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Abstract Parameters in climate models are usually calibrated manually, exploiting only small
subsets of the available data. This precludes both optimal calibration and quantification of uncertainties.
Traditional Bayesian calibration methods that allow uncertainty quantification are too expensive for
climate models; they are also not robust in the presence of internal climate variability. For example,
Markov chain Monte Carlo (MCMC) methods typically require 0(10°) model runs and are sensitive

to internal variability noise, rendering them infeasible for climate models. Here we demonstrate an
approach to model calibration and uncertainty quantification that requires only O(10?) model runs and
can accommodate internal climate variability. The approach consists of three stages: (a) a calibration
stage uses variants of ensemble Kalman inversion to calibrate a model by minimizing mismatches
between model and data statistics; (b) an emulation stage emulates the parameter-to-data map with
Gaussian processes (GP), using the model runs in the calibration stage for training; (c) a sampling

stage approximates the Bayesian posterior distributions by sampling the GP emulator with MCMC. We
demonstrate the feasibility and computational efficiency of this calibrate-emulate-sample (CES) approach
in a perfect-model setting. Using an idealized general circulation model, we estimate parameters in a
simple convection scheme from synthetic data generated with the model. The CES approach generates
probability distributions of the parameters that are good approximations of the Bayesian posteriors, at

a fraction of the computational cost usually required to obtain them. Sampling from this approximate
posterior allows the generation of climate predictions with quantified parametric uncertainties.

Plain Language Summary Calibrating climate models with available data and quantifying
their uncertainties are essential to make climate predictions accurate and actionable. A primary source

of uncertainties in climate models comes from representation of small-scale processes such as moist
convection. Parameters in convection schemes and other parameterizations are usually calibrated by
hand, using only a small fraction of data that are available. As a result, the calibration process may miss
information about the small-scale processes in question. This paper presents a proof-of-concept, in an
idealized setting, of how parameters in climate models can be calibrated using a substantial fraction of the
available data, and how uncertainties in the parameters can be quantified. We employ a new algorithm,
called calibrate-emulate-sample (CES), which makes such calibration and uncertainty quantification
feasible for computationally expensive climate models. CES reduces the hundreds of thousands of model
runs usually required to quantify uncertainties in computer models to hundreds, thereby achieving about
a factor 1,000 speedup. It leads to more robust calibration and uncertainty quantification in the presence
of noise arising from chaotic variability of the climate system. We show how uncertainties in climate
model parameters can be translated into quantified uncertainties of climate predictions through ensemble
integrations.

1. Introduction

The principal uncertainties in climate predictions arise from the representation of unresolvable yet impor-
tant small-scale processes, such as those controlling cloud cover (Bony & Dufresne, 2005; Bony et al., 2006;
Brient & Schneider, 2016; Cess et al., 1989; Cess et al., 1990; Schneider, Teixeira, et al., 2017; Stephens, 2005;
Vial et al., 2013; Webb et al., 2013). These processes are represented by parameterization schemes, which re-
late unresolved quantities such as cloud statistics to variables resolved on the climate models' computation-
al grid, such as temperature and humidity. The parameterization schemes depend on parameters that are
a priori unknown, and so fixing the parameters is associated with uncertainty. The process of fixing these
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parameters to values that are most consistent with data is known as calibration, which generally requires
solving an optimization problem. Traditionally, however, parameters are calibrated (“tuned”) by hand, in a
process that exploits only a small subset of the available observational data and relies on the knowledge and
intuition of climate modelers about plausible ranges of parameters and their effect on the simulated climate
of a model (Flato et al., 2013; Golaz et al., 2013; Hourdin et al., 2013, 2017; Mauritsen et al., 2012; Randall
& Wielicki, 1997; Schmidt et al., 2017; Zhao et al., 2018). More recently, some broader-scale automated
approaches that more systematically quantify the plausible range of parameters have begun to be explored
(Couvreux et al., 2020; Hourdin et al., 2020).

Opportunities to improve climate models lie in exploiting a larger fraction of the available observational
data together with high-resolution simulations, and learning from both, systematically and not manually
(Schneider, Lan, et al., 2017). To fully account for parametric uncertainty, we adopt a Bayesian view of the
model-data relationship, which amounts to solving a Bayesian inverse problem. Given model, data, and
prior information on the parameters, Bayesian inversion yields a posterior distribution of parameters. The
mean or mode of the posterior distribution define the best parameter estimate, and the entire distribution
provides uncertainty quantification through its spread about the mean or mode. We use the mismatch be-
tween climate statistics simulated with the model and those obtained from observations or high-resolution
simulations as the data likelihood in the Bayesian inverse problem to calibrate parameterizations in a cli-
mate model and to quantify their parametric uncertainties. Our focus is on learning from time-averaged
climate statistics for three reasons: (a) time-averaged statistics are what is relevant for climate predictions;
(b) time-averaged statistics vary more smoothly in space than atmospheric states, leading to a smoother
optimization problem than that of atmospheric state estimation in numerical weather prediction (NWP);
(c) time-averaging over long time-intervals reduces the effect of the unknown initial state of the system,
removing the need to determine it. Focusing on time-averaged climate statistics, rather than on instantane-
ous states or trajectories as in NWP, makes it possible to exploit climate observations and high-resolution
simulations even when their native resolutions are very different from those of climate models.

While learning from climate statistics accumulated in time presents opportunities, it also comes with chal-
lenges. Accumulating statistics in time is computationally much more expensive than the forecasts over
hours or days used in NWP. Therefore, we need algorithms for learning from data that minimize the num-
ber of climate model runs required. Traditional methods for Bayesian calibration and uncertainty quanti-
fication such as Markov chain Monte Carlo (MCMC) typically require many iterations—often more than
10°—to reach statistical convergence (e.g., Geyer, 2011). Conducting so many computationally expensive
climate model runs is not feasible, rendering MCMC impractical for climate model calibration (Annan &
Hargreaves, 2007). Additionally, while MCMC can be used to obtain the distribution of model parameters
given data, it is not robust with respect to noise in the evaluation of the map from model parameters to
data. Such noise, arising from natural variability in the chaotic climate system, can lead to trapping of the
Markov chains in spurious, noise-induced local maxima of the likelihood function (Cleary et al., 2021). This
presents additional challenges to using MCMC methods for climate model calibration.

Here we demonstrate a new approach to climate model uncertainty quantification that overcomes the limi-
tations of traditional Bayesian calibration methods in a relatively simple proof-of-concept. The approach—
called calibrate-emulate-sample (CES) (Cleary et al., 2021)—consists of three successive stages, which each
exploit proven concepts and methods:

1. In a calibration stage, we use variants of ensemble Kalman methods. These approaches were original-
ly developed as a derivative-free method for state estimation (Evensen, 1994; Van Leeuwen & Even-
sen, 1996) and are now widely used in NWP (Houtekamer & Zhang, 2016). The methods were subse-
quently developed for simultaneous state and parameter estimation, and variants were developed to deal
with strongly nonlinear systems (Bocquet & Sakov, 2012, 2014; Gu & Oliver, 2007; Li & Reynolds, 2009;
Sakov et al., 2012). They were eventually recognized as a general purpose tool for the solution of inverse
problems whose objective is parameter estimation (Chen & Oliver, 2012; Emerick & Reynolds, 2013;
Evensen, 2018; Reich, 2011). Here we use an optimization approach, referred to as ensemble Kalman
inversion (Iglesias et al., 2013), which builds on the work of (Chen & Oliver, 2012; Emerick & Reyn-
olds, 2013). Ensemble Kalman inversion may be understood as gradient descent projected to the en-
semble subspace (Schillings & Stuart, 2017a); relatedly, iterated EnKF smoothers may be interpreted as
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Gauss-Newton type methods confined to the ensemble subspace (Sakov et al., 2012). However, ensemble
Kalman inversion and other ensemble Kalman methods do not provide a basis for systematic uncer-
tainty quantification, except in linear Gaussian problems (Annan & Hargreaves, 2007; Ernst et al., 2015;
Gland et al., 2009).

2. In an emulation stage, we train an emulator on the climate model statistics generated during the cali-
bration stage in order to quantify uncertainties. To emulate how the climate model statistics depend on
parameters to be calibrated, we use Gaussian processes (GPs), a hierarchical machine learning method
that learns smooth functions from a set of noisy training points (Kennedy & O'Hagan, 2001; Santner
et al., 2018). The GP approach also learns the statistics of the uncertainty in the Fresulting predicted
function. The training points here are provided by the climate model runs performed in the calibration
stage.

3. In a sampling stage, we approximate the posterior distribution on parameters given model and data, us-
ing the GP emulator to replace the parameter-to-climate statistics map. The emulator is used to estimate
error statistics and to sample from the approximate posterior distribution with MCMC. Because the GP
emulator is computationally cheap to evaluate and is smooth by virtue of the smoothing properties of
GPs, this avoids the issues that limit the usability of MCMC for sampling from climate models directly.

The CES approach is described in detail in Cleary et al. (2021), which provides a justification and contex-
tualization of the approach in the literature on data assimilation and Bayesian calibration. If uncertainty
quantification is not required, the calibration step provides an effective, derivative-free parameter estima-
tion method, and the emulation and sampling stages are not required. However, when uncertainty quanti-
fication is required, the role of the calibration stage is to provide a good set of training points in the vicinity
of the posterior mean or mode, to train the emulator in the next stage of the algorithm.

The purpose of this paper is to demonstrate the feasibility of the approach for estimating parameters in an
idealized general circulation model (GCM). This represents a proof-of-concept in a small parameter space
and limited data space; how the methods scale up to larger problems will be discussed at the end.

This paper is arranged as follows: Section 2 describes the experimental setup, including the idealized GCM
and the generation of synthetic data from it. Section 3 describes the CES approach and the methods used in
each stage. Section 4 describes the results of numerical experiments that use CES to calibrate parameters in
the idealized GCM and quantify their uncertainties. It also demonstrates how sampling from the posterior
distribution of parameters can be used to generate climate predictions with quantified uncertainties. Sec-
tion 5 discusses and summarizes the results and their applicability to larger problems.

2. Experimental Setup

2.1. General Circulation Model

We use the idealized GCM described by Frierson et al. (2006) and O'Gorman and Schneider (2008b), which
is based on the spectral dynamical core of the Flexible Modeling System developed at the Geophysical
Fluid Dynamics Laboratory. To approximate the solution of the hydrostatic primitive equations, it uses the
spectral transform method in the horizontal, with spectral resolution T21 and with 32 latitude points on the
transform grid. It uses finite differences with 10 unevenly spaced sigma levels in the vertical. We chose this
relatively coarse resolution to keep our numerical experiments computationally efficient, so that compari-
son of CES with much more expensive methods is feasible. The lower boundary of the GCM is a homoge-
neous slab ocean (1 m mixed-layer thickness). Radiative transfer is represented by a semi-gray, two-stream
radiative transfer scheme, in which the optical depth of longwave and shortwave absorbers is a prescribed
function of latitude and pressure (O'Gorman & Schneider, 2008b), irrespective of the concentration of wa-
ter vapor in the atmosphere (i.e., without an explicit representation of water vapor feedback). Insolation is
constant and approximates Earth's annual mean insolation at the top of the atmosphere.

We focus our calibration and uncertainty quantification experiments on parameters in the GCM's convec-
tion scheme, which is a quasi-equilibrium moist convection scheme that can be viewed as a simplified ver-
sion of the Betts-Miller convection scheme (Betts, 1986; Betts & Miller, 1986, 1993). It relaxes temperature T’
and specific humidity ¢ toward reference profiles on a timescale  (Frierson, 2007):
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Figure 1. Zonal average of relative humidity averaged over one month.
The black line shows the level at which data was extracted for computing

data misfit functions.

temperature profile is a moist adiabat, 7, (z), shifted by a state-depend-
ent and constant-with-height offset AT, which is chosen to ensure con-
servation of enthalpy integrated over a column: 7, ,(z) = 7,,,(z) + AT.The
reference specific humidity ¢, (z) is the specific humidity corresponding
to a fixed relative humidity RH relative to the moist adiabat 7, , (z). The
two key parameters in this simple convection scheme thus are the times-
cale 7 and the relative humidity parameter RH. We demonstrate how we can learn about them from syn-
thetic data generated with the GCM.

2.2. Variable Selection and Generation of Synthetic Data

The idealized GCM with the simple quasi-equilibrium convection scheme has been used in numerous stud-
ies of large-scale atmosphere dynamics and mechanisms of climate changes, especially those involving the
hydrologic cycle (e.g., Bischoff & Schneider, 2014; Bordoni & Schneider, 2008; Kaspi & Schneider, 2011, 2013;
Levine & Schneider, 2015; Merlis & Schneider, 2011; O'Gorman & Schneider, 2008a, 2008b; O'Gorman &
Schneider, 2009b; O'Gorman, 2011; Schneider et al., 2010; Wei & Bordoni, 2018; Wills et al., 2017). We know
from this body of work that the convection scheme primarily affects the atmospheric thermal stratification
in the tropics, with weaker effects in the extratropics (Schneider & O'Gorman, 2008). We also know that the
relative humidity parameter (RH) in the moist convection scheme controls the humidity of the tropical free
troposphere but likewise has a weaker effect on the humidity of the extratropical free troposphere (O'Gor-
man et al., 2011). Thus, we expect tropical circulation statistics to be especially informative about the pa-
rameters in the convection scheme. However, convection plays a central role in extreme precipitation events
at all latitudes (O'Gorman & Schneider, 2009a, 2009b), so we expect statistics of precipitation extremes to
be informative about convective parameters, and in particular to contain information about the relaxation
timescale 7.

As climate statistics from which we want to learn about the convective parameters, we choose 30-day aver-
ages of the free-tropospheric relative humidity, of the precipitation rate, and of a measure of the frequency
of extreme precipitation. Because the GCM is statistically zonally symmetric, we take zonal averages in
addition to the time averages. The relative humidity is evaluated at o = 0.5 (where o = p/p, is pressure p
normalized by the local surface pressure p,), as shown in Figure 1. As a measure of the frequency of pre-
cipitation extremes, we use the probability that daily precipitation rates exceed a high, latitude-dependent
threshold. The threshold is chosen as the latitude-dependent 90th percentile of daily precipitation in a
long (18,000 days) control simulation of the GCM in a statistically steady state. So for the parameters in the
control simulation, the precipitation threshold is expected to be exceeded 10% of the time at each latitude.
The convective parameters in the control simulation are fixed at their reference valuesRH = 0.7andz = 2 h
(O'Gorman & Schneider, 2008b), and we collect the parameters in the vector 87 = (QIQH,H: ) = (0.7,2 h). Fig-
ure 2 shows the mean relative humidity, the mean precipitation rate (broken down into its contributions
coming from the convection scheme and from condensation at resolved scales), and the 90th percentile pre-
cipitation rate, from the control simulation averaged over 600 batches of 30-day windows. We use the single
long control simulations of duration 18,000 days only for the creation of Figure 2 and for the estimation of
noise covariances.
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Figure 2. Long-term mean values of synthetic data. (a) Free-tropospheric relative humidity. (b) Total daily precipitation rate (solid) and its contributions from
convection (dashed) and grid-scale condensation (dotted). (c) Probability of daily precipitation exceeding a 90th percentile (which is trivially 10% in this case).

RH

Figure 3. Correlation matrix associated with the internal variability
estimated from the control simulation, plotted to illustrate the structure of

2.3. Definition of Noise Covariance

Estimation of model parameters requires specification of a noise covariance matrix, reflecting errors and
uncertainties in the data. The principal source of noise in our perfect-model setting with synthetic data is
sampling variability due to finite-time averaging with unknown initial conditions. The initial condition is
forgotten at sufficiently long times because of the chaotic nature of atmospheric variability, so a central
limit theorem quantifies the finite-time fluctuations around infinite-time averages that are caused by un-
certain initial conditions. Therefore, the asymptotic distribution of the fluctuations is a multivariate normal
distribution N(0,Z(0)) with zero mean and covariance matrix X(@). We estimate the covariance matrix at
("), that is, with the parameters 0" in the control simulation. To estimate £(6"), we run the GCM for
600 windows of length 30 days (because we use 30-day averages to estimate parameters) and calculate the
sample covariance matrix of the 30-day means. With the 3 latitude-dependent fields evaluated at 32 latitude
points, £(6") is a 96 x 96 symmetric matrix representing noise from internal variability in finite-time averag-
es. Hereafter, we make the assumption that X(0) ~ Z({)T) for any 6, and thus we treat ¥ as a constant matrix.

In practical implementations of this method, a corresponding constant =

can be estimated from climatology. We illustrate the correlation structure

Ext 1.00 of ¥ in Figure 3.

To generate synthetic data, we also include the effect of measurement er-
0.75 ror (Kennedy & O'Hagan, 2001). We add Gaussian noise to the time-aver-

aged model statistics, with a diagonal covariance structure in data space.

We construct the measurement error covariance matrix A to be diagonal
0.50 with entries §; > 0, where indexes over data type (the 3 observed quanti-
ties) and latitude (32 locations). Combining this measurement covariance
matrix A with the covariance matrix X arising from internal variability
leads to an inflated noise covariance matrix

[ =X+ diag(67) = T + A. 3)

0.25

There are many options to pick ;. We choose it by reducing the distance

of the 95% confidence interval to its nearest physical boundary for each i
-0.25 by a constant factor C, so as to retain physical properties (e.g., precipita-
tion must be nonnegative). Denote the mean y;, variance X, and a physi-
cal boundary set 0Q, for each data i, we choose

5, = Cmin(dist(yi 2500 dist(u; - 2,3, ,aQ,.)).

We take C = 0.2. This value implies a significant noise inflation, with
an average ratio of the standard deviations [I'; /\/3,; of 2.3. Figure 4

i’

-0.50

3. The matrix blocks labeled (RH, Pr, Ext) are associated with the observed ~ Shows the resulting data mean (gray circles), the 95% confidence interval

relative humidity, precipitation, and extreme precipitation.

of the inflated covariance (gray ribbon), and four realizations of the data
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Figure 4. Four noisy realizations of the synthetic data, plotted in color over the underlying mean (gray circles) and 95% confidence intervals from I'(6") (gray
bars). (a) Relative humidity. (b) Daily precipitation rate. (c) Probability of daily precipitation exceeding the 90th percentile of the long-term mean data.

y ...y (yellow to red lines), each defined by taking a different 30-day average of the GCM, and adding a
different realization of N(0,A). These four realizations will be used throughout when presenting our results.

3. Methods
3.1. Misfit Functions for Time Averaged Data

Both calibration and uncertainty quantification in CES rely on a misfit function (standardized error) that
quantifies mismatch between model output and data. Calibration minimizes a (possibly regularized) mis-
fit function over the parameter space; uncertainty quantification samples from the posterior distribution,
using a misfit function as the negative log-likelihood. To define the desired misfit function, we introduce
QT(G;Z(O)) and G, (0), which denote the mapping from the parameter vector @ to the 96 data points, either
averaged over a finite time horizon (T') or over an infinite time horizon (). The former average depends
on the unknown initial condition z'”, whereas the latter does not, because the initial condition is forgotten
after a sufficiently long time. We refer to G, (8;z'”’) as the forward model and G, (9) as the infinite time-ho-
rizon forward model.

To define the misfit function, we begin from the relationship between parameters @ and data y. Expressed
in terms of finite-time averages, this relationship has the form

y=G;0:2")+n, 1~ N(©OA). 4

The data realizations y’ for i = 1,...,4 in Section 2.3 can therefore be seen as evaluations of Equation 4 for
initial conditions zf“), noise realization 5; ~ N(0,A), and at a parameter 0'. This form has the undesirable
feature that it involves z(”, a quantity that is, not of intrinsic interest. However, the central limit theorem
asserts that

G 0:29)~ G, 0)+0, o ~NQO.3). (5)

This theorem quantifies the forgetting of the initial condition after sufficiently long times, for example, for
the atmosphere, 7 > 15 days (Zhang et al., 2019). From the definition Equation 3 of the total noise covari-
ance matrix, ' = ¥ + A, we can combine the observational and internal-variability noise and write

y=G,@0)+y, v~NQOI). (6)

We can equally interpret y* for i = 1,...,4 from Section 2.3 as evaluations of Equation 6 with noise
7; ~ N(0,T') and at parameter §". This removes the dependence on initial condition but is expressed in terms
of infinite-time averages. Computing these averages directly is not feasible, but (in the emulation phase) we
introduce a procedure that enables us to learn a surrogate model for G, using carefully chosen finite-time
model evaluations G;.
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In the Bayesian approach to parameter learning, the aim is to determine the conditional distribution of
parameters @ given a realization of data y (written 6ly) by applying Bayes theorem, which states P(01y) is
proportional to the product of the likelihood P(yl@) and the prior P(@). In the case where a surrogate model
for G, is available, yl@ is defined as the pushforward of  through a parameter-to-data map Equation 6, and
we define the misfit function, the negative logarithm of the likelihood, as

1
®0.5) = ly - G. @[ 7)

where|| - ||-=]| T7"/*- ||, is the Mahalanobis distance. Before a surrogate model for G, is available, this func-
tion is infeasible to evaluate, but as yl@ can be defined using Equation 4 as well, we consider the related
misfit function for the finite-time model evaluation at an initial condition w'®:

<I)T(0,y;w(0)) =—

1 BRONE
2 ||y - Gr(@;w )”r+>: . (8)

In general, w® = z,fo), the initial conditions used to generate y. We view evaluation of G, from any initial
condition as a random approximation of G,; hence, the additional internal-variability covariance matrix X
appears in Equation 8.

The CES algorithm in this context proceeds as follows: use optimization based on Equation 8 to calibrate
parameters; on the basis of evaluations of G, made during the calibration, learn a GP surrogate for G,; then
use this surrogate to sample from the posterior distribution of (1)) defined using Equation 7. We will hence-
forth neglect 7 in our notation, and just write G, (@) and @ (6, y). Viewing the initial condition as random
makes these objects random as well.

We have the following undesirable properties of the finite-time model average G, (0): (a) it is computation-
ally expensive to evaluate for large T’ (b) it can be nondifferentiable or difficult to differentiate (e.g., because
of non-differentiability of parameterization schemes in climate models); and (c) evaluations of it are not
deterministic (when one drops the explicit dependence on initial conditions). Our methodology, detailed in
the upcoming sections, is constructed to overcome these difficulties.

An alternative approach to emulating the map G, (0) is to emulate the log-likelihood function ®(8, y) direct-
ly. This is often more computationally efficient as one always models a scalar function. But we found this ef-
ficiency comes at the cost of reduced accuracy and interpretability; for example, the choice of observational
noise is unclear. In preliminary experiments, these drawbacks proved detrimental to performance, and so
we abandoned the approach.

3.2. Prior Distributions

The priors of the physical parameters are taken to be the logit-normal and lognormal distributions,
Gry ~ Logitnormal(0,1) and 8, ~ Lognormal(12 h,(12 h)?), for the relative humidity and timescale parame-
ters, respectively. That is, we define the invertible transformation

T (Bgn-0,) = [logit(&RH), 1n[19—f] ,
S

which transforms each parameter to values along the real axis. Through an abuse of notation, we relabel the
transformed (or computational) parameters as 6, and the untransformed (or physical) parameters (relative
humidity and timescale) are uniquely defined by 7 '(#). The forward map G, is defined as a composition
Fp o 7" where F; is the forward map defined on the physical parameters.

This choice allows us to apply our methods in the transformed space, where our priors are normally distrib-
uted and unbounded (namely logit (6z,) ~ N(0,1) and log(6,) ~ N(10.17,1)); meanwhile the climate model
is applied only to physically defined variables, 6}, € [0,1]and 8, € [0,0). In this way the prior distributions
enforce physical constraints on the parameters.
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3.3. Calibrate: Ensemble Kalman Inversion

Ensemble Kalman inversion (EKI) (Iglesias et al., 2013) is an offline variant of ensemble Kalman filtering
designed to learn parameters in a general model, rather than states of a dynamical system. EKI can be
viewed as a derivative-free optimization algorithm. Given a set of data y, it iteratively evolves an ensemble
of parameter estimates both so that they achieve consensus and evolve toward the optimal parameter value
0" (close to @ if the quality/volume of the data is good enough) that minimizes an objective function, in our
case given by the misfit Equation 8, possibly with inclusion of a regularization term. It has great potential
for use with chaotic or stochastic models due to its ensemble-based, derivative-free approach for optimizing
parameters. Theoretical work shows that noisy continuous-time versions of EKI exhibit an averaging effect
that skips over fluctuations superimposed onto the ergodic averaged forward model (Duncan et al., 2021).
Empirical results suggest similar phenomena apply to EKI as implemented here, justifying the application
to noisy forward model evaluations. Furthermore, the derivative-free approach scales well to high-dimen-
sional parameter spaces, as evidenced by the use of Kalman filtering in numerical weather prediction,
where billions of parameters characterizing atmospheric states are routinely estimated (Kalnay, 2003). This
makes the algorithm appealing for complex climate models. The algorithm is mathematically proven to
find the optimizer, within an initial, ensemble-dependent subspace, for linear models (Schillings & Stu-
art, 2017b). It is known to be effective for high-dimensional nonlinear models (Iglesias et al., 2013; Schnei-
der et al., 2020a, 2020c), such as the nonlinear map from parameters to data represented by the idealized
GCM we use in our proof-of-concept here.

The EKI algorithm we use is detailed in Iglesias et al. (2013). The algorithm iteratively updates an ensem-
ble of parameters, 0,(,1"), where m = 1,...M denotes an ensemble member, and the superscript n denotes the

iteration count. The algorithm uses the ensemble to update parameters according to the following equation

o = 0 + ey (r+ ) (v - gro),

m m

where Cg; is the empirical covariance of the ensemble of quantities of interest from model runs, and Cy,
is the empirical cross-covariance of the ensemble of parameters and the ensemble of quantities of interest.
The covariance matrix of the distribution of differences between realizations of y and G, (-)is T" + Z, which
is approximated empirically in the update by I" + Cg’g). When ensemble methods are used as approximate
samplers (Chen & Oliver, 2012; Emerick & Reynolds, 2013), additional independent noise is added to y at
each iteration and for every ensemble member; however, because we are solving an optimization problem
within this calibration phase, such noise is not added here.

We initialize the algorithm by drawing an ensemble of size M = 100 by sampling the parameter space from
assumed prior distributions on the parameters.

3.4. Emulate: Gaussian Process Emulators (EKI-GP)

In the emulation stage, we learn a surrogate for G, by training a Gaussian process on samples of G,; the
Gaussian process is a natural choice of tool here due to the Gaussianity of fluctuations in G, about G, de-
scribed by the central limit theorem (5). During the calibration stage with N iterations and an ensemble of
size M, we obtain a collection of input-output pairs

0.6.(0')), n=0,..,N, m=1,.. M.

The cloud of points {§"”} from the calibration stage (a) spans the prior distribution, as initial EKI draws are
from the prior, and (b) in later iterations, has a high density around the point @” to which EKI converges.
We use regression to train a GP emulator mapping 6 to G, (), using the input-output pairs {8\, G, (6")},
which are referred to as training points in the context of GP regression. The emulation will be most accurate
in regions with more training points, that is, around @". This is typically near the true solution @, and it is
the region where the posterior parameter distribution will have high probability; this is precisely where un-
certainty quantification requires accuracy. In effect, EKI serves as an effective algorithm for selecting good

training points for GP regression.

DUNBAR ET AL.

8 of 24



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2020MS002454

Gaussian processes emulate the statistics of the input-output pairs, using a Gaussian assumption. Specifi-
cally, we learn an approximation of the form

gT(O) ~ N(QGP(G),EGP(O)).

The approximation is learned from the input-output pairs assuming that the outputs are produced from a
mean function G, (6), and subject to normally distributed noise defined by a covariance function X ,(0),
both dependent on the parameters. The choice of notation here is to imply the fact that G5, (@) serves to
approximate the (unattainable) infinite-time average of the model G, (), and ZGP(O) serves to approximate
the covariance matrix 2. Importantly, > GP(9 ) is #-dependent as it also includes the uncertainty in the ap-
proximation of the emulator at @ (for example, the emulator uncertainty 2, (€) will be large when @ is far
from the inputs {#, } used in training).

m

The atmospheric quantities from which we learn about model parameters are correlated (e.g., relative hu-
midity or daily precipitation at neighboring latitudes are correlated), resulting in a nondiagonal covariance
matrix . Any GP emulator therefore also requires a nondiagonal covariance X ;,(€) . We can enforce this,
by mapping the correlated statistics from the GCM into a decorrelated space by using a principal component
analysis on %, and then training the GP with the decorrelated statistics to produce an emulator with diago-
nal covariance iGP(O). We use the notation (N) to denote variables in the uncorrelated space. To this end, we
first decompose ¥ as

T =VDV',
here, V is an orthonormal matrix of eigenvectors of the covariance matrix ¥, and D is the diagonal matrix of
the square root of the eigenvalues, or the ordered standard deviations in the basis spanned by the eigenvec-
tors of . We store the outputs from the pairs as columns of a matrix ¥, = (G;(6,)), and then we change the
basis of this matrix into the uncorrelated coordinates

Y =Dy,
When trained on ¥, GP returns the mean QGP(H) and the (diagonal) covariance matrix iGP(O). We use tools
from scikit-learn (Pedregosa et al., 2011) to train the emulator. After the diagonalization, we can train a sca-
lar-valued GP for each of the 96 output dimensions, rather than having to train processes with vector-valued
output. We construct a kernel by summing an Automatic Relevance Determination (ARD) radial basis func-
tion kernel and a white-noise kernel. The ARD kernel is a standard squared exponential kernel, where each
input dimension has an independent lengthscale hyperparameter. This corresponds to regression, rather
than interpolation, and the variance of the white noise kernel reflects the noise level assumed in the regres-
sion. We train by learning 4 hyperparameters: the radial basis function variance, a lengthscale for each of
the two parameters @ (due to ARD), and the white-noise variance. We train using the input-output pairs
of the initial ensemble plus N = 5 subsequent iterations of the EKI algorithm. We use M = 100 ensemble
members; thus, the training requires (N + 1) x M = 600 short (30-day) runs of our GCM.

‘We continue using the uncorrelated basis in the sampling stage; where required, we transform the output of
the emulator back into a correlated basis,

Gor(0)
T cp(0)

VDGep(6),
VDE;p(0)DV .

3.5. Sample: MCMC Sampling With a Gaussian Process Emulator

To quantify uncertainties, we use MCMC to sample the posterior distribution of parameters with the GP em-
ulator. The primary reason for using the GP emulator goes back to the seminal paper by Sacks et al. (1989)
and concerns the fact that it can be evaluated far more quickly than the GCM at a point in parameter space;
this is important as we require more than 10° samples within the likelihood P(y10) in a typical MCMC run
to sample the posterior distribution of parameters given data. However the emulator is also important for
two additional reasons: (a) it naturally includes the approximation uncertainty (within iGP) of using an em-
ulator; (b) it smooths the likelihood function because we work with an approximation of Equation 7 based
on the smooth G, rather than Equation 8 based on the noisy G,; as a result, MCMC is less likely to get stuck
in local extrema.
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Recall that we trained the GP in uncorrelated coordinates. Within MCMC, one can either map back into
the original coordinates or continue working in the uncorrelated space. We choose to continue working in
the uncorrelated space, and so we map each data realization y into this space: § = D'V y. In the Gaussian
likelihood, we can use the GP emulated mean QGP(G) and covariance matrix iGP(O) as surrogates for the
map G, and the internal variability covariance matrix ¥ (after passing to the uncorrelated coordinates). That
is, we approximate the Bayesian posterior distribution as

P@ly) o P(y10)P(8)

1 Lis_ e
oc 7))exp [E ||y - gGP(g)”I%(;p(o)]]P(O)

det(T;p (8 9)

1. =~ 1 .
o exp[—; 5 - Ger DI} 0, —ElogdetFGP(B)j]P’(&).

here, Tp(0) = £p(0) + D'V'AVD™ is the GP approximation of T' = ¥ + A in the uncorrelated co-
ordinates. We include the (often overlooked) log-determinant term, arising from the normalization
constant due to dependence of ', on 6. In the transformed parameter space, our prior (@) is also
Gaussian and therefore can be factored inside this exponential, adding a quadratic penalty to the neg-
ative log-likelihood. The MCMC objective function is then defined to be the negative logarithm of the
posterior distribution Equation 9; explicitly, given a Gaussian prior N(m,C) on the parameters, we
define it as

- 1. 5 1 ~ 1
O piemc(6.y) = 3 Ily - gGP(a)”%-GP(m +510gdetrcp(9) + 3 |6 — mlf¢- .

Evaluation of @y requires only the mean and covariance from the GP emulator. Furthermore @ y;yc
is smooth and so is suitable for use within an MCMC algorithm to generate samples from the approximate
posterior distribution of the parameters. Cleary et al. (2021) contains further discussion of MCMC using
GPs to emulate the forward model, including situations where data comes from finite time-averages but the
emulator is designed to approximate the infinite time-horizon forward model.

We use the random walk metropolis algorithm for MCMC sampling. The priors chosen were the same,
physics-informed priors used to initialize EKI. We choose the proposal distribution also as a Gaussian with
covariance proportional to the prior covariance. The MCMC run consists of a burn-in of 10,000 samples
followed by 190,000 samples.

3.6. Benchmark Gaussian Process (B-GP)

The performance of any emulator is dependent on the training points. Since we use an adaptive procedure
(EKI) to concentrate the training points, which is the novel approach introduced in Cleary et al. (2021), we
also train a benchmark emulator to compare our results with those resulting from more traditional, brute-
force approaches to the emulation.

For this purpose, we use a GP emulator trained on a uniform set of points. Even in two dimensions, it
is prohibitively costly for this set to span the support of the prior distribution. Instead, we use knowl-
edge of the location and size of the posterior distribution to place a uniform grid of 40 x 40 = 1600
training points over [-1.25,-0.5] x [8.0,10.0] in the transformed parameter space. This corresponds to
[0.62,0.77] x [0.83 h,6.12 h] in the untransformed parameter space and captures the region of high prob-
ability of the posterior. The use of posterior knowledge here reduces the number of training points
by a factor of 20 when compared to spanning 95% of the prior mass; no such posterior information
is used in the CES algorithm, which automatically places training points where they are needed. The
benchmark emulator uses the same kernel and training setup as in Section 3.4, and we use the trained
emulator in MCMC experiments in the same way as described in Section 3.5. To distinguish the two
methods, we refer to the EKI-trained GP as EKI-GP and the benchmark (traditionally trained) GP
as B-GP.
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4. Results

To demonstrate the dependence of the parameter uncertainty on the realization of the (inflated) synthetic
data, we reproduce the experiments four times with each of the four realizations shown in Figure 4. We
denote these four sets of data y",.., y¥.

4.1. Calibrate: Ensemble Kalman Inversion

We use the first six iterations of EKI in the CES training process. The initial ensemble is spread over the
whole parameter space but collapses within a few iterations near the true parameter values—to within 10%
error in G,y and 30 min error in @, (Figure 5). That is, the algorithm evolves toward consensus and toward
the true solution. Biases arise from the realization of internal variability and the realization of the observa-
tional noise in each y’.

To check for EKI convergence, we evaluate an additional four EKI iterations (labeled 0 to 9). At each iter-
ation n, we compute residuals of the ensemble mean for each realization of the synthetic data y,... y*
created at the true parameters 6,

2

m

, M ,
Residual(n; y) = HL 3G (0) -y

m=1 r

weighting the residuals by the covariance matrix I" of the synthetic data. Figure 6a shows the residual as a
function of EKI iteration. The residual decreases quickly over the first few iterations, before plateauing for
subsequent iterations. Figure 6b shows standard deviations of the ensemble of parameters. The standard
deviations decrease monotonically from iteration to iteration, reflecting the evolution toward consensus.
The behavior is qualitatively similar for all realizations; quantitative differences reflect different realizations
of internal variability in the different data realizations. This behavior reflects the fact that EXI is an opti-
mization method for calibrating parameters: it is not constructed to learn uncertainty but rather to reach
consensus around a single parameter value that makes the misfit small (Schillings & Stuart, 2017a).

4.2. Emulate: Validation

Figure 7 shows the parameter values used for training points for the EKI-GP and B-GP. We use the first six
EKI iterations (i.e., 600 training points) for training. These are plotted over the associated objective function
®,;cmc- The panels in the left column correspond to the EKI-GP using data vectors y,...,y'*). We see that
the resulting objective functions ® ;- from training EKI-GP at the marked training points (black dots)
lead to unimodal distributions with a minimum near to a significant number of the training points; there
are also training points that fall outside of the plotting domain (see Figure 5 for their extent). The right col-
umn of Figure 7 shows the benchmark grid for B-GP, which we use as a comparison for the EKI-GP meth-
od; the contours of @, were calculated using the same realization as their counterpart EKI-GPs. We see
that for each realization the EKI-GP and B-GP produce objective functions that are qualitatively similar in
terms of the magnitude of the minimum, the location of the minimum, and the approximate shape of the
objective function; the quantitative differences are accounted for by differing geometry and density of train-
ing points (and hence a difference in approximation uncertainty). In both settings, the objective function
®piomc is smooth because the GP smoothly approximates G,.

EKI-GP shows similar results for the objective function as B-GP, at a fraction of the computational effort.
B-GP is far less practical as a methodology than is EKI-GP because it does not scale well to high-dimen-
sional parameter spaces; it requires many more training points than EKI-GP. Even in our two-dimensional
experiments, we needed to use posterior information to reduce the number of training points for B-GP by
a factor of 20. The B-GP comparison is included simply to demonstrate that EKI-GP achieves comparable
results to those achieved by means of traditional emulation.

We validate the emulator approximation to the data by making a prediction at the true parameters §'. We
display G;p(#") and the 95% confidence intervals computed using the variance from > p(@7) in Figure 8
for EKI-GP, and in Figure 9 for B-GP. The rows of Figure 8 correspond to the EKI-GP results for y,.. y®.
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Figure 5. Ensemble Kalman Inversion (EKI) ensemble at iterations 0 to 5 displayed as particles in parameter space. Left column: all members; right column:
zoom-in near true parameter values. Each row represents optimization with a different data vector y'” from Figure 4. The (initial) prior ensemble 0 is
highlighted in dark gray, and the final ensemble five is highlighted in pink. The intersection of the dashed blue lines represents the true parameter values used
to generate observational data from the general circulation model (GCM).
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Figure 6. Convergence behavior tests over nine iterations of Ensemble Kalman Inversion (EKI) for each realization of the data. The vertical dashed line marks
the final iteration of Figure 5; we also show behavior of 4 further iterations. (a) Ensemble-mean residuals relative to synthetic data for each EKI iteration. (b)
Standard deviation of ensemble for the relative humidity parameter (circle) and timescale parameter (triangle) for each realization.

In both figures we also show the statistics of 600 30-day samples from the control simulation at #". Both
the mean and 95% confidence intervals of all EKI-GP emulators (orange line and ribbon) closely match the
statistics from the GCM runs (blue dots and error bars), as does the prediction from the B-GP (dark red line
and ribbon). The training data are sufficient to ensure that the predicted 95% confidence interval from the
emulators do not produce unphysical values (such as giving negative precipitation rates, or relative humid-
ities outside [0,1]).

4.3. Sample: MCMC Sampling

We use an MCMC algorithm to generate a set of samples from the posterior distribution with the help of
the GP emulator. We choose the random walk step size (which multiples the covariance in the proposal) at
the start of a run to achieve proposal acceptance rates near to 25% (This is near optimal in a precise sense
for certain high-dimensional posteriors [Roberts & Rosenthal, 2004]; in practice, it works well beyond this
setting.) All sampling is performed in the transformed space where the prior distribution is normal. Fig-
ure 10 shows kernel density estimates of the MCMC results; the panels in the left column are for EKI-GP
(for yV,...,y), and the panels in the right column are for B-GP for the same data realization. We display
contours of the posterior that contain 50%,75%, and 99% of the mass of the posterior density.

All sets of results converge to similar regions of the parameter space about the true parameters, and the
spread of uncertainty is quantified similarly in both EKI-GP and B-GP. Table 1 shows the standard devia-
tions of the individual parameters alongside the empirical standard deviation calculated from the ensemble
spread in EKI iteration 9. The standard deviations from the MCMC posterior based on EKI-GP and B-GP
are similar. We re-emphasize that the EKI is constructed as an ensemble optimization method and has the
property that the ensemble evolves toward consensus among the parameters, while also matching the data:
The ensemble collapses. As a result, the EKI ensemble spread is an inadequate estimate the uncertainty, as
seen in Table 1. As explained in the introduction, ensemble methods are only justifiable to quantify uncer-
tainties in the Gaussian posterior setting (Chen & Oliver, 2012; Emerick & Reynolds, 2013). Our approach
is justifiable whenever the GP accurately approximates the forward model (Cleary et al., 2021). The use of
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Figure 7. Training points for the Gaussian processe (GP) emulators (EKI-GP and B-GP), plotted over the objective function @, for different data
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realizations y ..., y® (rows). Left column: particles representing members of the first six Ensemble Kalman Inversion (EKI) iterations. Right column: grid
(uniform in the transformed parameters) used to train the benchmark Gaussian process. In both cases, some additional training points fall outside of the

plotting domain.
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Figure 8. Comparison between the general circulation model (GCM) statistics at the true parameters 6 and the trained EKI-GP emulator at 8". The four rows
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error bars marking a 95% confidence interval from variances on the diagonal of I'. Orange: predicted mean (line) and 95% confidence interval (shaded region)
produced by the GP emulator.
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Figure 9. Comparison between the general circulation model (GCM) statistics at the true parameters @ and the trained B-GP emulator predictions at 8",
Blue: GCM mean (dots) averaged over 600 30-day runs, with the error bars marking a 95% confidence interval from variances on the diagonal of I'. Dark red:
predicted mean (line) and 95% confidence interval (shaded region) produced by the B-GP emulator.

EXKI for the design of training points for the GP does not require accurate uncertainty quantification within
EKT; it only relies on EKI approximately locating minimizers of the model-data misfit.

There is sampling variability because of the different data realizations. This sampling variability can be
assessed by asking which probability contours contain the true parameters. For both EKI-GP and B-GP, in
three of four realizations, we capture the true values within 50% of the posterior probability mass; the real-
ization y© is captured only within the 99% contour of the posterior probability.

4.4. Uncertainty Quantification in Prediction Experiments

To illustrate how the posterior distribution of parameters obtained in the sample step of the CES algorithm
can be used to produce climate predictions with quantified uncertainties, we consider an idealized glob-
al-warming experiment. As in O'Gorman and Schneider (2008a, 2008b),, we rescale the longwave opacity of
the atmosphere everywhere by a uniform factor ¢. In the control climate we have considered so far, @ = 1.
We generate a warm climate by setting & = 1.5, which results in a global-mean surface air temperature in-
crease from 287 K in the control climate to 294 K in the warm climate. To see parametric uncertainty rather
than internal variability noise in the resulting “climate change predictions,” we use long (7,200-day or ap-
proximately 20-year) averages in the prediction experiments.

We evaluate predictions of the latitude-dependent relative humidity and mean precipitation rate that we
used in the CES algorithm. We also consider the frequency of precipitation extremes, now taken as the fre-
quency with which the 99.9th percentile of daily precipitation in the control simulation is exceeded (rather
than the 90th percentile we considered earlier). This last statistic indicates how the frequency of what are
1-in-1,000 day precipitation events in the control climate change in the warmer climate.

We investigate the effect of parametric uncertainty on predictions by taking 100 samples of parameters
from the posterior, creating a prediction for each sample, and comparing statistics of these runs with runs
in which parameters are fixed to the true values @'. The climate statistics in the control climate are shown
in the left column of Figure 11. The runs from posterior samples (orange) and with fixed true parameters
(blue) match well. The noise due to internal variability is quantitatively represented by the blue shaded re-
gion. Unlike in the earlier figures with short (30-day) averages (e.g., Figure 9), the internal variability noise
here is small relative to the parametric uncertainty because of the (long) 7,200-day averaging window. The
orange shaded region contains both internal variability and parametric uncertainty and is dominated by
parametric uncertainty. This remains the case in the warmer climate (right column of Figure 11).

The effects of global warming on atmospheric quantities is seen by comparing the two columns of Fig-
ure 11. Relative humidity is fairly robust to the warming climate, and precipitation rates increase globally
(O'Gorman & Schneider, 2008b). The most dramatic changes occur for the frequency of extreme precipita-
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Figure 10. Density plot of Markov chain Monte Carlo (MCMC) samples of the posterior distribution. The contours are drawn to contain 50%, 75%, and 99% of

the distribution generated from the samples. The left column show distributions learned using EKI-GP at y

+...y™®, and the right column using B-GP at the

same data realizations. The blue dot represents the true parameters, while the red plus is the average across particles in the 6th Ensemble Kalman Inversion

(EKI) iteration.
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Table 1
Average Standard Deviations of Parameters From EKI and MCMC Experiments Over y¥ .. y®

Ory o, (hrs)

EKI (Iteration 9) 0.017 0.053
MCMC (EKI-GP) 0.099 0.265
MCMC (B-GP) 0.096 0.359

tion events (O'Gorman & Schneider, 2009b). What is a 1-in-1,000 day event in the control climate (e.g., oc-
curring with frequency 0.001) occurs in the extratropics of the warmer climate an order of magnitude more
frequently, with the 95% confidence interval spanning 0.01 to 0.03. That is, a 1-in-1,000 day event in the
control climate occurs every 30-100 days in the warmer climate. The parametric uncertainty is particularly
large for extreme precipitation events within the tropics—behavior one would not be able to see in global
warming experiments with fixed parameters. This is consistent with the known high uncertainty in pre-
dictions of tropical rainfall extremes with comprehensive climate models (O'Gorman & Schneider, 2009a).

5. Conclusion and Discussion

The primary goal of this article was to demonstrate that ensemble Kalman inversion (EKI), machine learn-
ing, and MCMC algorithms can be judiciously combined within the calibrate-emulate-sample framework
to efficiently estimate uncertainty of model parameters in computationally expensive climate models. We
provided a proof-of-concept in a relatively simple idealized GCM.

Our approach is novel because we train a machine learning (GP) emulator using input-output pairs gener-
ated from an EKI algorithm. This methodology has several advantageous features:

1. Itrequires a modest number of runs of the expensive forward model (typically, O(100) runs).

2. It generally finds optimal or nearly optimal parameters even in the presence of internal variability noise
because EKI is robust with respect to such noise.

3. The resulting GP emulation is naturally most accurate around the (a priori unknown) optimal parame-
ters because this is where EKI training points concentrate.

4. MCMC shows robust convergence to the posterior distribution, and allows identification of the optimal
parameters with the maximum of the posterior probability, because it uses an objective function that is,
smoothed by GP emulation.

The effectiveness of GP depends on the training points, and a user must choose how many iterations of EKI
to use for training (before ensemble collapse). In practice, we find the GP performance is robust as long as
we include the initial iteration of training points (drawn from the prior) in our training set. The necessity of
using the initial ensemble could be side-stepped by using an ensemble method that does not collapse, such
as the recently introduced ensemble Kalman sampler (EKS) (Garbuno-Inigo et al., 2020).

The CES algorithm is efficient, as it addresses two dominant sources of computational expense. First, poor
prior knowledge of model parameters requires blind exploration of a possibly high-dimensional parameter
space to find optimal parameters and thus the region of high posterior probability. The CES framework
handles this with an EKI algorithm, which we show to be successful when using time averaged data from
a chaotic nonlinear model. Second, computing parametric uncertainty with a sampling technique (such as
MCMC) generally requires many (10>-10%) evaluations of an expensive forward model. We instead solve a
cheap approximate problem by exploiting GP emulators. We train the emulators on relatively few (O(100))
intelligently chosen evaluations provided by EKI, which ensures that training points are placed where they
are most needed—near the minimum of the model-data misfit. The training itself introduces negligible
computational cost relative to the running of the forward model, and the computational expense of evaluat-
ing the emulator in the sampling step is also negligible. Hence, the CES framework achieves about a factor
1,000 speedup over brute-force MCMC algorithms. Significant efforts to accelerate brute-force MCMC with-
out approximation have been undertaken (Jirvinen et al., 2010; Solonen et al., 2012), and improvements
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Figure 11. Comparison of statistics of a 7,200-day average in a climate-change simulation. Left column: control
climate; right column: warmer climate. Synthetic observational data evaluated at the true fixed parameters are shown
in blue, while data evaluated at 100 samples from the posterior distribution (EKI-GP) are shown in orange (We choose
the posterior from the first data realization, top-left panel of Figure 10.) The solid lines are the medians, and the shaded
regions represent the 95% confidence intervals (between the 2.5th and 97.5th percentiles). Top: Relative humidity in
mid-troposphere. Middle: Precipitation rate. Bottom: Frequency with which 99.9th percentile of latitude-dependent
daily precipitation in the control climate is exceeded.

of up to a factor 5 speedup have been made with adaptive and parallelized Markov chains. However, these
approaches still are considerably more expensive than the CES algorithm.

The CES algorithm also has a smoothing property, which is beneficial even in situations where a forward
model is cheap enough to apply a brute-force MCMC. If the forward model exhibits internal variability, the
objective function for the sampling algorithm will contain a data misfit of the form Equation 8, which has a
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random component because it contains a finite-time average. Without more sophisticated sampling meth-
ods, MCMC algorithms get stuck in noise-induced local minima. In the CES algorithm, only EKI uses the
functional Equation 8, and EKI is well suited for this purpose. The GP emulator learns the smooth, noiseless
model G, (in which internal variability disappears), using evaluations of G, (which are affected by internal
variability). Thus, MCMC within the CES algorithm uses the smooth GP approximation of Equation 7.

The MCMC results in this study successfully capture the true parameters and their uncertainties. The re-
sults contain natural biases arising from the use of prior distributions, internal variability of the climate, and
use of a single noisy sample as synthetic data. Despite the sampling variability and emulator constraints,
our MCMC samples were able to capture the true parameters within an estimated 99% confidence interval
in our examples, demonstrating the potential of EKI-trained GP emulators for MCMC sampling. Validation
of the emulator (Figure 8) further supports the MCMC results, as do our comparisons with MCMC using
the benchmark emulator (Table 1). The GP emulator both smooths the objective function and allows us to
quantify uncertainty by sampling from the posterior distribution. This contrasts with uncertainty quantifi-
cation based on the EKI ensemble, which underestimates the true uncertainties in our experiments by an
order of magnitude. As used here, EKI should be viewed as an optimization algorithm and not a sampling
algorithm. Adding additional spread to match the posterior within EKI may be achieved for Gaussian pos-
teriors (Chen & Oliver, 2012; Emerick & Reynolds, 2013) or by means of EKS (Garbuno-Inigo et al., 2020);
however, these methods are not justifiable beyond the Gaussian setting. The MCMC algorithm within CES,
on the other hand, samples from an approximate posterior distribution and is justifiable beyond the Gauss-
ian posterior setting (Cleary et al., 2021).

The key to the success of the CES methodology is founded on ensemble Kalman methods and the cheap
derivative-free manner in which they can learn states or, in the setting of this paper, parameters, from
data. We emphasize that there exists already significant work showing, empirically, that ensemble Kalman
methods can be generalized to perform uncertainty quantification beyond the Gaussian setting (Bocquet
& Sakov, 2012, 2014; Defforge et al., 2019, 2021; Gu & Oliver, 2007; Li & Reynolds, 2009; Sakov et al., 2012)
by means of iterated EnKF, which may be motivated via the Newton method (Sakov et al., 2012), and also
by means of ensemble-based Gauss-Newton (Sakov et al., 2018) in the presence of model error. However,
it is unclear how this methodology might be rigorously justified and developed as a general-purpose tool,
despite the empirical successes it has shown on a number of challenging problems. In contrast, CES may be
systematically refined, based on the theory of Gaussian process emulation (Williams & Rasmussen, 2006)
and its use within Bayesian inference (Stuart & Teckentrup, 2018). CES does not depend on the UQ prop-
erties of ensemble methods, only on their optimization and estimation properties, which are amenable to
systematic analysis (de Wiljes et al., 2018; Kelly et al., 2014; Schillings & Stuart, 2017a). For these reasons,
CES has considerable potential as a systematic approach to uncertainty quantification.

Good scaling of the CES algorithm with the dimension of the parameter space will be of critical importance
for moving beyond the current, low-dimensional proof-of-concept setting. Each stage of the CES algorithm
scales to higher dimensions: For the calibration stage, ensemble methods scale well to high-dimensional
state and parameter spaces, typically with 0(10?) forward model runs (Kalnay, 2003; Oliver et al., 2008),
if used with localization. In high dimensions, regularization is also typically needed in calibration algo-
rithms, and various regularization schemes can be added (Chada et al., 2020; Garbuno-Inigo et al., 2019;
Iglesias, 2015, 2016; Schneider et al., 2020b). The sampling stage also scales well to high dimensions. In par-
ticular, MCMC methods scale to non-parametric (infinite-dimensional) problems, in which the unknown
is a function (Cotter et al., 2013). The current bottleneck for scalability lies with the GP emulator, which
does not scale easily to high-dimensional inputs. However, other supervised machine learning techniques
have potential to do so. For example, random feature maps and deep neural networks show promise in this
regard (Bhattacharya et al., 2020; Nelsen & Stuart, 2020); incorporating these tools in the CES algorithm is
a direction of current research.

An alternative form of constraining parameter uncertainty is history matching, or precalibration (Edwards
et al., 2011; Vernon et al., 2010; Williamson et al., 2013). The idea complements that of Bayesian uncertain-
ty quantification, where instead of searching for a high probability region of parameter space with respect
to data, one rules out regions of parameter space that are deemed inconsistent with the data. Couvreux
et al. (2020) and Hourdin et al. (2020) recently constrained the parameter space of a parameterization
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scheme by approximating a plausibility function over the parameter space using a Gaussian process, and
then removing “implausible” regions of parameter space where the plausibility function passes a threshold.
This removal process is iterated until the uncertainty of the emulator is small enough, or the space becomes
empty. History matching accomplishes a similar adaptivity task as performed in the CES algorithm by EKI.
During early stages of history matching, however, one must sample the full parameter space with reasona-
ble resolution, and emulator training is required at every iteration to evaluate the plausibility function. In
contrast, in the CES algorithm, EKI draws a modest numbers of samples at every iteration and can work
directly with noisy model evaluations, lowering the computational expense. The output of history matching
is a (possibly empty) acceptable set of forward model runs; sampling this set leads to an upper bound on the
prediction uncertainty. The benefit of the CES algorithm is that it provides samples of the posterior distri-
bution, which lead to full estimates of prediction uncertainty (Figure 11). For this reason, history matching
has been proposed as a preprocessing step for Bayesian uncertainty quantification, known as precalibration
to improve priors and assess model validity (Edwards et al., 2011; Vernon et al., 2010). The CES algorithm
targets the Bayesian posterior distributions directly.

In the more comprehensive climate modeling settings we target, data will be given from earth observations
and from local high-resolution simulations (Schneider, Lan, et al., 2017). In these settings, model error leads
to deficiencies when comparing model evaluations to data, leading to structural biases and uncertainty that
must be quantified. Structural model errors can be quantified with a flexible hierarchical Gaussian process
regression that learns a non-parametric form of the model deficiency, as demonstrated in prototype prob-
lems in Schneider et al. (2020a). This approach represents model error in an interpretable fashion, as part of
the model itself, rather than in the data space as pioneered in Kennedy and O'Hagan (2001).

The CES framework has potential for both the calibration and uncertainty quantification of comprehensive
climate models, and other computationally expensive models. It is computationally efficient enough to use
data averaged in time (e.g., over seasons), which need to be accumulated over longer model runs. Time-av-
eraged climate statistics, including mean values and higher-order statistics such as extreme value statistics,
are what typically matters in climate predictions. CES allows us to focus model calibration and uncertainty
quantification on such immediately relevant statistics. Using time averaged statistics also has the advantage
that it leads to smoother, albeit still noisy, objective functions when compared with calibration of climate
models by minimizing mismatches in instantaneous, short-term forecasts (Schneider, Lan, et al., 2017). The
latter approach can improve short-term forecasts but may not translate into improved climate simulations
(Schirber et al., 2013). It also suffers from the difficulty that model resolution and data resolution may be
mismatched. Focusing on climate statistics, as we did in our proof-of-concept here, circumvents this prob-
lem: time-aggregated climate statistics are varying relatively smoothly in space and, hence, minimizing
mismatches in statistics between models and data does not suffer from the resolution-mismatch problem.
CES can be used to learn about arbitrary parameters in climate models from time-averaged data. It leads
to quantification of parametric uncertainties that then can be converted into parametric uncertainties in
predictions by sampling from the posterior distribution of parameters.

Data Availability Statement

All computer code used in this paper is open source. The code for the idealized GCM, the Julia code for the
CES algorithm, the plot tools, and the slurm/bash scripts to run both GCM and CES are available at https://
doi.org/10.5281/zenodo.4393029.
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