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Abstract. Well known to the machine learning community, the random feature model is a
parametric approximation to kernel interpolation or regression methods. It is typically used to
approximate functions mapping a finite-dimensional input space to the real line. In this paper, we
instead propose a methodology for use of the random feature model as a data-driven surrogate for
operators that map an input Banach space to an output Banach space. Although the methodology is
quite general, we consider operators defined by partial differential equations (PDEs); here, the inputs
and outputs are themselves functions, with the input parameters being functions required to specify
the problem, such as initial data or coefficients, and the outputs being solutions of the problem. Upon
discretization, the model inherits several desirable attributes from this infinite-dimensional viewpoint,
including mesh-invariant approximation error with respect to the true PDE solution map and the
capability to be trained at one mesh resolution and then deployed at different mesh resolutions.
We view the random feature model as a nonintrusive data-driven emulator, provide a mathematical
framework for its interpretation, and demonstrate its ability to efficiently and accurately approximate
the nonlinear parameter-to-solution maps of two prototypical PDEs arising in physical science and
engineering applications: the viscous Burgers’ equation and a variable coefficient elliptic equation.
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1. Introduction. The random feature model (RFM), an architecture for the
data-driven approximation of maps between finite-dimensional spaces, was formal-
ized in [70, 71, 72], building on earlier precursors in [6, 64, 89]. The goal of this paper
is to extend the RFM to a methodology for the data-driven approximation of maps
between infinite-dimensional spaces. Canonical examples of such maps include the
semigroup generated by a time-dependent partial differential equation (PDE) map-
ping the initial condition (an input parameter) to the solution at a later time and
the operator mapping a coefficient function (an input parameter) appearing in a PDE
to its solution. Obtaining efficient and potentially low-dimensional representations
of PDE solution maps is not only conceptually interesting but also practically use-
ful. Many applications in science and engineering require repeated evaluations of a
complex and expensive forward model for different configurations of a system pa-
rameter. The model often represents a discretized PDE and the parameter, serving
as input to the model, often represents a high-dimensional discretized quantity such
as an initial condition or uncertain coefficient field. These outer loop applications
commonly arise in inverse problems or uncertainty quantification tasks that involve
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THE RANDOM FEATURE MODEL ON BANACH SPACE A3213

control, optimization, or inference [69]. Full order forward models do not perform well
in such many-query contexts, either due to excessive computational cost (requiring
the most powerful high performance computing architectures) or slow evaluation time
(unacceptable in real-time contexts such as on-the-fly optimal control). In contrast to
that of the big data regime that dominates computer vision and other technological
fields, only a relatively small amount of high resolution data can be generated from
computer simulations or physical experiments in scientific applications. Fast approx-
imate solvers built from this limited available data that can efficiently and accurately
emulate the full order model would be highly advantageous.

In this work, we demonstrate that the RFM holds considerable potential for such
a purpose. Resembling [58, 92] and the contemporaneous work in [13, 51, 56, 65],
we present a methodology for true function space learning of black-box input-output
maps between a Banach space and separable Hilbert space. We formulate the ap-
proximation problem as supervised learning in infinite dimensions and show that the
natural hypothesis space is a reproducing kernel Hilbert space (RKHS) associated
with an operator-valued kernel. For a suitable loss functional, training the RFM is
equivalent to solving a finite-dimensional convex optimization problem. As a conse-
quence of our careful construction of the method as mapping between Banach spaces,
the resulting emulator naturally scales favorably with respect to (w.r.t.) the high in-
put and output dimensions arising in practical, discretized applications; furthermore,
it is shown to achieve small relative test error for two model problems arising from
approximation of a semigroup and of the solution map corresponding to an elliptic
PDE exhibiting parametric dependence on a coefficient function.

1.1. Literature review. In recent years, two different lines of research have
emerged that address PDE approximation problems with machine learning techniques.
The first perspective takes a more traditional approach akin to point collocation meth-
ods from the field of numerical analysis. Here, the goal is to use a deep neural network
(NN) to solve a prescribed initial boundary value problem with as high accuracy as
possible. Given a point cloud in a spatio-temporal domain D̃ as input data, the
prevailing approach first directly parametrizes the PDE solution field as an NN and
then optimizes the NN parameters by minimizing the PDE residual w.r.t. some loss
functional (see [73, 79, 87] and the references therein). To clarify, the object approx-
imated with this novel method is a low-dimensional input-output map D̃ → R, i.e.,
the real-valued function that solves the PDE. This approach is mesh-free by definition
but highly intrusive as it requires full knowledge of the specified PDE. Any change to
the original formulation of the initial boundary value problem or related PDE prob-
lem parameters necessitates an (expensive) retraining of the NN solution. We do not
explore this first approach any further in this article.

The second direction is arguably more ambitious: use an NN as an emulator
for the infinite-dimensional mapping between an input parameter and the PDE so-
lution itself or a functional of the solution, i.e., a quantity of interest; the latter is
widely prevalent in uncertainty quantification problems. We emphasize that the ob-
ject approximated in this setting, unlike in the aforementioned first approach, is an
input-output map X → Y, i.e., the PDE solution operator, where X , Y are infinite-
dimensional Banach spaces; this map is generally nonlinear. For an approximation-
theoretic treatment of parametric PDEs in general, we refer the reader to the article
of Cohen and DeVore [23]. In applications, the solution operator is represented by a
discretized forward model RK → RK , where K is the mesh size, and hence represents
a high-dimensional object. It is this second line of research that inspires our work.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3214 NICHOLAS H. NELSEN AND ANDREW M. STUART

Of course, there are many approaches to forward model reduction that do not
explicitly involve machine learning ideas. The reduced basis method (see [5, 9, 29]
and the references therein) is a classical idea based on constructing an empirical
basis from data snapshots and solving a cheaper variational problem; it is still widely
used in practice due to computationally efficient offline-online decompositions that
eliminate dependence on the full order degrees of freedom. Recently, machine learning
extensions to the reduced basis methodology, of both intrusive (e.g., projection-based
reduced order models) and nonintrusive (e.g., model-free data only) type, have further
improved the applicability of these methods [21, 36, 43, 53, 77]. However, the input-
output maps considered in these works involve high dimension in only one of the
input or the output space, not both. Other popular surrogate modeling techniques
include Gaussian processes [90], polynomial chaos expansions [80], and radial basis
functions [88], yet these are only practically suitable for problems with input space of
low to moderate dimension. Classical numerical methods for PDEs may also represent
the forward model RK → RK , albeit implicitly in the form of a computer code (e.g.,
finite element, finite difference, finite volume methods). However, the approximation
error is sensitive to K and repeated evaluations of this forward model often become
cost prohibitive due to poor scaling with input dimension K.

Instead, deep NNs have been identified as strong candidate surrogate models for
parametric PDE problems due to their empirical ability to emulate high-dimensional
nonlinear functions with minimal evaluation cost once trained. Early work in the
use of NNs to learn the solution operator, or vector field, defining ODEs and time-
dependent PDEs may be found from the 1990s [20, 39, 74]. There are now more
theoretical justifications for NNs breaking the curse of dimensionality [51, 52, 61],
leading to increased interest in PDE applications [1, 37, 66, 78]. A suite of work
on data-driven discretizations of PDEs has surfaced that allows for identification of
the governing model [4, 14, 57, 68, 81, 83]; however, we note that only the operators
appearing in the equation itself are approximated with these approaches, not the
solution operator of the PDE. More in line with our focus in this article, architectures
based on deep convolutional NNs have proven quite successful for learning elliptic
PDE solution maps (for example, see [84, 91, 93], which take an image-to-image
regression approach). Other NNs have been used in similar elliptic problems for
quantity of interest prediction [49], error estimation [19], or unsupervised learning [54].
Yet in all the approaches above, the architectures and resulting error are dependent
on the mesh resolution. To circumvent this issue, the surrogate map must be well
defined on function space and independent of any finite-dimensional realization of
the map that arises from discretization. This is not a new idea (see [20, 75] or,
for functional data analysis, [46, 63]). The aforementioned reduced basis method
is an example, as is the method of [22, 23], which approximates the solution map
with sparse Taylor polynomials and is proved to achieve optimal convergence rates
in idealized settings. However, it is only recently that machine learning methods
have been explicitly designed to operate in an infinite-dimensional setting, and there
is little work in this direction [13, 56]. Here we propose the RFM as another such
method.

The RFM [70, 71, 72], detailed in subsection 2.3, is in some sense the simplest
possible machine learning model; it may be viewed as an ensemble average of ran-
domly parametrized functions: an expansion in a randomized basis. These random
features could be defined, for example, by randomizing the internal parameters of
an NN. Compared to NN emulators with enormous learnable parameter counts (e.g.,
O(105) to O(106); see [33, 34, 54]) and methods that are intrusive or lead to nontrivial
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implementations [22, 53, 77], the RFM is one of the simplest models to formulate
and train (often O(103) parameters, or fewer, suffice). The theory of the RFM for
real-valued outputs is well developed, partly due to its close connection to kernel
methods [3, 16, 45, 70, 88] and Gaussian processes [64, 89], and includes general-
ization rates and dimension-free estimates [61, 71, 82]. A quadrature viewpoint on
the RFM provides further insight and leads to Monte Carlo sampling ideas [3]; we
remark on this further in subsection 2.3. As in modern deep learning practice, the
RFM has also been shown to perform best when the model is overparametrized [8].
In a similar high-dimensional setting of relevance in this paper, the authors of [40, 48]
theoretically investigated nonparametric kernel regression for parametric PDEs with
real-valued solution map outputs. The specific random Fourier feature approach of
Rahimi and Recht [70] was generalized in [15] to the finite-dimensional matrix-valued
kernel setting with vector-valued random Fourier features. However, most of these
works require explicit knowledge of the kernel itself. Here our viewpoint is to work
directly with random features as the basis for a standalone method, choosing them
for their properties and noting that they implicitly define a kernel, but not working
directly with this kernel; furthermore, our work considers both infinite-dimensional in-
put and output spaces, not just one or the other. A key idea underlying our approach
is to formulate the proposed random feature algorithm on infinite-dimensional space
and only then discretize. This philosophy in algorithm development has been instruc-
tive in a number of areas in scientific computing, such as optimization [44] and the
development of Markov chain Monte Carlo methodology [25]. It has recently been
promoted as a way of designing and analyzing algorithms within machine learning
[41, 60, 76, 85, 86], and our work may be understood within this general framework.

1.2. Contributions. Our primary contributions in this paper are now listed.
1. We develop the RFM, directly formulated on the function space level, for

learning input-output maps between Banach spaces purely from data. As a
method for parametric PDEs, the methodology is non-intrusive but also has
the additional advantage that it may be used in settings where only data is
available and no model is known.

2. We show that our proposed method is more computationally tractable to
both train and evaluate than standard kernel methods in infinite dimensions.
Furthermore, we show that the method is equivalent to kernel ridge regression
performed in a finite-dimensional space spanned by random features.

3. We apply our methodology to learn the semigroup defined by the solution
operator for the viscous Burgers’ equation and the coefficient-to-solution op-
erator for the Darcy flow equation.

4. We demonstrate, by means of numerical experiments, two mesh-independent
approximation properties that are built into the proposed methodology: in-
variance of relative error to mesh resolution and evaluation ability on any
mesh resolution.

This paper is structured as follows. In section 2, we communicate the mathe-
matical framework required to work with the RFM in infinite dimensions, identify an
appropriate approximation space, and explain the training procedure. We introduce
two instantiations of random feature maps that target physical science applications
in section 3 and detail the corresponding numerical results for these applications
in section 4. We conclude in section 5 with discussion and future work.

2. Methodology. In this work, the overarching problem of interest is the ap-
proximation of a map F † : X → Y, where X , Y are infinite-dimensional spaces of
real-valued functions defined on some bounded open subset of Rd, and F † is defined
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A3216 NICHOLAS H. NELSEN AND ANDREW M. STUART

by a 7→ F †(a) := u, where u is the solution of a (possibly time-dependent) PDE and a
is an input function required to make the problem well-posed. Our proposed approach
for this approximation, constructing a surrogate map F for the true map F †, is data-
driven, nonintrusive, and based on least squares. Least squares–based methods are
integral to the random feature methodology as proposed in low dimensions [70, 71] and
generalized here to the infinite-dimensional setting; they have also been shown to work
well in other algorithms for high-dimensional numerical approximation [12, 24, 30].
Within the broader scope of reduced order modeling techniques [9], the approach we
adopt in this paper falls within the class of data-fit emulators. In its essence, our
method interpolates the solution manifold

M = {u ∈ Y : u = F †(a), a ∈ X} .(2.1)

The solution map F †, as the inverse of a differential operator, is often smoothing and
admits a notion of compactness, i.e., the output space compactly embeds into the
input space. Then, the idea is that M should have some compact, low-dimensional
structure (intrinsic dimension). However, actually finding a model F that exploits
this structure despite the high dimensionality of the truth map F † is quite difficult.
Further, the effectiveness of many model reduction techniques, such as those based on
the reduced basis method, are dependent on inherent properties of the map F † itself
(e.g., analyticity), which in turn may influence the decay rate of the Kolmogorov width
of the manifold M [23]. While such subtleties of approximation theory are crucial to
developing rigorous theory and provably convergent algorithms, we choose to work in
the nonintrusive setting where knowledge of the map F † and its associated PDE are
only obtained through measurement data, and hence detailed characterizations such
as those aforementioned are essentially unavailable.

The remainder of this section introduces the mathematical preliminaries for our
methodology. With the goal of operator approximation in mind, in subsection 2.1
we formulate a supervised learning problem in an infinite-dimensional setting. We
provide the necessary background on RKHSs in subsection 2.2 and then define the
RFM in subsection 2.3. In subsection 2.4, we describe the optimization principle
which leads to algorithms for the RFM and an example problem in which X and Y
are one-dimensional vector spaces.

2.1. Problem formulation. Let X , Y be real Banach spaces and F † : X →
Y be a (possibly nonlinear) map. It is natural to frame the approximation of F †

as a supervised learning problem. Suppose we are given training data in the form
of input-output pairs {ai, yi}ni=1 ⊂ X × Y, where ai ∼ ν i.i.d., ν is a probability

measure supported on X , and yi = F †(ai) ∼ F †
♯ ν with, potentially, noise added

to the evaluations of F †(·). In the examples in this paper, the noise is viewed as
resulting from model error (the PDE does not perfectly represent the physics) or
from discretization error (in approximating the PDE); situations in which the data
acquisition process is inherently noisy can also be envisioned but are not studied here.
We aim to build a parametric reconstruction of the true map F † from the data, that
is, construct a model F : X × P → Y and find α† ∈ P ⊆ Rm such that F (·, α†) ≈ F †

are close as maps from X to Y in some suitable sense. The natural number m here
denotes the total number of model parameters. The standard approach to determine
parameters in supervised learning is to first define a loss functional ℓ : Y × Y → R≥0

and then minimize the expected risk,

min
α∈P

Ea∼ν
[
ℓ
(
F †(a), F (a, α)

)]
.(2.2)
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With only the data {ai, yi}ni=1 at our disposal, we approximate problem (2.2) by re-
placing ν with the empirical measure ν(n) := 1

n

∑n
j=1 δaj

, which leads to the empirical
risk minimization problem

min
α∈P

1

n

n∑
j=1

ℓ
(
yj , F (aj , α)

)
.(2.3)

The hope is that given minimizer α(n) of (2.3) and α† of (2.2), F (·, α(n)) well ap-
proximates F (·, α†), that is, the learned model generalizes well; these ideas may be
made rigorous with results from statistical learning theory [42]. Solving problem (2.3)
is called training the model F . Once trained, the model is then validated on a new
set of i.i.d. input-output pairs previously unseen during the training process. This
testing phase indicates how well F approximates F †. From here on out, we assume
that (Y, ⟨·, ·⟩Y , ∥·∥Y) is a real separable Hilbert space and focus on the squared loss

ℓ(y, y′) :=
1

2
∥y − y′∥2Y .(2.4)

We stress that our entire formulation is in an infinite-dimensional setting and we will
remain in this setting throughout the paper; as such, the random feature methodology
we propose will inherit desirable discretization-invariant properties, to be observed in
the numerical experiments of section 4.

Notation 2.1. For a Borel measurable map G : U → V between two Banach spaces
U , V and a probability measure π supported on U , we denote the expectation of G
under π by

Eu∼π
[
G(u)

]
=

∫
U
G(u)π(du)(2.5)

in the sense of Bochner integration (see, e.g., [27, sect. A.2]). We will drop the domain
of integration in situations where no confusion is caused by doing so.

2.2. Operator-valued reproducing kernels. The RFM is naturally formu-
lated in an RKHS setting, as our exposition will demonstrate in subsection 2.3. How-
ever, the usual RKHS theory is concerned with real-valued functions [2, 10, 26, 88].
Our setting, with the output space Y a separable Hilbert space, requires several ideas
that generalize the real-valued case. We now outline these ideas with a review of
operator-valued kernels; parts of the presentation that follow may be found in the
references [3, 18, 63].

We first consider the special case Y := R for ease of exposition. A real RKHS
is a Hilbert space (H, ⟨·, ·⟩H, ∥·∥H) comprising real-valued functions f : X → R such
that the pointwise evaluation functional f 7→ f(a) is bounded for every a ∈ X . It
then follows that there exists a unique, symmetric, positive definite kernel function
k : X × X → R such that for every a ∈ X , k(·, a) ∈ H and the reproducing kernel
property f(a) = ⟨k(·, a), f⟩H holds. These two properties are often taken as the
definition of an RKHS. The converse direction is also true: every symmetric, positive
definite kernel defines a unique RKHS [2].

We now introduce the needed generalization of the reproducing property to the
case of arbitrary real Hilbert spaces Y, as this result will motivate the construction
of the RFM. Kernels in this setting are now operator-valued.
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A3218 NICHOLAS H. NELSEN AND ANDREW M. STUART

Definition 2.2. Let X be a real Banach space and Y a real separable Hilbert
space. An operator-valued kernel is a map

k : X × X → L(Y,Y) ,(2.6)

where L(Y,Y) denotes the Banach space of all bounded linear operators on Y, such
that its adjoint satisfies k(a, a′)∗ = k(a′, a) for all a, a′ ∈ X and for every N ∈ N,

N∑
i,j=1

⟨yi, k(ai, aj)yj⟩Y ≥ 0(2.7)

for all pairs {(ai, yi)}Ni=1 ⊂ X × Y.

Paralleling the development for the real-valued case, an operator-valued kernel
k also uniquely (up to isomorphism) determines an associated real RKHS Hk =
Hk(X ;Y). Now, choosing a probability measure ν supported on X , we define a kernel
integral operator Tk associated to k by

Tk : L
2
ν(X ;Y) → L2

ν(X ;Y) ,

F 7→ TkF :=

∫
k(·, a′)F (a′)ν(da′) ,

(2.8)

which is nonnegative, self-adjoint, and compact (provided k(a, a) ∈ L(Y,Y) is com-

pact for all a ∈ X [18]). Let us further assume that all conditions needed for T
1/2
k to

be an isometry from L2
ν into Hk are satisfied, i.e., Hk = im(T

1/2
k ). Generalizing the

standard Mercer theory (see, e.g., [3, 10]), we may write the RKHS inner product as

⟨F,G⟩Hk
= ⟨F, T−1

k G⟩L2
ν

for all F,G ∈ Hk .(2.9)

Note that while (2.9) appears to depend on the measure ν on X , the RKHS Hk is
itself determined by the kernel without any reference to a measure (see [26, Chap. 3,
Thm. 4]). With the inner product now explicit, we may directly deduce a reproducing
property. A fully rigorous justification of the methodology is outside the scope of this
article; however, we perform formal computations which provide intuition underpin-
ning the methodology. To this end we fix a ∈ X and y ∈ Y. Then

⟨k(·, a)y, T−1
k F ⟩L2

ν
=

∫ 〈
k(a′, a)y, (T−1

k F )(a′)
〉
Y ν(da

′)

=

∫ 〈
y, k(a, a′)(T−1

k F )(a′)
〉
Y ν(da

′)

=

〈
y,

∫
k(a, a′)(T−1

k F )(a′) ν(da′)

〉
Y

= ⟨y, F (a)⟩Y
by using Definition 2.2 of operator-valued kernel and the fact that k(·, a)y ∈ Hk [18].
So, we deduce the following.

Result 2.3 (reproducing property for operator-valued kernels). Let F ∈ Hk be
given. Then for every a ∈ X and y ∈ Y,

⟨y, F (a)⟩Y = ⟨k(·, a)y, F ⟩Hk
.(2.10)

This identity, paired with a special choice of k, is the basis of the RFM in our
abstract infinite-dimensional setting.
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2.3. Random feature model. One could approach the approximation of target
map F † : X → Y from the perspective of kernel methods. However, it is generally
a difficult task to explicitly design operator-valued kernels of the form (2.6) since
the spaces X , Y may be of different regularity, for example. Example constructions of
operator-valued kernels studied in the literature include those taking value as diagonal
operators, multiplication operators, or composition operators [46, 63], but these all
involve some simple generalization of scalar-valued kernels. Instead, the RFM allows
one to implicitly work with operator-valued kernels through the use of a random
feature map φ : X ×Θ → Y and a probability measure µ supported on Banach space
Θ. The map φ is assumed to be square integrable w.r.t. the product measure ν×µ, i.e.,
φ ∈ L2

ν×µ(X ×Θ;Y), where ν is the (sometimes a modeling choice at our discretion,
sometimes unknown) data distribution on X . Together, (φ, µ) form a random feature
pair. With this setup in place, we now describe the connection between random
features and kernels; to this end, recall the following standard notation.

Notation 2.4. Given a Hilbert space (H, ⟨·, ·⟩, ∥·∥), the outer product a ⊗ b ∈
L(H,H) is defined by (a⊗ b)c = ⟨b, c⟩a for any a, b, c ∈ H.

Given the pair (φ, µ), consider maps kµ : X × X → L(Y,Y) of the form

kµ(a, a
′) :=

∫
φ(a; θ)⊗ φ(a′; θ)µ(dθ) .(2.11)

Such representations need not be unique; different pairs (φ, µ) may induce the same
kernel k = kµ in (2.11). Since kµ may readily be shown to be an operator-valued kernel
via Definition 2.2, it defines a unique real RKHSHkµ

⊂ L2
ν(X ;Y). Our approximation

theory will be based on this space or finite-dimensional approximations thereof. We
now perform a purely formal but instructive calculation, following from application of
the reproducing property (2.10) to operator-valued kernels of the form (2.11). Doing
so leads to an integral representation of any F ∈ Hkµ

: for all a ∈ X , y ∈ Y,

⟨y, F (a)⟩Y = ⟨kµ(·, a)y, F ⟩Hkµ
=

〈∫
⟨φ(a; θ), y⟩Y φ(·; θ)µ(dθ), F

〉
Hkµ

=

∫
⟨φ(a; θ), y⟩Y⟨φ(·; θ), F ⟩Hkµ

µ(dθ)

=

∫
cF (θ)⟨y, φ(a; θ)⟩Y µ(dθ)

=

〈
y,

∫
cF (θ)φ(a; θ)µ(dθ)

〉
Y

,

where the coefficient function cF : Θ → R is defined by

cF (θ) := ⟨φ(·; θ), F ⟩Hkµ
.(2.12)

Since Y is Hilbert, the above holding for all y ∈ Y implies the integral representation

F =

∫
cF (θ)φ(·; θ)µ(dθ) .(2.13)

The formal expression (2.12) for cF (θ) needs careful interpretation (provided in Ap-
pendix B). For instance, if φ(·; θ) is a realization of a Gaussian process as in Exam-
ple 2.9, then φ(·; θ) /∈ Hkµ

with probability one; indeed, in this case cF is defined
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A3220 NICHOLAS H. NELSEN AND ANDREW M. STUART

only as an L2
µ limit. Nonetheless, the RKHS may be completely characterized by this

integral representation. Define the map

A : L2
µ(Θ;R) → L2

ν(X ;Y) ,

c 7→ Ac :=
∫
c(θ)φ(·; θ)µ(dθ) .

(2.14)

A may be shown to be a bounded linear operator that is a particular square root of
Tkµ

(Appendix B). We have the following result whose proof, provided in Appendix A,
is a straightforward generalization of the real-valued case given in [3, sect. 2.2].

Result 2.5. Under the assumption that φ ∈ L2
ν×µ(X ×Θ;Y), the RKHS defined

by the kernel kµ in (2.11) is precisely

Hkµ
= im(A) =

{∫
c(θ)φ(·; θ)µ(dθ) : c ∈ L2

µ(Θ;R)
}
.(2.15)

We stress that the integral representation of mappings in RKHS (2.15) is not
unique since A is not injective in general. However, the particular choice c = cF (2.12)
in representation (2.13) does enjoy a sense of uniqueness as described in Appendix B.

A central role in what follows is the approximation of measure µ by the empirical
measure

µ(m) :=
1

m

m∑
j=1

δθj , θj
iid∼ µ .(2.16)

Given this, define k(m) := kµ(m) to be the empirical approximation to kµ:

k(m)(a, a′) = Eθ∼µ(m)[
φ(a; θ)⊗ φ(a′; θ)

]
=

1

m

m∑
j=1

φ(a; θj)⊗ φ(a′; θj) .(2.17)

Then we let Hk(m) be the unique RKHS induced by the kernel k(m); note that k(m)

and hence Hk(m) are themselves random variables. The following characterization of
Hk(m) is proved in Appendix A.

Result 2.6. Assume that φ ∈ L2
ν×µ(X × Θ;Y) and that the random features

{φ(·; θj)}mj=1 are linearly independent in L2
ν(X ;Y). Then, the RKHS Hk(m) is equal

to the linear span of the {φj := φ(·; θj)}mj=1.

Applying a simple Monte Carlo sampling approach to elements in RKHS (2.15)
by replacing probability measure µ by empirical measure µ(m) gives, for c ∈ L2

µ,

1

m

m∑
j=1

c(θj)φ(·; θj) ≈
∫
c(θ)φ(·; θ)µ(dθ) .(2.18)

This approximation achieves the Monte Carlo rate O(m−1/2) and, by virtue of Re-
sult 2.6, is in Hk(m) . However, in the setting of this work, the Monte Carlo approach
does not give rise to a practical method for learning a target map F † ∈ Hkµ

because
F †, kµ, and Hkµ

are all unknown; only the random feature pair (φ, µ) is assumed to
be given. Hence one cannot apply (2.12) (or (B.2)) to evaluate c = cF † in (2.18).
Furthermore, in realistic settings it may be that F † ̸∈ Hkµ , which leads to an addi-
tional approximation gap not accounted for by the Monte Carlo method. To sidestep
these difficulties, the RFM adopts a data-driven optimization approach to determine
a different approximation to F †, also from the space Hk(m) . We now define the RFM.
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THE RANDOM FEATURE MODEL ON BANACH SPACE A3221

Definition 2.7. Given probability spaces (X ,B(X ), ν) and (Θ,B(Θ), µ) with X ,
Θ being real finite- or infinite-dimensional Banach spaces, real separable Hilbert space
Y, and φ ∈ L2

ν×µ(X ×Θ;Y), the RFM is the parametric map

Fm : X × Rm → Y ,

(a;α) 7→ Fm(a;α) :=
1

m

m∑
j=1

αjφ(a; θj) , θj
iid∼ µ .

(2.19)

We use the Borel σ-algebras B(X ) and B(Θ) to define the probability spaces in the
preceding definition. Our goal with the RFM is to choose parameters α ∈ Rm so as to
approximate mappings F † ∈ Hkµ (in the ideal setting) by mappings Fm(·;α) ∈ Hk(m) .
The RFM is itself a random variable and may be viewed as a spectral method since
the randomized basis φ(·; θ) in the linear expansion (2.19) is defined on all of X ν-a.e.
Determining the coefficient vector α from data obviates the difficulties associated with
the Monte Carlo approach since the method only requires knowledge of the pair (φ, µ)
and knowledge of sample input-output pairs from target operator F †.

As written, (2.19) is incredibly simple. It is clear that the choice of random feature
map and measure pair (φ, µ) will determine the quality of approximation. Most papers
deploying these methods, including [15, 70, 71], take a kernel-oriented perspective by
first choosing a kernel and then finding a random feature map to estimate this kernel.
Our perspective, more aligned with [72, 82], is the opposite in that we allow the choice
of random feature map φ to implicitly define the kernel via the formula (2.11) instead
of picking the kernel first. This methodology also has implications for numerics: the
kernel never explicitly appears in any computations, which leads to memory savings.
It does, however, leave open the question of characterizing the universality [82] of such
kernels and the RKHSHkµ

of mappings from X to Y that underlies the approximation
method; this is an important avenue for future work.

The close connection to kernels explains the origins of the RFM in the machine
learning literature. Moreover, the RFM may also be interpreted in the context of NNs
[64, 82, 89]. To see this explicitly, consider the setting where X , Y are both equal to
the Euclidean space R and choose φ to be a family of hidden neurons φNN(a; θ) :=
σ(θ(1) · a+ θ(2)). A single hidden layer NN would seek to find {(αj , θj)}mj=1 in R×R2

so that

1

m

m∑
j=1

αjφNN(·; θj)(2.20)

matches the given training data {ai, yi}ni=1 ⊂ X ×Y. More generally, and in arbitrary
Euclidean spaces, one may allow φNN(·; θ) to be any deep NN. However, while the
RFM has the same form as (2.20), there is a difference in the training : the θj are
drawn i.i.d. from a probability measure and then fixed, and only the αj are chosen
to fit the training data. This connection is quite profound: given any deep NN with
randomly initialized parameters θ, studies of the lazy training regime and neural
tangent kernel [16, 45] suggest that adopting an RFM approach and optimizing over
only α is quite natural, as it is observed that in this regime the internal NN parameters
do not stray far from their random initialization during gradient descent while the
last layer of parameters {αj}mj=1 adapt considerably.

Once the feature parameters {θj}mj=1 are chosen at random and fixed, training
the RFM Fm only requires optimizing over α ∈ Rm which, due to linearity of Fm in
α, is a straightforward task to which we now turn our attention.
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A3222 NICHOLAS H. NELSEN AND ANDREW M. STUART

2.4. Optimization. One of the most attractive characteristics of the RFM is
its training procedure. With the L2-type loss (2.4) as in standard regression settings,
optimizing the coefficients of the RFM w.r.t. the empirical risk (2.3) is a convex opti-
mization problem, requiring only the solution of a finite-dimensional system of linear
equations; the convexity also suggests the possibility of appending convex constraints
(such as linear inequalities), although we do not pursue this here. Further, the kernels
kµ or k(m) are not required anywhere in the algorithm. We emphasize the simplic-
ity of the underlying optimization tasks as they suggest the possibility of numerical
implementation of the RFM into complicated black-box computer codes.

We now proceed to show that a regularized version of the optimization prob-
lem (2.3)–(2.4) arises naturally from approximation of a nonparametric regression
problem defined over the RKHSHkµ

. To this end, recall the supervised learning formu-
lation in subsection 2.1. Given n i.i.d. input-output pairs {ai, yi = F †(ai)}ni=1 ⊂ X×Y
as data, with the ai drawn from (possibly unknown) probability measure ν on X , the
objective is to find an approximation F̂ to the map F †. Let Hkµ

be the hypothesis
space and kµ its operator-valued reproducing kernel of the form (2.11). The most
straightforward learning algorithm in this RKHS setting is kernel ridge regression,
also known as penalized least squares. This method produces a nonparametric model
by finding a minimizer F̂ of

min
F∈Hkµ


n∑

j=1

1

2

∥∥yj − F (aj)
∥∥2
Y +

λ

2

∥∥F∥∥2Hkµ

 ,(2.21)

where λ ≥ 0 is a penalty parameter. By the representer theorem for operator-valued
kernels [63, Theorems 2 and 4], the minimizer has the form

F̂ =

n∑
j=1

kµ(·, aj)βj(2.22)

for some functions {βj}nj=1 ⊂ Y. In practice, finding these n functions in the output
space requires solving a block linear operator equation. For the high-dimensional PDE
problems we consider in this work, solving such an equation may become prohibitively
expensive from both operation count and memory required. A few workarounds were
proposed in [46] such as certain diagonalizations, but these rely on simplifying as-
sumptions that are somewhat limiting. More fundamentally, the representation of
the solution in (2.22) requires knowledge of the kernel kµ; in our setting we assume
access only to the random feature pair (φ, µ) which defines kµ and not kµ itself.

We thus explain how to make progress with this problem given knowledge only
of random features. Recall the empirical kernel given by (2.17), the RKHS Hk(m) ,
and Result 2.6. The following result, proved in Appendix A, shows that an RFM
hypothesis class with a penalized least squares empirical loss function in optimization
problem (2.3)–(2.4) is equivalent to kernel ridge regression (2.21) restricted to Hk(m) .

Result 2.8. Assume that φ ∈ L2
ν×µ(X × Θ;Y) and that the random features

{φ(·; θj)}mj=1 are linearly independent in L2
ν(X ;Y). Fix λ ≥ 0. Let α̂ ∈ Rm be the

unique minimum norm solution of the following problem:

min
α∈Rm


n∑

j=1

1

2

∥∥∥∥yj − 1

m

m∑
ℓ=1

αℓφ(aj ; θℓ)

∥∥∥∥2
Y
+

λ

2m
∥α∥22

 .(2.23)
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Then, the RFM defined by this choice α = α̂ satisfies

Fm(·; α̂) = argmin
F∈H

k(m)


n∑

j=1

1

2

∥∥yj − F (aj)
∥∥2
Y +

λ

2

∥∥F∥∥2H
k(m)

 .(2.24)

Solving the convex problem (2.23) trains the RFM. The first order condition for
a global minimizer leads to the normal equations

1

m

m∑
i=1

n∑
j=1

αi

〈
φ(aj ; θi), φ(aj ; θℓ)

〉
Y + λαℓ =

n∑
j=1

〈
yj , φ(aj ; θℓ)

〉
Y(2.25)

for each ℓ ∈ {1, . . . ,m}. This is an m-by-m linear system of equations for α ∈ Rm

that is standard to solve. In the case λ = 0, the minimum norm solution may be
written in terms of a pseudoinverse operator (see [59, sect. 6.11]).

Example 2.9 (Brownian bridge). We now provide a one-dimensional instantia-
tion of the RFM to illustrate the methodology. Take the input space as X := (0, 1),
output space Y := R, input space measure ν := U(0, 1), and random parameter space
Θ := R∞. Denote the input by a = x ∈ X . Then, consider the random feature map
φ : (0, 1)× R∞ → R defined by the Brownian bridge

φ(x; θ) :=
∑
j∈N

θ(j)(jπ)−1
√
2 sin(jπx) , θ(j)

iid∼ N(0, 1) ,(2.26)

where θ := {θ(j)}j∈N and µ := N(0, 1) ×N(0, 1) × · · · . For any realization of θ ∼ µ,
the function φ(·; θ) is a Brownian motion constrained to zero at x = 0 and x = 1.
The induced kernel kµ : (0, 1) × (0, 1) → R is then simply the covariance function of
this stochastic process:

kµ(x, x
′) = Eθ∼µ

[
φ(x; θ)φ(x′; θ)

]
= min{x, x′} − xx′ .(2.27)

Note that kµ is the Green’s function for the negative Laplacian on (0, 1) with Dirichlet
boundary conditions. Using this fact, we may explicitly characterize the associated
RKHS Hkµ as follows. First, we have

Tkµ
f =

∫ 1

0

kµ(·, y)f(y) dy =

(
− d2

dx2

)−1

f ,(2.28)

where the negative Laplacian has domain H2((0, 1);R) ∩H1
0 ((0, 1);R). Viewing Tkµ

as an operator from L2((0, 1);R) into itself, from (2.9) we conclude, upon integration
by parts, that

⟨f, g⟩Hkµ
= ⟨f, T−1

kµ
g⟩L2 =

〈
df

dx
,
dg

dx

〉
L2

= ⟨f, g⟩H1
0

for all f, g ∈ Hkµ
.(2.29)

Note that the last identity does indeed define an inner product on H1
0 . By this formal

argument we identify the RKHS Hkµ
as the Sobolev space H1

0 ((0, 1);R). Further-
more, the Brownian bridge may be viewed as the Gaussian measure N(0, Tkµ

). Ap-
proximation using the RFM with the Brownian bridge random features is illustrated
in Figure 1. Since kµ(·, x) is a piecewise linear function, a kernel interpolation or
regression method will produce a piecewise linear approximation. Indeed, the figure
indicates that the RFM with n training points fixed approaches the optimal piecewise
linear kernel interpolant as m→ ∞ (see [61] for a related theoretical result).

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3224 NICHOLAS H. NELSEN AND ANDREW M. STUART

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Test

Truth

Train

(a) m = 50
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(b) m = 500
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(c) m = 5000
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(d) m = ∞

Fig. 1. Brownian bridge RFM for one-dimensional input-output spaces with n = 32 training
points fixed and λ = 0 (Example 2.9): As m → ∞, the RFM approaches the nonparametric in-
terpolant given by the representer theorem (Figure 1(d)), which in this case is a piecewise linear
approximation of the true function (an element of RKHS Hkµ = H1

0 , shown in red). Blue lines
denote the trained model evaluated on test data points and black circles denote evaluation at training
points.

The Brownian bridge in Example 2.9 illuminates a more fundamental idea. For
this low-dimensional problem, an expansion in a deterministic Fourier sine basis would
of course be more natural. But if we do not have a natural, computable orthonormal
basis, then randomness provides a useful alternative representation; notice that the
random features each include random combinations of the deterministic Fourier sine
basis in this example. For the more complex problems that we study numerically in
the next two sections, we lack knowledge of good, computable bases for general maps
in infinite dimensions. The RFM approach exploits randomness to explore, implicitly
discover the structure of, and represent such maps. Thus we now turn away from this
example of real-valued maps defined on a subset of the real line and instead consider
the use of random features to represent maps between spaces of functions.

3. Application to PDE solution maps. In this section, we design the random
feature maps φ : X × Θ → Y and measures µ for the RFM approximation of two
particular PDE parameter-to-solution maps: the evolution semigroup of the viscous
Burgers’ equation in subsection 3.1 and the coefficient-to-solution operator for the
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Darcy problem in subsection 3.2. It is well known to kernel method practitioners
that the choice of kernel (which in this work follows from the choice of (φ, µ)) plays
a central role in the quality of the function reconstruction. While our method is
purely data-driven and requires no knowledge of the governing PDE, we take the view
that any prior knowledge can, and should, be introduced into the design of (φ, µ).
However, the question of how to automatically determine good random feature pairs
for a particular problem or dataset, inducing data-adapted kernels, is open. The
maps φ that we choose to employ are nonlinear in both arguments. We also detail
the probability measure ν on the input space X for each of the two PDE applications;
this choice is crucial because while we desire the trained RFM to transfer to arbitrary
out-of-distribution inputs from X , we can in general only expect the learned map to
perform well when restricted to inputs statistically similar to those sampled from ν.

3.1. Burgers’ equation: Formulation. The viscous Burgers’ equation in one
spatial dimension is representative of the advection-dominated PDE problem class in
some regimes; these time-dependent equations are not conservation laws due to the
presence of small dissipative terms, but nonlinear transport still plays a central role
in the evolution of solutions. The initial value problem we consider is

∂u

∂t
+

∂

∂x

(
u2

2

)
− ε

∂2u

∂x2
= f in (0,∞)× (0, 1) ,

u(·, 0) = u(·, 1) , ∂u

∂x
(·, 0) = ∂u

∂x
(·, 1) in (0,∞) ,

u(0, ·) = a in (0, 1) ,

(3.1)

where ε > 0 is the viscosity (i.e., diffusion coefficient) and we have imposed peri-
odic boundary conditions. The initial condition a serves as the input and is drawn
according to a Gaussian measure defined by

a ∼ ν := N(0, C)(3.2)

with Matérn-like covariance operator [31, 62]

C := τ2α−d(−∆+ τ2 Id)−α ,(3.3)

where d = 1 and the negative Laplacian−∆ is defined over T1 = [0, 1]per and restricted
to functions which integrate to zero over T1. The hyperparameter τ ≥ 0 is an inverse
length scale and α > 1/2 controls the regularity of the draw. Such a are almost surely
Hölder and Sobolev regular with exponent up to α− 1/2 [27, Thm. 12, p. 338], so in
particular a ∈ X := L2(T1;R). Then for all ε > 0, the unique global solution u(t, ·)
to (3.1) is real analytic for all t > 0 (see [50, Thm. 1.1]). Hence, setting the output
space to be Y := Hs(T1;R) for any s > 0, we may define the solution map

F † : L2 → Hs ,

a 7→ F †(a) := ΨT (a) = u(T, ·) ,
(3.4)

where {Ψt}t>0 forms the solution operator semigroup for (3.1) and we fix the final
time t = T > 0. The map F † is smoothing and nonlinear.

We now describe a random feature map for use in the RFM (2.19) that we call
Fourier space random features. Let F denote the Fourier transform over spatial do-
main T1 and define φ : X ×Θ → Y by

φ(a; θ) := σ
(
F−1(χFaFθ)

)
,(3.5)

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3226 NICHOLAS H. NELSEN AND ANDREW M. STUART

where σ(·), the ELU function defined below, is defined as a mapping on R and ap-
plied pointwise to functions. Viewing Θ ⊆ L2(T1;R), the randomness enters through
θ ∼ µ := N(0, C ′) with C ′ the same covariance operator as in (3.3) but with poten-
tially different inverse length scale and regularity, and the wavenumber filter function
χ : Z → R≥0 is

χ(k) := σχ(2π|k|δ) , σχ(r) := max
{
0,min{2r, (r + 1/2)−β}

}
,(3.6)

where δ, β > 0. The map φ(·; θ) essentially performs a filtered random convolution
with the initial condition. Figure 2(a) illustrates a sample input and output from
φ. Although simply hand-tuned for performance and not optimized, the filter χ is
designed to shuffle energy in low to medium wavenumbers and cut off high wavenum-
bers (see Figure 2(b)), reflecting our prior knowledge of solutions to (3.1).

We choose the activation function σ in (3.5) to be the exponential linear unit

ELU(r) :=

{
r , r ≥ 0 ,

er − 1 , r < 0 .
(3.7)

ELU has successfully been used as activation in other machine learning frameworks for
related nonlinear PDE problems [53, 67, 68]. We also find ELU to perform better in
the RFM framework over several other choices including ReLU(·), tanh(·), sigmoid(·),
sin(·), SELU(·), and softplus(·). Note that the pointwise evaluation of ELU in (3.5)
will be well defined, by Sobolev embedding, for s > 1/2 sufficiently large in the
definition of Y = Hs. Since the solution operator maps into Hs for any s > 0, this
does not constrain the method.

3.2. Darcy flow: Formulation. Divergence form elliptic equations [38] arise
in a variety of applications, in particular, the groundwater flow in a porous medium
governed by Darcy’s law [7]. This linear elliptic boundary value problem reads{

−∇ · (a∇u) = f in D ,
u = 0 on ∂D ,

(3.8)

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.5

0.0

0.5

1.0

1.5 a

ϕ(a; θ)

(a) (b)

Fig. 2. Random feature map construction for Burgers’ equation: Figure 2(a) displays a repre-
sentative input-output pair for the random feature φ(·; θ), θ ∼ µ (3.5), while Figure 2(b) shows the
filter k 7→ χ(k) for δ = 0.0025 and β = 4 (3.6).
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THE RANDOM FEATURE MODEL ON BANACH SPACE A3227

where D is a bounded open subset in Rd, f represents sources and sinks of fluid, a the
permeability of the porous medium, and u the piezometric head; all three functions
map D into R and, in addition, a is strictly positive almost everywhere in D. We work
in a setting where f is fixed and consider the input-output map defined by a 7→ u.
The measure ν on a is a high contrast level set prior constructed as the pushforward
of a Gaussian measure:

a ∼ ν := ψ♯N(0, C) .(3.9)

Here ψ : R → R is a threshold function defined by

ψ(r) := a+1(0,∞)(r) + a−1(−∞,0)(r) , 0 < a− ≤ a+ <∞ ,(3.10)

applied pointwise to functions, and the covariance operator C is given in (3.3) with
d = 2 and homogeneous Neumann boundary conditions on −∆. That is, the resulting
coefficient a almost surely takes only two values (a+ or a−) and, as the zero level set
of a Gaussian random field, exhibits random geometry in the physical domain D. It
follows that a ∈ L∞(D;R≥0) almost surely. Further, the size of the contrast ratio
a+/a− measures the scale separation of this elliptic problem and hence controls the
difficulty of reconstruction [11]. See Figure 3(a) for a representative sample.

Given f ∈ L2(D;R), the standard Lax–Milgram theory may be applied to show
that for coefficient a ∈ X := L∞(D;R≥0), there exists a unique weak solution u ∈
Y := H1

0 (D;R) for (3.8) (see, e.g., Evans [32]). Thus, we define the ground truth
solution map

F † : L∞ → H1
0 ,

a 7→ F †(a) := u .
(3.11)

Although the PDE (3.8) is linear, the solution map F † is nonlinear.
We now describe the chosen random feature map for this problem, which we call

predictor-corrector random features. Define φ : X ×Θ → Y by φ(a; θ) := p1 such that

(a) a ∼ ν (b) φ(a; θ) , θ ∼ µ

Fig. 3. Random feature map construction for Darcy flow: Figure 3(a) displays a representative
input draw a with τ = 3, α = 2 and a+ = 12, a− = 3; Figure 3(b) shows the output random feature
φ(a; θ) (equation (3.12)) taking the coefficient a as input. Here, f ≡ 1, τ ′ = 7.5, α′ = 2, s+ = 1/a+,
s− = −1/a−, and δ = 0.15.
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A3228 NICHOLAS H. NELSEN AND ANDREW M. STUART

−∆p0 =
f

a
+ σγ(θ1) ,(3.12a)

−∆p1 =
f

a
+ σγ(θ2) +∇(log a) · ∇p0 ,(3.12b)

where the boundary conditions are homogeneous Dirichlet, θ = (θ1, θ2) ∼ µ := µ′×µ′

are two Gaussian random fields each drawn from µ′ := N(0, C ′), f is the source term
in (3.8), and γ = (s+, s−, δ) are parameters for a thresholded sigmoid σγ : R → R,

σγ(r) :=
s+ − s−

1 + e−r/δ
+ s− ,(3.13)

and extended as a Nemytskii operator when applied to θ1(·) or θ2(·). We view Θ ⊆
L2(D;R)× L2(D;R). In practice, since ∇a is not well defined when drawn from the
level set measure, we replace a with aε, where aε := v(1, ·) is a smoothed version of a
obtained by evolving the following linear heat equation for one time unit:

∂v

∂t
= η∆v in (0, 1)×D ,

n · ∇v = 0 on (0, 1)× ∂D ,

v(0, ·) = a in D ,

(3.14)

where n is the outward unit normal vector to ∂D. An example of the response φ(a; θ)
to a piecewise constant input a ∼ ν is shown in Figure 3 for some θ ∼ µ.

We remark that by removing the two random terms involving θ1, θ2 in (3.12),
we obtain a remarkably accurate surrogate model for the PDE. This observation is
representative of a more general iterative method, a predictor-corrector type iteration,
for solving the Darcy equation (3.8), whose convergence depends on the size of a. The
map φ is essentially a random perturbation of a single step of this iterative method:
(3.12a) makes a coarse prediction of the output, then (3.12b) improves this prediction
with a correction term derived from expanding the original PDE. This choice of φ
falls within an ensemble viewpoint that the RFM may be used to improve preexisting
surrogate models by taking φ(·; θ) to be an existing emulator, but randomized in a
principled way through θ ∼ µ.

For this particular example, we are cognizant of the facts that the random feature
map φ requires full knowledge of the Darcy equation and a näıve evaluation of φ may
be as expensive as solving the original PDE, which is itself a linear PDE; however,
we believe that the ideas underlying the random features used here are intuitive and
suggestive of what is possible in other applications areas. For example, RFMs may be
applied on larger domains with simple geometries, viewed as supersets of the physical
domain of interest, enabling the use of efficient algorithms such as the fast Fourier
transform (FFT) even though these may not be available on the original problem,
either because the operator to be inverted is spatially inhomogeneous or because of
the complicated geometry of the physical domain.

4. Numerical experiments. We now assess the performance of our proposed
methodology on the approximation of operators F † : X → Y presented in section 3.
Practical implementation of the approach on a computer necessitates discretization
of the input-output function spaces X , Y. Hence in the numerical experiments that
follow, all infinite-dimensional objects such as the training data, evaluations of ran-
dom feature maps, and random fields are discretized on an equispaced mesh with K
grid points to take advantage of the O(K logK) computational speed of the FFT.
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The simple choice of equispaced points does not limit the proposed approach, as our
formulation of the RFM on function space allows the method to be implemented nu-
merically with any choice of spatial discretization. Such a numerical discretization
procedure leads to the problem of high- but finite-dimensional approximation of dis-
cretized target operators mapping RK to RK by similarly discretized RFMs. However,
we emphasize the fact that K is allowed to vary, and we study the properties of the
discretized RFM as K varies, noting that since the RFM is defined conceptually on
function space in section 2 without reference to discretization, its discretized numeri-
cal realization has approximation quality consistent with the infinite-dimensional limit
K → ∞. This implies that the same trained model can be deployed across the entire
hierarchy of finite-dimensional spaces RK parametrized by K ∈ N without the need
to be retrained, provided K is sufficiently large. Thus in this section, our notation
does not make explicit the dependence of the discretized RFM or target operators on
mesh size K. We demonstrate these claimed properties numerically.

The input functions and our chosen random feature maps (3.5) and (3.12) require
i.i.d. draws of Gaussian random fields to be fully defined. We efficiently sample these
fields by truncating a Karhunen–Loéve expansion and employing fast summation of
the eigenfunctions with FFT. More precisely, on a mesh of size K, denote by g(·) a
numerical approximation of a Gaussian random field on domain D = (0, 1)d, d = 1, 2:

g =
∑

k∈ZK

ξk
√
λkϕk ≈

∑
k′∈Zd

≥0

ξk′

√
λk′ϕk′ ∼ N(0, C) ,(4.1)

where {ξj} ∼ N(0, 1) i.i.d. and ZK ⊂ Z≥0 is a truncated one-dimensional lattice
of cardinality K ordered such that {λj} is nonincreasing. The pairs (λk′ , ϕk′) are
found by solving the eigenvalue problem Cϕk′ = λk′ϕk′ for nonnegative, symmetric,
trace-class operator C (3.3). Concretely, these solutions are given by

ϕk′(x) =

{√
2 cos(k′1πx1) cos(k

′
2πx2), k′1 or k′2 = 0 ,

2 cos(k′1πx1) cos(k
′
2πx2), otherwise ,

λk′ = τ2α−2(π2|k′|2 + τ2)−α,

(4.2)

for homogeneous Neumann boundary conditions when d = 2, k′ = (k′1, k
′
2) ∈ Z2

≥0\{0},
x = (x1, x2) ∈ (0, 1)2, and given by

ϕ2j(x) =
√
2 cos(2πjx) , ϕ2j−1(x) =

√
2 sin(2πjx) , ϕ0(x) = 1 ,(4.3a)

λ2j = λ2j−1 = τ2α−1(4π2j2 + τ2)−α , λ0 = τ−1,(4.3b)

for periodic boundary conditions when d = 1, j ∈ Z>0, and x ∈ (0, 1). In both cases,
we enforce that g integrate to zero over D by manually setting to zero the Fourier
coefficient corresponding to multi-index k′ = 0. We use such g in all experiments that
follow. Additionally, the k and k′ used in this section to denote wavenumber indices
should not be confused with our previous notation for kernels.

With the discretization and data generation setup now well defined, and the
pairs (φ, µ) given in section 3, the last algorithmic step is to train the RFM by
solving (2.25) and then test its performance. For a fixed number of random fea-
tures m, we only train and test a single realization of the RFM, viewed as a random
variable itself. In each instance m is varied in the experiments that follow, the draws
{θj}mj=1 are resampled i.i.d. from µ. To measure the distance between the trained RFM

Fm(·; α̂) and the ground truth F †, we employ the approximate expected relative test
error
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A3230 NICHOLAS H. NELSEN AND ANDREW M. STUART

en′,m :=
1

n′

n′∑
j=1

∥F †(a′j)− Fm(a′j ; α̂)∥L2

∥F †(a′j)∥L2

≈ Ea′∼ν

[∥F †(a′)− Fm(a′; α̂)∥L2

∥F †(a′)∥L2

]
,(4.4)

where the {a′j}n
′

j=1 are drawn i.i.d. from ν and n′ denotes the number of input-output

pairs used for testing. All L2(D;R) norms on the physical domain are numerically
approximated by composite trapezoid rule quadrature. Since Y ⊂ L2 for both the
PDE solution operators (3.4) and (3.11), we also perform all required inner products
during training in L2 rather than in Y; this results in smaller relative test error en′,m.

4.1. Burgers’ equation: Experiment. We generate a high resolution dataset
of input-output pairs by solving Burgers’ equation (3.1) on an equispaced periodic
mesh of size K = 1025 (identifying the first mesh point with the last) with random
initial conditions sampled from ν = N(0, C) using (4.1), where C is given by (3.3)
with parameter choices τ = 7 and α = 2.5. The full order solver is an FFT-based
pseudospectral method for spatial discretization [35] and a fourth order Runge–Kutta
integrating factor time-stepping scheme for time discretization [47]. All data repre-
sented on mesh sizes K < 1025 used in both training and testing phases are subsam-
pled from this original dataset, and hence we consider numerical realizations of F †

(3.4) up to R1025 → R1025. We fix n = 512 training and n′ = 4000 testing pairs unless
otherwise noted and also fix the viscosity to ε = 10−2 in all experiments. Lowering
ε leads to smaller length scale solutions and more difficult reconstruction; more data
(higher n) and features (higher m) or a more expressive choice of (φ, µ) would be re-
quired to achieve comparable error levels due to the slow decaying Kolmogorov width
of the solution map. For simplicity, we set the forcing f ≡ 0, although nonzero forcing
could lead to other interesting solution maps such as f 7→ u(T, ·). It is easy to check
that the solution will have zero mean for all time and a steady state of zero. Hence,
we choose T ≤ 2 to ensure that the solution is far enough away from steady state. For
the random feature map (3.5), we fix the hyperparameters α′ = 2, τ ′ = 5, δ = 0.0025,
and β = 4. The map itself is evaluated efficiently with the FFT and requires no other
tools to be discretized. RFM hyperparameters were hand-tuned but not optimized.
We find that regularization during training had a negligible effect for this problem, so
the RFM is trained with λ = 0 by solving the normal equations (2.25) with the pseu-
doinverse to deliver the minimum norm least squares solution; we use the truncated
SVD implementation in Python’s scipy.linalg.pinv2 for this purpose.

Our experiments study the RFM approximation to the viscous Burgers’ equation
evolution operator semigroup (3.4). As a visual aid for the high-dimensional problem
at hand, Figure 4 shows a representative sample input and output along with a trained
RFM test prediction. To determine whether the RFM has actually learned the correct
evolution operator, we test the semigroup property of the map; [92] pursues closely
related work also in a Fourier space setting. Denote the (j − 1)-fold composition of a
function G with itself by Gj . Then, with u(0, ·) = a, we have

(ΨT ◦ · · · ◦ΨT )(a) = Ψj
T (a) = ΨjT (a) = u(jT, ·)(4.5)

by definition. We train the RFM on input-output pairs from the map ΨT with T := 0.5
to obtain F̂ := Fm(·; α̂). Then, it should follow from (4.5) that F̂ j ≈ ΨjT , that is,

each application of F̂ should evolve the solution T time units. We test this semigroup
approximation by learning the map F̂ and then comparing F̂ j on n′ = 4000 fixed
inputs to outputs from each of the operators ΨjT , with j ∈ {1, 2, 3, 4} (the solutions
at time T , 2T , 3T , 4T ). The results are presented in Table 1 for a fixed mesh size
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Fig. 4. Representative input-output test sample for the Burgers’ equation solution map F † :=
Ψ1: Figure 4(a) shows a sample input, output (truth), and trained RFM prediction (test), while
Figure 4(b) displays the pointwise error. The relative L2 error for this single prediction is 0.0146.
Here, n = 512, m = 1024, and K = 1025.

Table 1
Expected relative error en′,m for time upscaling with the learned RFM operator semigroup for

Burgers’ equation. Here, n′ = 4000, m = 1024, n = 512, and K = 129. The RFM is trained on
data from the evolution operator ΨT=0.5 and then tested on input-output samples generated from
ΨjT , where j = 2, 3, 4, by repeated composition of the learned model. The increase in error is small
even after three compositions, reflecting excellent out-of-distribution performance.

Train on: T = 0.5 Test on: 2T = 1.0 3T = 1.5 4T = 2.0

0.0360 0.0407 0.0528 0.0788

K = 129. We observe that the composed RFM map F̂ j accurately captures ΨjT ,
though this accuracy deteriorates as j increases due to error propagation in time as
is common with any traditional integrator. However, even after three compositions
corresponding to 1.5 time units past the training time T = 0.5, the relative error only
increases by around 0.04. It is remarkable that the RFM learns time evolution without
explicitly time-stepping the PDE (3.1) itself. Such a procedure is coined time upscaling
in the PDE context and in some sense breaks the CFL stability barrier [28]. Table 1 is
evidence that the RFM has excellent out-of-distribution performance: although only
trained on inputs a ∼ ν, the model outputs accurate predictions given new input
samples ΨjT (a) ∼ (ΨjT )♯ν.

We next study the ability of the RFM to transfer its learned coefficients α̂ obtained
from training on mesh size K to different mesh resolutions K ′ in Figure 5(a). We fix
T := 1 from here on and observe that the lowest test error occurs when K = K ′, that
is, when the train and test resolutions are identical; this behavior was also observed in
the contemporaneous work [56]. At very low resolutions, such as K = 17 here, the test
error is dominated by discretization error which can become quite large; for example,
resolving conceptually infinite-dimensional objects such as the Fourier space–based
feature map in (3.5) or the L2 norms in (4.4) with only 17 grid points gives bad ac-
curacy. But outside this regime, the errors are essentially constant across resolution
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Fig. 5. Expected relative test error of a trained RFM for the Burgers’ evolution operator
F † = Ψ1 with n′ = 4000 test pairs: Figure 5(a) displays the invariance of test error w.r.t. training
and testing on different resolutions for m = 1024 and n = 512 fixed; the RFM can train and test
on different mesh sizes without loss of accuracy. Figure 5(b) shows the decay of the test error for
resolution K = 129 fixed as a function of m and n; the smallest error achieved is 0.0303 for n = 1000
and m = 1024.

regardless of the training resolution K, indicating that the RFM learns its optimal
coefficients independently of the resolution and hence generalizes well to any desired
mesh size. In fact, the trained model could be deployed on different discretizations of
the domain D (e.g., various choices of finite elements, graph-based/particle methods),
not just with different mesh sizes. Practically speaking, this means that high resolu-
tion training sets can be subsampled to smaller mesh sizes K (yet still large enough
to avoid large discretization error) for faster training, leading to a trained model with
nearly the same accuracy at all higher resolutions.

The smallest expected relative test error achieved by the RFM is 0.0303 for the
configuration in Figure 5(b). This excellent performance is encouraging because the
error we report is of the same order of magnitude as that reported in [55, sect. 5.1]
for the same Burgers’ solution operator that we study, but with slightly different
problem parameter choices. We emphasize that the neural operator methods in that
work are based on deep learning, which involves training NNs by solving a noncon-
vex optimization problem with stochastic gradient descent, while our random feature
methods have orders of magnitude fewer trainable parameters that are easily opti-
mized through convex optimization. In Figure 5(b), we also note that for a small
number of training data n, the error does not always decrease as the number of ran-
dom features m increases. This indicates a delicate dependence of m as a function
of n, in particular, n must increase with m as is expected from parametric estima-
tion; we observe the desired monotonic decrease in error with m when n is increased
to 100 or 1000. In the overparametrized regime, the authors in [61] present a loose
bound for this dependence for real-valued outputs. We leave a detailed account of
the dependence of m on n required to achieve a certain error tolerance to future work
and refer the interested reader to [17] for detailed statistical analysis in a related
setting.

Finally, Figure 6 demonstrates the invariance of the expected relative test error
to the mesh resolution used for training and testing. This result is a consequence of
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Fig. 6. Results of a trained RFM for the Burgers’ equation evolution operator F † = Ψ1:
Figure 6(a) shows resolution-invariant test error for various m; the error follows the O(m−1/2)
Monte Carlo rate remarkably well. Figure 6(b) displays the relative error of the learned coefficient
α w.r.t. the coefficient learned on the highest mesh size (K = 1025). Here, n = 512 training and
n′ = 4000 testing pairs were used.

framing the RFM on function space; other machine learning–based surrogate methods
defined in finite dimensions exhibit an increase in test error as mesh resolution is
increased (see [13, sect. 4] for a numerical account of this phenomenon). Figure 6(a)
shows the error as a function of mesh resolution for three values of m. For very
low resolution, the error varies slightly but then flattens out to a constant value as
K → ∞. More interestingly, these constant values of error, en′,m = 0.063, 0.043, and
0.031 corresponding to m = 256, 512, and 1024, respectively, closely match the Monte
Carlo rate O(m−1/2). While more theory is required to understand this behavior, it
suggests that the optimization process finds coefficients close to those arising from a
Monte Carlo approximation of F † as discussed in subsection 2.3. Figure 6(b) indicates
that the learned coefficient α(K) for each K converges to some α(∞) as K → ∞,
again reflecting the design of the RFM as a mapping between infinite-dimensional
spaces.

4.2. Darcy flow: Experiment. In this section, we consider Darcy flow on the
physical domainD := (0, 1)2, the unit square. We generate a high resolution dataset of
input-output pairs for F † (3.11) by solving (3.8) on an equispaced 257×257 mesh (size
K = 2572) using a second order finite difference scheme. All mesh sizes K < 2572 are
subsampled from this original dataset and hence we consider numerical realizations
of F † up to R66049 → R66049. We denote resolution by r such that K = r2. We
fix n = 128 training and n′ = 1000 testing pairs unless otherwise noted. The input
data are drawn from the level set measure ν (3.9) with τ = 3 and α = 2 fixed. We
choose a+ = 12 and a− = 3 in all experiments that follow and hence the contrast ratio
a+/a− = 4 is fixed. The source is fixed to f ≡ 1, the constant function. We evaluate
the predictor-corrector random features φ (3.12) using an FFT-based fast Poisson
solver corresponding to an underlying second order finite difference stencil at a cost
of O(K logK) per solve. The smoothed coefficient aε in the definition of φ is obtained
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by solving (3.14) with time step 0.03 and diffusion constant η = 10−4; with centered
second order finite differences, this incurs 34 time steps and hence a cost O(34K). We
fix the hyperparameters α′ = 2, τ ′ = 7.5, s+ = 1/12, s− = −1/3, and δ = 0.15 for
the map φ. Unlike in subsection 4.1, we find via grid search on λ that regularization
during training does improve the reconstruction of the Darcy flow solution operator
and hence we train with λ := 10−8 fixed. We remark that, for simplicity, the above
hyperparameters were not systematically and jointly optimized; as a consequence the
RFM performance has the capacity to improve beyond the results in this section.

Darcy flow is characterized by the geometry of the high contrast coefficients a ∼ ν.
As seen in Figure 7, the solution inherits the steep interfaces of the input. However,
we see that a trained RFM with predictor-corrector random features (3.12) captures
these interfaces well, albeit with slight smoothing; the error concentrates on the lo-
cation of the interface. The effect of increasing m and n on the test error is shown
in Figure 8(b). Here, the error appears to saturate more than was observed for the
Burgers’ equation problem (Figure 5(b)). However, the smallest test error achieved

(a) Truth (b) Approximation

(c) Input (d) Pointwise Error

Fig. 7. Representative input-output test sample for the Darcy flow solution map: Figure 7(c)
shows a sample input, Figure 7(a) the resulting output (truth), Figure 7(b) a trained RFM prediction,
and Figure 7(d) the pointwise error. The relative L2 error for this single prediction is 0.0122. Here,
n = 256, m = 350, and K = 2572.
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Fig. 8. Expected relative test error of a trained RFM for Darcy flow with n′ = 1000 test pairs:
Figure 8(a) displays the invariance of test error w.r.t. training and testing on different resolutions for
m = 512 and n = 256 fixed; the RFM can train and test on different mesh sizes without significant
loss of accuracy. Figure 8(b) shows the decay of the test error for resolution r = 33 fixed as a
function of m and n; the smallest error achieved is 0.0381 for n = 500 and m = 512.

for the best performing RFM configuration is 0.0381, which is on the same scale as
the error reported in competing NN-based methods [13, 56] for the same setup.

The RFM is able to be successfully trained and tested on different resolutions for
Darcy flow. Figure 8(a) shows that, again, for low resolutions, the smallest relative test
error is achieved when the train and test resolutions are identical (here, for r = 17).
However, when the resolution is increased away from this low resolution regime, the
relative test error slightly increases then approaches a constant value, reflecting the
function space design of the method. Training the RFM on a high resolution mesh
poses no issues when transferring to lower or higher resolutions for model evaluation,
and it achieves consistent error for test resolutions sufficiently large (i.e., r ≥ 33, the
regime where discretization error starts to become negligible). Additionally, the RFM
basis functions {φ(·; θj)}mj=1 are defined without any dependence on the training data
unlike in other competing approaches based on similar shallow linear approximations,
such as the reduced basis method or the PCA-NN method in [13]. Consequently,
our RFM may be directly evaluated on any desired mesh resolution once trained
(“superresolution”), whereas those aforementioned approaches require some form of
interpolation to transfer between different mesh sizes (see [13, sect. 4.3]).

In Figure 9, we again confirm that our method is invariant to the refinement of the
mesh and improves with more random features. While the difference at low resolutions
is more pronounced than that observed for Burgers’ equation, our results for Darcy
flow still suggest that the expected relative test error converges to a constant value
as resolution increases; an estimate of this rate of convergence is seen in Figure 9(b),
where we plot the relative error of the learned parameter α(r) at resolution r w.r.t. the
parameter learned at the highest resolution trained, which was r = 129. Although we
do not observe the limiting error following the Monte Carlo rate in m, which suggests
that the RKHS Hkµ

induced by the choice of φ may not be expressive enough (e.g.,
not universal [82]), the numerical results make clear that our method nonetheless
performs well as an operator approximator.
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Fig. 9. Results of a trained RFM for Darcy flow: Figure 9(a) demonstrates resolution-invariant
test error for various m, while Figure 9(b) displays the relative error of the learned coefficient α(r)

at resolution r w.r.t. the coefficient learned on the highest resolution (r = 129). Here, n = 128
training and n′ = 1000 testing pairs were used.

5. Conclusions. In this article, we introduced a random feature methodology
for the data-driven approximation of maps between infinite-dimensional Banach spa-
ces. The RFM, as an emulator of such maps, performs dimension reduction in the
sense that the original infinite-dimensional learning problem reduces to an approx-
imate problem of finding m real numbers (section 2). Our conceptually infinite-
dimensional algorithm is nonintrusive and results in a scalable method that is consis-
tent with the continuum limit, robust to discretization, and highly flexible in practical
use. These benefits were verified in numerical experiments for two nonlinear forward
operators based on PDEs, one involving a semigroup and another a coefficient-to-
solution operator (section 4). While the random feature–based operator emulator
learned from data is not guaranteed to be cheaper to evaluate than a full order solver
in general, our design of problem-specific random feature maps in section 3 leads
to efficient O(mK logK) evaluation of an m-term RFM for simple physical domain
geometries and hence competitive computational cost in many-query settings. A
straightforward GPU implementation would provide further acceleration.

There are various directions for future work. We are interested in application
of random feature methods to more challenging problems in the sciences, such as
climate modeling and material modeling, and to the solution of design and inverse
problems arising in those settings with the RFM serving as a cheap emulator. Of
great importance in furthering the methodology is the question of how to adapt the
random features to data instead of manually constructing them. Some possibilities
along this line of work include the Bayesian optimization of RFM hyperparameters, as
is frequently used in Gaussian process regression, or more general hierarchical learning
of the pair (φ, µ) itself, both of which would lead to data-adapted induced kernels.
Such developments would make the RFM more streamlined and competitive with deep
learning alternatives and would serve to further clarify the effectiveness of function
space learning algorithms. Finally, the development of a theory which underpins our
method, allows for proof of convergence, and characterizes the quality of the RKHS
spaces induced by random feature maps would be both mathematically interesting
and highly desirable as it would help guide methodological development.
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Appendix A. Proofs of results.

Proof of Result 2.5. Fix a ∈ X and y ∈ Y. Then, we note that

kµ(·, a)y =

∫
⟨φ(a; θ), y⟩Yφ(·; θ)µ(dθ) = A⟨φ(a; ·), y⟩Y ∈ im(A) ,(A.1)

since ⟨φ(a; ·), y⟩Y ∈ L2
µ(Θ;R) by the Cauchy–Schwarz inequality.

Now we show that im(A) admits a reproducing property of the form (2.10). First,
note that A can be viewed as a bijection between its coimage and image spaces, and
we denote this bijection by

Ã : ker(A)⊥ → im(A) .(A.2)

For any F, G ∈ im(A), define the candidate RKHS inner product ⟨·, ·⟩ by

⟨F,G⟩ :=
〈
Ã−1F, Ã−1G

〉
L2

µ(Θ;R) .(A.3)

This is indeed a valid inner product since Ã is invertible. Note that for any q ∈ ker(A),

〈
q, ⟨φ(a; ·), y⟩Y

〉
L2

µ(Θ;R) =

∫
q(θ)⟨φ(a; θ), y⟩Y µ(dθ)

=

〈∫
q(θ)φ(a; θ)µ(dθ), y

〉
Y

= 0

so that ⟨φ(a; ·), y⟩Y ∈ ker(A)⊥. Then for any F ∈ im(A), we compute

⟨kµ(·, a)y, F ⟩ =
〈
⟨φ(a; ·), y⟩Y , Ã−1F

〉
L2

µ(Θ;R)

=

∫
⟨φ(a; θ), y⟩Y(Ã−1F )(θ)µ(dθ)

=

〈∫
(Ã−1F )(θ)φ(a; θ)µ(dθ), y

〉
Y

=
〈
y, (AÃ−1F )(a)

〉
Y

= ⟨y, F (a)⟩Y ,

which gives exactly (2.10) if our candidate inner product is defined to be the RKHS
inner product. Since F ∈ im(A) is arbitrary, this and (A.1) together imply that
im(A) = Hkµ

is the RKHS induced by kµ as shown in [26, 46].

Proof of Result 2.6. Since L2
µ(m)(Θ;R) is isomorphic to Rm, we can consider the

map A : Rm → L2
ν(X ;Y) defined in (2.14), and use Result 2.5 to conclude that

Hk(m) = im(A) =

 1

m

m∑
j=1

cjφ(·; θj) : c ∈ Rm

 = span{φj}mj=1 ,(A.4)

since the {φj}mj=1 are assumed linearly independent.
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Proof of Result 2.8. Recall from Result 2.6 that the RKHS Hk(m) comprises the
linear span of the {φj := φ(·; θj)}mj=1. Hence φj ∈ Hk(m) , and note that by the
reproducing kernel property (2.10), for any F ∈ Hk(m) , a ∈ X , and y ∈ Y,

⟨y, F (a)⟩Y =
〈
k(m)(·, a)y, F

〉
H

k(m)

=
1

m

m∑
j=1

⟨φj(a), y⟩Y⟨φj , F ⟩H
k(m)

=

〈
y,

1

m

m∑
j=1

⟨φj , F ⟩H
k(m)

φj(a)

〉
Y
.

Since this is true for all y ∈ Y, we deduce that

F =
1

m

m∑
j=1

αjφj , αj = ⟨φj , F ⟩H
k(m)

.(A.5)

As the {φj}mj=1 are assumed linearly independent, we deduce that the representa-
tion (A.5) is unique.

Finally, we calculate the RKHS norm of any such F in terms of α:

∥F∥2H
k(m)

= ⟨F, F ⟩H
k(m)

=

〈
1

m

m∑
j=1

αjφj , F

〉
H

k(m)

=
1

m

m∑
j=1

αj⟨φj , F ⟩H
k(m)

=
1

m

m∑
j=1

α2
j .

Substituting this into (2.24), we obtain the desired equivalence with (2.23).

Appendix B. Further remarks on integral representation of RKHS. We
recall the linear operator A (2.14) from subsection 2.3. In this appendix, we clarify
the meaning of (2.12) and show that A is a square root of Tkµ . A similar discussion
is provided by Bach in [3, sect. 2] for the special case Y = R.

By the assumption φ ∈ L2
ν×µ(X ×Θ;Y) and the Cauchy–Schwarz inequality,

A ∈ L
(
L2
µ(Θ;R), L2

ν(X ;Y)
)
.(B.1)

Now let F ∈ im(A) = Hkµ
. We have F = Ac for some c ∈ L2

µ. But since

ker(A) is closed, L2
µ = ker(A) ⊕ ker(A)⊥ and hence there exist unique qF ∈ ker(A)

and cF ∈ ker(A)⊥ such that c = qF + cF . Using the notation in (A.2), we have
cF = Ã−1F by definition of Ã. The reproducing property in the proof of Re-
sult 2.5 produced the representation F = AcF ; in fact, the similar calculation leading
to (2.12) in subsection 2.3 also identified the unique cF , there defined formally by
cF (θ) = ⟨φ(·; θ), F ⟩Hkµ

. Indeed,

⟨cF , q⟩L2
µ(Θ;R) =

∫
⟨φ(·; θ), F ⟩Hkµ

q(θ)µ(dθ)

=

〈∫
q(θ)φ(·; θ)µ(dθ), F

〉
Hkµ

= 0
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for any q ∈ ker(A). Hence cF ∈ ker(A)⊥, and we interpret (2.12) as formal notation
for the unique element Ã−1F ∈ ker(A)⊥. Using formula (A.3) and orthogonality, we
also obtain the following useful characterization of the RKHS norm:

∥F∥2Hkµ
=

∥∥Ã−1F
∥∥2
L2

µ
= ∥cF ∥2L2

µ
= min

c∈CF

∥c∥2L2
µ
,(B.2)

where CF := {c ∈ L2
µ(Θ;R) : Ac = F}.

Finally, we show that AA∗ = Tkµ
. This means that the RKHS is equal to the

image of two different square roots of integral operator Tkµ
: Hkµ

= im(T
1/2
kµ

) = im(A).

First, for any F ∈ L2
ν(X ;Y) and c ∈ L2

µ(Θ;R),

⟨F,Ac⟩L2
ν
=

〈
F,

∫
c(θ)φ(·; θ)µ(dθ)

〉
L2

ν

=

∫
c(θ)⟨F,φ(·; θ)⟩L2

ν
µ(dθ)

=

〈∫
⟨F (a′), φ(a′; ·)⟩Y ν(da′), c

〉
L2

µ

by the Fubini–Tonelli theorem. So, we deduce that the adjoint of A is

A∗ : L2
ν(X ;Y) → L2

µ(Θ;R) ,

F 7→ A∗F :=

∫
⟨F (a′), φ(a′; ·)⟩Y ν(da′) ,

(B.3)

which is bounded since A is bounded. For any F ∈ L2
ν(X ;Y), we compute

AA∗F =

∫
Θ

(A∗F )(θ)φ(·; θ)µ(dθ)

=

∫
Θ

∫
X
⟨F (a′), φ(a′; θ)⟩Y φ(·; θ)ν(da′)µ(dθ)

=

∫
X

(∫
Θ

φ(·; θ)⊗ φ(a′; θ)µ(dθ)

)
F (a′)ν(da′)

= Tkµ
F ,

again by Fubini–Tonelli, as desired.

Acknowledgments. The authors thank Bamdad Hosseini and Nikola B.
Kovachki for helpful discussions and are grateful to the two anonymous referees for
their careful reading and insightful comments.

REFERENCES

[1] B. Adcock, S. Brugiapaglia, N. Dexter, and S. Moraga, Deep Neural Networks are Effec-
tive at Learning High-Dimensional Hilbert-Valued Functions from Limited Data, preprint,
arXiv:2012.06081, 2020.

[2] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), pp. 337–
404.

[3] F. Bach, On the equivalence between kernel quadrature rules and random feature expansions,
J. Mach. Learn. Res., 18 (2017), pp. 714–751.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/2012.06081


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3240 NICHOLAS H. NELSEN AND ANDREW M. STUART

[4] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-driven discretizations
for partial differential equations, Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 15344–15349.

[5] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’
method: Application to efficient reduced-basis discretization of partial differential equa-
tions, C. R. Math., 339 (2004), pp. 667–672.

[6] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function,
IEEE Trans. Inform. Theory, 39 (1993), pp. 930–945.

[7] J. Bear and M. Y. Corapcioglu, Fundamentals of Transport Phenomena in Porous Media,
NATO. Sci. Ser. 82, Springer, New York, 2012.

[8] M. Belkin, D. Hsu, S. Ma, and S. Mandal, Reconciling modern machine-learning prac-
tice and the classical bias–variance trade-off, Proc. Natl. Acad. Sci. USA, 116 (2019),
pp. 15849–15854.

[9] P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Model Reduction and Approxima-
tion: Theory and Algorithms, Comput. Sci. Eng. 15, SIAM, Philadelphia, 2017.

[10] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and
Statistics, Springer, New York, 2011.

[11] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with
non-smooth coefficients, Numer. Math., 85 (2000), pp. 579–608.

[12] G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions,
SIAM J. Sci. Comput., 26 (2005), pp. 2133–2159.

[13] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart, Model Reduction and
Neural Networks for Parametric PDEs, preprint, arXiv:2005.03180, 2020.

[14] D. Bigoni, Y. Chen, N. G. Trillos, Y. Marzouk, and D. Sanz-Alonso, Data-Driven For-
ward Discretizations for Bayesian Inversion, preprint, arXiv:2003.07991, 2020.

[15] R. Brault, M. Heinonen, and F. Buc, Random fourier features for operator-valued kernels,
in Proceedings of the Asian Conference on Machine Learning, 2016, pp. 110–125.

[16] Y. Cao and Q. Gu, Generalization bounds of stochastic gradient descent for wide and deep
neural networks, in Advances in Neural Information Processing Systems, 2019, pp. 10835–
10845.

[17] A. Caponnetto and E. De Vito, Optimal rates for the regularized least-squares algorithm,
Found. Comput. Math., 7 (2007), pp. 331–368.

[18] C. Carmeli, E. De Vito, and A. Toigo, Vector valued reproducing kernel Hilbert spaces of
integrable functions and Mercer theorem, Anal. Appl., 4 (2006), pp. 377–408.

[19] G. Chen and K. Fidkowski, Output-based error estimation and mesh adaptation using con-
volutional neural networks: Application to a scalar advection-diffusion problem, in Pro-
ceedings of the AIAA Scitech 2020 Forum, 2020, 1143.

[20] T. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems, IEEE Trans.
Neural Networks, 6 (1995), pp. 911–917.

[21] M. Cheng, T. Y. Hou, M. Yan, and Z. Zhang, A data-driven stochastic method for elliptic
PDEs with random coefficients, SIAM/ASA J. Uncertain. Quantifi., 1 (2013), pp. 452–493.

[22] A. Chkifa, A. Cohen, R. DeVore, and C. Schwab, Sparse adaptive taylor approximation
algorithms for parametric and stochastic elliptic PDEs, ESAIM Mathe. Model. Numer.
Anal., 47 (2013), pp. 253–280.

[23] A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Nu-
mer., 24 (2015), pp. 1–159.

[24] A. Cohen and G. Migliorati, Optimal Weighted Least-Squares Methods, preprint,
arXiv:1608.00512, 2016.

[25] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, Mcmc methods for functions:
Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), pp. 424–446.

[26] F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math.
Soc., 39 (2002), pp. 1–49.

[27] M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, in Handbook of
Uncertainity Quantification, Springer, New York, 2017, pp. 311–428, https://doi.org/10.
1007/978-3-319-12385-1 7.

[28] L. Demanet, Curvelets, Wave Atoms, and Wave Equations, Ph.D. thesis, California Institute
of Technology, 2006.

[29] R. A. DeVore, The theoretical foundation of reduced basis methods, in Model Reduction and
Approximation: Theory and Algorithms, SIAM, Philadelphia, 2014, pp. 137–168.

[30] A. Doostan and G. Iaccarino, A least-squares approximation of partial differential equations
with high-dimensional random inputs, J. Comput. Phys., 228 (2009), pp. 4332–4345.

[31] M. M. Dunlop, M. A. Iglesias, and A. M. Stuart, Hierarchical bayesian level set inversion,
Statist. Comput., 27 (2017), pp. 1555–1584.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/2005.03180
https://arxiv.org/abs/2003.07991
https://arxiv.org/abs/1608.00512
https://doi.org/10.1007/978-3-319-12385-1_7
https://doi.org/10.1007/978-3-319-12385-1_7


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE RANDOM FEATURE MODEL ON BANACH SPACE A3241

[32] L. C. Evans, Partial Differential Equations, Grad. Ser. Math. 19, AMS, Providence, RI, 2010.
[33] Y. Fan and L. Ying, Solving electrical impedance tomography with deep learning, J. Comput.

Phys., 404 (2020), pp. 109–119.
[34] J. Feliu-Faba, Y. Fan, and L. Ying, Meta-learning pseudo-differential operators with deep

neural networks, J. Comput. Phys., 408 (2020), 109309.
[35] B. Fornberg, A Practical Guide to Pseudospectral Methods, Vol. 1, Cambridge University

Press, Cambridge, UK, 1998.
[36] H. Gao, J.-X. Wang, and M. J. Zahr, Non-Intrusive Model Reduction of Large-Scale, Non-

linear Dynamical Systems Using Deep Learning, preprint, arXiv:1911.03808, 2019.
[37] M. Geist, P. Petersen, M. Raslan, R. Schneider, and G. Kutyniok, Numerical Solution of

the Parametric Diffusion Equation by Deep Neural Networks, preprint, arXiv:2004.12131,
2020.

[38] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer, New York, 2015.

[39] R. Gonzalez-Garcia, R. Rico-Martinez, and I. Kevrekidis, Identification of distributed
parameter systems: A neural net based approach, Computers Chemical Engineering, 22
(1998), pp. S965–S968.

[40] M. Griebel and C. Rieger, Reproducing kernel Hilbert spaces for parametric partial differ-
ential equations, SIAM/ASA J. Uncertain. Quantifi., 5 (2017), pp. 111–137.

[41] E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems,
34 (2017), 014004.

[42] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer, New York, 2009.

[43] J. S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems
using neural networks, J. Computat. Phys., 363 (2018), pp. 55–78.

[44] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints,
Math. Model. Theory Appl. 23, Springer, New York, 2008.

[45] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and general-
ization in neural networks, in Advances in Neural Information Processing Systems, 2018,
pp. 8571–8580.

[46] H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, and J. Audiffren,
Operator-valued kernels for learning from functional response data, J. Mach. Learn. Res.,
17 (2016), pp. 613–666.

[47] A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci.
Comput., 26 (2005), pp. 1214–1233.

[48] R. Kempf, H. Wendland, and C. Rieger, Kernel-based reconstructions for parametric
PDEs, in International Workshop on Meshfree Methods for Partial Differential Equations,
Springer, New York, 2017, pp. 53–71.

[49] Y. Khoo, J. Lu, and L. Ying, Solving Parametric PDF Problems with Artificial Neural
Networks, preprint, arXiv:1707.03351, 2017.

[50] A. Kiselev, F. Nazarov, and R. Shterenberg, Blow Up and Regularity for Fractal Burgers
Equation, preprint, arXiv:0804.3549, 2008.

[51] Y. Korolev, Two-Layer Neural Networks with Values in a Banach Space, preprint,
arXiv:2105.02095, 2021.

[52] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider, A Theoretical Analysis of Deep
Neural Networks and Parametric PDEs, preprint, arXiv:1904.00377, 2019.

[53] K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders, J. Comput. Phys., 404 (2020), p. 108973.

[54] Y. Li, J. Lu, and A. Mao, Variational training of neural network approximations of solution
maps for physical models, J. Comput. Phys., 409 (2020), 109338.

[55] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, Fourier Neural Operator for Parametric Partial Differential Equations,
preprint, arXiv:2010.08895, 2020.

[56] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar, Neural Operator: Graph Kernel Network for Partial Differential Equa-
tions, preprint, arXiv:2003.03485, 2020.

[57] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from Data, preprint,
arXiv:1710.09668, 2017.

[58] L. Lu, P. Jin, and G. E. Karniadakis, DeepONet: Learning Nonlinear Operators for Identi-
fying Differential Equations Based on the Universal Approximation Theorem of Operators,
preprint, arXiv:1910.03193, 2019.

[59] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New York,
1997.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/1911.03808
https://arxiv.org/abs/2004.12131
https://arxiv.org/abs/1707.03351
https://arxiv.org/abs/0804.3549
https://arxiv.org/abs/2105.02095
https://arxiv.org/abs/1904.00377
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/1710.09668
https://arxiv.org/abs/1910.03193


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3242 NICHOLAS H. NELSEN AND ANDREW M. STUART

[60] C. Ma, L. Wu, and E. Weinan, Machine Learning from a Continuous Viewpoint, preprint,
arXiv:1912.12777, 2019.

[61] C. Ma, L. Wu, and E. Weinan, On the Generalization Properties of Minimum-Norm Solutions
for Over-parameterized Neural Network Models, preprint, arXiv:1912.06987, 2019.

[62] B. Matérn, Spatial Variation, Lecture Notes in Statist. 36, Springer, Cham, 2013.
[63] C. A. Micchelli and M. Pontil, On learning vector-valued functions, Neural Comput., 17

(2005), pp. 177–204.
[64] R. M. Neal, Priors for infinite networks, in Bayesian Learning for Neural Networks, Springer,

New York, 1996, pp. 29–53.
[65] T. O’Leary-Roseberry, U. Villa, P. Chen, and O. Ghattas, Derivative-Informed Projected

Neural Networks for High-Dimensional Parametric Maps Governed by PDEs, preprint,
arXiv:2011.15110, 2020.

[66] J. A. Opschoor, C. Schwab, and J. Zech, Deep Learning in High Dimension: ReLU Net-
work Expression Rates for Bayesian PDE Inversion, SAM Research Report 2020-47, ETH,
Zürich, 2020.

[67] R. G. Patel and O. Desjardins, Nonlinear Integro-Differential Operator Regression with
Neural Networks, preprint, arXiv:1810.08552, 2018.

[68] R. G. Patel, N. A. Trask, M. A. Wood, and E. C. Cyr, A Physics-Informed Op-
erator Regression Framework for Extracting Data-Driven Continuum Models, preprint,
arXiv:2009.11992, 2020.

[69] B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in
uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550–591.

[70] A. Rahimi and B. Recht, Random features for large-scale kernel machines, in Advances in
Neural Information Processing Systems, 2008, pp. 1177–1184.

[71] A. Rahimi and B. Recht, Uniform approximation of functions with random bases, in Proceed-
ings of the 46th Annual Allerton Conference on Communication, Control, and Computing,
IEEE, 2008, pp. 555–561.

[72] A. Rahimi and B. Recht, Weighted sums of random kitchen sinks: Replacing minimization
with randomization in learning, in Advances in Neural Information Processing Systems 21,
2008, pp. 1313–1320.

[73] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, J. Comput. Phys., 378 (2019), pp. 686–707.

[74] R. Rico-Martinez, K. Krischer, I. Kevrekidis, M. Kube, and J. Hudson, Discrete- vs.
continuous-time nonlinear signal processing of Cu electrodissolution data, Chemical Engi-
neering Communications, 118 (1992), pp. 25–48.

[75] F. Rossi and B. Conan-Guez, Functional multi-layer perceptron: A non-linear tool for func-
tional data analysis, Neural Networks, 18 (2005), pp. 45–60.

[76] L. Ruthotto and E. Haber, Deep neural networks motivated by partial differential equations,
J. Math. Imaging Vision, (2019), pp. 1–13.

[77] N. D. Santo, S. Deparis, and L. Pegolotti, Data Driven Approximation of Parametrized
PDEs by Reduced Basis and Neural Networks, preprint, arXiv:1904.01514, 2019.

[78] C. Schwab and J. Zech, Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in UQ, Anal. Appl., 17 (2019), pp. 19–55.

[79] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial dif-
ferential equations, J. Comput. Phys., 375 (2018), pp. 1339–1364.

[80] P. D. Spanos and R. Ghanem, Stochastic finite element expansion for random media, J.
Engineering Mechanics, 115 (1989), pp. 1035–1053.

[81] B. Stevens and T. Colonius, FiniteNet: A Fully Convolutional LSTM Network Architecture
for Time-Dependent Partial Differential Equations, preprint, arXiv:2002.03014, 2020.

[82] Y. Sun, A. Gilbert, and A. Tewari, On the Approximation Properties of Random ReLU
Features, preprint, arXiv:1810.04374, 2019.

[83] N. Trask, R. G. Patel, B. J. Gross, and P. J. Atzberger, GMLS-Nets: A Framework for
Learning from Unstructured Data, preprint, arXiv:1909.05371, 2019.

[84] R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neural network surrogate models for
high dimensional uncertainty quantification, J. Comput. Phys., 375 (2018), pp. 565–588.

[85] E. Weinan, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5
(2017), pp. 1–11.

[86] E. Weinan, J. Han, and Q. Li, A mean-field optimal control formulation of deep learning,
Res. Math. Sci., 6 (2019), 10.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/1912.12777
https://arxiv.org/abs/1912.06987
https://arxiv.org/abs/2011.15110
https://arxiv.org/abs/1810.08552
https://arxiv.org/abs/2009.11992
https://arxiv.org/abs/1904.01514
https://arxiv.org/abs/2002.03014
https://arxiv.org/abs/1810.04374
https://arxiv.org/abs/1909.05371


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE RANDOM FEATURE MODEL ON BANACH SPACE A3243

[87] E. Weinan and B. Yu, The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems, Commun. Math. Stat., 6 (2018), pp. 1–12.

[88] H. Wendland, Scattered Data Approximation, Cambridge, Monogr. Appl. Comput. Math. 17,
Cambridge University Press, Cambridge, UK, 2004.

[89] C. K. Williams, Computing with infinite networks, in Advances in Neural Information Pro-
cessing Systems, 1997, pp. 295–301.

[90] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine Learning, Vol. 2,
MIT Press, Cambridge, MA, 2006.

[91] N. Winovich, K. Ramani, and G. Lin, ConvPDE-UQ: Convolutional neural networks with
quantified uncertainty for heterogeneous elliptic partial differential equations on varied
domains, J. Comput. Phys., 394 (2019), pp. 263–279.

[92] K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in modal space,
J. Comput. Phys., 408 (2020), 109307.

[93] Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification, J. Comput. Phys., 366 (2018), pp. 415–447.

D
ow

nl
oa

de
d 

10
/0

6/
21

 to
 1

31
.2

15
.1

01
.7

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s


	Introduction
	Literature review
	Contributions

	Methodology
	Problem formulation
	Operator-valued reproducing kernels
	Random feature model
	Optimization

	Application to PDE solution maps
	Burgers' equation: Formulation
	Darcy flow: Formulation

	Numerical experiments
	Burgers' equation: Experiment
	Darcy flow: Experiment

	Conclusions
	Appendix A. Proofs of results
	Appendix B. Further remarks on integral representation of RKHS
	Acknowledgments
	References

