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29.1 Overview

Many applied problems concerning the integration of data and mathematical
models arise naturally in dynamically evolving systems. These may be formu-
lated in the general framework of Bayesian inference. There is a particular
structure inherent in these problems, arising from the underlying dynamical
models, that can be exploited. In this chapter we highlight this structure in
the context of continuous-time dynamical models in finite dimensions. We set
up a variety of Bayesian inference problems, some finite dimensional, for the
initial condition of the dynamics, and some infinite dimensional, for a time-
dependent path of an SDE. All of the problems share a common mathematical
structure, namely that the posterior measure u?, given data y, has a density with
respect to a Gaussian reference measure yg so that
. e
Z—Zo(x) = A}Z(Y)'1 exp (= P(x; y)) (29.1)

-

for some potential function ®(-; y) and normalization constant Z(y) both para-
meterized by the data. We denote the mean and covariance operator for ug
by mo and Co, and we use £ =C;"' to denote the precision operator. Thus
po = N (mq, Co).

The content of this chapter is centred around three main themes:

* Theme A. To exhibit a variety of problems arising in data assimilation
which share the common structure (29.1).

e Theme B. To introduce a class of stochastic PDEs (SPDEs) which are
reversible with respect to pg or u! respectively. )

* Theme C. To introduce a range of Metropolis—Hastings MCMC methods
which sample from pY, based on the SPDEs discussed in Theme B.

A central aspect of this chapter will be to exhibit, in Theme A, common
properties of the potential ®(x;y) which then form the key underpinnings
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of the theories outlined in Themes B and C. These common properties of
® include bounds from above and below, continuity in both x and y, and
differentiability in x.

The continuous-time nature of the problems means that, in some cases,
the probability measures constructed are on infinite-dimensional spaces: paths
of continuous-time, vector-valued processes. We sometimes refer to this as
pathspace. Working with probability measures on function space is a key idea
throughout this chapter. We will show that this viewpoint leads to the notion of
a well-posed signal processing problem, in which the target measure is contin-
uous with respect to data. Furthermore a proper mathematical formulation of
the problems on pathspace leads to efficient sampling techniques, defined on
pathspace, and therefore robust under the introduction of discretization. In con-
trast, sampling techniques which first discretize, to obtain a finite-dimensional
sampling problem, and then apply standard MCMC techniques, will typically
lead to algorithms which perform poorly under refinement of the discretization.

In Section 29.2 we describe some general properties of measures defined
through (29.1). Sections 29.3.1-29.3.6 are concerned with Theme A. In Section
29.3.1 we initiate our study by considering a continuous-time deterministic
ODE observed noisily at discrete times; the objective is to determine the initial
condition. Sections 29.3.2 and 29.3.3 generalize this set-up to the situation
where the solution is observed continuously in time, and subject to white
noise and coloured noise respectively. In Section 29.3.4 we return to discrete
observations, but assume that the underlying model dynamics is subject to
noise—or model error; in particular we assume that the dynamics is forced by
an Ornstein—Uhlenbeck process. This section, and the remaining sections in
Theme A, all contain situations-where the posterior measure is on an infinite
dimensional space. Section 29.3.5 generalizes the ideas in Section 29.3.4 to the
situation where.the model error is described by white noise in time. Finally, in
Section 29.3.6, we consider the situation with model error (in the form of white
noise) and continuous-time observations. In Section 29.4 we address Theme B,
while Section 29.5 is concerned with Theme C. Some notational conventions,
and background theory, are outlined in the Appendix.

We emphasize that, throughout this chapter, all the problems discussed are
formulated as smoothing problems, not filtering problems. Thus time-distributed
data on a given time interval [0, T] is used to update knowledge about the entire
state of the system on the same time interval. For a discussion of filtering
methods we refer the reader to [13].

29.2 General properties of the posterior

In the next section we will exhibit a wide variety of signal processing prob-
lems which, when tackled in a Bayesian framework, lead to a posterior prob-
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ability measure p on a Banach space (E, || - ||g), specified via its Radon—
Nikodym derivative with respect to a prior Gaussian measure pg. Specifically
we have (29.1) where o = N (my, Co) is the prior Gaussian measure and ®(x; y)
is a potential. We assume that y € Y, a separable Banach space with norm

| - lly- The normalization constant Z(y) is chosen so-that u is a probability
measure:

ZWPjLenM—®Mwmcmdﬂ- (292

For details about Gaussian measures on infinite-dimensional spaces we refer to
the monograph [4].

In many of the applications considered here, ® satisfies the following four
properties:

Assumption 29.1 The function ®: E x Y — R has the following properties:

1. For every r > 0 and every ¢ > 0, there exists M = M(r, ¢) such that, for all
x € E andall y such that ||y|ly <r, ®(x;y) > M — ¢||x|)%.

2. There exists p > 0 and, for every r > 0, there exists C = C(r) > 0 such
that, forall x € E and all y € Y with ||ylly <r, ®(x;y) < C (1 + |Ix[|%).

3. Foreveryr > 0 and every R > 0 there exists L = L(r, R) > 0 such that, for
all x, x) € E with ||x]|g V [I%|lg < Rand all y € Y with ||y|]ly <7,

| Boa; y) — Rl ¥l = Lz — ®mlls.

4. There exists g > 0 and, for every r > 0, there exists K = K(r) > 0 such
that, forall x € E and all y1, y, € E with |[y1]ly V |Iy2lly =1,

@ (% y1) — D% y)l < K (L+ %1%) llys — pally.

We show that, under these assumptions, the posterior measure u! is con-
tinuous with respect to the data y in the total variation distance. This is
a well-posedness result for the posterior measure. The result, and proof, is
similar to that in [10] which concerns Bayesian inverse problems for the

Navier-Stokes equations, but where the Hellinger metric is used to measure
distance.

Theorem 29.1 Let ! and po be measures on a separable Banach space E such
that o is a Gaussian probability measure, pY is absolutely continuous w.r.t. uo, and

the log density ® = — log <%) : E x Y — R satisfy Assumption 29.1. Then u¥ is
a probability measure and the map y + Y is locally Lipschitz continuous in total
variation distance: if u and ' are two measures given by (29.1) with data y and y’

then, for everyr > 0 and for all y, y’ with ||y|ly Vv ||y ly < r, there exists a constant
C = C(r) > 0 such that
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e — pllrv < Clly = ¥'lly.

Proof. Since the reference measure uo is Gaussian, x| ¢ has Gaussian tails
under po. The lower bound (i) therefore immediately implies that exp(—®) is
integrable, so that Z(y) is indeed finite for every y.

We now turn to the continuity of the measures with respect to y. Throughout
the proof, all integrals are over E. We fix a value r > 0 and use the notation
C to denote a strictly positive constant that may depend upon r and changes
from occurrence to occurrence. As in the statement, we fix y, y’ € Y and we
write u = u¥ and i’ = u¥"as a shorthand. Let Z and Z' denote the normalization
constants for p and 4/, so that

Z=/€Xp(—<b(x: y)) dpo(x), Z’=feXP (—®(x:¥)) duo().

Since po is Gaussian, assumption (1) yields the upper bound |Z| v | Z'| < C.In
addition, since ® is bounded above by a polynomial by (2), we have a similar
lower bound | Z| A | Z| = C. Using again the Gaussianity of 11, the bound (4)
yields

1Z-Z|<C / Iy = ¥Y'lly (1 + lIx1%) exp (= (@(x; y) v @(x%¥")) dpo(x)

= Clly - Y'Ilyf (1+1x1%) exp (ellxE — M) dpo(x)
<Cly—7Vly. (29.3)

From the definition of the total variation distance, we then have
Il —plltv = / |Z7 exp(=®(x; y)) — (Z) " exp(—®(x; )| dpao(x)
« =2 h+h,
where
1 <
L= 2/ |exp (=@ (x; y)) — exp (—@(x; ¥))| dpo(),
| Z— Z| ;
L= 7/@@ (=@(x;y)) dpo(x).
Since Z is bounded from below, we have I; < C|y — y’||y just as in (29.3). The

second term is bounded similarly by (29.3) and the lower bound (i) on ®, thus
concluding the proof. ‘ ad

Remark 29.1 We only ever use the Gaussianity of po to deduce that there
exists &£ > 0 such that [, exp (]|x[|%) po(dx) < oo. Therefore, the statement of
Theorem 29.1 extends to any reference measure pg with this property.
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29.3 Theme A: Bayesian inference for signal processing

It is instructive to summarize the different cases treated in this section in a
table. The choice of column determines whether or not model error is present,
and when present whether it is white or coloured; the choice of row determines
whether or not the observations are discrete, and when continuous whether or
not the observational noise is white or coloured. There are three possibilities
not covered here; however the reader should be able to construct appropriate
models in these three cases after reading the material herein.

Model error

Observation No White Colored

Discrete 293.1 . 2935 29.34
White 29.3.2 29.36
Colored 29.3.3

29.3.1 No model error, discrete observations

Here we address the question of making inference concerning the initial con-
dition for an ODE, given noisy observation of its trajectory at later times. Thus
the basic unknown quantity, which we wish to find the (posterior) distribution
of, is a finite-dimensional vector.
Letv € C! ([0, T], R") solve the ODE
dv ,
P (v), v(0)=u. (29.4)
We assume that f is sufficiently nice (say locally Lipschitz and satisfying a
coercivity condition) that the equation defines a semigroup ¢‘: R* — R" with
v(t) = @' (u). We assume that we observe the solution in discrete time, at times
{t}[,. Specifically, for some function g: R" — R’ we observe

Yk=g(v(tk))+"r]k, k=1,..., K, (29,5)

where the n, ~ N(0, By) are a sequence of Gaussian random variables, not
necessarily independent. We assume that

O <5 = b = -~ =tx = (29.6)

Concatenating the data we may write

Yy =G(u)+7, (29.7)
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where y = (y;,.. ., Yk) are the observations, G(u) = (g(p" (u)), - (9™ (u))
maps the state of the System and 5 = (5, ..., k) is the observational noise.
Thus 4 ~ N0, B) for some matrix B capturing the correlations amongst the
{ﬁk}lgil- ,

We will now construct the distribution of the initia] condition u given an
observation y, using Bayes formula (see (29.53) in the Appendix). We assume
that the prior measure on U is a Gaussian ug ~ A/ (mo, Co), with mean my
and covariance matrix Cy. Given the initia] condition u, the observations y are
distributed according to the Gaussian measure with density '

1
Pyl) ocexp (=@ (uy)),  d(u;y) = 51Y =G, (29.8)
where we define | Y% = (y, B71y) (see Appendix). By Bayes’ rule we deduce that
the posterior measure » on U, given y, has Radon-Nikodym derivative
duY
T(u) o exp (—D(u; y)). (29.9)
o

Thus the measure ¥ has density  with respect to Lebesgue measure which is
given by :

1 1
m(u) o exp <~§[y—g(u)]23 —~ 5]u~moléo>. (29.10)
Example 29.1 Letn =1 and consider the ODE
dv 0
217 v(0)=u.

Thus ¢*(u) = exp(at)u. As our prior measure we take the Gaussian A/ (mq, o?)
Assume that we observe the solution itself at times t and subject to mean zero
1.i.d. Gaussian noises with variance 2, resulting in observations n}s,. We
have observations Y = Au+nwhere n ~ A/ (0, B)

A= (exp(aty), ..., exp(atg))
B=y2]

The posterior measure is then Gaussian with density
s 1
7(u) o exp (_ﬁ ; [Ve — exp(dtk)u,2 - ﬁ,u — m0,2>.

By completing the Square we find that the posterior mean is

mo+ % Y5, exp(aty)y,
2 \~K
1+% 2 i1 exp(2at,)
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and the posterior variance is

02

1+ 5 35, exp(2an)

Since yj = exp(aty)u +mr we may write y, = exp(aty)u +y& for € ~ N (0, 1).
We set

Yy=(y1,---5¥k) E=fy;. .., Ex).

The posterior mean m and covariance X can then be written succinctly as
2

g
T 1+ 51AR
mo+ (A )  mo+ S(A, Av(0) +y€)
" 1+ A2 1+ 2| AP '

We now consider the limits of small observational noise, and of large data sets,
respectively.

First consider small noise. As y*> — 0, the posterior variance converges to zero
and the posterior mean to (A, y)/| Al?, solution of the least squares problem

argmin_|y — Ax|%.

Now consider large data sets where K — oo. If | A|> — oo as K — oo then the
posterior mean converges almost surely to the correct initial condition v(0),
and the posterior variance converges to zero. Thus the posterior approaches a
Dirac supported on the correct initial condition. Otherwise, if | A|* appreaches
a finite limit, then uncertainty remains in the posterior, and the prior has
significant effect in determining both the mean and variance of the posterior.

Example 29.2 Consider the Lorenz equations
dv1 dv;;_ dv3

_dt =g(v2—vl), s = pUl e W s —=U1U2‘_BU3’

dt dt

started at v(0) = u € R’. In this case, as a consequence of the chaoticity of the
equations, observing a trajectory over long intervals of time does not allow
one to gain more information on the initial condition. See Figure 29.1 for an
illustration. We refer to [16] for further discussion of this example.

We now return to the general problem and highlight a programme that we
will carry out in earnest for a number of more complex infinite-dimensional
posterior measures in later sections. We work within the context of ODEs with
globally Lipschitz continuous drifts. This condition ensures global existence of
solutions, as well as enabling a straightforward explicit bound on the solution in
terms of its initial data. However other, less stringent, assumptions could also
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Fig. 29.1 Tllustration of the posterior density for the Lorenz system from Example 29.2. Obser-
vations y are generated at times 1,2,3,...,10 for a trajectory starting at v(0) = 2 € R>. Then
U > ®(u; y) + 1lu— mol? is plotted, where the last two components of u are fixed to the “exact”
values u; = @i, and u3 = @13. The different lines, from bottom to top, correspond to considering only
the first K =1,..., 10 observations. Up to a constant, the plotted value is — log = where = is the
posterior density of u¥. The figure illustrates that the effect of adding more observations is twofold:
Firstly, the additional information allows to get better estimates of #t, the posterior distribution
concentrates around this value. Second, as more observations are added, the shape of the posterior
density gets more irregular and many local extrema appear.

be used, provided global existence is known. For example, generalizations to
locally Lipschitz drifts satisfying a suitable dissipativity condition are straight-
forward.

Theorem 29.2 Assume that f: R" — R" and g: R" — R are globally Lipschitz.
Let E=R", Y =R, Then u¥ < o with dp? /dug o exp(—®) where ® is given
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by (29.8). The map ® satisfies Assumptions 29.1 and y > uY is locally Lipschitz
continuous in the total variation metric.

Proof. It will be useful to introduce the notation g¥: R* — R' defined by g* =
g o ¢*. Recall from (29.7) that

Gu) = (g' ), ..., g" (). (29.11)

This is linearly bounded since g and ¢' are linearly bounded; clearly ® > 0 by
construction. Thus (1) and (2) of Assumption 29.1 are satisfied. Furthermore,
by the Lipschitz continuity of f, ¢*: R* — R" is well-defined and Lipschitz. As
the composition of Lipschitz functions, G is itself a Lipschitz function. Hence
®(-; y) is Lipschitz and (3) holds. Also ®(x;-) is quadratic in y and hence (4)
holds. a

For the purpose of studying algorithms that sample from p?, it is also of
interest to show that the derivative of ®(-; y) is sufficiently regular.

Theorem 29.3 Let k > 0. Assume, on top of the assumptions of Theorem 29.2, that
f e CHR",R") and g € C* (R", R"). Then the potential ®(-;y) given by (29.8) is
in C* (R", R).

Proof. As in the previous proof, the observation vector G(u) is given by (29.11).
By standard ODE theory ¢* € C¥ (R", R"). As the composition of C* functions,
G is itself a C* function. Since @ is quadratic in G, the result follows for ®. O

29.3.2 No model error, continuous white observational noise

We now consider the preceding problem in the limit where K — oo and the set
{t;}$2, is dense in [0, T]. Once again v(t) solves (29.4):
dv
— = f(v), v(0)=u, (29.12)
dt
but now we assume that we observe a function of the solution in continuous
time, and subject to white noise. Specifically we assume that we observe the
time-integrated data y solving the SDE
i =% 0 =0 29.13
= e v = = .
2 ~EWHVELE 0 (2913)
Here g: R" — Rf and ¥ € R** is positive-definite. Using as before the semi-
group ¢* solving (29.12), this may be rewritten as

o QRS + Zd—W 0)=0
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The precise interpretation of the data {y(t)}c(o, 1] is that we observe the function
% y(t) defined by

T
y(t) = /0 g(¢' (W) dt + VE W),

Let Qp denote the Gaussian measure on L% ([0, T], R®) given by the law
of y(t) = ~/= W(t). Now place the prior measure uy ~ N (my, Co) on the initial
condition in R". Then take v to be the product measure on L?* ([0, T], R*) x R*

given by Qp ® pno. Note that vo(du|y) = po(du) since u and y are independent
under vg.

Let Q* denote the measure on L? ([0, T], R?) for y solving (29.13), with u
given. By the Girsanov Theorem A.23 we have that

dOH it g 5§
o =ew (=5 [ s [ g, ans)

Thus if v is the measure on L? ([0, T], R*) x R" given by (29.13) with u drawn
from o, then we have

dv : ¢ e

Tk =y (—5 / (" (w)I5dt + / (g(¢"(w), dy)z)-
120} 0 0

L Let nY(du) denote v(du|y). By Theorem A.22 we have

dpo

i i e Ol

o

(u) o exp (—P(u; y)), (29.14)

7 ik 5
o) = [ lele@ikd = [ (gl w).dy)s.

Integrating the second term by parts and using the fact that @' solves (29.12),
we find that P
5 __l g y t 2 E 2 D t t il T T
Pwy) =5 | - (g (4)l5 + 2Dele () fle" (), v)=) — gle” (4), (TN
(29.15)

Theorem 29.4 Assume that f: R" — R" is locally Lipschitz continuous and lin-
early bounded, and that g € C* (R", R) is globally Lipschitz continuous. Let E =
R" and Y = C ([0, T], R"). Then w¥ < po with duY/dug o exp(—®) where @ is

| given by (29.15). The function ® satisfies Assumptions 29.1 and y + ¥ is locally
Lipschitz continuous in the total variation metric.

Proof. Since ab > —%a® — 5-b? for any & > 0 and a,b € R, it follows from
(29.15) that @ is bounded from below by

C T
®u;y) = ——llyli- —slg(e" )" — T /O | Dg (¢* () f (" (w)|* dt,
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for some constant C depending only on X. Since the assumption that f grows
linearly implies the existence of a constant C such that |¢*(u)| < C|u| for every
t € [0, T], the requested lower bound on ® follows from the linear growth
assumptions on f and g as well as the boundedness of Dg.

The polynomial upper bound on &(-; y) follows in exactly the same way,
yielding

1D y)] < C (Il + 1ul?),

for some constant C. Conditions (3) and (4) in Assumption 29.1 follow similarly,
using the Lipschitz continuity of ¢’(-) as in the proof of Theorem 29.2. a

Remark 29.2 Note that it is the need to prove continuity in y which requires us
to work in the function space C ([0, 7% Rl), since computation of ® requires
the evaluation of y at time T. Note also that it is possible to weaken the
growth conditions on f and g, at the expense of strengthening the dissipativity
assumptions on f.

We mention an insightful, unrigorous but useful, way of writing the potential
®. If we pretend that y is differentiable in time (which it almost surely isn’t),
then we may write ® from (29.14) as

1 T
dt — — /
5 2 Jo

1 T
o -5 |

The Gaussian reference measure o, again only at a formal level, has density

2
exp(—3 fOT %f : dt) with respect to (the of course nonexistent) ‘Lebesgue mea-

2

dt.

z

dy

gle'(w) — < o

sure’. This suggests that u? has density exp(—3 fOT {g(got(u)) — %{ 22 dt).

In this form we see that, as in the previous section, the potential ® for the
Radon—Nikodym derivafive between posterior and prior, written in the general
form (29.1), simply measures the mismatch between data and observation oper-
ator. This nonrigorous rewrite of the potential ® is useful precisely because it
highlights this fact, easily lost in the mathematically correct formulation (29.14).

The following theorem is proved similarly to Theorem 29.3.

Theorem 29.5 Let k > 0. Assume that we are in the setting of Theorem 29.4
and that furthermore f € C*(R",IR"), and g € C*1 (R", R"). Then the potential
®(-; y) given by (29.15) belongs to C* (R", R).

29.3.3 No model error, continuous coloured observational noise

We now consider the discrete observations problem in the limit where K — oo
and the set {t;}7°, is dense in [0, T], but we assume that the observational noise
is correlated. We model this situation by assuming that u(t) solves (29.4), and
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that we observe a function of the solution in continuous time, subject to noise

drawn from the distribution of a stationary Ornstein—Uhlenbeck process. In
other words, we observe the process

y(t) = g(o" (W) +(t), (29.16)

where

< =R+ \/z_A‘id_‘f/, $(0) ~ N(0, R'A). (29.17)

Here g: R® — Rf, and the matrices R, A € R®* are symmetric positive-
definite and are assumed to commute for simplicity (in particular, this ensures
that the process i is reversible).

Once again we adopt a Bayesian framework to find the posterior probability
for u given y. For economy of notation we set 0(t) = g(¢* (1)) and denote by 6(t)
the time-derivative of . We deduce from It6’s formula that

W b s ABREY b Ry - TR
dt v dt ty =4 dt
=0+ RO— Ry + ZAM
i Y dt
Furthermore
y(0) ~ N(6(0), R™'A) = N(g(u), R A),
independently of W.

Let Qo denote the measure on LZ ([0, T], R*) generated by the Gaussian
process (29.17) and place the prior measure o ~ N (my, Co) on the initial con-
dition u in R". Then take v, to be the measure on L? ([0, T], R*) x R" given by
Qo ® po. Note that vo(du|y) = no(du) since u and y are independent under v,.

We let v denote the probability measure for y and u, with u distributed
according to po. By the Girsanov theorem

ds
d—(u, y) o exp (—P(u; y))
Vo

o

o) =5 [ (bl () d = 2(hie? (). dy + Ry i)
0

1

+5 1801 %14 = (¥(0), g(1) ra-

Here and below we use the shortcut

h(u) = 6+ RO,
= Dg(u) f () + Rg(u).
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We let u¥ () denote the posterior distribution for u given y. By applying Bayes’
formula in the guise of Theorem A.22 we obtain

dpuY
dpo

1 T
¢Wﬂ”=zﬂ (Ih(* W)1% dt — 2(h(g* (W), dy + Ry dt)s)

——(u) o exp (=D (u; y)) (29.18)

1
+ 518 ks — (¥(0), g() r1a-

As in the previous section, the posterior measure involves a Riemann integral
and a stochastic integral, both parameterized by u, but the stochastic integral
can be converted to a Riemann integral, by means of an integration by parts.
Setting

h(u) = Dh(u) f (u) = Dg(u) Df (u) f(u) + D’g(u) (f(u), f(u)) + (RDg(w) f(u),

we find that

7
P(u;y) = A%/O (Ih(@" (W)I3 + 2(R(¢* (W), y — Ry)a)dt  (29.19)

1

(h(), y(O)a — 5 {h{eT (), Y(T))a

18 () | %14 — (¥(0), g(W)) r-1a-

Proof of the following two theorems is very similar to those for Theorems
29.4 and 29.5.

+

+

N = N =

} Theorem 29.6 Assume that f € C*(R", R™) is linearly bounded in (29. 4) that
g € C*(R",RY) is globally Lipschitz confinuous in (29.16), and that h is lin-
early bounded. Let E =R" and Y = C ([0, T, R Y. Then ¥ < po with du? /dug o
exp(—®) where @ is given by (29.19). The map @ satisfies Assumptions 29.1 and
y +> ! is locally Lipschitz continuous in the total variation metric.

Remark 29.3 The condition that h is linearly bounded follows for example if we
assume that D?g(u) is bounded by C/(1 + |u|) for some constant C.

Theorem 29.7 Let k > 1. Assume that, further to satisfying the assumptions of
Theorem 29.6, one has f € C¥*1 (R*, R") and g € C**2? (R", R"). Then the potential
®(-; y) given by (29.15) belongs to C* (R", R).

29.3.4 Coloured model error, discrete observations

The posterior probability measures on the initial condition u in the previous
three examples can be very complicated objects from which it is hard to extract
information. This is particularly true in cases where the semigroup ¢* exhibits
sensitive dependence on initial conditions, there is data over a large time

"
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interval, and the system is sufficiently ergodic and mixing. The posterior is then
essentially flat, with small random fluctuations superimposed, and contains
little information about the initial condition. In such situations it is natural
to relax the hard constraint that the dynamical model is satisfied exactly and to
seek to explain the observations through a forcing to the dynamics: we allow
equation (29.4) to be forced by an extraneous driving noise, known as model
error. Thus we view the dynamics (29.4) as only being enforced as a weak
constraint, in the sense that the equation need not be satisfied exactly. We then
seek a posterior probability measure on both the initial condition and a driving
noise process which quantifies the sense in which the dynamics is not exactly
satisfied. Since we are working with continuous time, the driving noise process
is a function and thus the resulting posterior measure is a measure on an infinite-
dimensional space of functions. This section is the first of several where the
desired probability measure lives on an infinite-dimensional space.

To be concrete we consider the case where the driving noise is correlated in
time and governed by an Ornstein—Uhlenbeck process. We thus consider the
model equations

s : 0) = 29.20
- fwe w0 - (29.20
dy 1 AdW

1 -1

We assume as before that R and A commute. The parameter § sets a corre-
lation time for the noise; in the next section we will let § — 0 and recover
white noise forcing. Equation (29.20) specifies our prior model for the noise
process . We assume that (0) is chosen independently of W, and then (29.20)
describes a stationary OU process . As our prior on the initial condition we take
u ~ N (mp, Co), independently of . We have thus specified a prior Gaussian
probability measure (1o, ) on R" x L% ([0, T], R").
As observations we take, as in Section 29.3.1,

Ve=glolly+m k=1,...,K,

where n, ~ N(0, By) are a sequence of Gaussian random variables, not neces-
sarily independent, and the observation times satisfy (29.6). Concatenating the
data we may write

y=G(u, ¢) + 1, (29.21)
where y = (y1,..., yx) are the observations, G(u, ¢) = (g(v(t)), - - ., g(v(tx)))
maps the state of the system and % = (91, ..., k) is the observational noise.

Thus n» ~ N(0, B) for some matrix B capturing the correlations amongst the
{me}K,. Here G is a map from R" x L2 ([0, T], R") to R'X. The likelihood for the
observations is then
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1
Pyl ) o exp =51y = Gl W) dy.
Let v denote the measure on R" x L2 ([0, T], R") x R'X given by |

v(du, dy, dy) = P(dy|u, $)uo(du, di),
and let vy denote the measure on R” x L2 ([0, T], R") x R'X given by

1
wlds . dy) oxexp =3 191% ) . 40y,

Since (u, ) and y are independent under vo(du, d¢)dy, Theorem A.22 shows
that the posterior probability measure uY(du, dy) is given by

auY 1
T () ccexp (—@(u, i), DY) =51y — G )5 (2922)
0

Example 29.3 Consider again the Lorenz equation from Example 29.2. Using
the set-up from this section, we get a posterior distribution on the pairs (u, ¥)
where u is the initial condition of the Lorenz ODE as in Example 29.2 above,
and ¢ is the additional forcing (model error) from (29.20).

We consider again the setting from Figure 29.1, but this time with the
additional forcing term . Now the posterior for u can be obtained by averag-
ing (29.22) over . This leads to a smoothing of the posterior distribution. The
effect is illustrated in Figure 29.2.

Theorem 29.8 Assume that f: R — R" and g: R* — R' are globally Lip-
schitz continuous. Let E = R" x L2 ([0, T}, R") and Y = R'X. Then w¥ < po with
duY /dp o exp(—®) where ® is given by (29.22). The map @ satisfies Assump-
tions 29.1 and y > Y is locally Lipschitz continuous in the total variation metric.

Proof. Assumption 29.1(1) follows with M =0 and ¢ = 0. To establish (2) we
note that, for0 <t < T,

1
2,/5
< 0t B + = (Wago mmn * 101)-

2./8 L([0, T],R")

(1l + [v]?)

<a+Bv?+

Application of the Gronwall inequality shows that
lv@)ll < Ct) (1l 2o, 7y, k) + 14l)
and hence that, since g is linearly bounded,

1G(u, )| < C (1)l 2o, e + [14]).

From this, assumption (2) follows.
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Fig. 29.2 Illustration of the posterior density for the initial condition in Example 29.3. The system is
exactly the same as in Figure 29.1, except for the presence of an additional random forcing ¢ in the
Lorenz equation. The plotted posterior density of u is obtained by averaging ®(u, ¢; y) + 3 |u — mo|*
over . The sampling is now on an infinite-dimensional space, but the figure illustrates that the
posterior for u is much smoother than in the situation without model error from Figure 29.1.

To establish (3) it suffices to show that G: R" x L% ([0, T], R") — R'¥ is
locally Lipschitz continuous; this follows from the stated hypotheses on f and
g since the mapping (u, ¢) € R"* x L% ([0, T], R") — v € C ([0, T], R") is locally
Lipschitz continuous, as may be shown by a Gronwall argument similar to that
used to establish (2). Assumption 29.1(4) follows from the fact that ®(x;-) is
quadratic, together with the polynomial bounds on G from the proof of (2). [

Again, we obtain more regularity on ® by imposing more stringent assump-
tions on f and g:
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Theorem 29.9 Fork > 0, if both f and g are C¥, then ® is also C¥.

29.3.5 White model error, discrete observations

In the preceding example we described the model error as an OU process. In

some situations it is natural to describe the model error as white noise. Formally

this can be obtained from the preceding example by taking the limit § — 0 so
that the correlation time tends to zero. Heuristically we have

1 aw

— =R W2A—— + O/8

= F - +OV9)

from the OU process (29.20). Substituting this heuristic into (29.20) and setting
8 = 0 gives the white-noise-driven model

d aw
== f)+ VT, v(0)-u, (2923)

where /T = R714/2A.

Again we assume that we are given observations in the form (29.5). There
are now two ways to proceed to define an inverse problem. We can either make
inference concerning the pair (u, W), or we can make inference concerning
the function v itself. We consider the two approaches in turn. Note that (u, W)
uniquely define v and so a probability measure on (4, W) implies a probability
measure on v.

First we consider the formulation of the problem where we make inference
about (u, W). We construct the prior measure wo(du, d W) by assuming that
u and W are independent, by taking u ~ N (my, Cy) and by taking standard
n-dimensional Wiener measure for W. Now consider the integral equation

v(t) = u+ /t fv(s)) ds = VT W(t). (29.24)
a8 0

The solution of this equation defines a map

V:R" x C ([0, T], R") — C ([0, T],R")
(u, W) = V(u, W) =v.

Thus we may write the equation (29.5) for the observations as
y=6(u, W)+n, (29.25)
with » as in (29.21) and Gi(u, W) = g (V(u, W)(t)). The likelihood of y is thus

) )
P(dy|u, W) o exp (—Ely —G(u, W)I%) dy.

This leads to a probability measure

v(du, dW, dy) = P(y|u, J)po(du, dy)dy
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on the space R" x C ([0, T], R") x R'X. By vy we denote the measure on R" x
C ([0, T], R") x R'X given by

1
vo(du, d W, dy) o exp (—ilylzg) po(du, dW)dy.

Since (u, ¢) and y are independent under vo(du, dlp)dy', Theorem A.22 shows
that the posterior probability measure is given by

dp? ,
d—[uo(u, W) o exp ( — ®(u, W; Y)) (£

' 1
P(u, Wiy) = 51y — 9w, W)l5.

Theorem 29.10 Assume that f: R" — R" and g: R" — R are globally Lip-
schitz continuous. Let E = R" x C ([0, T], R") and Y = R'X. Then pn¥ < po with
duY /dug x exp(—P) where P is given by (29.26). The map P satisfies Assump-
tions 29.1 and y > pY is locally Lipschitz continuous in the total variation metric.

Proof. Note that uo (R" x C ([0, T], R")) = 1, because Wiener measure charges
continuous functions with probability 1. Assumption 29.1(1) follows with M =
¢ = 0. To establish (2) we note that, for0 <t < T,

o(t)] < Jul +f0 (w+ Blu(s)]) ds + W)

t
<l + [ (a+ B0} ds+ I Wiz
0
Application of the Gronwall inequality shows that

lu@)ll < C(t) (I W”&([Q,T],Rﬂ) + [ul).

Since g is polynomially bounded we have
1G(u, W)| < C (I Wllcqo, e + [ul)

and (2) follows. To establish (3) it suffices to show that G: R" x
C ([0, T], R") — R'X is continuous; this follows from the stated hypotheses on
f and g since the mapping (1, W) € R" x C ([0, T], R") — v € C ([0, T], R") is
continuous, as may be shown by a Gronwall argument, similar to that used to
establish (2). Assumption 29.1(4) follows from the fact that ®(x; -) is quadratic
and the bound on G derived to establish (2). O

Again, higher-order differentiability is obtained in a straightforward manner:

Theorem 29.11 Fork > 0, if both f and g are C*, then @ is also C*.

We have expressed the posterior measure as a measure on the initial condi-
tion u for v and the driving noise W. However, one can argue that it is natural
to take the alternative approach of making direct inference about {v(t)}L, rather
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than indirectly through (u, W). We illustrate how this may be done. To define a
prior, we first let ;1o denote the Gaussian measure on L2 ([0, T], R") defined by
the equation

— e T, e~ Mg, Co).

By the Girsanov theorem, the law of the solution v to (29.23), with u ~
N (myg, Co), yields a measure vy on L? ([0, T], R") which has Radon-Nikodym
derivative

i T
do (v) = exp (-%/O | f ()% dt+/0 (f(v),dv)p>, (29.27)

dpo

where the second integral is an It0 stochastic integral. The data is again
assumed to be of the form (29.5). We have

i
P(dylv) o exp | —=|y — G(v)I% ) dy,
2

where G(v) = (g(v(t)), - - ., g(v(tk))) and B is the correlation in the noise. Here
G is a map from L? ([0, T], R") to R'X,

Thus we may define a probability measure on »(dv, dy) on L? ([0, T], R") x
R'X given by P(y|v)vo(dv)dy. Since v and y are independent under vo(dv)dy,
Theorem A.22 shows that the posterior probability measure is defined by

dp?
dvo

] — il
(v) occexp (=@(v;y)),  P(viy) = Sly — G- ©(29.28)

This expresses the posterior measure in terms of a non-Gaussian prior (for the
pathspace of a non-Gaussian SDE with Gaussian initial data).

Theorem 29.12 Assume that f: R* — R" and g: R* — R' are globally Lipschitz
continuous. Then p! < vo with dpY /dvy o exp(—P) where @ is given by (29.28).
The map ® satisfies Assumptions 29.1 and y > uY is locally Lipschitz continuous

in the total variation metric.

Proof. Note that the reference measure v, is not Gaussian. Thus, by
Remark 29.1, we need to make sure that vy has Gaussian tails. This follows
immediately from the fact that the solution map (4, W) > v to the model
equations (29.24) is globally Lipschitz continuous from R" x C([0, T], R") into
C([0, T], R"). As the push-forward of a Gaussian measure under a Lipschitz
continuous map, vy therefore has Gaussian tails.

The function

o~

1
Pv;y) = 51y = G()I5
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is obviously bounded from below. It is furthermore locally Lipschitz continu-
ous in both y and v, since the solution map G is Lipschitz continuous from
C ([0, T], R") into R'X. O

Obtaining differentiability results on the density with respect to the Gaussian
prior po is much more tricky, because of the appearance of the stochastic
integral in (29.27). We return to this topic below, after making the following
observation. It is frequently of interest to express the target measure as change
of measure from a Gaussian, for example to implement sampling algorithms
as in Section 29.5. This may be achieved by the Girsanov theorem: by the
properties of change of measure we have

dp? dp? dvo
—{) = V) X
dP«O dvg dpto

1 1 [T
ocexp (=100 = 03 Jexp (=3 [ (15 0)2a — 245 ). dur) ).

(v)

Thus
du?

- (v) o exp (~@(v; )
140

1 N ¥ .
<D(v:y)=5|y—g(v)|3+5/0 (1 f()IFdt — 2(f(v), dv)r). (29.29)

There is a naturally arising case where it is possible to study differentiability:
when f has a gradient structure. Specifically, if f = —I'VF, then It6’s formula
yields

d F(v) = —(f(v), d;l))p—-i— %Tr (" D*F) dt.

Substituting this into (29.29) yield; the expression

i g 4 gF 2 2
O ) = 5l(y =GN+ [ (fWik — Tr (PD2F)) de
+F(v(T)) — F(v(0)). (29.30)
We thus obtain the following result:

Theorem 29.13 For k> 1, if ge C*, f is a gradient, and f e C*', then
®: C ([0, T], R") x R'X — Ris C*,.

29.3.6 White model error, continuous white observational noise

It is interesting to consider the preceding problem in the limiting case where
the observation is in continuous time. Specifically we consider underlying
stochastic dynamics governed by (29.23) with observations given by (29.13). We
assume that v(0) ~ N (myo, Co) and hence obtain the prior model equation for v,
together with the equation for the continuous-time observation y, in the form:



|
|
|
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d W;
D PO VTER 0~ N, Co), (29.31a)
2 RORSEEY ... SN 29.31b
L ogw)+VE—2 y(0)-0. (29.31b)

Here v e R",y € R, f: R* - R" and g: R" — R¢. Furthermore, I' € R™*"
and ¥ € R®* are assumed positive-definite. The Brownian motions W;, W are
assumed independent.

Our aim is to find the probability distribution for v € C([0, T], R") given y €
C([0, T], Rf). This is a classical problem in continuous-time signal processing
for SDEs, known as the smoothing problem. This differs from the filtering problem
where the aim is to find a time-indexed family of probability measures v, on R"
for v(t) given y € C([0, t], R).

First we consider the unconditioned case. We let vo(dv, dy) denote the
Gaussian measure on C([0, T], R") x C([0, T], R®) obtained in the case where
f and g are identically zero, and v the same measure when f and g are not
zero. By the Girsanov Theorem A.23 we have, assuming that trajectories do not
explode,

d 1 [T
gy =ep (—5/0 f(v)Irdt + 1g(v)[5dt — 2(f(v), dv)r — 2(g(v), dm).
(29.32)
Now we consider the measures found by conditioning v on y. Under v
the random variables v and y are independent. Thus vy(dv|y) is simply the
Gaussian measure po(dv) on C([0, T], R") found from the equation

dv dw;
—— 0} ~ , Co).

dt dt v N (ma, Co)
Now let u¥(u) denote the measure on C([0, T], R") found from »(u|y). Inte-
grating the last integral in (29.32) by parts (we can do this because v and y
are independent under v so that no It6 correction appears) and then applying
Theorem A.22, we deduce that

dp

——(v) o< exp (—P(v; y)) (29.33)
d o

1
®i9) = 5 [ (S wlkde+ lgw)bdt 20 (), dor +2(y. Dg(v) dv)z)

+((g(v(0)), (0)) — (g(v(T)), y(T)))-

Here, both integrals are stochastic integrals in the sense of It6 and (29.33) is
valid for vp-almost every y € C([0, T], Rf). We have therefore shown that:

Theorem 29.14 Assume that equations (29.31a) and (29.31b) have solution ont €
[0, T] which do not explode, almost surely. Then, the family of measures ¥ as defined
by equation (29.33) provides the conditional distribution for v given y.
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In this case Assumptions 29.1(1)—(4) do not hold in general. The statement
obtained in this case is much weaker than previously: while integration by
parts allows us to establish a conditional law for v given y for every realisation
of the observation process y, we do not obtain Lipschitz continuity of u¥ as a
function of y. ,

One situation where it is possible to establish Assumptions 29.1(1)—(3) for
a continuous-time model of the form (29.31) is the particular case when g is

linear and f is a gradient of the form f = —I'VF. In this case, we may rewrite
(29.31) as ‘
d d
d—’t’ -~ —I'VF(v) + Fd—\fl, v(0) ~ N (1o, Co). (29.34a)
‘% = Av + «/Ed—d\?, y(0) = 0. . (29.34b)

The key to what follows is that we choose a slightly different unconditioned
measure from before. We let vo(dv, dy) denote the Gaussian measure obtained
in the case where F is identically zero (but A is not identically 0), and denote
as before by v the measure obtained when f is not zero. By Girsanov’s Theo-
rem A.23 we have

dv 17 g
—(v, y) = exp (——/ lVF(v)lrdt+2(VF(v),dv)>,
dV() 2 0

Now we consider the measures found by conditioning v on y. Under v, the
random variables v and y are now dependent. The Gaussian measure p} =
vo(dv]y) does therefore depend on y in this case but only via its mean, not its
covariance. An explicit expression for the covariance and the mean of 1.} is given
in [23, Theorem 4.1]. Now let ! (dv).denote the measure on C([0, T], R") given
by v(dvly). -

By applying Theorem A.22, and then integrating by parts (Itd formula) as we
did in the previous section, we find that

é’—‘;(v) o exp (—D(v)) (29.35a)
dpg
1 1 2 2
d(v) = —f (ICVF(v)|fdt — Tr ([ D*F (v))) dt
2 Jo

+F (u(T)) — F(v(0)). (29.35b)

Note that ®(v) does not depend on y. In this particular case, the y-dependence
comes entirely from the reference measure.

Theorem 29.15 Assume that F € C? (R", R*) with globally bounded first, sec-
ond, and third derivatives. Let E = C ([0, T], R"). Then p¥ < pd with du? Jdud o
exp(—P) where ® is given by (29.35b). The map P satisfies Assumptions 29.1(1)—
(3), with y dependence removed, and y + Y is locally Lipschitz continuous from
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C ([0, T, RY) into the space of probability measures on E endowed with the total
variation metric.

Proof. We denote the Gaussian measures 1. and u! by A (m, Co) and N (n, Cy),
respectively and we use o for the measure ¢ with y = 0. All integrals are
over the whole of E unless specified otherwise. The covariance operator of
o, which we denote by Co, does not depend on y, and is the resolvent of
a second order differential operator. Thus the Cameron—Martin space for the
reference measure is H'(0, T; R). It follows from the results in Section 29.4
of [23] that, for almost every observation y, the mean of the Kalman—Bucy
smoother belongs to the Sobolev space H*/2~¢ for any & > 0. Even better, the
map y +> m is continuous from C([0, T], RY) into H!, so that there exists a
constant C satisfying |m — m/|¢, < Clly — ¥l . Hence n and ,U,();/ are equivalent
Gaussian measures.

Satisfaction of parts (1)—(3) of Assumptions 29.1 follow from the Definition
(29.35b) of ®(v). In particular there is C > 0 such that ®(v) < C (1 + ||v]|). We
first note that the normalization constants Z(y) and Z(y’) are bounded from
below by a constant depending on r. To see this, choose any r > 0 so that
Iml| g, [m'||g < r; this is possible since the Cameron—Martin space is neces-
sarily contained in E. Then note that, for ||u||g < 2r, we have

exp (—P(v)) = exp (—C(1 + 2r)) := K(r).
Note also that

{willulleg =r S {u:llu+mlg <2r}

Thus

_ 2 V(o > y
Z(y) = / exp (— b (v)) dl(v) > f{ Ko

> / K(r)duo(u) > / K(r)dpo(u)
{llu+m| g <2r} {llullg=r}
= K(r)wofllullg = r}.

Since uo(E) =1 and wg is Gaussian, any ball in E will have positive measure.
Hence this lower bound is positive for any r > 0. Clearly Z(y’) satisfies the
same lower bound.

Next we bound the difference between the normalization constants. Because
pd and Hg, are equivalent Gaussian measures it follows that

dpl
12 - 2 = [ e(-o(w) |1 - Z50) dudo)
0
dpl
< [ exp (elil: - m) |1 - )| i
0




R
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1 ’ 2 %
2 Y : d:“(})) Y
= (f exp (2¢llvlly — 2M) dy? (v) / 1-— dTy(v) dud(v)
0

From the properties of Gaussian measures we have the identity

dut i
dLIL:)),(v) = exp (((m’ —m), (v—m))e, — Elm - mléo),

I

|
o %
| SC(/ (ﬁ(v)) dug(v)—l) -
E

t

!

|

i

|

so that

i dul  \2 ;
‘ | /(af;‘%(v)) d,u,()))(v) = / exp(Z(m’ —m,v—m)c, — |m — mléo)dpg(v)
1
= exp (jm — m’léo) / exp((Z(m’ —m), v —mje, — ElZ(m’ - m)]éo)d,u,g(v).

But the last integral corresponds to an integral of 1 against a Gaussian measure
i with mean m + 2(m’ — m) = 2m’ — m and covariance operator Cy and is hence
itself 1. It follows that

|Z(y) = Z(y')] < C (exp (Im — m'}3) — 1)} . (29.36)

Again using the fact that pd and ,Ll,g/ are equivalent Gaussian measures it
. follows that

i ,
it — v = /

dut-  dyy dut
Lv)_L()_O

(v dug(v)
dug dul " dud :

(v)

dr
Z(y)™ - Z(y') 12 ()

< [ exp(-ow) Ly |4 )
dul
. < [ cepi-om)|i1- o))
0

+ [ exp(=@(v) | Z(y) ™" — Z(y') | dusd (v)
= 11 i o Iz.

Using the bound from below on Z(y) and Z(y’), together with the Fernique
theorem and the bound (29.36), we deduce that

b < C (exp (jm—m|3) — 1) . (29.37)

It remains to bound I, similarly. We have
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dul
L= C/exp (ellvl% — M) |1 — %(v) dul (v)
o
% dPLY/ 2 7
SC(/EXP(ZSIIUHZE—ZM) dp%(v)) / - 50| 4t
0

Ly \2 %
sc(f (ﬁ%m) dul(v) — 1

Thus, up to a different constant C, the integral I; satisfies the same bound
(29.37) as L. It follows that

! = p¥ v < C (exp (jm — m'Ig) —1)* < C (exp (Clly — Y'lIF) — 1)%,
and the desired result follows. a

Theorem 29.16 Let k > 1. Assume that, further to satisfying the assumptions of The-
orem 29.15, F € C¥2 (R", R*) Then the potential ® given by (29.35b) is C* (R", R).

29.4 Theme B: Langevin equations

In this section we construct S(P)DEs which are reversible with respect to the
measure p! introduced in section 29.3. These equations are interesting in their
own right; they also form the basis of efficient Metropolis—Hastings methods
for sampling n?, the topic of Section 29.5. In this context and in the finite-
dimensional case, the SDEs are often referred to as Langevin equations in the
statistics and statistical physics literature [35] and we will use this terminology.

For economy of notation, in this and the next section, we drop explicit
reference to the data y and consider the measure

dp

(x) = Z7' exp (— (), (29.38)
duo

for some potential function ®(-) and normalization constant Z. We will assume
that the reference measure p is a entred Gaussian measure with covari-
ance operator Cy: E* — E on some separable Banach space E. Note that
this includes the case where o is not centred, provided that its mean my
belongs to the Cameron—Martin space. We may then simply shift coordinates
so that the new reference measure has mean zero, and change the potential to
d™(x) :== P(mg + x). Hence in this section we simply work with (29.1), assume
that uo = NV(0, Co) and that the four conditions on ® hold as stated in Assump-
tions 29.1. We furthermore use the notation £ to denote the inverse C;' of
the covariance, sometimes called the “precision operator.” Note that while C,
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is always a bounded operator, £ is usually an unbounded operator. Additional
assumptions on the structure of ®, the covariance Cy and the space E will be
stated when required.

29.4.1 The finite-dimensional case

Consider the finite-dimensional probability measures on the initial condition u
for (29.4) which we have constructed in sections 29.3.1, 29.3.2, and 29.3.3. Recall
that the posterior measure is u given by (29.38). By use of the Fokker-Planck
equation it is straightforward to check that, for every strictly positive-definite
symmetric matrix A the following SDE is p! invariant

dx = —ALxdt — AD®(x) dt + V2 AdW(t). (29.39)

Actually one has even more: the Markov semigroup generated by (29.39) con-
sists of operators that are selfadjoint in L? (R", 1¥). One of the most general
theorems covering this situation is given by [12, 28]:

Theorem 29.17 Let ®(-) belong to C*(R") and be such that exp(—®) is integrable
with respect to the symmetric Gaussian measure o with covariance Co = L. Then,
(29.39) has a unique global strong solution which admits u¥ as an invariant measure.
Furthermore, the semigroup

Pip(x) = E(p(x(t)) : %(0) = x)

can be extended to a semigroup consisting of selfadjoint contraction operators on
L*{E, p).

One approach to approximately sampling from p given by (29.38) is thus
to solve this equation numerically and to rely on ergodicity of the numerical
method, as well as approximatepreservation of u under discretization, to obtain
samples from p, $ee [40]. Typical numerical methods will require draws from
N (0, A) in order to simulate (29.39). In low dimensions, a good choice for A is
A = C, as this equalizes the convergence rates to equilibrium in the case ® = 0,
Co is cheap to calculate, and draws from ug = N (0, Cp) are easily made. We refer
to this as “preconditioning.”

For a given accuracy, there will in general be an optimal stepsize that provides
a suitable approximation to the desired i.i.d. sequence at minimal computa-
tional cost. Too large stepsizes will result in an inaccurate approximation to
(29.39), whereas small stepsizes will require many steps before approximate
independence is achieved.

29.4.2 The infinite-dimensional case

The problems in sections 29.3.4, 29.3.5, and 29.3.6 give rise to measures on
infinite dimensional spaces. The infinite-dimensional prior reference measure
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involves either a stationary OU process or Wiener measure. Thus draws from
po (or rather from an approximation thereof) are relatively straightforward to
make. Furthermore, in a number of situations, the precision operator £ = C;*
is readily characterized as a second-order differential operator, see for exam-
ple [23].

Even though there exists no infinite-dimensional analogue of Lebesgue mea-
sure, we have seen in the previous section that it happens in many situations
that the posterior u¥ possesses a density with respect to some fixed Gaussian
measure puo. It is therefore tempting to carry over (29.39) mutatis mutandis to
the infinite-dimensional case. It is however much less clear in general what
classes of drifts result in (29.39) being a well-posed stochastic PDE (or infinite-
dimensional SDE) and, if it is well-posed, whether ! is indeed an invariant
measure for it. The remainder of this section is devoted to a survey of some
rigorous results that have been obtained in this direction.

Remark 29.4 In principle, some of these questions could be answered by
invoking the theory of symmetric Dirichlet forms, as described in [37] or [17].
However, we stay away from this course for two reasons. First, it involves a
heavy technical machinery that does not seem to be justified in our case since
the resulting processes are not that difficult to understand. Second, and more
importantly, while the theory of Dirichlet forms allows one to ‘easily’ construct
a large family of uY-reversible processes (that contains as special cases the SDEs
described in (29.39)), it is more difficult to characterize them as solutions to par-
ticular SDEs or SPDEs. Therefore, if we wish to approximate them numerically,
we are back to the kind of analysis performed here.

We are going to start with a survey of the results obtained for the Gaussian
case (that is when & vanishes or is jtself quadratic in the x variable), before
turning to the nonlinear case.

The Gaussian case

In this section, we consider the situation of a Gaussian measure u with covari-
ance operator Cy and mean m on a separable Hilbert space H. At a formal level,
the “density” of u with respect to the (nonexistent, of course) Lebesgue measure
is proportional to

1
exp (—i(x —m,C Y (x— m))),
so that one would expect the evolution equation

dx = Lmdt — Lxdt +2dW(t), (29.40)

where, recall, we set £ = C; ', to have y as its invariant measure. Since, if H is
infinite-dimensional, £ is always an unbounded operator, it is not clear a priori
how to interpret solutions to (29.40). The traditional way of interpreting (29.40)
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is to solve it by the variation of constants formula and to define the solution to
(29.40) as being the process given by

x(t) = S(t)xo + (1 — S(t)) m + ﬁ/t St —s)dW(s),
0

(here S(t) denotes the semigroup on H generated by —L; see [19], [33], and [38]
for background on semigroups) provided that the stochastic integral appearing
on the right-hand side takes values in H.

This turns out to be always the case in the situation at hand. Furthermore, one
has the stronger statement that this process is also the unique weak solution to
(29.40) in the sense that it is the only #-valued process such that the identity

d(x(t), h) = (Lh, m — x(t)) dt + v/2(h, d W(t)), (29.41)

holds for every h in the domain of £. Combining the results from [24] and [14],
one obtains that: '

Lemma 29.1 Let £ and p be as above. Then the evolution equation (29.40) has
continuous H-valued mild solutions. Furthermore, it has p as its unique invariant
measure and there exists a constant K such that for every initial condition xy € H
one has

|Law (x(t)) — pf 1y = K (1 + lx0 — mliz) exp (=1CollzL,4t) -
where || - ||[Tv denotes the total variation distance between probability measures.

Remark 29.5 The convergence in total variation obtained in Lemma 29.1 is very
strong and does not hold in general if one replaces (29.40) by its ‘preconditioned’
version as in (29.39). For example, in the particular case

dx =mdt — xdt +/2Co d W(t), (29.42)

it is known thdt convergence in total variation does not hold, unless x, belongs
to the Cameron—Martin space of u, that is unless ||[£?x]| < co. However,
one does still have convergence of arbitrary solutions to (29.42) to w in the
p-Wasserstein distance for arbitrary p.

The nonlinear case

This case is much less straightforward than the Gaussian case and we will not
give a complete treatment here. One problem that often occurs in the infinite-
dimensional case is that ® is naturally defined on a Banach space E (typically
the space of continuous functions) rather than on a Hilbert space H. It is then
tempting to work with a scale of spaces

E<— H=H" E*,

where all inclusions are dense. We are going to make the following assumptions
for the precision operator £ of our reference Gaussian measure po:
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(A1) The semigroup S(t) = e~ generated by £ on H can be restricted to a
strongly continuous semigroup of contraction operators on E.

(A2) There exists o € (0, 1/2) such that D(£*) C E (densely), L% is trace
class in H, and the measure N'(0, £72%) is concentrated on E.

The first assumption ensures that E is a ‘good choice’ of a space to work
with. The second assumption is a slight strengthening of the statement that
po(E) = 1, since the statement with a = 3 is implied by uo(E) = 1. Regarding
the density ®: E — R, we make the following assumptions:

(A3) For every ¢ > 0, there exists M > 0 such that ®(x) > M — ¢||x||% for
every x € E.

(A4) The function ®: E — R is twice Fréchet differentiable and its deriva-
tives are polynomially bounded.

(AS) There exists a sequence of Fréchet differentiable functions F,: E — E
such that

lim [|£7%(Fy(x) — D®(x))|,, =0

n—o0

for all x € E. For every C > 0 there exists a K > 0 such that for all
x € E with ||x]|g < C and all n € N we have ||[L7*F,(x)|lx < K. Fur-

thermore, thereisay > 0, C > 0 and N > 0 such that the dissipativity
bound

(x*, Fa(x+y)) < —vlxl& (29.43)

holds for every x* € d||x||g C E* and every x, y € E with ||x||p > C(1 +
yll)N. Here, 8||x|| ¢ denotes the subdifferential of the norm at x (see
for example [14]). S

Assumption (A3) just makes sure that exp(—®) is integrable with respect to

wo. The next assumption (A4) provides a minimum of regularity so that the
equation

dx = —Lxdt — DO(x)dt +~/2d W(t), (29.44)

is well-posed (in its mild formulation). The last condition seems rather compli-
cated, but it should just be thought of as a version of the dissipativity condition

(x*, D@(x+y)) < —ylixlle

that survives approximating D® by E-valued functions. With these conditions
at hand, we have the following result from [21]:

Theorem 29.18 Assume that conditions (A1)—(AS5) hold and define the probability
measure

u(dx) = Z7" exp(— D (x)) po(d),
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for a suitable normalization constant Z. Then the stochastic PDE (29.44) has a
unique continuous E-valued global mild solution for every initial condition x € E.
Furthermore, this solution admits p as its unique invariant probability measure.

Under a very weak additional assumption (essentially, ® should admit
approximations that have bounded support and that are Fréchet differentiable,
which is not completely automatic if the norm on E is not differentiable), it
is again possible to show that transition probabilities converge to the invariant
measure at exponential speed and that the law of large numbers holds.

29.5 Theme C: MCMC methods

In this section we describe a range of effective Metropolis—Hastings-based (see
[18, 31]) MCMC methods (see [29, 35]) for sampling the target distributions
constructed in Section 29.3. As in the previous section we drop explicit refer-
ence to the data y and work with a posterior distribution n given by (29.38).
The methods we describe are motivated by the u-reversible stochastic evolution
equations derived in the previous section. We work with measures p given by
(29.1). We assume that mg = 0 which can always be achieved by a shift of origin,
provided the mean of uy belongs to its Cameron—Martin space. Our aim is to
draw samples from the measure u on E given by (29.38).

The idea of MCMC methods for target p is to construct a discrete-time
Markov chain {x,} on E that has p as its invariant measure and that has good
mixing properties. One can then take as an approximation to i.i.d. samples the
sequence k > xn,:kn, With k> 0 and Ny, N; ‘sufficiently large’. In order to
compute integrals of the form I = [ f(x) u(dx) for some test function f, one
can then use the fact that, by Birkhoff”s ergodic theorem, one has the almost
sure identity 3

-

;N
P lim o) i)
k=1

Metropolis—Hastings methods work by proposing a move from the current
state x; to y from a Markov transition kernel on E, and then accepting or
rejecting in a fashion which ensures that the resulting composite Markov chain
is u reversible.

In section 29.5.1 we first explain the idea in finite dimensions, with appli-
cation to the problems formulated in sections 29.3.1-29.3.3 and, of course,
to finite-dimensional approximation of the problems formulated in sections
29.3.4-29.3.6. We focus on the theory related to random walk and Langevin
proposals for these problems, building on the material in the previous sec-
tion. Then, in section 29.5.2, we generalize these methods to the infinite-
dimensional setting.
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29.5.1 Metropolis—Hastings in finite dimensions

In finite dimensions the measure n given by (29.1) on E = R? has density =
with respect to Lebesgue measure which is given by

oy
m(x) X exp <—E|xlco = CD(x)).

The Metropolis—Hastings method of constructing a u reversible Markov chain
is the following. Fix a Markov transition kernel P(x, dy) with density q(x, y)dy.
The measure u(dx) P(x, dy) on E x E then has density 7(x)q(x, y). Define the
function

m(y)4(y. %)

m(x)q (%, y)’

where we write a A b for the minimum between a and b.

Assume that x; is known (start for example with x = 0). To determine x4
draw y ~ q(x, y) and proceed as follows:

a(x,y)=1A

1. x41 =y (step accepted) with probability a(x, y).
2. xp41 = % (step rejected) otherwise.

The resulting Markov chain is 7-reversible.

A frequently used class of methods are the symmetric random walk proposals
where

y = % +V2Até, (29.45)

where the £, are i.i.d. symmetric random variables (for example A(0, I)) on R4,
This may be viewed as a discretization of the Brownian motion

dx =~/7dW.
As such the proposal contains no information about the target. However, by
symmetry,
a(x,y)=1A M
Tr(X)

This has the advantage of being simple to implement.

Typically, the mixing time for a Metropolis—Hastings chain will depend both
on the proportion of steps that are rejected and on the variance of y — x;: the
higher the number of rejections and the lower the variance, the longer it will
take for the Markov chain to explore the whole state space. In general, there
is a competition between both effects: steps with a large variance have a high
probability of rejections; on the other hand small moves are less likely to be
rejected but explore the state space slowly. Roughly speaking the competition
between these two effect is measured by the mean square jumping distance of
the Markov chain in stationarity. Specifically, if we define
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Sii = E*lss1; — %) (29.46)

then this quantity measures the mean square jumping distance in the i com-
ponent of the vector x;. Maximizing this quantity will enhance the mixing of
functionals heavily dependent on the i component of x ~ n. We will optimize
algorithms according to this criterion.

In an attempt to maximize (29.46), proposals which contain information
about the target distribution can be useful. A class of proposals which does
contain such information arises from discretizing the Langevin SDE (29.39).
A linearly implicit Euler discretization gives rise to the following family of
proposals:

Yy — % =—AtAL (Oy + (1 — O)xx) — a AtADP(x;) + vV 2ALAEy (29.47)

where the & are i.i.d NV(0, I) random variables on R, 6 ¢ [0,1] and a € {0, 1}.
If a = 0 the proposal contains information only about the reference measure p,,
via its precision operator L. If « = 1 it contains information about n itself. Two
natural choices for A are I and C,.

The formula for the proposal rearranges to give

y = (I +AtAL)™! ((1 — Ab(1 — 6)AL) x4 — aALADD(x) + JzAtAgk).
(29.48)

In the case a = 0 this generalizes the symmetric random walk to allow y to
be a more complex linear combination of x, and &. When « = 1 the proposal
also contains information which tends to make proposals which decrease ®.
Roughly speaking we expect proposals with a = 1 to explore the state space more
rapidly than those with a = 0. However there is a cost involved in evaluating D®
and the trade-off between cost-per-step and number of steps will be different for
different problems.

A natural question of interest for these algorithms is how to choose the
time-step At. We now study this question in the limit where the state-space
dimension d — co. We define the norm

1
d 7
25 2
|x|s = (Zl Sxi> .
i=i

We make the following assumptions:

Assumption 29.2 The following hold for the family of reference measures uo =
po(d), the family of target measures p = u(d) and their interrelations.

1. There are constants ¢* € (0, 00) such that the eigenvalues X?; of the
covariance C, satisfy

s Y e haseti™ Vizi=d (29.49)
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2. Assumptions 29.1 (1) —(3) hold, generalized to include the case ¢ = 0, with
E=R4|-|5),s <k— % and with constants independent of dimension d.

We now state three theorems, all proved in [6], which quantify the efficiency
of the various proposals described above in the high-dimensional setting, and
under the preceding assumptions.

The first theorem shows that, for the symmetric random walk the optimal
choice of At is of O(d~**1), giving rise to a maximal mean square jump of the
same magnitude.

Theorem 29.19 Consider the symmetric random walk proposal (29.45). Assume
that At = £2d~°. Then the following dichotomy holds, for any fixed i:

e Ifp> 2k +1then

liminfd?S;; > 0, limsupdfS;; < oo.

d—o0 Al

e Ifp <2k +1then

limsupd?S;; =0

d—o0

forany g > 0.

The next theorem shows that, for the basic version of the Langevin proposal,
the optimal choice of At is of O(d~?*1/3), giving rise to a maximal mean
square jump of the same magnitude. The improvement in the exponent by 2/3
comes as the price of evaluating the application of the precision operator £ at
each step; the cost of doing this will be problem dependent.

Theorem 29.20 Consider the proposal (29%:48) with 0 = a =0 and A = I. Assume
that At = £2d—°. Then the following dichotomy holds, for any fixed i:

o Ifp > 2k + 3 then

liminfd?S;; > 0, limsupdfS;; < oo.
d—o0 A

* Ifp < 2k + 1 then

lim sup dl Sd,i — 0

d—o0

foranygq > 0.

The final theorem shows that, at the cost of making samples +/Coér from
the prior measure at each step of the algorithm, the optimal choice of At =
O(d~1/3), gives rise to a maximal mean square jump of the same magnitude.

Theorem 29.21 Consider the proposal (29.48) with 6 = a = 0 and A = C. Assume
that At = £2d=°. Then the following dichotomy holds, for any fixed i:
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1
e pr = 3 then
liminfd?S;; >0, limsupdfS;; < oo.
d—o0 d—o0
o Ifp < 1 then
limsupd?S;; =0
d—o00
foranyq > 0.

The previous two theorems, concerning proposals of the form (29.48), con-
cern only the cases where 6 = a = 0. It is expected that the scaling results will
be identical for 6 = 0, o = 1. However the choice of 6 can make significant dif-
ferences. In the next section we show how, by working in infinite dimensions,
we can in some cases eliminate dimension dependence in Metropolis—Hastings

algorithms, by choosing 6 = 1.

29.5.2 Metropolis—Hastings in infinite dimensions

The ideas of the previous section can be generalized to infinite dimensions
as follows [41]. Assume that we are given a Polish (i.e. complete, separable,
metric) space E (since we want to allow for the possibility of sampling from a
measure on a space of paths, E should be thought of as a space of functions
in general) and a probability measure x on E. Assume furthermore that we are
given a Markov transition kernel P over E with the property that the measures
p(dx) P(x, dy) and u(dy) P(y, dx) are equivalent so that the quantity

u(dy) P(y, dx)
w(@x) P(x, dy)

which should be interpreted as the Radon—Nikodym derivative of the two
aforementioned measures evaluated at the point (x, y), is well-defined. With
these notations in place, we can construct a new Markov chain in the following
way. Assume again that x;, is known and draw a random sample y from the
probability distribution P(x, -). Now let

(29.50)

The algorithm proceeds as follows

1. x4 =y (step accepted) with probability a(x, y).
2. X1 = % (step rejected) otherwise.
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If we denote by Q the transition probabilities of the process x,, it can be checked
that one has

P(y, dx)
p(dx)
for some function ¢ that makes Q a Markov transition kernel: If we define a

map A: E — E%by A(x) = (x, x) and denote by A*u the push-forward of n by
A, one can check that (29.51) implies that

p(dx) Q(x, dy) = /c(x)e(y) (A%p) (dx, dy) + p(dx) P(x, dy) A p(dy) P(y, dx).

This expression is symmetric in x <> y, so that the Markov kernel Q (or equiv-
alently the Markov chain generated from it) is reversible with respect to the
measure p. In particular, the measure w is invariant for Q.

Thus key to making this idea work is the construction of proposals for which
the measure u(dy) P(y, dx) is absolutely continuous with respect to the measure
p(dx) P(x, dy). We consider this question in the context of (29.48), basing ideas
on the paper [7]. Let P,(x, dy) denote the transition kernel of this proposal. Then
define measures 7 and 7o by

Q(x, dy) = c(x)8«(dy) + P(x, dy) A m(dy), (29.51)

7(dx, dy) = p(dx) P.(x, dy)

and

no(dx, dy) = po(dx) Po(x, dy).

It is straightforward to show that yo(dx, dy) = no(dy, dx) iff 6 = 1. We work with
this assumption henceforth as it enables us to define the MCMC method on
function space. ;

Using the fact that P,(x, -) is absolutely centinuous with respect to Py(x, -)
for both a = 0 and a = 1 we deduce that 7 s absolutely continuous with respect
to no and that, for some p(x,y) = p(x, y; a, A), we have

Thus the acceptance probability for the Metropolis algorithm is

a(x, y) = 1 A exp (plx, y) = ply, ). (29.52)
For the proposals (29.48) the function p(x, y) is given, up to an additive

constant which we ignore, by the following expressions:
» for A= I we have

a’ At
4

plx. y) = D(x) +

I DI + 5 (DD (), y — x)

aA
+Tt (D®(x), Cy H(y + %))

il
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e for A =Cy we have

oAt
plx, y) = D) + = |

C? D () Hz + %(D@(x), y — %)

alAt
+T(D(D(x), ¥+ X).

The four algorithms defined in this section (two choices for both a € {0, 1}
and A € {I, Cp}) all lead to well-defined Metropolis—Hastings chains on Banach
space. Thus they give rise to mean square jumping distances which are
bounded independently of dimension d as they are, in particular, nonzero in
the infinite-dimensional case.

It is straightforward to prove [8] that, for any ¢ > 0, the acceptance probability
(29.52) satisfies

Ea(x, y) > exp(—c) (1 _ Blp(%, y) — p(y. xk)l)_

c

Thus if we can show that

Elp(x, y) — p(y, %)l = 0

as At — 0 then we deduce that we can make the acceptance probability
arbitarily close to 1. In the case a =0, proving this may be shown by using
Assumption 29.1.

29.6 Discussion and bibliography

There are several useful sources for background material relevant to both the
problems studied, and methods developed, in this chapter. A general reference
concerned with stochastic modelling is [11]. Several technical tools are required
to develop the methods described in this chapter. An exhaustive treatment of
Gaussian measures can be found in [4] and moment bounds for SDEs can
be found in [30]. The book [13] is an excellent source for material concerned
with sequential filtering problems, including the use of particle filters for non-
Gaussian problems. The filtering and smoothing problems for SDEs with con-
tinuous time observations, as arising in Section 29.3.6, is introduced in [32],
and developed in detail in the Gaussian context (f and g linear) giving rise to
the Kalman—-Bucy filter and smoother. This method uses an approach based on
first filtering (0 — T), and then reversing the process (T — 0) to incorporate
data from time t > s into the probability distribution at me s. Good sources
of signal processing problems arising from data assimilation are [16] and the
volume [25]; these problems have motivated a lot of our research in this general
area. Finally note that signal processing may be viewed as an inverse problem to
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find a signal from partial, noisy, observations. The Bayesian approach to inverse
problems in general is discussed in [26].

In Theme A we considered a range of differing problems arising in signal
processing, constructing and deriving properties of the posterior distribution.
The posterior distributions constructed in Sections 29.3.2 and 29.3.3 can both
be viewed as parameter estimation problems for SDEs. They have particular
structure, inherited from the way in which the parameter u enters the expres-
sion ¢*(u) appearing in the SDE for y. The general subject of parameter esti-
mation for SDEs is considered in [5, 27]. Incorporating discrete-time data into a
continuous time model, as undertaken in Sections 29.3.4 and 29.3.5, is studied
in [1, 22]. Carrying out this program and, at the same time estimating para-
meters in the dynamical model, is discussed in [36], in a non-Bayesian setting.
The relationship between the coloured noise model appearing in Section 29.3.4,
and the white noise model appearing in 29.3.5, in the limit § — 0, is part of the
theory of homogenization for stochastic processes; see [3, 34]. The filtering and
smoothing problems for SDEs with continuous time observations, as arising
in Section 29.3.6, is introduced in [32], as mentioned above. In the Gaussian
case the mean is characterized by the solution of a two-point value problem,
defined through inversion of the precision operator. The approach to smoothing
outlined in [32] corresponds to a continuous time analogue of L U factorization,
here for the inverse of the covariance operator, facilitating its action on the data
to compute the mean. The particular formulation of the smoothing problem
described here is developed in [1].

In Theme B we studied the derivation of Langevin equations (stochastic
partial differential equations) which are invariant with respect to a given invari-
ant measure. This is straightforward in finite dimensions, but is an emerg-
ing subject area in infinite dimensions. The idea is developed in a fairly
general setting in [21], building on the Gaussian case described in [23]. The
first use of the Langevin equation to solve signal processing problems may
be found in [39] and further applications may be found in [20, 2]. On the
theoretical side many open questions remain concerning the derivation of
Langevin equations. In particular the paper [21] deals with elliptic diffusions
with gradient drift and additive noise. An initial analysis of a particular hypoel-
liptic problem may be found in [20]. Questions relating to the derivation of
Langevin equations for nongradient drifts, and for multiplicative noise, remain
open.

Theme C is concerned with the design and analysis of effective MCMC
methods in high dimension, motivated by the approximation of infinite dimen-
sionsal problems. This subject is overviewed in the review articles [8, 9], and
full details of the analysis and application of the methods may be found
in [6, 7].
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Appendix A: Some results from probability

In this appendix, we collect miscellaneous results from stochastic analysis
‘ that were used in this chapter. Throughout the chapter we use the following
| notation: given a Hilbert space (H, (-, -), || - [|), for any positive-definite C we
define the second inner-product and norm

(a,b)c = (a, C7'b), |allz = (a,a)c.

A.1 Conditional probabilities

Throughout Theme A of this chapter we will be generalizing Bayes formula
to an infinite-dimensional setting. There are two components to this: Bayes
formula in finite dimensions, and then the generalization to the Hilbert space
setting. We start in finite dimensions. Assume that we are given a random
variable u on R? about which we have some prior information in terms of a
probability distribution P(u). Imagine that we now define a random variable y
on R!, which depends upon u, and for which we have the probability distribu-
tion of y given u, namely P(y|u). By the elementary rules of probability we have

e B e i e i e B o

P(uly) = ——P (uN p),

| P(1Y)

&

. P(ylu) = —P(unNy).

3; V) = 50 (wNy)

? Combining these two formulae shows that the posterior probability distribution
§ for u, given a single observation of y, is given by Bayes formula

1

P(uly) = 5 —P(ylu)P(u). (29.53)
g P(y) -

In this chapter there are many instances where we are interested in condi-
| tioning probability measures on function space. In this context the following
| theorem will be of central importance in constructing the appropriate general-
1 ization of Bayes formula.

Theorem A.22 Let p, v be probability measures on S x T where (S, A) and (T, B)
are measurable spaces and let x: Sx T — Sand y: Sx T — T be the canonical
' projections. Assume that u has a density ¢ w.r.t. v and that the conditional distribu-
| tion vy, exists. Then the conditional distribution ., exists and is given by

(29.54)

i dvyy 1 else,
|

1 with ¢(y) = [5@(x, y) dvay(x) forall y € T.
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A.2 Aversion of Girsanov’s theorem

SDEs which do not have the same diffusion coefficient generate measures
which are mutually singular on pathspace; the same is true of SDEs starting
from different deterministic initial conditions. However, if these two possi-
bilities are ruled out, then two different SDEs generate measures which are
absolutely continuous with respect to one another. The Girsanov formula pro-
vides an explicit expression for the Radon—Nikodym derivative between two
such measures on H = L? ([0, T], R?%).
Consider the SDE

dv aw :

e (t)v + h(v, t) + y(v, t)—dt—, v(0) = u. (29.55)

and the same equation with the-function h set to zero, namely
B R i 29.56
& ™ (t)v v, 1) == (0) = vo. (29.56)

The measures generated by these two equations are absolutely continuous.

Define I'(-, t) = y(-, t)y(, t)T. We then have the following version of Girsanov’s
theorem, that can be found in [15]:

Theorem A.23 Assume that both equations (29.55) and (29.56) have solutions on
t € [0, T] which do not explode almost surely. Then the measures u and po on H,
generated by the two equations (29.55) and (29.56) respectively, are equivalent with
Radon—Nikodym derivative

d 1 \
— (v) = exp (-/ B (v, 1Ry dt — (B(v, 1), dv — A(t)vdt)r(u(t))).
dpo 0o 2 L

-
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