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KERNEL ANALOG FORECASTING:
MULTISCALE TEST PROBLEMS\ast 

DMITRY BUROV\dagger , DIMITRIOS GIANNAKIS\ddagger , KRITHIKA MANOHAR\dagger , AND

ANDREW STUART\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Data-driven prediction is becoming increasingly widespread as the volume of data
available grows and as algorithmic development matches this growth. The nature of the predictions
made and the manner in which they should be interpreted depend crucially on the extent to which
the variables chosen for prediction are Markovian or approximately Markovian. Multiscale systems
provide a framework in which this issue can be analyzed. In this work kernel analog forecasting
methods are studied from the perspective of data generated by multiscale dynamical systems. The
problems chosen exhibit a variety of different Markovian closures, using both averaging and homog-
enization; furthermore, settings where scale separation is not present and the predicted variables are
non-Markovian are also considered. The studies provide guidance for the interpretation of data-driven
prediction methods when used in practice.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . data-driven prediction, multiscale systems, kernel methods, analog forecasting,
averaging, homogenization
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1. Introduction. Data-driven prediction holds great promise in many areas of
science and engineering. Growth in the volume of data available in numerous appli-
cation areas has been matched by advances in computational methodologies which
are designed to utilize these data for prediction. However, fundamental questions
arise in this field relating to the choice of variables on which to base prediction and
whether the system is Markovian in the chosen variables. While delay embedding
can be used to enhance the choice of variables in which Markovian structure is pres-
ent, prediction is often undertaken using variables in which there is no Markovian
closure or in which this closure is only approximate. The objective of the paper is
to use multiscale systems to provide a framework in which the fundamental issue of
the role of Markovianity in data-driven prediction can be studied. We work within
the setting of kernel analog forecasting (KAF), a methodology that has seen success
in a number of application domains and that is backed by a mature theory. Sub-
section 1.1 provides an overview of relevant literature in data-driven prediction for
dynamical systems and the multiscale setting in which we work. We outline our con-
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1012 D. BUROV, D. GIANNAKIS, K. MANOHAR, AND A. STUART

tributions to the understanding of data-driven prediction within multiscale systems
in subsection 1.2.

1.1. Background and literature review. In 1969, Lorenz originally intro-
duced the idea of analog forecasting for prediction of dynamical systems using his-
torical data [30]. Given initial data, the method locates its closest analog among
the historical points and reports the historical value of the corresponding observable,
shifted by the desired lead time. By construction, analog forecasting avoids model
error, but the resulting forecast is not continuous with respect to initial data. It is
therefore non-physical, and this fact, when combined with the paucity of data avail-
able at the time the method was proposed, limited the value of the methodology in
practice. An exponential growth in data volume has precipitated the development of
improved methodologies which build on Lorenz's original idea, leading to algorithms
which are backed by large data theories and which depend smoothly on initial con-
dition. This has been achieved through the use of kernel-based methods which result
in data-driven prediction based on weighting all the historical data according to their
similarity to the initial data; this leads to algorithms which enforce continuity of the
forecast with respect to initial data [55] and, building on the theory of reproducing
kernel Hilbert spaces (RKHSs) [3], to algorithms which can be theoretically justified
in the large data limit [17, 1].

KAF draws on several fundamental ideas rooted in kernel methods for machine
learning. First, the choice of kernel function is guided by the need for dimension
reduction of big data and the specific learning task at hand. For clustering, similarity
kernels [43] are used to construct graphs over the data and clusters determined by
its graph Laplacian eigenvectors [4]. This graph Laplacian construction is generalized
in [10] to characterize diffusion operators on the manifold on which the data lie via
their eigenfunctions, known as diffusion maps, and further generalized in [7] to a class
of variable-bandwidth kernels that control for variations in the density of the sam-
pling distribution. Under different choices of kernel and normalization, the resulting
eigenmaps can describe slow coordinates in dynamical systems [36] and can also be
used as a basis to approximate evolution operators in SDEs [6]. Algorithmic develop-
ment has been aided by advances in the theory for pointwise [45] and spectral [50, 47]
convergence of these coordinates in the large data limit. Second, Markov operators
constructed from kernels map into RKHSs in which kernel evaluation corresponds
to function evaluation and allow evaluating these eigencoordinates on out-of-sample
data [11] in a procedure known as Nystr\"om extension. This has found use in semi-
supervised classification using support vector machines [44] to extend labels to new
data, spline interpolation [51], and forecasting [55].

In addition to exploiting ideas from kernel methods for machine learning, KAF
may exploit additional structure from time-ordered data arising from dynamical sys-
tems. For example, delay embedding is frequently used to identify Markovian struc-
ture. In diffusion forecasting [6], diffusion maps are time-shifted to approximate the
action of a shift operator on observables in SDEs. Alternatively, time-shifted diffu-
sion maps can be used to approximate the reduction coordinates of this shift operator
directly [17], or temporal structure can be directly embedded into specialized cone ker-
nels for analog forecasting [55]. The latter takes the Nystr\"om extension perspective
of KAF, while in fact KAF evaluates a conditional expectation of this shift operator,
conditioned on the observations [1]. The aforementioned shift operator, known as the
Koopman operator, acts by composing observables with the dynamical flow map and
is a linear operator on these function spaces. Hence, the data-driven approximation
of the Koopman operator is an exciting area of research.
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KERNEL ANALOG FORECASTING: MULTISCALE PROBLEMS 1013

Bernhard Koopman introduced the linear operator that carries his name in the
1930s as part of his study of ergodic and Hamiltonian dynamics [27]. In data-driven
identification of coherent structures, spectral decompositions of the Koopman opera-
tor [34] and the related transfer operator [15] play a central role, driven by the fact that
in such a basis, forecasting of nonlinear dynamics amounts to scalar multiplication by
eigenvalues. Algorithms used in practice compute finite-dimensional regression onto
precomputed libraries consisting of functions of the time-lagged snapshots [42, 41, 26].
However, convergence guarantees are limited, requiring stringent assumptions on the
libraries and spectrum [2]. In particular, mixed spectra resulting from chaotic/mixing
systems pose a challenge for numerical methods. Recent data-driven methods which
leverage infinite-dimensional feature spaces provided by kernels [13], as well as kernel
constructions in spectral space [28], are able to tackle the continuous part of the spec-
trum of the Koopman operator. For forecasting purposes, pointwise evaluation of the
Koopman operator acting on observables is the natural setting, rather than spectral
approximation, and is the perspective we take.

Multiscale analysis provides a setting in which to understand the role of rapidly
varying (in space or time) system components on the slowly varying variables used for
predictive models [53]. In this paper we will work in the framework of averaging and
homogenization for PDEs and SDEs, as developed in [5]. Chapters 9--11 of the book
[38] contain a pedagogical exposition of the subject that is adapted to the chaotic
ODE setting that is the focus of this paper. However, the rigorous extension of the
theory of averaging and homogenization to ODEs, rather than SDEs, is nontrivial
and less well developed. Early work in this direction was contained in [37]. However,
it was not until the fundamental work of Melbourne and coworkers that a theoretical
approach with verifiable conditions was developed [32, 33, 24, 23].

We will use the example developed in [33], which exploits the (proven) chaotic
properties of the Lorenz 63 model [29, 48], to provide an example of a chaotic ODE
which homogenizes to give an SDE. And we will use the multiscale Lorenz 96 model
[31] to provide an example of an ODE to which the averaging principle may be applied
to effect dimension reduction, as pioneered and exploited in [16]; we note, however,
that the mixing properties required to prove the averaging principle for the Lorenz 96
model have not been established, even though numerical evidence strongly suggests
that it applies in certain parameter regimes. The work of Jiang and Harlim [22] studies
data-informed model-driven prediction in partially observed ODEs, using ideas from
kernel-based approximation. In the paper [21] the idea is generalized to discrete time
dynamical systems, and neural networks and LSTM modeling is used in place of kernel
methods. In both the papers [22, 21] multiscale systems are used to test their methods
in certain regimes.

Data-driven analog forecasting, kernel methods, and Koopman methodologies
have each individually found widespread use in real-world forecasting and coherent
pattern extraction applications. Analog forecasting, albeit without kernels, has been
used to predict weather patterns [8, 14, 49] yet is known to have limitations pre-
dicting chaotic behavior. Khodkar, Hassenzadeh, and Antoulas recently developed
a Koopman-based framework using delay embedded observables to predict chaotic
dynamics [25]. Nonlinear Laplacian spectral analysis, which applied kernel and delay
embeddings akin to Koopman observables, successfully recovers coherent oscillatory
phenomena such as the seasonal/diurnal cycles and the El Ni\~no Southern oscilla-
tion [46] through kernel eigenfunctions [12]. Implemented with such kernels, KAF
would naturally capture the fundamental oscillatory components of the predictand
variable and thus interpolate between an initial-value (``weather"") forecast at short
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1014 D. BUROV, D. GIANNAKIS, K. MANOHAR, AND A. STUART

times and a climatology forecast at asymptotic times when the mixing component of
the predictand has decayed; see, e.g., [52]. Koopman operator approximation has also
been widely adopted to study high-dimensional complex, even turbulent fluid flows
[18]; see [35] for a study of these applications.

In this paper we use KAF as developed in the papers [1, 17, 55]. Technical
details on the implementation, including pseudocode and further relevant references,
are collected in Appendix A.

1.2. Our contribution. We use multiscale methodology to introduce four classes
of ODE test problems which exhibit Markovian dynamics after elimination of fast vari-
ables; stochastic, chaotic, quasiperiodic, and periodic behavior may be obtained in the
slow variable, depending on the setting considered. Using these test problems, our
four main contributions to the understanding of KAF are as follows:

1. We apply KAF techniques to data generated by each of these four classes
of multiscale test problems and use the behavior of the averaged or homoge-
nized slow system to interpret the resulting predictions. In particular, KAF
methods converge, in the large data limit, to a conditional expectation de-
fined via the Koopman operator of the multiscale systems; we use this as the
basis for our interpretation. Moreover, we demonstrate the use of KAF to
estimate the variance of the predictor itself. In each of the four cases the
2\sigma -interval captures the real trajectory, even when the KAF predictor does
not track the trajectory itself. This can be viewed as a separate application
of the KAF methodology which will be useful in cases when forecasting of
high probability bounding sets suffices even when the trajectory itself is hard
to predict. In all cases we also study problems in which the scale separation
is not present, but KAF prediction of mean and variance is attempted on the
basis of data from only a subset of the variables.

2. The KAF method is based on data-driven approximation of the eigenvalue
problem arising from a kernel integral operator. In the setting in which the
multiscale ODE homogenizes to produce an SDE corresponding to a bistable
gradient system with additive noise, a limiting analytical expression is avail-
able for the eigenfunctions; we demonstrate that these limiting eigenfunctions
are well approximated by the data-driven method. This comparison gives in-
sight into the empirical methods used to tune free parameters within KAF.

3. In the setting in which the multiscale ODE averages to produce an ODE of
lower dimension, we use alternative data-driven ODE closures as a benchmark
against which to compare the purely data-driven KAF methods. This gives
insight into the relative merits of purely data-driven prediction and prediction
which combines model-based knowledge with data.

4. We use the insights from these carefully constructed numerical experiments
to make recommendations about deployment and parameter tuning of KAF
methods to real data.

The paper is organized as follows. In section 2, we outline the data-driven con-
struction of the prediction function using KAF methodology. We explain the sense in
which the construction converges to a conditional expectation defined via the Koop-
man operator associated to a measure-preserving dynamical system assumed to un-
derlie the data. We also describe two kinds of canonical multiscale systems which
give rise to homogenization and averaging effects and which we use to provide in-
terpretation of this conditional expectation. Section 3 introduces a test problem in
the form of a double-well gradient flow driven by chaotic Lorenz 63 dynamics which
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homogenizes to give an SDE in the scale-separated regime; numerical results applied
to prediction of the slow variable exhibit contributions 1 and 2. In section 4, we in-
troduce the multiscale Lorenz 96 system, which averages to give an ODE in the slow
variables; three different parametric regimes give rise to periodic, quasiperiodic, and
chaotic responses in the slow variable. The behavior of KAF-based prediction in these
three regimes is studied to illustrate contribution 1, and a slow-variable closure model,
built using Gaussian process (GP) regression (GPR), is compared with the KAF to
illustrate contribution 3. In section 5, we provide an overview the insights obtained
by studying KAF methods through the lens of multiscale systems; and we then make
concrete recommendations about interpreting the output of KAF techniques when
applied to naturally occurring data, contribution 4.

2. Methodology. In subsection 2.1 we provide an overview of the two key ideas
which interact to underpin the studies in this paper: KAF and multiscale methods,
tailoring the exposition to the use of the latter as a tool to understand the former. We
then give more details on KAF. The two primary components of the KAF methodology
are (i) viewing forecasting as evaluation of a conditional expectation of the Koopman
operator applied to the desired observable and (ii) approximation of this conditional
expectation in a data-driven fashion. Subsections 2.2 and 2.3 describe (i) and (ii)
respectively, while subsection A.2 is devoted to a key practical component of the
data-driven approximation, namely, construction of the kernel, and subsection A.3 to
the data-driven choice of integer \ell , the number of (approximate) eigenfunctions used
in the data-driven forecast.

2.1. Overview of methodology. The problem setting for prediction is as fol-
lows. We assume that we are given N time-ordered data samples

\{ xn\} N - 1
n=0 \subset \scrX ,

where x : \BbbR \rightarrow \scrX is a continuous time process, xn = x(n\Delta t), and \Delta t is the sampling
rate. We assume that the continuous time process x in \scrX is derived from Markovian
dynamics for a coupled pair (x, y) evolving in the larger state space \scrX \times \scrY . Assume
that the desired prediction lead time \tau is an integer multiple of the sampling interval,
that is, \tau = q\Delta t. Included with the data are values of the associated prediction
observable advanced by \tau time units

\{ fn+q\} N - 1
n=0 \subset \BbbR ,

defined by the Markovian dynamics via an unknown map F : \scrX \times \scrY \rightarrow \BbbR ; thus, fn =
F (xn, yn). The goal of KAF is to predict F (x(\tau ), y(\tau )) given only partial information,
x(0) = x, and the N data samples xn. We view the data-driven predictor as a map
Z\tau : \scrX \rightarrow \BbbR which takes initial condition x as input.

Given initial data x and lead time \tau , the KAF predictor averages over the \tau -
shifted observable values provided in the training data and weighted by a kernel
p : \scrX \times \scrX \rightarrow \BbbR constructed from the data; the resulting algorithm has the following
form:

(2.1)

Z\tau (x) =
1

N

N - 1\sum 

n=0

p(x, xn)fn+q,

p(x, xn) =

\ell (\tau ) - 1\sum 

j=0

\psi j(x)\phi j(xn)

\lambda 
1/2
j

.
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The weighting kernel p(x, xn) determines how much weight to attach to a time series
initialized at point xn, according to its proximity to x, the desired initial point. The
features \phi j are computed from an eigenvalue problem associated with a data-driven
approximation of a kernel integral operator, constructed from xn; in the large data
limit this provides an orthonormal basis for the entire space. The function \psi j is an
out-of-sample Nystr\"om extension of \phi j , orthonormalized with respect to an underlying
RKHS structure. The method may be seen as a smoothed version of Lorenz's original
proposal for data-driven prediction---analog forecasting [30]. Analog forecasting, by
contrast, predicts the trajectory in the training data obtained by finding the training
data point nearest to the given initial condition in some metric d : \scrX \times \scrX \rightarrow \BbbR 

(2.2) Z\tau (x) = fn \star +q, n \star = argmin
n=0,...,N - 1

d(x, xn).

It can be seen that Lorenz's method will result in predictions discontinuous with re-
spect to initial data, especially for systems that exhibit sensitive dependence on initial
conditions. In particular, KAF addresses the issue of continuity of the prediction with
respect to the initial condition, and it does so in a framework which is provably statis-
tically consistent in the large data limit [1, 17, 55]. Further details of the methodology
are given in the next two subsections and the attendant information in Appendix A.

An important challenge addressed by this methodology is that, since the y compo-
nent of the system is not observed, the sequences \{ xn\} and \{ fn+q\} are non-Markovian.
As a consequence, the standard idea of constructing a Markov chain from the data
is not natural. The KAF method evaluates a conditional expectation of the fore-
cast conditioned, using the observed data \{ xn\} , explicitly incorporating information
loss resulting from unobserved y; it is hence a natural approach to the problem at
hand. Multiscale systems provide a natural setting for the study of KAF methods and
in particular the issue of prediction of non-Markovian or approximately Markovian
systems. In this paper we will consider the variable x as the slow component of a
Markovian system for pair (x, y) in which y evolves as a fast variable. We consider
averaging and homogenization settings in which the dynamics for x is approximately
Markovian, and the conditional expectation arising in the KAF method may be un-
derstood explicitly. This will enable us to obtain a deeper understanding of how KAF
works and help users of the methodology interpret it. We now outline the averaging
and homogenization settings that we will use. Details of the theory underlying them
may be found in [38].

We will study multiscale systems which exhibit averaging, in the form

(A)

\Biggl\{ 
\.x = v0(x) +By,

\.y = 1
\varepsilon g(x, y),

where B : \scrY \rightarrow \scrX is linear. The average of By under the invariant measure of the y
dynamics, with x frozen, provides a closed approximate ODE dynamics for x when \varepsilon 
is small. If we denote the x-parameterized invariant measure for the y dynamics with
x frozen by \nu x(dy), then for \varepsilon \ll 1 we obtain x \approx X, where

(A0)

\.X = v0(X) + v(X),

v(\zeta ) =

\int 

\scrY 
By \nu \zeta (dy).

To guarantee uniqueness of solutions in (A0), it suffices that the conditional measure
has enough continuity, as a function of x, so that v(\zeta ) is Lipschitz.
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When the variable By averages to zero, a different scaling is required to elicit the
effect of the fast variable on the slow one. To this end we also consider multiscale
systems which exhibit homogenization in the form

(H)

\Biggl\{ 
\.x = v0(x) +

1
\varepsilon By,

\.y = 1
\varepsilon 2 g(y).

Here we assume that \int 

\scrY 
By \nu (dy) = 0,

where \nu is the invariant measure of the y dynamics. The approximate dynamics for
x, when \varepsilon is small, is then governed by an SDE in this setting; the work of Melbourne
and coworkers provides the sharpest results in this context [32, 33, 24, 23]. If this is
the case, then, invoking the homogenization principle, x \approx X, where X is governed
by an SDE of the form

(H0) \.X = v0(X) +
\surd 
2\sigma \.W,

whereW denotes the Wiener process and \sigma is a uniquely determined positive constant
that can be computed numerically from the mixing properties of the y process.

2.2. Koopman formulation of prediction. We let \Omega = \scrX \times \scrY and assume
that \Phi t : \Omega \rightarrow \Omega is an ergodic dynamical system with invariant probability measure
\mu ; we assume t \in \BbbR +, but the extension to discrete time is straightforward. Define
the continuous observation map \Pi : \Omega \rightarrow \scrX and the prediction observable F : \Omega \rightarrow \BbbR ;
we assume that F is square-integrable with respect to the invariant measure:

F \in L2
\mu (\Omega ;\BbbR ) :=

\biggl\{ 
F : \Omega \rightarrow \BbbR 

\bigm| \bigm| \bigm| \bigm| 
\int 

\Omega 

| F (\omega )| 2\mu (d\omega ) <\infty 
\biggr\} 
.

We define the Koopman operator U t : L2
\mu (\Omega ;\BbbR ) \rightarrow L2

\mu (\Omega ;\BbbR ) by U tg = g\circ \Phi t. We seek,
in a sense to be made precise, the function Z\tau : \scrX \rightarrow \BbbR such that Z\tau \circ \Pi is the best
approximation to a perfect prediction of F \circ \Phi \tau . We formalize this by introducing the
Hilbert subspace V \subseteq L2

\mu (\Omega ;\BbbR ) given by

V :=
\bigl\{ 
g \in L2

\mu (\Omega ;\BbbR )
\bigm| \bigm| g = g\prime \circ \Pi , g\prime : \scrX \rightarrow \BbbR 

\bigr\} 
.

This Hilbert space captures the notion of making predictions based only on informa-
tion in \scrX . Note that the perfect forecast would satisfy Z\tau \circ \Pi = U\tau F but that such
a forecast will not be possible in general because \scrX is a proper subset of \Omega and infor-
mation needed for perfect prediction of F will be missing. Among all elements of V ,
the minimal prediction error in L2

\mu (\Omega ;\BbbR ) is attained by the conditional expectation

\BbbE (U\tau F | \Pi ) = argmin
g\prime \in V

\| g\prime  - U\tau F\| L2
\mu 
= proj

V
U\tau F.(2.3)

This formulation of prediction encapsulates the inherent loss of information incurred
through observing only a set of functionals of an ergodic dynamical system and the
effect of this loss of information on prediction. In subsequent sections of this paper we
will assume that F = F \prime \circ \Pi for some F \prime : \scrX \rightarrow \BbbR because it is often natural to try to
predict only functionals of the slow variables. Note, however, that the methodology
is not restricted to such F , and in this subsection, the next subsection, and Appendix
A, we describe the more general setting for completeness.
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\scrX \times \scrY \scrX \times \scrY 

\BbbR 

\Phi \tau 

U\tau F F

Koopman

\scrX \times \scrY \scrX 

\BbbR 

H

Z\tau 

Data-driven

Fig. 2.1. Comparison of exact Koopman picture and data-driven approximation. The
approximate mapping Z\tau (\cdot ) is constructed from the data streams \{ H\Phi t(x0, y0)\} 0\leqslant t\leqslant T and
\{ F (\Phi t(x0, y0))\} 0\leqslant t\leqslant T .

2.3. Data-driven approximation. The formulation in the preceding subsec-
tion encapsulates the inherent loss of predictive power incurred through observing
only a set of functionals of an ergodic dynamical system. This is formalized by seek-
ing the best approximation of the Koopman evolution from within a Hilbert subspace
capturing the notion of depending only on specified functionals on the state space
of the dynamical system. We now demonstrate how data may be used to further
approximate this best approximation and to do so in a manner which is refineable as
more data are acquired. The approach is summarized in Figure 2.1.

For observation time \Delta t > 0 we define

\omega n = \Phi tn(\omega 0), tn = n\Delta t,

xn = \Pi (\omega n), fn = F (\omega n).

We assume that we are given time-ordered pairs

(2.4) \{ (x0, fq), (x1, f1+q), . . . , (xN - 1, fN - 1+q)\} ,

and the objective is to construct, from these data, a function Z\tau : \scrX \rightarrow \BbbR which
predicts F at lead time \tau so that Z\tau \circ \Pi \approx g \star , where g \star solves the minimization
problem in (2.3). Furthermore, we wish to carry this out in a manner which ensures
that, in an appropriate topology, Z\tau \circ \Pi \rightarrow g \star as N \rightarrow \infty .

To this end we introduce a hypothesis space \scrH \ell ,N , of dimension \ell and depending
on the N -dependent data set (2.4), and seek to solve the minimization problem

(2.5) Z\tau = argmin
g\in \scrH \ell ,N

\| g \circ \Pi  - U\tau F\| L2
\mu 
.

The choice of the hypothesis space is constrained by the need to be able to solve the
minimization problem (2.5) explicitly, using only the data (2.4), and by the require-
ment that Z\tau \circ \Pi recovers g \star in the large data limit N \rightarrow \infty . Moreover, in order
to be practically useful forecast functions, elements of \scrH \ell ,N should allow pointwise
evaluation at any x \in \scrX , which is not defined in arbitrary subspaces of L2

\mu (\Omega ;\BbbR ).
With these considerations in mind, we introduce a kernel function k : \scrX \times \scrX \rightarrow \BbbR 

and RKHS \scrK with the properties

f(x) = \langle kx, f\rangle \scrK , kx = k(x, \cdot ), \langle kx, kx\prime \rangle \scrK = k(x, x\prime ).

We then define \scrH \ell ,N as an \ell -dimensional subspace of \scrK , to be described below. We
also note that the kernel k is constructed from a data stream of length N , but we
suppress the explicit dependence of k on N in the notation. In Appendix A we
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discuss our data driven construction of k and choice of \ell . For now we proceed on the
assumption that we have a kernel and hence a RKHS as well as a method for choosing
\ell .

Let \mu N = 1
N

\sum N - 1
n=0 \delta \omega n be the sampling measure underlying the training data (2.4),

and define

L2
\mu N

(\Omega ;\BbbR ) :=
\biggl\{ 
F : \Omega \rightarrow \BbbR 

\bigm| \bigm| \bigm| \bigm| 
\int 

\Omega 

| F (\omega )| 2\mu N(d\omega ) =
1

N

\sum 
| F (\omega n)| 2 <\infty 

\biggr\} 
.

Associated with \mu N is an integral operator G : L2
\mu N

(\Omega ;\BbbR ) \rightarrow L2
\mu N

(\Omega ;\BbbR ), which we

identify with a symmetric, positive-semidefinite, N \times N kernel matrix G \in \BbbR N\times N

with entries

(2.6) Gmn = k(xm, xn), xn = \Pi (\omega n), 0 \leq m,n \leq N  - 1.

The eigenvectors of this matrix lead to an orthogonal basis \{ \phi j\} N - 1
j=0 of \BbbR N such that

G\phi j = \lambda j\phi j , \lambda 0 \geq \lambda 1 \geq \cdot \cdot \cdot \geq \lambda N - 1, \| \phi j\| 2 =
\surd 
N.

We may also identify each element \phi j \in \BbbR N with element \phi j \circ \Pi \in L2
\mu N

(\Omega ;\BbbR ) via

the definition \phi j(xn) as the nth entry of the vector \phi j \in \BbbR N , so that \{ \phi j \circ \Pi \} N - 1
j=0 is

an orthonormal basis of L2
\mu N

(\Omega ;\BbbR ). Using the same symbols for elements of \BbbR N and
L2
\mu N

(\Omega ;\BbbR ), as well as for linear transformations on those spaces, is a useful economy
of notation. Then the following functions \psi j : \scrX \rightarrow \BbbR form an orthonormal set in \scrK :

(2.7) \psi j =
1

N\lambda 
1/2
j

N - 1\sum 

n=0

k(\cdot , xn)\phi j(xn), \lambda j > 0.

This is a form of Nystr\"om extension [11].
As hypothesis space we take

(2.8) \scrH \ell ,N = span\{ \psi 0, . . . , \psi \ell  - 1\} \subseteq \scrK ,
noting that the basis functions themselves depend on the data set and hence on N .
We may now solve the optimization problem (2.5), and an explicit computation yields,
for \tau = q\Delta t,

(2.9) Z\tau (x) =
\ell  - 1\sum 

j=0

cj(\tau )

\lambda 
1/2
j

\psi j(x), cj(\tau ) = \langle \phi j \circ \Pi , U\tau F \rangle L2(\mu N ) =
1

N

N - 1\sum 

n=0

\phi j(xn)fn+q.

Note that this construction of the predictor Z\tau is entirely data-driven: The basis
functions \psi j and the eigenvalues \lambda j are found from the eigenvalues and eigenvectors
of the data-defined kernel matrix, and the coefficients cj are computed as sums over
the data set. Furthermore, Theorem 14 in [1] proves that Z\tau \circ X converges to g \star , the
solution of the minimization problem (2.3), as N \rightarrow \infty , followed by \ell \rightarrow \infty , in an L2

sense with respect to the invariant measure \mu on \Omega .
More generally, any function of the observable can be predicted in this data-driven

manner, which provides a convenient framework for uncertainty quantification. The
conditional variance between forecast and ground truth can also be computed in the
hypothesis space as in (2.9) using the coefficients

(2.10) \^cj(\tau ) = \langle \phi j \circ \Pi , (U\tau F  - Z\tau )
2\rangle L2(\mu N ) =

1

N

N - 1\sum 

n=0

\phi j(xn)(fn+q  - Z\tau (xn))
2.

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 1

31
.2

15
.2

52
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1020 D. BUROV, D. GIANNAKIS, K. MANOHAR, AND A. STUART

For detail on the data-driven kernel construction, the data-driven choice of \ell , and the
conditional variance estimator, see subsections A.2, A.3, and A.4, respectively.

3. Homogenization: Lorenz 63--driven system. This section is devoted to
the setting in which a chaotic ODE of form (H) is approximated by an SDE of form
(H0). The goal is to make predictions of the x variable, using data concerning only
the x variable from (H); the role of (H0) is simply to help us interpret those predic-
tions. This setting presents unique challenges for forecasting, as one cannot expect
the outcome of any method to predict a sample path of a stochastic process without
knowledge of the driving noise. This fact has direct bearing on prediction in (H) using
x-data alone since (H0) demonstrates that the time series of the x - data is approxi-
mately that of an SDE; without knowledge of the noise, which is governed by the un-
observed y variable, prediction of the trajectory of x is not possible. In subsection 3.2
we examine instead the long-term statistics predicted by KAF from data generated by
(H)---the conditional expectation and variance of the stochastic process---and com-
pare them with estimates computed from (H0) using Monte Carlo simulation of the
SDE. This illustrates our main contribution 1 from the list in subsection 1.2. Then,
in subsection 3.3, exploiting the fact that the limiting process is one-dimensional, we
find explicit expressions for the kernel eigenfunctions in the limit problem (H0) and
compare these with the eigenfunctions obtained from data-driven techniques applied
to (H), our main contribution 2 from subsection 1.2. Subsection 3.4 is concerned with
non-Markovian prediction, in which there is no scale separation between observed and
unobserved variables. We start, however, in subsection 3.1, introducing the concrete
model around which our experiments are organized.

3.1. The model. The first test problem arises from driving a double-well gra-
dient flow with a chaotic signal obtained from the Lorenz 63 model [19]:

(3.1)

\.x = x - x3 +
0.059

\varepsilon 
y2,

\.y1 =
10

\varepsilon 2
(y2  - y1),

\.y2 =
1

\varepsilon 2
(28y1  - y2  - y1y3),

\.y3 =
1

\varepsilon 2

\biggl( 
y1y2  - 

8

3
y3

\biggr) 
.

This is of form (H). In [33] it is proved that as \varepsilon \rightarrow 0, this system converges weakly
in C([0, T ];\BbbR ), when projected onto the x variable alone, to the solution of the SDE

(3.2)

\.X =  - \Xi \prime (X) +
\surd 
2\sigma \.W,

\Xi (x) =
1

4
(1 - X2)2.

Thus, this white-noise--driven gradient system is of form (H0). The value of the
constant \sigma is identified in [19]. For the current work the key point to appreciate is
that for small \varepsilon , the variable x in (3.1) exhibits (approximately) Markovian behavior,
but this behaviour is stochastic. The SDE is ergodic and has invariant probability
density function

(3.3) \rho \infty (x) \propto exp

\biggl( 
 - 1

\sigma 
\Xi (x)

\biggr) 

with respect to Lebesgue measure.
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τ

– Trajectory
– SDE mean
– SDE 2σ
– Prediction
� Predicted 2σ

Fig. 3.1. Long-term forecast convergence. Gray is the trajectory of the SDE started from
x =  - 1.10, blue is the KAF predictor Z\tau ( - 1.10) with pink shades giving two-standard-deviation
confidence bands computed from the conditional variance, black is the Monte Carlo approximation
of the conditional mean using the SDE, and red is the Monte Carlo approximation of the conditional
variances using the SDE. KAF computations of mean and variance agree with the true conditional
expectation and mean computed from 10000 Monte Carlo realizations of the SDE.

3.2. Conditional expectation and variance. We aim to predict the x vari-
able from historical data of a long trajectory of x alone. Thus, the observation and
observable maps are \Pi (\omega ) = x, F (\omega ) = x. We will also estimate second moments, en-
abling us to compute conditional variance, for which F (\omega ) = x2. Observation data are
generated by using an implicit time-stepping scheme with time step 0.01 in the slow
variable and built-in MATLAB solvers to integrate the fast variables with \varepsilon 2 = 0.001.
Note that the coefficient of y2 driving the x dynamics in (3.1), 0.059, differs from
that of Givon et al [19], and approximates the invariant measure of the SDE (3.2)
under a different value of \sigma than the value predicted in [19]. Our predicted value of
\sigma is 0.1091. Source data for the slow variable x are gathered for N = 40000 points
sampled at the macroscopic time interval \Delta t = 0.05. Then \^N = 7500 out-of-sample
points from a new trajectory \{ \^xn\} are gathered at the same resolution, providing the
ground truth for assessing forecast error. The natural error metric is the root mean
square error (RMSE ), the L2 norm of Z\tau  - U\tau F. To account for differences in scale,
we normalize the RMSE by the standard deviation of the trajectory:

RMSE (\tau ) =

\biggl( 
1

\^N  - q

\^N - q - 1\sum 

n=0

| Z\tau (\^xn) - \^xn+q| 2
\biggr) 1/2\biggl( 

1

\^N  - q

\^N - q - 1\sum 

n=0

| \^xn+q  - \=x| 2
\biggr)  - 1/2

.

Figure 3.1 depicts the behavior of the KAF forecast Z\tau (x) as a function of lead
time \tau for fixed x. This forecast exhibits two interesting properties which can be
understood through the small-\varepsilon homogenization limit. The first relates to the fact that
the trajectory itself is not well predicted; the second explains what is well predicted.

First, the predictor tracks the conditional mean initialized at x =  - 1.10 and not
the trajectory itself. This is predicted by the theory since what is predicted is the
long-term conditional expectation \BbbE [U\tau F | \Pi ]. Indeed, this latter quantity necessarily
converges for large \tau to a constant, under mixing assumptions on the (x, y) system,
while individual trajectories in x exhibit stochastic dynamics, approximately that of
X. This explains the growth in RMSE seen in Figure 3.2. Second, exploiting the
fact that we expect the system (3.1) to behave like (3.2), when projected onto the x
coordinate, we can provide an objective evaluation of the KAF forecasts by running
Monte Carlo simulations of the SDE for X; to do this we compute the sample mean
and variance over 10000 sample paths initialized at the same initial point x =  - 1.10.
Figure 3.1 compares the KAF forecast mean and variance with that predicted by
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0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

\tau 

Fig. 3.2. Long-term RMSE for the forecast in Figure 3.1 saturates at \tau = 50, as the forecast
converges to the long-term mean at X = 0.

– Trajectory
– Prediction
� Predicted 2σ

τ

Fig. 3.3. Comparison of uncertainty for different initial data. Blue is the predictor (conditional
mean), gray is the trajectory, and pink gives two-standard-deviation bounds computed from the
conditional variance. The forecast uncertainty when initialized at x = 0 (right) displays more rapid
growth in uncertainty over short lead times than that when x =  - 1.10 (left). This sensitivity to
initial conditions is a desirable feature of KAF in light of the fact that both plots share the same
training set.

Monte Carlo mean and variance for the SDE, and they are seen to agree very well
over the entire window of computation.

Finally, in Figure 3.3 we use the possibility of varying the initial condition in the
KAF to demonstrate that the variability encapsulated in the conditional variance is
able to pick up different sensitivities, depending on initial condition. The panel on the
left shows a trajectory initialized at x =  - 1.10, and the panel on the left shows a tra-
jectory initialized at x = 0. As can be expected from the limiting SDE, the uncertainty
when initialized at x = 0 is greater, and this is manifest in the conditional variance.

Examination of the KAF technique in this homogenization setting thus clearly
reveals the inability of the method to predict trajectories but shows that it can accu-
rately approximate statistics of trajectories, averaged over the unobserved component
of the system. Furthermore, analysis of the SDE provides a means of characterizing
the geometry of the underlying hypothesis space, as seen in the next subsection.

3.3. Insights into the hypothesis space. By studying the large data and
small kernel bandwidth limit of the matrix G defined in (2.6), we get insights into
the structure of the hypothesis space (2.8). The theory in [17], building on the pa-

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 1

31
.2

15
.2

52
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

KERNEL ANALOG FORECASTING: MULTISCALE PROBLEMS 1023
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Fig. 3.4. Comparison of invariant densities and eigenfunctions. Left: invariant density
(3.3) and histogram of x from (3.1). Middle and right: six empirically computed eigenfunctions
using x from (3.1), and using theory associated with (3.2), respectively.

metric h is given by h = ⇢�2, with invariant density ⇢ given by (3.2). The fact that460

the density ⇢ is approximately available to us through the time series x generated by461

(3.1) is demonstrated in the left panel of Figure 3.4, where we compare the histogram462

generated by the data with ⇢ given by (3.3). The conclusion of these various approx-463

imations is that we expect the eigenvectors of G, based on data x from (3.1), to be464

well-approximated by eigenfunctions of �h on R, with h = ⇢�2. We now demonstrate465

that this is indeed the case.466

The action of the Laplace-Beltrami operator on f 2 C1(M) is given by467

�hf = �divµgradhf = �divµ

✓
1

⇢

df

dX

◆
= �1

⇢

d

dX

✓
1

⇢

df

dX

◆
,468

where divµ and gradh are the divergence and gradient operators associated with µ469

and h, respectively. Using the above, we solve the eigenvalue problem ��h' = �2'470

directly. We make the substitution dY = ⇢dX, mapping X 2 R into Y 2 [0, 1]; we471

note that Y has interpretation as the cumulative distribution function coordinate of472

⇢. In terms of Y we have473

�hf = �1

⇢

d

dX

✓
1

⇢

df

dX

◆
= � d2f

dY 2
.474

Noting that the natural boundary conditions for the Laplace-Beltrami operator are475

of no-flux type, it follows that, when viewed as functions of Y , the eigenfunctions of476

�h satisfy a boundary value problem of the form477

�'00(Y ) = �2'(Y ),478

'0(0) = '0(1) = 0.479480

The solutions are the well-known harmonics cos(k⇡Y ), and corresponding eigenvalues481

�k = k⇡, k 2 N. Changing back to variable x we obtain482

'k(X) = cos

 
k⇡

Z X

�1
⇢(z)dz

!
.(3.4)483

484

We now verify that, for large data sets and small bandwidth, the eigenfunctions of G485

are indeed close to those associated with the Laplace-Beltrami operator �h. This is486

demonstrated in the middle and right panels of Figure 3.4. The middle panel shows487

the first six eigenfunctions of G, computed from data derived from the x variable in488

13

This manuscript is for review purposes only.

Fig. 3.4. Comparison of invariant densities and eigenfunctions. Left: invariant density (3.3)
and histogram of x from (3.1). Middle and right: six empirically computed eigenfunctions using x
from (3.1) and using theory associated with (3.2), respectively.

pers [10, 7], demonstrates that, for the choice of kernel described in Appendix A,
the vectors of G are approximated in the large data and small bandwidth limit by
eigenfunctions of the Laplace--Beltrami operator \Delta h on M , associated to a metric
h. For the diffusion process (3.2) in dimension m = 1, the manifold M is simply
\BbbR , and the metric h is given by h = \rho  - 2, with invariant density \rho given by (3.2).
The fact that the density \rho is approximately available to us through the time series x
generated by (3.1) is demonstrated in the left panel of Figure 3.4, where we compare
the histogram generated by the data with \rho given by (3.3). The conclusion of these
various approximations is that we expect the eigenvectors of G, based on data x from
(3.1), to be well approximated by eigenfunctions of \Delta h on \BbbR , with h = \rho  - 2. We now
demonstrate that this is indeed the case.

The action of the Laplace--Beltrami operator on f \in C\infty (M) is given by

\Delta hf =  - div\mu gradhf =  - div\mu 

\biggl( 
1

\rho 

df

dX

\biggr) 
=  - 1

\rho 

d

dX

\biggl( 
1

\rho 

df

dX

\biggr) 
,

where div\mu and gradh are the divergence and gradient operators associated with \mu 
and h, respectively. Using the above, we solve the eigenvalue problem \Delta h\varphi = \lambda \varphi 
directly. We make the substitution dY = \rho dX, mapping X \in \BbbR into Y \in [0, 1]; we
note that Y has interpretation as the cumulative distribution function coordinate of
\rho . In terms of Y we have

\Delta hf =  - 1

\rho 

d

dX

\biggl( 
1

\rho 

df

dX

\biggr) 
=  - d2f

dY 2
.

Noting that the natural boundary conditions for the Laplace--Beltrami operator are
of no-flux type, it follows that, when viewed as functions of Y , the eigenfunctions of
\Delta h satisfy a boundary value problem of the form

 - \varphi \prime \prime (Y ) = \lambda 2\varphi (Y ),

\varphi \prime (0) = \varphi \prime (1) = 0.

The solutions are the well-known harmonics cos(k\pi Y ) and corresponding eigenvalues
\lambda k = k2\pi 2, k \in \BbbN . Changing back to variable x we obtain

\varphi k(X) = cos

\Biggl( 
k\pi 

\int X

 - \infty 
\rho (z)dz

\Biggr) 
.(3.4)

We now verify that, for large data sets and small bandwidth, the eigenfunctions of G
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Π(ω) = x – Trajectory
– Prediction
� Predicted 2σ

τ

Π(ω) = [x, 4y2/90]T

Fig. 3.5. Prediction in non-Markovian regime, \varepsilon = 1, requires observations augmented by the
forcing term to achieve short-term predictability.

are indeed close to those associated with the Laplace--Beltrami operator \Delta h. This is
demonstrated in the middle and right panels of Figure 3.4. The middle panel shows
the first six eigenfunctions of G, computed from data derived from the x variable in
(3.1); the right panel shows the eigenfunctions of \Delta h for the diffusion process (3.2) in
variable X, which governs the limiting behavior of x in the scale-separated case. The
agreement is excellent, demonstrating that the heuristics underlying parameter choices
within the kernel-based methodology (see Appendix A) work well in this setting.

3.4. Non-Markovian regime. In the preceding subsections we studied pre-
dictors for x, based only on time-series data in the x coordinate, for the equation
(3.1). We studied the scale-separated regime where \varepsilon \ll 1 and x is approximately
Markovian---it is approximately governed by an SDE. Here we study the behavior of
identical predictors when \varepsilon = 1; the system (3.1) then no longer exhibits homoge-
nization, and x is no longer Markovian in view of the lack of scale separation. As a
result, the prediction of x, shown in the top of Figure 3.5, is poor even at very short
times, and the two-standard-deviation confidence bands reflect this rapid initial error
growth and then remain large throughout the time window. Z\tau converges rapidly to
the conditional mean. To render the problem Markovian, we may include more data
and in particular the forcing term. To this end we take \Pi (\omega ) = [x, 4y2/90]

T ; see the
bottom of Figure 3.5. The prediction of x with these augmented observations yields
very accurate predictions over a lead time of \tau = 3, considerably larger than in the
preceding case, where \Pi (\omega ) = x. After \tau = 3, however, pathwise predictability again
fails due to the sensitive dependence of solutions with respect to the forcing function.
Once again Z\tau converges to the conditional mean. However, the uncertainty quan-
tification provided by the two-standard-deviation error bars consistently captures the
true trajectory, even in this non-Markovian regime.

This non--scale-separated pair of examples illustrates that prediction of non-
Markovian variables is inherently harder than Markovian variables but that sensitive
dependence of trajectories with respect to perturbations also limits predictability,
even in the Markovian setting. This second point will be prominent, too, in the next
section.
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4. Averaging: Lorenz 96 multiscale system. This section is devoted to the
setting in which a chaotic ODE of form (A) is approximated by an ODE of form (A0).
The goal is to make predictions of the x variable using data concerning the x variable
alone from (A). The role of (A0) is primarily to help us interpret those predictions;
however, it also serves to motivate a different prediction methodology which mixes
model-based and data-driven methodologies against which we will compare KAF.

The averaging setting presents interesting opportunities to understand forecast-
ing. In particular, by tuning a parameter in (A), which is also present in (A0), we are
able to create settings in which the variable to be predicted is, in turn, approximately
periodic, quasiperiodic, and chaotic. These different settings give rise to different types
of forecasts, and we demonstrate this. In subsection 4.2 we examine the long-term
statistics predicted by KAF from data generated by (A)---the conditional expectation
and variance of one component of the slow variable---and compare them with esti-
mates computed from (A0) using Monte Carlo simulation. This illustrates our main
contribution 1 from the list in subsection 1.2. Then, in subsection 4.3, we compare the
purely data-driven method of prediction with a hybrid data-model predictor. This
hybrid is computed by using GPR to compute an approximate closure vGP (x) \approx v(x)
in the notation of (A0); for more details on such approximate closures in the context
of the specific model that we study in the following four subsections, see [16] and
the references therein. The work in subsection 4.3 illustrates our main contribution 3
from subsection 1.2. Subsection 4.4 is concerned with non-Markovian prediction, in
which there is no scale separation between observed and unobserved variables. We
start, however, in subsection 4.1, introducing the concrete model around which our
experiments are organized.

4.1. The model. In this section we focus our attention on another chaotic dy-
namical system, colloquially known as Lorenz 96 multiscale [31], which we will simply
abbreviate to L-96. Following the notation established in [16], the L-96 equations

model K slow variables \{ xk\} Kk=1 coupled to JK fast variables \{ yj,k\} J,Kj,k=1,1 with evo-
lution given as follows:

(4.1)

\.xk =  - xk - 1(xk - 2  - xk+1) - xk + Fx +
hx
J

J\sum 

j=1

yj,k,

\.yj,k =
1

\varepsilon 

\Bigl( 
 - yj+1,k(yj+2,k  - yj - 1,k) - yj,k + hyxk

\Bigr) 
,

xk+K = xk, yj,k+K = yj,k, yj+J,k = yj,k+1.

This is of the form (A). On the assumption that the y variables, with x frozen, are
ergodic, the averaging principle shows the existence of a function C : \BbbR K \rightarrow \BbbR K such
that, for small \varepsilon , the x variables are approximated by X = (X1, . . . , Xk) solving

(4.2) \.Xk =  - Xk - 1(Xk - 2  - Xk+1) - Xk + Fx + hxCk(X), k \in \{ 1, . . . ,K\} ,

with the periodic boundary conditions Xk+K = Xk and Ck : \BbbR K \rightarrow \BbbR denoting the
kth component of vector-valued function C. This system is of form (A0). Since sys-
tem (4.1) is index-shift-invariant, it is clear that the closure Ck, if it exists, satisfies
Ck+1(X) = Ck(\pi X), where \pi shifts the vector indices by adding one unit, invok-
ing periodicity at the end points. Furthermore, when J is large, empirical evidence
[54, 16] suggests that there is a function c : \BbbR \rightarrow \BbbR such that the approximation
Ck(X) = c(Xk) is a good one. For the current work the key point to appreciate is
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1026 D. BUROV, D. GIANNAKIS, K. MANOHAR, AND A. STUART

Periodic Quasiperiodic Chaotic

Fig. 4.1. Lorenz 96 regimes of increasing complexity (left to right). Phase portraits show
(x1, x2, x3) coordinates shaded by x4. The parameter Fx takes values 5.0, 6.9, and 10.0, respectively,
from left to right, and all other parameters are as in (4.3).

that for small \varepsilon , the variables x in (4.1) exhibit (approximately) Markovian behavior,
and this behavior is deterministic and governed by X. However, by tuning Fx, differ-
ent responses arise in the deterministic variable. In the following we fix parameters
\varepsilon  - 1,K, J, hx, hy throughout all our experiments as follows:

(4.3) \varepsilon  - 1 = 128, K = 9, J = 8, hx =  - 0.8, hy = 1.0.

We then choose Fx to distinguish three cases as follows:

periodic

Fx = 5.0,

quasiperiodic

Fx = 6.9,

chaotic

Fx = 10.0.

Figure 4.1 demonstrates the three responses within system (4.1) resulting from these
parameter choices.

4.2. Conditional expectation and variance. We aim to predict the x1 vari-
able from historical data of a long trajectory of x alone. Thus, the observation and
observable maps are \Pi (\omega ) = x, F (\omega ) = x1. We will also use F (\omega ) = x21 when esti-
mating conditional variance. By tuning the scalar parameter Fx (not to be confused
with function F ) as outlined in the preceding subsection, we can obtain periodic,
quasiperiodic, and chaotic responses in the averaged variable X. It is intuitive that
the ability of the KAF to track the true trajectory of the slow variables decreases
with increasing complexity; in other words, predictions in the periodic case should be
the most accurate, while those in the chaotic case present a significant challenge. In
the experiments that follow, the size and sampling interval of the source (training)
data remain fixed at (40000, 0.05), and the out-of-sample (test) data set is fixed at
\^N = 7000.

The space of observables \scrX in the current example is the space of all slow vari-
ables. Since under the small-\varepsilon limit an ODE closure of the slow dynamics is obtained,
the variable x behaves (approximately) like a deterministic Markov process, and the
expectation in (2.3) disappears; the predictor is expected to track the actual trajec-
tory x1(t). To see this another way, note that by simply knowing the initial values
of the x variables (recall that \scrX is precisely all x variables) and the closure C(X) in
(4.2), we are able to predict x1 (or indeed any xk) exactly, given the initial conditions
for all x variables.

However, this picture is greatly affected by the sensitivity of the system to initial
conditions and sampling errors due to high dimensionality of the attractor. We now
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Periodic – Trajectory
– Prediction
� Predicted 2σ

Quasiperiodic

τ

Chaotic

Fig. 4.2. Predictability: Periodic, quasiperiodic, and chaotic regimes. Prediction Z\tau (x) of
observable F (\omega ) = x1 across three different regimes. In each figure, gray is the true trajectory, blue
is the predictor using KAF, and pink gives two-standard-deviation confidence bands, computed using
the conditional variance. The parameter Fx takes values 5.0, 6.9, and 10.0, respectively, from top to
bottom, and all other parameters are as in (4.3). In the first, periodic response regime, the trajectory
is predicted almost perfectly, and this accuracy is reflected in the narrow confidence bands. In the
second, quasiperiodic response regime, the trajectory is predicted very well but with growing error
reflected accurately in the slowly growing confidence bands. In the third, chaotic response regime,
the predictive capability is lost due to sensitivity to initial conditions, and this is reflected in the
rapidly growing confidence bands and in the convergence of the predictor to a constant for large \tau .

describe how these predictions work in practice in the three regimes shown in Fig-
ure 4.1. We display our results in Figure 4.2, where x1 and standard deviation bands
are predicted and compared with the true signal starting from the same point. The
long-term predictability in each regime is constrained by the complexity of the under-
lying Markovian, deterministic, slow dynamics. In the periodic regime, since chaos
is absent in the slow variables, a perfect predictor is obtained via the partially ob-
served dynamics; one interpretation of why this occurs is because the eigenfunctions of
the Koopman operator lie in a finite span of the diffusion coordinate observables [2].
Observe that Z\tau remains in phase, and the forecast variance is negligible for long
lead times up to the length of the entire out-of-sample trajectory (\tau = 350). The
quasiperiodic trajectory is tracked imperfectly, but with significant accuracy over the
same range of times; errors are visible mainly around the extrema of x1 as suggested
by the phase portrait; and the conditional variance reflects the significant accuracy
present. Prediction in the fully chaotic regime only tracks the trajectory, however,
until a lead time of approximately 1 time unit, exhibiting behavior at long lead times
which is somewhat similar to that seen in the previous, homogenization section in
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2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

chaotic

quasiperiodic

periodic

Fig. 4.3. RMSE. This figure depicts the RMSE of the predictor Z\tau (x) for (4.1), for different
Fx, as a function of \tau . The parameter Fx takes values 5.0, 7.1, and 10.0, respectively, from smaller
to larger error, corresponding to periodic, quasiperiodic, and chaotic response; all other parameters
are as in (4.3).

which the predicted variable behaved as if drawn from a Markov stochastic process.
In particular, the long-term predictor in the chaotic regime converges to a constant by
construction, assuming mixing, and this is consistent with the inherent unpredictabil-
ity of chaotic dynamics. It is notable that the size of the conditional variance (and
the resulting confidence bands) is a useful guideline as to the pathwise accuracy of
the data-driven predictor. The observations about the predictability of the system by
KAF methods are also manifest in Figure 4.3, which shows the RMSE in each of the
periodic, quasiperiodic, and chaotic regimes.

We mention that in the quasiperiodic case, the presence of multiple attractors (or
multiple lobes of the same attractor) and resulting intermittent switching between
these attractors leads to a loss of predictability that is significant on timescales much
longer than those shown here. For the figure shown here we have ensured that training
points and out-of-sample points are gathered from the same (part of the) attractor to
maintain accuracy. We train using two different trajectories to gather ample training
data.

Recall that at each lead time \tau along the horizontal axis, there is a potentially
different number of eigenfunctions \ell (\tau ) used in the data-driven method. See Appendix
A.3 for details on the choice of \ell . In the chaotic regime the optimal \ell (\tau ) tends to 1
for large times (see subsubsection A.3.2 for an explanation), while \ell fluctuates around
50 in the quasiperiodic regime; we obtain \ell \approx 9 for all \tau in the periodic regime.

4.3. Comparison of data-driven and model-data--driven prediction. The
previous subsection concerned purely data-driven prediction of variable x from (A),
using only data in the form of a time series for x. In this subsection we provide a
comparison with a different forecasting technique based on a combination of model and
data-driven prediction, using data in the form of a time series for (x,By). Knowledge
of By enables the use of GPR [40] (or kriging) to approximate v(\cdot ) by vGP (\cdot ) in (A0).
Our approach is motivated by the paper [16], which looked at finding such closures
for the L-96 model in form (4.1). When applied to (4.1), the methodology leads to
an approximate closure for the slow variable X, which takes the form

(4.4) \.Xk =  - Xk - 1(Xk - 2  - Xk+1) - Xk + Fx + hxcGP (Xk), k \in \{ 1, . . . ,K\} 
subject to periodic boundary conditions Xk+K = Xk. This should be compared with
(4.2), which arises from application of the averaging principle; note that, in addition,
we have invoked the hypothesis that Ck(X) can be well approximated by function of
c(Xk), as discussed directly after (4.2), and we will determine an approximation cGP

for c by GPR.
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Fig. 4.4. Mean of Gaussian process regression as a closure. Function cGP and data used to
determine it from data generated by (4.1) with parameters as in (4.3) and Fx = 10.0.

Explicit details of the procedure we use to build a GP closure are described in
Appendix B; here we observe that for training we use tuples \{ xk(tn), (By)k(tn)\} Nn=1,
over all k = 1, . . . , 9. See Figure 4.4 to see the data used (red random subsamples,
without replacement, of the total grey data set) and an approximate GP closure cGP

determined from those data.
Once we have the closed model appearing in (4.4), we may use it to predict

the variable x appearing in (4.1), and we may compare that prediction with the
one made by KAF. Figure 4.5 shows the result of doing so. It shows that the KAF
approach is superior in the periodic and quasiperiodic settings but that for predictions
of the trajectory itself, the model-data--based predictor (4.4) is superior to KAF in
the chaotic case. Note that the model-data--based predictor has access to more data
than does the KAF and requires model knowledge; the KAF is entirely data-driven.

We now dig a little deeper into the comparison. We do this in a systematic way
in the periodic, quasiperiodic, and chaotic regimes. In each of these three cases we
show four RMSE error curves, labeled as follows: (a) the standard KAF based on x
data alone; (b) an enhanced KAF using (x,By) data, the same data used to train the
ODE (4.4); (c) a prediction using the ODE (4.4); and (d) a KAF prediction trained
on X data alone, generated by the ODE (4.4). Figure 4.6 shows that KAF (a) is the
ideal predictor in the periodic regime and is near ideal in the quasiperiodic regime;
on the other hand, the ODE (4.4) predictor (c) is ideal for short-term predictability
in the chaotic case. Augmenting observations with By within KAF, as in (b), gives
errors similar to those arising from (a) when observing x alone; thus, knowledge of
By provides little extra information. In the chaotic case, the RMSE s of KAF trained
on x, (a), and on X, (d) are very close, confirming that the ODE (4.4) for X captures
the invariant measure of the approximately Markovian variables x as intended.

We emphasize the difference between averaging and homogenization here: In the
averaging case, observing the fast variables adds nothing to our prediction because
there is a closed system determined only by the slow variables (see Figure 4.6, graphs
(a) and (b) in all three plots). By contrast, in the homogenization case, observing the
fast variables improves short-term predictions because it provides further information
about the driving stochastic process entering the homogenized limit (see Figure 3.5).

4.4. Non-Markovian regime. In the preceding subsections we studied predic-
tors for x, based only on time-series data in the x coordinate, for (4.1). We stud-
ied the scale-separated regime where \varepsilon \ll 1 and x is approximately Markovian and
deterministic---it is approximately governed by an ODE. Here we study the behavior
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2 4 6 8 10 12
-1

0

1

2

3

4 Periodic – Trajectory
– Prediction
·- GP closure

2 4 6 8 10 12
-2

-1

0

1

2

3

4
Quasiperiodic

2 4 6 8 10 12
-5

0

5

10

τ

Chaotic

Fig. 4.5. Comparison of data-driven and model-data--driven prediction. The true trajectory is
shown in gray, the KAF data-driven prediction is in blue, and the model-data--driven predictions
based on (4.4) are in dotted red; the periodic, quasiperiodic, and chaotic regimes are considered in
turn.

of identical predictors when \varepsilon = 1; the system (4.1) then no longer exhibits averaging,
and x is no longer Markovian because there is no scale separation between x and y.
This experiment is conducted with Fx = 10. Because of the lack of Markovian be-
havior, we expect rapid loss of predictability in time when \Pi (\omega ) = x, F (\omega ) = x1. The
resulting conditional mean and variance, shown in Figure 4.7, confirms this intuition.
Indeed, the conditional mean is out of phase with the truth at lead time \tau = 1, and
this is also reflected in the large growth of the conditional variance. Furthermore, the
conditional mean tapers to a constant at \tau = 6, twice as quickly as it does in the
\varepsilon \ll 1 setting, in which this tapering occurs at \tau \approx 11 (Figures 4.2 and 4.5).

4.5. Comparison with Lorenz's method. We illustrate the advantage of
KAF over Lorenz's original method of analog forecasting (2.2), which can produce
predictions that are discontinuous with respect to initial condition. In particular, this
occurs when data are partially observed from a larger state space and different states
map to identical partial observations. To study this, we observe a single coordinate
x1 of the periodic regime (Fx = 5, \varepsilon  - 1 = 128) so that the observed data are highly
non-Markovian. We select initial conditions that are \scrO (10 - 3) apart but are separated
in time by integer multiples of the period. Figure 4.8 plots the resulting predictions
from Lorenz's method and KAF. Although Lorenz's method is accurate for one initial
condition (right), it gives a diverging prediction for a nearly identical point (left).
By contrast, KAF is continuous with respect to initial condition and displays theo-
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2 4 6 8 10 12

10-2

10-1

100

a
b
c
d

Periodic

2 4 6 8 10 12
0

0.2

0.4

0.6

Quasiperiodic

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

1.2

1.4

τ

Chaotic

Fig. 4.6. RMSE comparison for the four cases (a)--(d) described in the text in the periodic,
quasiperiodic, and chaotic regimes. In the periodic regime, KAF (a) is an ideal predictor with
negligible growth in error (note the logarithmic scale). In the quasiperiodic response regime, the
growth in \sansR \sansM \sansS \sansE with KAF (a), (b) is significantly slower than that of the GP-based ODE prediction
(c). In the chaotic response regime, the GP-based ODE prediction (c) is more accurate in the near
term, yet KAF error stabilizes as the prediction converges to the conditional mean.

Π(ω) = x – Trajectory
– Prediction
� Predicted 2σ

Fig. 4.7. Prediction in the non-Markovian regime, Fx = 10, \varepsilon = 1, results in much shorter ac-
curate trajectory predictability, followed by rapid convergence of the conditional mean to a constant.
Note, however, that the uncertainty prediction bands contain the true trajectory for all time.

retically optimal predictive skill (in an RMSE sense) for even highly non-Markovian
observation data. This experiment illuminates a key feature of KAF: that it gives
consistent predictions that are continuous with respect to initial conditions. Note
also that KAF uncertainty predictions of a periodic observable are also periodic and
vanish at every half period when predictions intersect the ground truth.
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averaging case observing the fast variables adds nothing to our prediction because666

there is a closed system determined only by the slow variables (see Figure 4.6, graphs667

a) and b) in all three plots). By contrast, in the homogenization case, observing the668

fast variables improves short-term predictions because it provides further information669

about the driving stochastic process entering the homogenized limit (see Figure 3.5).670

⇧(!) = x – Trajectory
– Prediction
⌅ Predicted 2�

Fig. 4.7. Prediction in non-Markovian regime, Fx = 10, " = 1, results in much shorter
accurate trajectory predictability, followed by rapid convergence of the conditional mean to a con-
stant. Note, however, that the uncertainty prediction bands contain the true trajectory for all time.

x1(0) = 1.3736

⌧

x1(0) = 1.3799

⇧(!) = x1

⌧

– Trajectory
... Lorenz’s method
- - KAF prediction
⌅ KAF predicted 2�

Fig. 4.8. Lorenz’ method (2.2) sensitivity to initial conditions, in the partially-observed
periodic Fx = 5, "�1 = 128 regime, results in diverging predicted trajectories for nearby initial
conditions, separated only by 0.006. By contrast, KAF, which is continuous with respect to initial
condition, shows moderate predictive skill and makes nearly identical predictions for nearby initial
conditions.

4.4. Non-Markovian regime. In the preceding subsections we studied predic-671

tors for x, based only on time-series data in the x coordinate, for the equation (4.1).672

We studied the scale-separated regime where " ⌧ 1 and x is approximately Markov-673

ian and deterministic – it is approximately governed by an ODE. Here we study the674

behavior of identical predictors when " = 1; the system (4.1) then no longer exhibits675

averaging and x is no longer Markovian because there is no scale-separation between x676

and y. This experiment is conducted with Fx = 10. Because of the lack of Markovian677

behaviour we expect rapid loss of predictability in time, when ⇧(!) = x, F (!) = x1.678

The resulting conditional mean and variance, shown in Figure 4.7, confirms this intu-679

ition. Indeed the conditional mean is out of phase with the truth at lead time ⌧ = 1,680

and this is also reflected in the large growth of the conditional variance. Furthermore,681

the conditional mean tapers to a constant at ⌧ = 6, twice as quickly as it does in the682

"⌧ 1 setting in which this tapering occurs at ⌧ ⇡ 11 (Figures 4.2,4.5).683

4.5. Comparison with Lorenz’ method. We illustrate the advantage of KAF684

over Lorenz’ original method of analog forecasting (2.2), which can produce predic-685

21
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Fig. 4.8. Lorenz's method (2.2) sensitivity to initial conditions, in the partially observed periodic
Fx = 5, \varepsilon  - 1 = 128 regime, results in diverging predicted trajectories for nearby initial conditions,
separated only by 0.006. By contrast, KAF, which is continuous with respect to initial condition,
shows moderate predictive skill and makes nearly identical predictions for nearby initial conditions.

5. Conclusions.
1. We have studied KAF for data-driven prediction:

\bullet We use multiscale systems to create dynamical systems in which a subset
of the variables (slow variables) evolve in an approximately Markovian
fashion.

\bullet We study KAF performance for a range of systems in which the slow
variables are governed approximately by stochastic, chaotic, quasiperi-
odic, and periodic behavior.

\bullet In the stochastic case we use the homogenized equations for the slow
variables to obtain explicit formulae for the eigenfunctions of the oper-
ator underlying KAF and use these to validate the performance of the
KAF method.

\bullet In the chaotic, quasiperiodic, and periodic cases we use the averaged
equations for the slow variables to obtain a GPR-based approximate
closure model and use hybrid data-model predictions from this closure
in order to evaluate the KAF method.

2. What we illustrate about use of the KAF:
\bullet When the variable being predicted is (approximately) a component of
a stochastic Markov process, prediction of individual trajectories is not
possible, while the mean and variance, averaged over possible realizations
of the stochastic behaviour, can be accurately predicted by KAF.

\bullet When the variable being predicted is (approximately) a component of a
deterministic but chaotic Markov process, prediction of individual tra-
jectories is also not possible, except over short time horizons.

\bullet In both the chaotic and stochastic cases, while prediction of individual
trajectories is not to be expected, simply bounding the future trajectory
may be useful in applications---to this end, we show that in all cases two
standard deviation bands around the predicted conditional mean always
reliably capture the truth.

\bullet In both the stochastic and chaotic settings a signature of the lack of
predictability is the convergence of the predictor to a constant, for large
\tau , accompanied by the data-driven choice of parameter \ell converging to
one.
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\bullet When the variable being predicted is (approximately) a component of a
deterministic quasiperiodic or periodic process, the prediction of individ-
ual trajectories over long time horizons is possible; in this case parameter
\ell stays away from one for significantly large \tau .

\bullet In all cases the predicted standard deviations around the predictor pro-
vide a reliable indicator of the time scale on which the predictor is accu-
rate trajectorywise and on longer timescales provide a reliable indicator
of the scale of the errors incurred, trajectorywise.

\bullet The choice of kernel and the interpretation of eigenfunctions as harmon-
ics over the observed submanifold are well adapted to capturing periodic
or quasiperiodic structure, while the design of eigenfunctions to include
the constant eigenfunction permits convergence to the conditional mean
for chaotic, mixing dynamics.

\bullet The choice of \ell indicates the number of harmonics contained in the
predicted variable and is often approximately constant in \tau in periodic
and quasiperiodic settings, while it converges to one in the chaotic or
stochastic mixing cases.

\bullet When the variable being observed does not evolve in an approximately
Markovian fashion, the KAF conditional mean cannot track x for even
short times, as observed for \varepsilon = 1 for both the Lorenz 63 and Lorenz 96
examples.

3. The work also suggests a number of directions for future study in the area of
KAF:

\bullet Delay embedding can be used to deal with non-Markovian behavior,
and it would be of interest to automate the choice of delay embedding
dimension within the KAF framework to get closer to Markovianity.

\bullet Combining KAF with data assimilation holds the possibility of greater
predictability---for work in this direction, see [20], which studies the
EnKF with a data-driven model update.

\bullet It would be of interest to have algorithms to identify slow subspaces,
using data living in larger spaces, and hence to conduct KAF using
approximately Markovian variables.

\bullet It would be of interest to extend KAF predictor Z\tau so that it acts on the
joint space of initial conditions and key parameters, enabling prediction
at as yet unseen parameters.

Appendix A. Computation. This appendix contains details of the implemen-
tation of KAF. Subsection A.1 describes the algorithms for computing the kernel,
diffusion eigenbasis, RKHS basis functions, and, finally, the prediction. Our specific
choice of kernel, which endows the RKHS structure, is explained and motivated in
subsection A.2. We outline procedures for choosing the truncation parameter \ell and
approximating the conditional variance of the forecast in subsections A.3 and A.4.

A.1. Linear algebra.

A.1.1. Algorithm 1 (diffusion eigenbasis). The starting point of this algo-
rithm is the variable-bandwidth diffusion kernel function \kappa N : \scrX \times \scrX \rightarrow \BbbR 

\kappa N(x, x
\prime ) = exp

\biggl(  - | x - x\prime | 2
\epsilon rN(x)rN(x\prime )

\biggr) 
,

described further in Appendix A.2. An automated procedure for estimating the data-
dependent bandwidth function rN and width \epsilon are given in [6].
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\bullet Inputs
-- Training data x0, x1, . . . xN - 1 \in \scrX 
-- Desired maximum number of eigenvectors L \leq N

\bullet Outputs
-- Diffusion eigenvectors \phi 0, . . . , \phi L - 1 \in \BbbR N , stacked in matrix \Phi \in \BbbR N\times L

-- Right singular vectors \gamma 0, . . . , \gamma L - 1 \in \BbbR N

-- Diffusion eigenvalues \lambda 0, . . . , \lambda L - 1 \in \BbbR in diagonal matrix \Lambda \in \BbbR L\times L

\bullet Steps

1. Form the matrix \^K \in \BbbR \^N\times N with entries Kij = \kappa N (xi, xj).

2. Comput the vN , wN \in \BbbR N using vN = K\vec{}1, and wN = KV  - 1\vec{}1, where
V = diag(vN).

3. Form the normalized kernel matrix S = V  - 1KW - 1/2, where W =
diag(wN).

4. Compute the L largest singular values \sigma 0, . . . , \sigma L - 1, the corresponding
left singular vectors \phi 0, . . . , \phi L - 1, and right singular vectors \gamma 0, . . . , \gamma L - 1

of S. Normalize the singular vectors such that \| \phi j\| 2 = \| \gamma j\| 2 =
\surd 
N ,

where \| \cdot \| 2 is the standard 2-norm on \BbbR N . Stack eigenvectors columnwise
into N \times L matrix \Phi := [\phi 0, . . . , \phi L - 1], and form the L \times L diagonal
matrix of eigenvalues \Lambda := diag(\lambda j), with \lambda j := \sigma 2

j .
Remark. Recall that the key idea of KAF is the eigendecomposition of the Markov

operator G, which can be represented by an N \times N matrix eigenvalue problem,

G\phi = \lambda \phi .

The matrix G is never explicitly formed; instead, we exploit the fact that G = SST ,
and hence \phi are the left singular vectors of S. Thus, we bypass the eigendecomposition
step with a reduced singular value decomposition (SVD) in step (4). Note that the
SVD approach is natural when working with kernels with an explicit factorization
G = SST , including the bistochastic kernels described in Appendix A.2. For more
general kernels, one typically performs direct eigendecomposition of G. KAF can also
be implemented with nonsymmetric kernels satisfying a detailed balance condition
making them conjugate to positive-definite kernels; see section 4.2 in [1] for more
details.

A.1.2. Algorithm 2 (RKHS basis functions). RKHS basis functions are
computed using the Nystr\"om extension (2.7) reproduced below

\psi j =
1

N\lambda 
1/2
j

N - 1\sum 

n=0

k(\cdot , xn)\phi j(xn), \lambda j > 0.

\bullet Inputs
-- Out-of-sample data \^x0, \^x1, . . . \^x \^N - 1 \in \scrX 
-- Right singular vectors \gamma 0, . . . , \gamma L - 1 from Algorithm 1
-- W from Algorithm 1

\bullet Outputs
-- RKHS basis \Psi = [\psi 0, . . . , \psi L - 1]

\bullet Steps

1. Form matrix \^K \in \BbbR \^N\times N with entries \^Kij = \kappa N(\^xi, xj). Note that this
requires another kernel density estimation step to evaluate the sampling
density on out-of-sample data.
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2. Compute \^v \^N \in \BbbR \^N using \^v \^N = \^K\vec{}1.

3. Form the \^N \times N kernel matrix \=K = \^V  - 1 \^KW - 1/2, where \^V = diag(\^v \^N ).

4. Output \psi j = \=K\gamma j , stacked columnwise in the \^N \times L matrix \Psi :=
[\psi 0, . . . , \psi L - 1].

A.1.3. Algorithm 3 (predictor). The final predictor is constructed according
to (2.1), reproduced here for convenience:

Z\tau (x) =
1

N

N - 1\sum 

n=0

\left( 
 

\ell (\tau ) - 1\sum 

j=0

\psi j(x)\phi j(xn)

\lambda 
1/2
j

\right) 
 fn+q.

\bullet Inputs
-- Lead time \tau = q\Delta t
-- Truncation parameter \ell \leq L
-- Vector of sampled observable f\tau = [fq, . . . , fN - 1+q]

T

-- Diffusion eigenvectors \Phi \ell \in \BbbR N\times \ell (first \ell columns of \Phi )
-- Diffusion eigenvalues \Lambda \ell = diag(\lambda 0, . . . , \lambda \ell  - 1)
-- RKHS basis \Psi \ell \in \BbbR N\times \ell (first \ell columns of \Psi )

\bullet Output
-- Prediction Z\tau at \^x0, \^x1, . . . \^x \^N - 1

\bullet Steps
1. Form \ell -dimensional coefficient vector c := \Phi T

\ell f\tau /N .

2. Compute z := \Psi \ell \Lambda 
 - 1/2
\ell c. Report prediction for ith initial point Z\tau (\^xi) :=

zi.

A.2. Choice of kernel. Details concerning the kernel choice may be found in
section 5 of [1]. Here we briefly summarize the key ideas. Our starting point is the
Gaussian kernel

\kappa (x, x\prime ; \epsilon ) = exp
\bigl( 
 - | x - x\prime | 2/\epsilon 

\bigr) 
,

where we assume that \scrX is a subset of \BbbR d, x, x\prime \in \scrX and | \cdot | denotes the Euclidean
norm on \BbbR d. Note that this kernel is data independent. From it we can generalize to
a data-dependent kernel defined by [7]

\kappa N(x, x
\prime ) = exp

\bigl( 
 - | x - x\prime | 2/(rN(x)rN(x\prime )\epsilon )

\bigr) 
,

rN(x) = qN(x)
1
m ,

qN(x) =
1

(\pi \delta )m/2

\int 

\Omega 

\kappa (x,\Pi (\omega ); \delta )\mu N(d\omega ).

Here, \epsilon , \delta and m are lengthscale and dimension parameters, respectively, estimated
from the data. The role of including rn and hence a variable bandwidth kernel is
to compensate for variations in sampling density across the space. A key conceptual
idea underlying the construction of qN is that it approximates the Lebesgue density
of the measure \mu in the large data limit. Thus, the kernel \kappa N weights the distance of
x and x\prime in a manner which reflects the sampling density of the data.

From \kappa N , the kernel kN is constructed as follows, invoking a second principle
which is to design a bistochastic Markov kernel [9]. Doing so ensures that the top
eigenvalue of G is 1 with corresponding eigenvector a constant; then the hypothesis
space also contains constants. This is useful for capturing the mean of the predicted
quantity U\tau F and, in particular, plays a central role in the large \tau asymptotics for
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mixing systems. To achieve the Markov property, we proceed as follows. First, we
define

vN(x) =

\int 

\Omega 

\kappa N

\bigl( 
x,\Pi (\omega )

\bigr) 
\mu N(d\omega ),

wN(x) =

\int 

\Omega 

\kappa N

\bigl( 
x,\Pi (\omega )

\bigr) 

vN

\bigl( 
\Pi (\omega )

\bigr) \mu N(d\omega ).

Since the above empirically determined quantities only take values at the N sampled
points, they are isomorphic to vectors in \BbbR N identified by the same name within
Algorithm A.1.1. Finally, define

kN(x, x
\prime ) =

\int 

\Omega 

\kappa N

\bigl( 
x,\Pi (\omega )

\bigr) 
\kappa N

\bigl( 
\Pi (\omega ), x\prime 

\bigr) 

vN(x)wN

\bigl( 
\Pi (\omega ))vN(x\prime )

\mu N(d\omega ).

The operators constructed from the unnormalized and normalized kernels, \kappa N and
kN , are likewise represented by N \times N matrices K and SST , respectively, in Algo-
rithm A.1.1. It may be verified that the Markov property is satisfied, and so too
are the positivity conditions required for the aforementioned large data convergence
result.

A.3. Choice of \ell . Recall that the predictor (2.9) actually corresponds to a
family of predictors parameterized by the desired lead time \tau and by the truncation
parameter \ell . Thus, we write Z\tau ,\ell . Here we describe how to choose \ell for a fixed
lead time \tau . In practice, the choice of \ell is determined from the minimizer of the
empirical RMSE based on (2.5), computed from a validation data set with \~N samples
\^x0, . . . , \^x \~N - 1:

\ell = argmin
\ell \prime =1,...,L

RMSE (Z\tau ,\ell \prime ).

A.3.1. Algorithm 4 (tuning \ell ).
\bullet Inputs

-- Forecast lead time \tau = q\Delta t
-- Validation out-of-sample data \^x0, . . . , \^x \~N - 1 \in \scrX 
-- Ground truth vector of observables \^f\tau = [ \^fq, . . . , \^f \~N - 1+q]

T

-- Diffusion eigenvectors \Phi from Algorithm 1
-- Diffusion eigenvalues \Lambda from Algorithm 1

\bullet Outputs
-- Truncation parameter \ell 

\bullet Steps
1. Compute RKHS basis functions \Psi L using Algorithm 2. Set R := \infty .
2. For \ell \prime = 1 to L,

(a) compute predictor Z\tau ,\ell \prime (\^x) := z using Algorithm 3;

(b) compute RMSE l\prime for Z\tau ,\ell \prime (\^x) as RMSE \ell \prime := \| z  - \^f\tau \| 2;
(c) if RMSE \ell \prime \leq R, set \ell := \ell \prime and R := RMSE \ell \prime .

3. Return \ell .
This tuning procedure must be carried out for each desired lead time \tau .

A.3.2. Long-time behavior of \ell . It should be noted that in the presence of
mixing or chaotic dynamics, for long lead times \tau , the projected subspaces become
one-dimensional; i.e., \ell = 1, and the predictor converges to a constant (this occurs only
if the subspace includes the constant eigenfunction from a Markov kernel operator).
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The weak convergence of the conditional expectation of mixing dynamics to the mean
of the observable F is described in [1],

(A.1) lim
\tau \rightarrow \infty 

\langle g,\BbbE [U\tau F | \Pi ] - \BbbE [F ]1\Omega \rangle L2
\mu 
= 0,

a property that is a direct consequence of a measure-theoretic definition of mixing

(A.2) lim
\tau \rightarrow \infty 

\langle U\tau \ast g, h\rangle L2
\mu 
= \BbbE [g]\BbbE [h],

where the expectations are taken over the invariant measure \mu .

A.4. Formula for variance. The uncertainty associated with the prediction at
each lead time can be estimated via the conditional variance

var[U\tau F | \Pi ] = \BbbE [(U\tau F  - \BbbE [U\tau F | \Pi ])2| \Pi ] \approx \BbbE [(U\tau F  - Z\tau )
2| \Pi ].

The variance is yet another observable in L2
\mu (\Omega ;\BbbR ) that can be evaluated using the

same basis functions as the predictor, and, once the predictor is computed, it only
remains to compute the expansion coefficients

(A.3) \^cj(\tau ) = \langle \phi j \circ \Pi , (U\tau F  - Z\tau )
2\rangle L2(\mu N ) =

1

N

N - 1\sum 

n=0

\phi j(xn)(fn+q  - Z\tau (xn))
2.

Note that this computation requires a different optimal truncation \ell (\tau ) for the vari-
ance and hence another validation set for parameter tuning:

1. (Tuning \ell ) Run Algorithm 4 on a separate validation data set for which the

predictor is already computed, using the new observable \^g\tau instead of \^f\tau :

\^g\tau = [( \^fq  - Z\tau (\^x0))
2, . . . , ( \^f \~N - 1+q  - Z\tau (\^x \~N - 1))

2]T .

2. Run Algorithm 3 on the initial prediction data using the observable g\tau instead
of f\tau ,

g\tau = [(fq  - Z\tau (x0))
2, . . . , (fN - 1+q  - Z\tau (xN - 1))

2]T ,

denoting the output predicted variance as V\tau .
3. Finally, the uncertainty bands of the predictor at each lead time are given by

two standard deviations, or twice the square root of the variance, Z\tau \pm 2
\sqrt{} 
| V\tau | .

Appendix B. Details of the GP closure. In this section we describe details of
the construction of the GP underlying the model-data--driven approach and leading to
the approximate closed equation (4.4). We use L-96 explicitly, but the methodology
easily generalizes to other multiscale systems.

Construction of a GP closure is performed using the following steps:
(a) Choose random initial conditions for L-96.
(b) Numerically integrate for time Tconv to determine an initial condition on the

global attractor.
(c) Numerically integrate from this initial condition with a fixed time step \Delta t for

time Tlearn to collect pairs of data:

\biggl\{ \biggl( 
xk(tn), (By)k(tn)

\biggr) \biggr\} N

n=1

for k = 1, . . . 9 and where tn = n\Delta t, N = \lfloor Tlearn

\Delta t \rfloor .
(d) Train a GP using collected pairs of data, including optimization over hyper-

parameters, such as lengthscale, and set cGP to be the mean of this GP.
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Note that in step (c) we exploit the statistical invariance w.r.t. circular index shift-
ing; this enables us to collect K pairs in one time step. For numerical implementation
of the GPR, we used the scikit-learn package [39]; the kernel of the GP was chosen
as the sum of a standard radial basis function and white noise kernels, setting the noise
level in the latter to 0.5, and the length scale parameter was optimized. Out of roughly
30000 points obtained in step (c), we subsampled 500 uniformly at random, without
replacement, to train the GP. The result of such a procedure is shown in Figure 4.4.
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