𝑛+1) = 0, (5)

𝑊𝜆(𝐹 𝑛+1, 𝜆𝑛+1, 𝑥) + 𝛥𝑡 𝜕𝐷
𝜕𝜆

(

𝜆𝑛+1 − 𝜆𝑛

𝛥𝑡
, 𝑥
)

= 0. (6)

• Step 2: Helmholtz projection. Update 𝑢 by solving −𝛥𝑢𝑛+1 = ∇ ⋅
(

−𝐹 𝑛+1 + 1
𝛽𝛬

𝑛
)

.

• Step 3: Update Lagrange multiplier. Update 𝛬 as 𝛬𝑛+1 = 𝛬𝑛 +
𝛽(∇𝑢𝑛+1 − 𝐹 𝑛+1).

• Step 4: Check for convergence. Check both primal and dual feasi-
bility:

𝑟𝑝 ∶= ‖∇𝑢𝑖 − 𝐹 𝑖
‖𝐿2 ≤ 𝑟tolerance

𝑝 , 𝑟𝑑 ∶= 𝛽‖∇𝑢𝑖+1 −∇𝑢𝑖‖𝐿2 ≤ 𝑟tolerance
𝑑

(7)

for given 𝑟tolerance
𝑝 , 𝑟tolerance

𝑑 .

This method is known to converge under suitable hypothesis on
𝑊 ,𝐷 for all 𝛽 sufficiently large (Boyd et al., 2011). Step 1 is a local
problem, and can be solved trivially in parallel. Note that it is necessary
to solve for 𝐹 𝑛+1, 𝜆𝑛+1 accurately in some 𝐿𝑝, thus we can have poor
convergence of a small number of points. Therefore, the iterations of
all points are not impeded by the poor convergence of a few isolated
points. Step 2 leads to a universal Poisson’s equation for which there
are a number of effective parallel solvers. Step 3 is a trivial local
update, and step 4 a simple check. Thus, this iterative algorithm can
be implemented effectively using accelerators like GPUs as we presently
demonstrate. This iterative method also has a close connection to the
physics. Step 1 is the constitutive update with the Lagrange multiplier
converging to the stress, Step 2 is the compatibility equation with the
primal convergence in 𝑟𝑝 while the dual convergence in 𝑟𝑑 is equivalent
to the equilibrium condition.

We apply the method on two separate problems — see Ocegueda
and Bhattacharya, 2021 for an application to combined twinning and
slip in magnesium. We start with a problem of finite deformation that
involves a bifurcation and has been previously studied using finite
element method (Triantafyllidis et al., 2006). Consider a 2D periodic
inclusion of compliant circular particles in a stiff matrix with the
unit cell shown in Fig. 4(a). Both materials are modeled as compress-
ible Mooney–Rivlin materials. As this composite is compressed equi-
biaxially, it develops a period doubling instability shown in Fig. 4(c).
The stress–stretch relation shows the bifurcation in Fig. 4(d). All results
are consistent with previous FE simulations. We also use this example
to discuss convergence and scaling.

The second concerns liquid crystal elastomers (LCEs). These are
rubber-like solids where nematic mesogens are incorporated into the
polymer chains. The LCE has a spontaneous or stress-free deformation
𝐹 depending on the mesogens orientation 𝑛, which is a reorientable
unit vector. Therefore, the problem has coupled fields with non-convex
energy.

Recent experiments have suggested a peculiar behavior in LCEs.
When a sheet is stretched in planar extension (PE) where one in-plane
direction is stretched while the other is held fixed (𝜆𝑥 > 1, 𝜆𝑦 = 1),

the nominal stress in the stretched direction is smaller than that in
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Fig. 4. Bifurcation in nonlinear elastic composite. (a) Unit cell with soft inclusion (yellow) in a hard matrix (blue). (b) Bloch wave instability at 𝜆 = 0.89. (c) The period doubling
instability on 2 × 2 unit cells. (d) Stress–stretch curves with and without instability. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 5. Unusual behavior of polydomain liquid crystal elastomers. (a) Nominal stress versus stretch under different loading conditions. (b) Microstructure evolution. (𝜃 is the angle
of 𝑛 with 𝑥-axis).
the unstretched direction. Fig. 5(a) shows the measured and computed
stress–strain curves under uniaxial extension (U), PE and equibiaxial
extension (EB) while Fig. 5(b) shows how the directors evolve. Note
that the simulations reproduce the complex observed behavior with a
few parameters. More importantly, the simulations revealed that the
microstructure evolves in such a way in PE that the in-plane shear was
always zero, and this is the reason for the observed unusual behavior.
Other complex loading protocols also reveal good agreement. Further,
the statistics of microstructure evolution measured through X-ray scat-
tering agrees well with the simulations. In short, these simulations
provide unique insight into microstructure evolution in LCEs.

The numerical performance and the scaling is demonstrated using
the example of the elastic composite in Fig. 6. First, the convergence
with mesh is investigated. Taking the finest mesh as the reference,
we calculate the relative error (𝐿2 norm) of deformation gradient,
stress and displacement with different mesh size. They converge with
a convergence rate of 1.83, 1.84 and 2.15 respectively, close to the
theoretically expected value of 2. Turning now to the scaling, we
observe a steady decrease of wall time with increased threads of GPU.
The slope is fitted as −0.73, suggesting very good scalability of the
algorithm. However, it is not perfect (−1) since FFT does not scale
perfectly. The scaling is also confirmed by weak scaling. The same
configuration is studied using different mesh with proportional threads.
Overall, the algorithm and GPU implementation show a good parallel
efficiency as the system grows.

4. Machine-learning material behavior

In this section, we describe an approach that uses machine-learning
to create a high-fidelity computationally efficient surrogate 𝛷 of
5

app
the microscopic model 𝛷. Machine-learning and especially deep neural
networks have been extremely successful in image recognition (Le-
Cun et al., 1995; He et al., 2016) and natural language processing
tasks (Goldberg, 2017; Collobert and Weston, 2008). There is also a
growing literature on the use of these methods in materials science (Ka-
lidindi and De Graef, 2015). Machine learning has been combined with
theoretical calculations, combinatorial synthesis, and high through-
put characterization to rapidly identify materials with desired proper-
ties (Ludwig, 2019; Umehara et al., 2019; Jain et al., 2013). It has also
been applied to parameter passing (Marchand et al., 2020; Cole et al.,
2020; Wen and Tadmor, 2019) and to the inversion of experimental
data (De Graef, 2020; Chen and Daly, 2018). Image classification and
natural language processing have been applied to approximate material
constitutive behavior (Le et al., 2015; Mozaffar et al., 2019; Jordan
et al., 2020) and homogenization of material behavior (Liu et al.,
2019d; Xiao et al., 2019).

A critical challenge in the application of machine learning is that
material models like the microscopic model (3) are described as partial
differential equations (e.g. equilibrium and evolution equations in our
setting) that map inputs from one function space (correspondingly,
average strain history) to outputs on another function space (cor-
respondingly, the stress response). However, typical neural network
architectures approximate finite dimensional inputs to finite dimen-
sional outputs. So a direct application makes the network dependent
on the discretization which introduces artifacts and does not allow
us to collect data from diverse sources. One approach to overcome
this is shown in Fig. 7 and combines model reduction and neural
networks for high-fidelity discretization-independent approximations
of maps between function spaces (Bhattacharya et al., 2021). Briefly,
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Fig. 6. Performance of accelerated computing. (a) Relative error of physical quantities versus mesh size. (b) Strong scaling. (c) Weak scaling.
Fig. 7. Architecture for the machine learnt surrogate combines model reduction and
deep neural networks.

we build an approximation of an identity map from a function space
to itself by a composition of a model reduction map that maps from
the function space to a finite dimensional space of latent variables
and a lifting map that maps the finite dimensional space to the func-
tion space. Examples of such maps are principal component analysis
(PCA) and auto-encoders. We implement this map to both the input
and output spaces, and a neural network approximation between the
finite-dimensional representations (latent variables). The surrogate is
a composition of the model reduction map in input space, the neural
network approximation and lifting map to output space, and trained
using data by the direct numerical simulation of the microscopic prob-
lem. Importantly we are able to control this approximation in elliptic
partial differential equations with theorems that bound the error in
terms of the reduced dimensions, neural network features and training
data; similar results are to be expected for parabolic problems. Other
approaches of machine learned approximations to the solution operator
are explored in Li et al. (2020, 2021).

We have demonstrated the approach to the problems of impact of
polycrystalline magnesium in Fig. 8 (Liu et al., 2022). High fidelity
crystal plasticity unit cell calculations were used to create a machine
learned surrogate that accurately predicts the material response against
various strain histories (e.g. Fig. 8(a, b)). The surrogate is implemented
as the material model (VUMAT) in the macroscopic solver (ABAQUS)
to the study of a plate being impacted with a rigid, massive impactor
Fig. 8(c). Once trained, the same surrogate can be used for a range of
calculations including the design study on plate thickness (Fig. 8)(d)
which shows a change of deformation mode from one dominated by
bending to one dominated by punching as well as the Taylor anvil
test. Importantly, a representative calculation takes 2362 s, a few times
larger than 262 s required for a similar calculation using an empirical
6

constitutive relation (Johnson–Cook) and orders of magnitude smaller
than 3.9 × 108 seconds required for a concurrent calculation. Further-
more, the calculation has all the physics of the concurrent calculation.
The one-time off-line cost of generating data (5.9 × 106) and training
(6.0 × 104) are also smaller than a single concurrent calculation.

5. Data-driven multiscale modeling

In this section, we describe an approach that uses data  =
{(�̄�𝑖(𝑡), �̄�𝑖(𝑡)) ∶ �̄�𝑖(𝑡) = 𝛷(�̄�𝑖(𝑡)), 𝑖 = 1,… , 𝑁} obtained from repeated
solution of the microscopic problem (3), i.e., evaluation of 𝛷 over
𝑁 strain paths, as the surrogate for 𝛷. In this approach, there is no
empirical model as in the classical setting, or any architecture as in the
machine-learnt setting of Section 4. The method was initially developed
where  was experimental data, but can be applied to the multiscale
setting as we describe presently.

The computational sciences, as applied to physics and engineering
problems, have always been about using data inputs to predict out-
comes. Computational science differs from generic data science (cf.,
e. g., Agarwal et al., 2016; Agarwal and Dhar, 2014; Agarwal et al.,
2011; Baesens, 2014) in that the problems of interest are constrained
by physical laws. Such physical laws find mathematical expression in
the form of field equations such as conservation of linear momentum
in mechanics, conservation of mass in transport problems, Maxwell’s
equations in electromagnetism, and others. Many of the methodolo-
gies that have been developed since the dawn of modern numerical
analysis in the 1950’s have been preoccupied with discretizing those
exactly-known field equations. Finite differences, finite elements, finite
volumes, molecular dynamics and mesh-free methods are all examples
of different ways of approximating field equations.

By contrast, material laws have traditionally been uncertain and
imperfectly known owing to the paucity of observational data, ex-
perimental error or intrinsic stochasticity of the material behavior.
A common response to this imperfect knowledge has been modeling.
Models are designed to act as succinct summaries of complex material
data for which summarization is a difficult task. They are also used to
characterize material behavior across regimes that are data sparse. To
that end, material modeling relies on heuristics and intuition, which
inevitably results in loss of information, biasing, modeling error and
epistemic uncertainty. Adding to these difficulties, material modeling
is open-ended, i. e., there is no theory that dictates how sequences of
models of increasing accuracy and fidelity can be generated that are
sure to converge to the actual – and unknown – material law.

For instance, a common approach to material modeling is to assume
a relation of the form

𝜎 = 𝑔(𝜖) + 𝜂, (8)

where 𝜖 and 𝜎 are local work-conjugate variables characteristic of the
material, 𝑔 is a deterministic material law and 𝜂 represents observa-
tional noise. In practice, the essential difficulty is that neither 𝑔 nor
the distribution of 𝜂 are known. General principles do not suffice to
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Fig. 8. Demonstration on impact of a polycrystalline material plate. (a, b) Predictive ability of machine-learned surrogate for deformation of polycrystalline Mg. (c) Ballistic plate
impact and (d) design study of plate thickness using machine-learned surrogate.
determine 𝑔 uniquely with material specificity and considerable lati-
tude is left to the modeler as regards material identification. A common
approach is to determine 𝑔 by recursion and fitting to empirical data,
e. g., by means of machine learning. Here again, considerable latitude
is left to the modeler as regards the type of functions and criteria to
be used for purposes of recursion and representation. For stochastic
systems, the situation is greatly compounded by the fact that the prior
probability distribution from which the noise 𝜂 is drawn is generally
not known and needs to be modeled as well.

Against this backdrop, the staggering developments in experimental
science and microscopy, which produce large sets of fully-resolved 3D
material data, constitute a veritable game changer. By virtue of those
advances, scientific computing has transitioned from being data-poor
to being data-rich. This sea change raises the question of whether
a more direct connection between material data and prediction can
be effected, specifically one where the intervening modeling step is
eliminated altogether. A notional comparison between classical and
model-free inference is

Classical inference:
Data → Model → Prediction

Model-Free Data-Driven inference:
Data ⟶ Prediction

Here, modeling is understood as any operation that modifies the data
set or replaces it by another object, be it through constitutive mod-
eling, fitting, model reduction, regression, machine learning, or any
other operation. By model-free we understand methods of inference
that use the data, all the data and nothing but the data for purposes
of prediction. Material behavior is explicitly defined by the source
data associations and modeling empiricism, error and uncertainty are
eliminated entirely.
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There is considerable ongoing work aimed at developing this emerg-
ing Model-Free Data-Driven paradigm. The initial proposal (Kirchdoer-
fer and Ortiz, 2016) developed a distance-minimizing approach that
converges for sequences of uniformly convergent data sets. Subsequent
work (Kirchdoerfer and Ortiz, 2017) made use of a max-ent information
theory in order to render the approach robust with respect to noise
and outliers in the data set. The distance minimization approach has
also been extended to infinite-dimensional boundary-value problems,
including linear and finite elasticity (Conti et al., 2018, 2020; Platzer
et al., 2021). This extension differs fundamentally from the finite-
dimensional setting in that relaxation, or the emergence of weakly
convergence fine spatial oscillations that exploit the structure of the
data set, plays an essential role. Remarkably, relaxation sets forth a
notion of convergence with respect to data, or 𝛥-convergence that is
fundamentally different from the classical relaxation of energy func-
tionals. Extensions of Model-Free Data-Driven analysis to dynamics and
inelastic materials require consideration of evolving data sets condi-
tioned by the prior history of the material (Kirchdoerfer and Ortiz,
2018; Eggersmann et al., 2019; Carrara et al., 2020).

The Model-Free Data-Driven paradigm also sets forth a novel al-
ternative to calculus of variations, concurrent and parameter-passing
schemes in multiscale modeling. Specifically, one can use offline mi-
croscale calculations in order to generate material data sets for Model-
Free Data-Driven computing at the macroscale. This is a fully auto-
mated approach that requires no modeling or analysis at the macroscale
and requires no fitting of the micromechanical data. The approach is
lossless in that it uses the generated micromechanical data, all the data
and nothing but the data.

Karapiperis et al. (2021) have demonstrated the approach by means
of an application to granular media. Specifically, they rely on the Level-
Set Discrete Element Method (LS-DEM) (Kawamoto et al., 2016) to
generate material data sets for angular (Hostun) sand, Fig. 9. The vir-
tual specimen is deformed along selected loading and unloading paths
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Fig. 9. Model-Free Data-Driven multiscale analysis of plane-strain uniaxial compression test of Karapiperis et al. (2021). Left: Representative volume element for micromechanical
calculations. Middle: Sample data computed by deforming RVE along selected strain paths using the Level-Set Discrete Element Method (LS-DEM) (Kawamoto et al., 2016). Right:
Model-Free Data-Driven finite-element calculation of a triaxial compression experiment on a specimen of angular (Hostun) sand (Andò et al., 2012) built on the RVE data.
to produce material data sets including stress, strain, internal energy
and dissipation, in accordance with an energy-based parametrization
of the data. A representative data set is shown in Fig. 9. The data thus
obtained can be used, in toto, as a basis for Model-Free Data-Driven
calculations at the macroscale. Fig. 9 depicts one such simulation of
an in-situ triaxial compression experiment on a specimen of angular
(Hostun) sand (Andò et al., 2012). The specimen is first compressed
isotropically to 100 kPa, and then compressed triaxially by keeping
the cell pressure constant while prescribing a vertical displacement
to the platen under quasistatic conditions. Failure is computed to
occur through the formation of a persistent shear band, which agrees
well with experimental observations (Andò et al., 2012). The axial
strains, principal stress ratio and volumetric strains predicted by the
Model-Free Data-Driven simulation are also in good agreement with
experimental measurements.

It bears emphasis that, in this approach, the micromechanical data
is lifted into the macromechanical calculations losslessly and with-
out modification, i. e., without modeling of any type. This direct
link between data and prediction effectively cuts through the Gordian
knot of multiscale upscaling and the representation of the effective
macroscopic behavior.

Data-Driven methods are likely to gain importance at a time when
data from high-fidelity simulations and high-resolution experiments are
becoming increasingly abundant. The Model-Free Data-Driven
paradigm, in particular, possesses ancillary attributes that add to its
appeal. Thus, it standardizes solvers by separating the treatment of the
field equations from the characterization of material behavior. Specif-
ically, Model-Free Data-Driven computing reduces boundary value
problems to the solution of two standard linear problems, regardless of
material behavior. The interaction between the solver and the material
data repository reduces to data searches and data transfer that can also
be standardized and scripted non-intrusively. In particular, the data
repositories can be centralized, developed and maintained remotely
from the locally run solver software. This data and work-flow structure
allow material data sets of disparate provenances to be pooled together
and has the potential for changing the way in which material data
is developed, stored, exchanged and disseminated in science and in
industry.

6. Uncertainty quantification across scales

A key aspect of the materials-by-design approach is the recognition
that properties of real materials are the result of complex multiscale
phenomena. The complexity of the material behavior across scales is
the main source of uncertainty in engineering applications. Consider
the two-scale setting described in Section 2. We have uncertainties in
the microscopic material parameter 𝑃 , uncertainties in the texture or
8

microstructure, uncertainties due to the introduction of the surrogate,
and uncertainties in the configuration. All of these affect the overall
performance, and we seek to quantify the uncertainty in the overall
performance due to uncertainties in the various inputs and surrogates.

Unfortunately, the direct estimation of integral or system level
uncertainties requires repeated evaluations of entire system aimed at
determining worst-case scenarios at all scales resulting in the largest
deviations in macroscopic behavior. Such integral calculations are pro-
hibitively expensive in terms of computational cost and are beyond the
scope of the present-day computers.

We describe a framework to quantify the propagation of uncertain-
ties through length scales (Sun et al., 2020; Liu et al., 2021) in an
efficient manner. It is based on the observation that the multiscale mod-
eling may be described as a nested composition of maps. For example,
the map from the inputs (microscopic material parameter 𝑃 , texture 𝑇 ,
microscopic material models {𝑊 ,𝐷}, surrogate �̃�, configuration 𝐶) to
the output (objective 𝑂) in Fig. 3 has the structure

𝑂 = 𝑀(�̃�(𝛷(𝑃 , 𝑇 ,𝑊 ,𝐷), 𝑠), 𝐶) (9)

where 𝑠 represents the choice of the surrogate, and 𝑀 is the macro-
scopic model. Alternately, the map may be represented as a directed
graph as shown in Fig. 10, left. The key idea is that one can explore
this nested or direct graph structure to compute the individual uncer-
tainties and then compose them. We can do so rigorously when we
seek rigorous upper bounds on the integral uncertainties. McDiarmid’s
inequality (McDiarmid, 1989) provides rigorous upper bounds on the
uncertainty of the output of a function in terms of the uncertainties
of the inputs. The key characteristic that determines this uncertainty
is the so-called modulus of continuity. Importantly the bounds become
sharper with an increasing number of input variables which is known
as the concentration-of-measure phenomenon (Ledoux, 2001). Now, it
is possible to bound the overall or integral or system-level modulus of
uncertainty of a nested map in the terms of the moduli of continuity of
the individual maps (Topcu et al., 2011). Therefore, we can evaluate
the rigorous upper bound of the system-level uncertainty in terms
of the uncertainties at each subsystem. Thus, no integral or system-
level calculation is required, and the evaluation of uncertainty of the
multi-scale system becomes computationally feasible.

The approach has been used to assess the ballistic impact of mag-
nesium plate, as depicted in Fig. 10. The material model {𝑊 ,𝐷}
includes slip and twinning at the single crystal level, the microscopic
model 𝛷 is the polycrystalline response that is computed using Taylor
averaging, the surrogate �̃� is a Johnson–Cook constitutive model and
macroscopic model 𝑀 is the ballistic performance of the magnesium
plate is simulated using finite elements. We then study the uncer-
tainty of the ballistic response due to uncertainties in the strength of
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Fig. 10. Hierarchical multiscale uncertainty quantification of magnesium.
Fig. 11. Multiscale uncertainty of Magnesium plate. (a) Uncertainties in slip and twin critical resolved shear stress (CRSS). Unit: MPa. (b) Micro to meso uncertainty quantification
showing the variation in Johnson Cook parameter from different CRSS. (c) Micro to macro uncertainty quantification showing the variation in backface deflection (modular upper
bound) from different CRSS.
individual slip and twin systems. In particular, we assume all the micro-
scale parameters are uncertainty free except the slip and twin critical
resolved shear stress (CRSS) (Liu et al., 2021), see Fig. 11(a). The micro-
scale uncertainty results in the uncertainties of the meso-scale Johnson
Cook parameters and eventually the macroscale back-face deflection
(quantity of interest).

The resultant micro to meso uncertainty propagation and micro to
macro uncertainty propagation are demonstrated in Fig. 11(b) and (c)
respectively. An important property of the moduli of continuity is that,
since they are dimensionally homogeneous, they can be compared and
rank-ordered, which in turn provides a quantitative metric of the rel-
ative contributions of the input parameters to the overall uncertainty.
The rank-ordering of the CRSSs to the overall uncertainty in ballistic
performance is found to be pyramidal>prismatic>basal>twin, with the
9

pyramidal and prismatic CRSSs contributing the most, the twin CRSS
the least and the basal CRSS in between. The calculations show that
the integral uncertainties determined by the hierarchical multiscale UQ
approach are sufficiently tight for use in engineering applications. The
analysis also sheds light on the relative contributions of the different
unit mechanisms (i.e., slip and twin systems) to the integral uncertainty
and the dominant propagation paths for uncertainty across the model
hierarchy.

It bears emphasis that the computational expense of the hierarchical
UQ framework can be much smaller compared with integral calcula-
tions, especially when lower scale calculations tend to be extremely
expensive. The analysis in Ref. Liu et al. (2021) shows that the dif-
ference of computational cost scales exponentially with the number of
levels in the hierarchy. Moreover, the proposed approach is rigorous,
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and provides a bound. An obvious limitation is the possibility that this
bound is too conservative to be useful. The current example shows
that it is not so on this occasion. Further, increasing tightness comes
at increasing extent of data through either experimental or lower-level
computational tests. Simple information of parameter bounds used in
the present work supplies a working compromise between tightness
and expense. However, it is both interesting and useful to investigate
the tightness of the bounds and the attendant conservativeness of the
designs by increasing additional information of random inputs. For
instance, when the bounds on the moments of random inputs are
known, the optimal uncertainty quantification (OUQ) protocol (Owhadi
et al., 2013; Kamga et al., 2014) is capable of taking into account
all such information about input distributions by reduction theorem
and then providing optimal bounds on the probability of failure by
leveraging all the known information.

Finally, we remark on the comparison between the proposed ap-
proach and Bayesian strategies. Bayesian inference, based on the Bayes’
theorem, has been introduced as one of the main tools for UQ of
the computational models (Honarmandi and Arróyave, 2020), mainly
due to the relative simplicity of implementation and the rigor of the
resulting Bayesian analysis. Nevertheless, the quantification of uncer-
tainties is conducted via calculating high-dimensional integrals that are
very intractable or even impossible to evaluate analytically through
conventional integration techniques (Lynch, 2007), let alone those sig-
nificantly complicated response functions that are achieved by existing
open-source codes or commercial software. One numerical way to solve
those integrals is Monte-Carlo sampling (Lucas et al., 2008), which
can become impractical if the probability of failure is small, i.e., if
failure is a rare event, and if one-call of forward calculation is costly.
By way of contrast, in the proposed method the response function
at each length-scale of the hierarchical structure can effectively be
treated as a black-box and the effort required for the computation of
the uncertainty bounds is independent of the size of the probability
of failure. In addition, the most commonly used priors in engineering
problems are uniform and normal distributions. However, the strong
influence of priors on the outcome of the inference process is also one of
the most significant criticisms of Bayesian frameworks (Wolpert, 1996).
By contrast, our approach only requires the intervals of uncertain pa-
rameters and then provides rigorous bounds on the output uncertainties
that bracket all the possible results led by all the probability measures
in such intervals.

7. Concurrent optimization of material and structure

The performance of modern devices typically depends on the prop-
erties of their component materials that operate across a broad range
of disparate time- and length-scales (Sun et al., 2017, 2019; Zheng
et al., 2016). Due to recent advancements in nanotechnology, mate-
rials characterization and synthesis, additive manufacturing, and high-
performance computing, it is possible to develop innovative advanced
materials with sophisticated structures and multiple properties from the
atomistic to the macroscopic application scale (Sun et al., 2018; Pikul
et al., 2019; Meza et al., 2014). For instance, mechanical properties can
be tailored by adjusting microstructures, material constitutions, their
spatial distribution and mass fractions using material synthesis and
processing (Yogeshvaran et al., 2020; Bhattacharya, 2003; Liu et al.,
2019a). On the other hand, structural properties, e. g., size and shape
of components, can be controlled by material manufacturing such as
3D printing at different length-scales (Wong and Hernandez, 2012;
Schaedler et al., 2011; Schumacher et al., 2015).

Traditionally, a device can be designed in a sequential manner.
irst, each individual component material is optimized over its desired
esign properties separately in very simple tests, or even by serendip-
itous discoveries. Then, the device, as a whole system, is designed
with respect to the rest of the properties, e. g., the distribution and
fraction of component materials in the device, whereas the properties
10
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of each component are fixed at the ‘‘optimal’’ results determined from
the previous step. However, there exist two critical challenges in this
sequential optimization process. First, the attainment of all the best
properties is a vital requirement for most materials; unfortunately these
properties are generally mutually exclusive, e. g., the conflict between
strength and toughness. Therefore, how to account for the correlations
between design properties of component materials poses a significant
challenge to the development of new devices in the applications of in-
terest. Second, the sequential process neglects the connection between
component materials, and the connection between the entire device
and its application environments. As a result, the performance of the
device might be underestimated over the accessible ranges of its design
properties.

In the context of Section 2, we seek to optimize the objective 𝑂
over material properties 𝑃 and the configuration. In the traditional
equential approach, we first optimize some effective material behavior
related to 𝛷) and with this optimal material held fixed, we optimize

over the configuration. However, this may lead to a sub-optimal
olution when we optimize 𝑂 over both configuration and material.

In order to address the aforementioned problems, we have pro-
osed a joint design strategy (Sun et al., 2021). We do so in a single
cale model where the material parameters describe the macroscopic
odel. The basic idea behind this strategy is that, the device with

ts components is regarded as a whole system and the design process
s directly related to the application where the device operates. To
his end, the design variables include both the properties of each
ndividual component material and the properties connecting the com-
onents with the device. The design objective is to maximize a crucial
etric that characterizes the targeted performance of the device in

he application. At the same time, the correlations between material
roperties are taken into account by employing ellipsoid convex sets as
nequality constraints in the optimization (Jiang et al., 2011, 2013),
s illustrated in Fig. 12(a). As a result, the design of the device is
ormulated as a constrained co-optimization problem that is solved over
ll the design parameters simultaneously. We specifically consider the
echanical and structural design variables of the device and have de-

eloped a non-intrusive, high-performance computational framework,
ig. 12(b), based on DAKOTA Version 6.12 software package (Adams
t al., 2020) of the Sandia National Laboratories. We have also imple-
ented Gmsh Version 4.5.4 software package (Geuzaine and Remacle,
009) in the framework, since the optimization requires evaluation
f different structural parameters and therefore may need to generate
eshes for the device on-the-fly.

We assess the sequential and joint design strategies in an application
here the ballistic performance of a double-layered plate is optimized
sing alternating AZ31B magnesium alloy and polyurea, as depicted
n Fig. 13. Schematic illustrations of the two design strategies in this
pplication are shown in Figs. 13(a)–(d). Specifically, we consider a
cenario in which normal impact and full perforation take place during
he impact process. The design objective is assumed to be a minimum
esidual velocity 𝑣r of the projectile after penetrating the plate. The de-
ign variables include the mechanical properties of AZ31B and polyurea
hat govern the strength and toughness of materials, and the structural
arameters of component layers, i. e., their thicknesses. The constraints
nclude a fixed total mass of the plate 𝑀tot and ellipsoid convex sets on
he mechanical properties of AZ31B and polyurea. Fig. 13(e) compares
he residual velocity at the optimal mechanical and structural parame-
ers using different values of 𝑀tot. Notably, using residual velocity as a
eference, the proposed joint design strategy can greatly improve the
erformance at the intermediate values of the plate mass compared
o the traditional sequential design approach. Importantly, our result
ot only agrees well with the classical knowledge in ballistic protection
ystems that a combination of strong and stiff front layer with a soft but
ough back layer provides the optimal ballistic performance (O’Masta
t al., 2014; Liu et al., 2019c,b), but also provides a quantitative
ptimal solution of the design. Therefore, the proposed method has
rovided new insights for designing novel materials with significant

esired application performance.
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Fig. 12. (a) Schematic illustration of conflict between mechanical properties. (b) Flowchart of joint design strategy over mechanical and structural properties.
Fig. 13. Strategies and results of designing a multi-layered plate subject to high-speed impact. (a) Design over mechanical properties of AZ31B. (b) Design over mechanical
properties of polyurea. (c) Design over structural properties of layers. Steps (a), (b) and (c) form the strategy of sequential design. (d) Joint design over mechanical and structural
properties. (e) Comparison of residual velocity at different values of plate mass.
8. Summary

In this paper, we have reviewed a number of recent developments in
methodology that advance the goal of designing materials targeted by
specific applications. The macroscopic behavior of materials is the end
result of a number of mechanisms that operate across a broad range of
disparate scales. Multiscale modeling seeks to address this complexity
using a ‘divide and conquer’ approach where range of material behavior
is first divided into an ordered hierarchy of scales. Section 3 describes
how emerging computational platforms that use accelerators like GPUs
can be effectively used to study problems at individual scales. The
scales are then linked using an approach where the higher scale model
modulates the lower scale behavior, but also averages its outcome. Sec-
tion 4 shows how machine learning can be effectively used for this scale
transition. Section 5 describes an entirely new approach of model-free
simulations where the data – experimental or computational from lower
scale models – can be exploited directly. The complexity of multiscale
modeling also introduces uncertainty at various scales. Section 6 shows
how we can exploit the hierarchical nature of multiscale modeling
to quantify integral uncertainties by studying individual uncertainties.
Finally, we explore the joint optimization of material and structure in
Section 7.
11
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