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Abstract

Graph-based semi-supervised learning is the problem of propagating labels from a small
number of labelled data points to a larger set of unlabelled data. This paper is concerned
with the consistency of optimization-based techniques for such problems, in the limit where
the labels have small noise and the underlying unlabelled data is well clustered. We study
graph-based probit for binary classification, and a natural generalization of this method
to multi-class classification using one-hot encoding. The resulting objective function to be
optimized comprises the sum of a quadratic form defined through a rational function of the
graph Laplacian, involving only the unlabelled data, and a fidelity term involving only the
labelled data. The consistency analysis sheds light on the choice of the rational function
defining the optimization.

Keywords: Semi-supervised learning, classification, consistency, graph Laplacian, probit,
spectral analysis.

1. Introduction

Semi-supervised learning (SSL) is the problem of labelling all the points in a data set, by
leveraging correlations and geometric information in the data points, together with explicit
knowledge of a subset of noisily observed labels. The primary goal of this article is to analyze
the probit and one-hot methods for transductive SSL. We elaborate conditions under which
these methods consistently recover the correct labels attached to the unlabelled data set.
We do this in an idealized setting in which the unlabelled data is approximately clustered,
and there is an unobserved latent variable which determines labels and which is observed
in a small noise regime. We prove consistency in a limit in which the data becomes more
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clustered and the label noise goes to zero. The formulation and analysis demonstrates how
ideas from unsupervised learning and, in particular spectral clustering, can be used as prior
information; this prior information is enhanced, or sets up a competition with, labelled data.
In so doing, our analysis also elucidates the role of parameter choices made when setting up
the balance between labelled and unlabelled data. Furthermore, we exhibit useful properties
of the probit and one-hot methods, including a representer theorem for the classifier, and a
natural dimension reduction which follows from this theorem and is impactful in practice.

1.1. Background and Literature Review

We start by giving informal statements of the problem to be solved, and a brief literature
review. Consider a set of nodes Z = {1,⋯,N} and an associated set of feature vectors
X = {x1, x2,⋯, xN}. Each feature vector xj is assumed to be a point in Rd. X may thus
be viewed as a function X ∶ Z ↦ Rd or as an element of Rd×N . We refer to X as unlabelled
data. Suppose there exists a function l ∶ Z ↦ {1,2,⋯,M} that assigns one of M distinct
labels to each point in Z. That is, for every point j ∈ Z the value l(j) =m indicates that j
belongs to class m or is labelled as m. Throughout this article we assume that every point
in Z belongs to one class only.

Now let Z ′ ⊆ Z be a subset of the nodes with ∣Z ′∣ = J ≤ N and define y ∶ Z ′ ↦ {1,2,⋯,M}
to be a noisily observed label of each point in Z ′. We refer to y as labelled data. With this
setup we may define the SSL problem.

Problem 1 (Semi-Supervised Learning) Suppose Z,Z ′,X and y are known. Find l ∶
Z ↦ {1,2,⋯,M}. ◇

In order to solve this problem, which is highly ill-posed, it is necessary to introduce some
form of regularity on the labels, guided by the correlations in X for example, and to make
assumptions about the errors in the labels provided. One approach, which we study here,
is to assume that the labels on Z are defined through a latent variable u ∶ Z ↦ RM , whose
regularity is defined through the unlabelled data X, and a function S ∶ RM ↦ {1,2,⋯,M}.
Specifically we assume that there is a ground truth function u† ∶ Z ↦ RM for which

y(j) ∶= S(u†(j) + η(j)), j ∈ Z ′, (1)

where η(j) iid∼ ψ and ψ is the Lebesgue density of a zero-mean random variable on RM . We
may now introduce the following relaxation of the SSL problem.

Problem 2 (Relaxed Semi-Supervised Learning) Suppose Z,Z ′,X and y are known,
together with the function S and the density ψ. Find u ∶ Z ↦ RM and define l = S ○ u ∶ Z ↦
{1,2,⋯,M}. ◇

In Problem 3 below we will define a class of optimization functionals for u, giving an
explicit instantiation of Problem 2, and focus on the resulting optimization problems in
our analysis. Before doing so we give a literature review explaining the context for this
optimization approach.

The consistency of classification methods in the setting of supervised learning is well-
developed; see Tewari and Bartlett (2007) for a literature review and results applying to both
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binary and multi-class classification, as well as the preceding work in Steinwart (2001, 2005);
Wu and Zhou (2006) which establishes the problem in the framework of Vapnik (1995).
The paper of Xu et al. (2009) discusses the robustness of such supervised classification
methods, allowing for a small fraction of adversarially labelled data points. There has been
some recent analysis of logistic regression, and the reader may access the literature on this
subject via the recent papers of Candès and Sur (2020); Sur and Candès (2019). All of
this work on supervised classification focuses on the large data/large number of features
setting, and often starts from assumptions that the unlabelled data is linearly separated.
None of it leverages the power of graph-based techniques to extract geometric information
in large unlabelled data sets. To make the connection to graph-based techniques we need to
discuss unsupervised graph-based learning (Belkin and Niyogi, 2001; Von Luxburg, 2007).
This is a subject that has seen significant analysis in relation to consistency. Spielman
and Teng (1996, 2007) perform a careful analysis of the spectral gaps of graph Laplacians
resulting from clustered data, studying recursive methods for multi-class clustering. Ng
et al. (2001) introduced a way of thinking about, and analyzing, multi-class unsupervised
learning based on perturbing a perfectly clustered case; we will leverage similar ideas in our
work on SSL. Von Luxburg et al. (2008) introduced the idea of studying the consistency
of spectral clustering in the limit of large i.i.d. data sets in which the graph Laplacian
converges to a limiting integral operator. Garćıa-Trillos and Slepčev (2018); Garćıa-Trillos
et al. (2019) have taken this further by working with localizing weight functions designed
so that the limit of the graph Laplacian is a differential operator.

SSL is a methodology which combines the methods of unsupervised learning and of
supervised classification. According to the definition in Kostopoulos et al. (2018) “SSL
can be categorized into two somewhat different settings, namely inductive and transductive
learning . . . inductive SSL attempts to predict the labels on unseen future data, while trans-
ductive SSL attempts to predict the labels on unlabeled instances taken from the training
set.” In this paper our focus is on transductive SSL. Initial attempts to solve the SSL
problem employed combinatorial algorithms. Based on an explicit mathematical formula-
tion stemming from Problem 1; see Blum and Chawla (2001). Later Zhu et al. (2003a,b)
introduced a relaxation similar to Problem 2. Their approach is most easily described in the
binary case in which they assume S ∶ R↦ R is the identity function and the labels are given
in the form ±1. From a modeling viewpoint this approach is unnatural because the cate-
gorical data is assumed to also lie in the real-valued space of the latent variable. Bertozzi
and Flenner (2012) introduced an interesting relaxation of this assumption, by means of
a Ginzburg-Landau penalty term which favours real-values close to ±1 but does not en-
force the categorical values ±1 exactly. The probit approach to classification, described in
the classic text of Rasmussen and Williams (2006) on Gaussian process regression, does
not make the unnatural modeling assumption underlying Zhu’s work; instead it is based
on taking S to be the sign function. However the basic form of probit in Rasmussen and
Williams (2006) does not use unlabelled data to extend labels outside the labelled data set,
but instead does so through regular Gaussian process regression: inductive SSL.

The extension of the probit method to graph-based transductive SSL is described in
Bertozzi et al. (2018), where both Bayesian and optimization-based formulations are de-
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scribed; in that paper, (1) is also generalized to the level set form

y(j) ∶= S(u†(j)) + η(j), j ∈ Z ′, (2)

and a Bayesian formulation of the Ginzburg-Landau relaxation of Bertozzi and Flenner
(2012) is introduced. The close relationship between level set and probit formulations is
discussed in Dunlop et al. (2020). Belkin et al. (2004); Belkin and Niyogi (2001); Belkin
et al. (2006) demonstrate how both Gaussian process regression and graph-based SSL can
be used simultaneously.All of the approaches which followed from the work of Zhu are
readily generalized from the binary case to the multi-class setting, using the idea of one-
hot encoding, explained in detail in Subsection 3.1, in which each label is identified with a
standard unit basis vector in RM .

A large number of approaches to SSL have been developed in the literature and a de-
tailed discussion of all of them is outside the scope of this article. We refer the reader
to the review articles of Zhu (2005) and Kostopoulos et al. (2018) for, respectively, the
state-of-the-art in 2005 and a more recent appraisal of the field that categorizes various
inductive and transductive approaches to SSL and semi-supervised regression. The idea
of regularization by graph Laplacians for SSL was developed in different contexts such as
manifold regularization (Belkin et al., 2006), Tikhonov regularization (Belkin et al., 2004)
and local learning regularization (Wu and Schölkopf, 2007). However, while graph regu-
larization methods are widely applied in practice the rigorous analysis of their properties,
and in particular asymptotic consistency, is not well-developed within the context of SSL.
Indeed, to the best of our knowledge the consistency analysis of the probit and one-hot
methods has not been tackled before. SSL may be viewed as a method for boosting, refin-
ing or questioning unsupervised graph-based learning, through labelling information; our
analysis sheds light on this process.

There has been other analysis of SSL methods, not concerning consistency. Dunlop et al.
(2020) studied the large data and zero noise limits of the probit method. They derived a
continuum inverse problem using the methodology of Garćıa-Trillos et al. (2019); Garćıa-
Trillos and Slepčev (2018) that characterizes SSL when the number of vertices of the graph
and the number of observed labels is fixed, or goes to infinity in a manner insuring a fixed
fraction of labels. The authors also studied the zero noise limit of probit and level-set
methods for SSL and showed that both problems approach the same limit as the noise
variance goes to zero.

1.2. Problem Setup and Preliminaries

Our focus in this paper is on the analysis of algorithms built from the introduction of real-
(vector)-valued latent functions, leading to precise mathematical formulations of Problem
2. To make actionable algorithms we need to specify precisely how the unlabelled data X
and the labelled data y are used. The approach we study here is to define the desired latent
variable u as the minimizer of a function comprised of two terms, one of which enforces
correlations and geometric information in the unlabelled data X, and the other which
enforces consistency with the label data y, on the assumption that they are related to u as in
(1). To this end we view X as a point cloud in Rd and associate a weight matrix W = (wij) to
tuples (xi, xj) in X×X. The weights wij , which are assumed to be non-negative, are chosen
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to measure affinities between xi and xj . Since similarity between data points is a symmetric
relationship, we assume wij = wji so that W is a symmetric matrix and define a proximity
graph G = {X,W} with vertices X and edge weights W . From W we will construct a
covariance operator C on spaces of functions H = {u ∶ Z ↦ RM}, using a graph Laplacian
implied by W . We also define a misfit function Φ(⋅ ; ⋅ ) ∶H × {1,⋯,M}J ↦ R which encodes
the assumption (1) about the relationship between the labels and the latent function. With
these objects we then formulate the SSL problem as a regularized optimization problem.

Problem 3 (Relaxed Semi-Supervised Learning as Optimization) Suppose Z,Z ′,X
and y are known, together with the function S, the covariance operator C and the misfit Φ.
Find the function u∗ defined by

u∗ = arg min
u∈H

1

2
⟨u,C−1u⟩H +Φ(u; y). (3)

◇

This optimization problem may be viewed as the MAP estimator associated to the
Bayesian inverse problem of finding the distribution of u∣y when the prior on u is a Gaussian
random measure on H with covariance C and Φ(u; y) is the negative log-likelihood of y
conditioned on u, i.e.

P(y∣u)∝ exp(−Φ(u; y)), assuming y(j) = S(u(j) + η(j)). (4)

We refer to Φ as the likelihood potential.

1.3. Main Contributions

The key question at the heart of this article is to identify conditions under which the
minimizer u∗ of Problem 3 correctly identifies the labels. To this end, we define the following
notion of consistency.

Definition 1 (SSL Asymptotic Consistency) We say that Problem 3 is asymptotically
consistent if, for all j ∈ Z,

S(u∗(j)) a.s.ÐÐ→ S(u†(j)), as std(η(j)) ↓ 0,

where u† is the latent variable underlying the labelled data (1).

In the above and throughout the rest of the article
a.s.ÐÐ→ denotes almost sure (a.s.) con-

vergence with respect to a common probability space on which the measurement noise η(j)
are defined (see Subsections 2.6 and 3.5 for a formal discussion of this mode of conver-
gence). We primarily focus on the probit and one-hot methods for SSL, corresponding to
specific choices of the function S. As mentioned earlier probit is an optimization approach
for binary classification that formulates Problem 3 with M = 2. The one-hot method is a
generalization of probit for multi-class classification when M ≥ 2. We outline these methods
in detail in Sections 2 and 3. We show that probit and one-hot methods are asymptotically
consistent in the case where the graph G is nearly-disconnected in the following sense.
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Definition 2 (Nearly-Disconnected Graph) A weighted graph G = {X,W} is nearly-
disconnected with K clusters if there exist connected components G̃k = {X̃k, W̃k} for k ∈
{1,⋯,K} so that the edges within each G̃k are O(1), but the edges between elements in
different G̃k are O(ε) for a small parameter ε > 0. In other words, up to a reordering of the
index set Z, the matrix W is nearly block diagonal.

Working in such a setting is a natural way of representing nearly clustered data, and was
exploited by Ng et al. (2001) concerning unsupervised learning. The number of clusters K is
an inherent geometric property of the unlabelled data X; determining a suitable choice of K
in practice can be challenging and depends on the scale one is interested in. In the following
informal statement of our main result we assume that each component G̃k is associated with
at least one pre-assigned label. The result shows that if G is nearly-disconnected and the
ground truth function u† assigns the same label to all points within each component G̃k then
the probit and one-hot methods are asymptotically consistent for an appropriate choice of
matrix C so long as at least one label is observed in each component G̃k. Below, L denotes
the graph Laplacian, a discrete diffusion operator acting on functions defined on the graph
G, see Section 2.3 for a precise definition.

Theorem 3 (Consistency of Probit and One-hot) Suppose G is a nearly-disconnected
graph and let L be a graph Laplacian on G. Define the matrix C = τ2α(L + τ2I)−α with
parameters τ2, α > 0. Assume S(u†) is constant on the components G̃k and at least one
label is observed in each component G̃k. Then the probit and one-hot formulations are
asymptotically consistent for any sequence (ε, τ, std(η)) ↓ 0 along which ε = o(τ2).

Remark 4 Conceptually the parameter ε should be thought of as an inherent measure of
how clustered the unlabelled data is; in this paper we consider a specific set-up in which ε
is defined as a measure of the size of edge weights between clusters. We also connect the
labelled and unlabelled data via a model involving an unobserved latent variable, perturbed
by noise η. Our consistency results are proven in the setting in which ε and std(η)) both
tend to zero. This is a strong assumption which, whilst allowing a precise theory, may be
difficult to apply directly in practice. We believe that similar consistency results will hold
under different modeling assumptions which characterize clustering and label noise in more
general ways. Furthermore our consistency results demonstrate the importance of choosing
the hyperparameter τ in a data-dependent fashion. Small ε induces a spectral gap in L and
for this to translate into a spectral gap in C we require τ to be small too. However we also
require ε = o(τ2) so that the number of eigenvalues of C which are at, or close to, 1 is the
same as the number of clusters in the data. We also give theory and numerical evidence
showing that when ε = Θ(τ2) consistency may be lost. Our theoretical results are asymptotic
in nature and therefore cannot apply directly to any one given data set. However our analysis
provides insights into both algorithmic parameters choices, and algorithmic performance, in
practical non-asymptotic set-ups. Indeed the papers of Bertozzi and Flenner (2012); Bertozzi
et al. (2018) demonstrate the use of optimization methodologies of the type introduced here
in practical non-asymptotic set-ups for real data problems, while Chen et al. (2018); Qiao
et al. (2019) demonstrate analogous set-ups for related Bayesian approaches. An important
conclusion of the theory and numerical experiments is that careful choice of the parameter
τ is crucial for effective SSL. The take-home message here is that the use of hierarchical
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Bayesian methods, which tune τ automatically to the data, can be beneficial; as demonstrated
in practical experiments in Chen et al. (2018). ◇

Formal statement and proof of the preceding main theorem is given in Theorem 20
(together with Corollaries 19 and 21) for the probit method and in Theorem 32 (together
with Corollary 33) for the one-hot method.

As a secondary result, accompanying the preceding theorem, we identify a natural di-
mension reduction for probit and one-hot optimization problems. More precisely, we show
that finding u∗ ∈ H = {u ∶ Z ↦ RM} is equivalent to a similar optimization problem for a
function b∗ ∈H ′ = {b ∶ Z ′ ↦ RM}. Thus we can reduce the size of the optimization problems
from N ×M to J ×M . This result, which is a discrete representer theorem, has significant
practical consequences when J ≪ N .

Theorem 5 (Dimension Reduction for Probit and One-hot) The problem of find-
ing u∗ is equivalent to an optimization problem of the form

b∗ ∶= arg min
b∈H′

1

2
⟨b, (C ′)−1b⟩H′ +Φ′(b; y),

where C ′ is a submatrix of C after restriction of rows and columns to Z ′, and Φ′ is defined
from Φ.

A formal statement and proof of this theorem is presented in Corollary 11 for probit
and Proposition 27 for the one-hot method. These results also provide identities that relate
b∗ to u∗ and vice versa. More precisely, pointwise values of the functions b∗ and u∗ coincide
on the labelled set Z ′. Conversely, u∗ can be viewed as a smooth extension of b∗ from the
labelled set Z ′ to the entire index set Z.

Finally we perform numerical experiments to illustrate the behavior of probit and one-
hot methods beyond the theoretical setting. In particular we demonstrate that when ε =
Θ(τ2) these methods are not always consistent. An interesting observation we make is
a sharp phase transition in the accuracy of both methods. More precisely, we observe a
curve in the (ε/τ2, α)-plane across which the probit and one-hot methods transition rapidly
from being consistent into inconsistent solutions based on majority label propagation, i.e.,
labelling all points in the data set according to the label that is observed most often (see
Figures 2 and 8). Intuitively this happens because, for larger values of ε/τ2, it is cheaper
to minimize the quadratic regularization term in the optimization problem of Theorem 5
than to minimize the misfit term Φ.

1.4. Outline

Section 2 is devoted to analysis of the probit method where M = 2. The problem is formu-
lated as inference for a latent real-valued function on the nodes of a graph, with the sign
determining the assignation of a binary label. An optimization approach is employed in
which the graph Laplacian constructed from the unlabelled data is used for regularization,
and a generic zero-mean log-concave label measurement noise is assumed; this results in a
convex data misfit term. We study the properties of this optimization problem, showing
that the related optimization functional is convex. We prove a representer theorem and then
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study asymptotic consistency of the method in Corollary 19, Theorem 20 and Corollary 21,
the precise statements of Theorem 3 in the probit case.

Section 3 has the same structure as Section 2 but focuses on the multi-class setting
(i.e., M ≥ 2) and employs the one-hot method to link a real-vector-valued latent variable
to the labels. The key results here are Corollary 31, Theorem 32 and Corollary 33, the
precise versions of Theorem 3 in case of the one-hot method. Section 4 contains numerical
experiments confirming the key theoretical results from the two preceding sections, and
illustrates the behavior of probit and one-hot methods beyond the theoretical setting. In
Section 5 we summarize and discuss future work.

1.5. Notation

Throughout we use Z to denote the nodes of a graph carrying a pre-assigned unlabelled
data point at each node, and Z ′ the subset of nodes which also carry a label. We use
G0 = {X,W0} to denote a disconnected graph with K disconnected subgraphs (clusters)
G̃k = {X̃k, W̃k} for k = 1, . . . ,K. The X̃k are a subset of the points in X with indices
Z̃k ⊂ Z while W̃k are submatrices of W0. We also use Z̃ ′

k to denote the subset of labelled
points within Z̃k. Subsequently we denote the graph Laplacian matrices of the subgraphs
G̃k by L̃k. We also introduce a nearly-disconnected graph Gε = {X,Wε} with the weight
matrix Wε that is considered to be a perturbation of W0 and use Lε to denote the graph
Laplacian on this nearly-disconnected graph. These concepts are introduced and discussed
in subsection 2.5 and used extensively in the rest of the article.

We use u to denote real-(vector)-valued functions on Z which are acted upon by a non-
linear classifier to assign labels. We use ∣ ⋅ ∣ to denote the cardinality of a set; ⟨⋅ , ⋅ ⟩, ∥ ⋅∥ denote
the Euclidean inner-product and norm unless stated otherwise. We employ the standard Θ,
O and o notations as in Cormen et al. (2009): given positive functions f(s), g(s), we write

• f(s) = Θ(g(s)) if there exist constants c1, c2, s0 > 0 so that

0 ≤ c1g(s) ≤ f(s) ≤ c2g(s) ∀ s ∈ (0, s0] ,

• f(s) = O(g(s)) if there exists c, s0 > 0 so that

0 ≤ f(s) ≤ cg(s) ∀ s ∈ (0, s0] ,

• f(s) = o(g(s)) if for any constant c > 0 there exists s0(c) > 0 so that

0 ≤ f(s) < cg(s) ∀ s ∈ (0, s0(c)] .

2. Binary Classification: The Probit Method

In Subsection 2.1 we set up the probit methodology, noting that the binary classification
problem (M = 2) can be formulated using a latent variable function which is RM−1−valued
rather than RM−valued. In Subsection 2.2 we study the likelihood contribution to the op-
timization problem, resulting from the labelled data, and in Subsection 2.3 the quadratic
regularization resulting from the unlabelled data. In Subsection 2.4 we study the probit
minimization problem, formulating the results via a discrete representer theorem, and in
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Subsection 2.5 we study the properties of the representers via the properties of the eigen-
structure of the covariance, exploiting the nearly-disconnected graph structure. Subsection
2.6 concludes the analysis of the probit method, studying consistency in detail.

2.1. Set-Up

We start with the case of binary classification where the nodes Z belong to only two classes.
For simplicity we assume that l(j) ∈ {−1,+1} for all j ∈ Z rather than taking l(j) ∈ {1,2}.
This assumption is at odds with our notation in Subsection 1.2 but allows for a simpler
formulation of Problem 3. Since the classes are identified with the integers +1 and −1 a
natural choice for the classifier function S is the sign function:

S ∶ R↦ {−1,+1}, S(t) = sgn(t) ∶= {
+ 1, if t ≥ 0,

− 1, if t < 0.
(5)

With the above choice for S we can take the latent variable u to be a real valued function
on Z, i.e., u ∶ Z ↦ R. We can then naturally identify the function u with a vector u ∈ RN
where u = (u1, u2,⋯, uN)T and uj = u(j) for j ∈ Z. This allows to view Problems 2 and 3 as
the inverse problem of finding a vector u∗ in RN . In the remainder of this section we will
utilize this vector notation for convenience.

2.2. The Probit Likelihood

Let us begin by deriving the likelihood potential Φ(u; y) for the probit method. Let S be
as in (5) and recall (1), then

y(j) = sgn(uj + ηj), ηj
iid∼ ψ, j ∈ Z,

wherein we have identified the noise η with a vector ηηη = (η1, . . . , ηN)T ∈ RN . Suppose ψ is
a symmetric probability density function on R and denote the the cumulative distribution
function (CDF) of ψ by Ψ. Then,

P(y(j) = +1∣uj) = P(−uj ≤ ηj) = P(−ujy(j) ≤ ηj) = Ψ(ujy(j)).

For more details on this calculation, see similar arguments for the multi-class case in sec-
tion 3.2. Similarly,

P(y(j) = −1∣uj) = P(−uj > ηj) = P(ujy(j) > ηj) = Ψ(ujy(j)).

From (4) it follows that the probit likelihood potential Φ(u; y) has the form

Φ(u; y) = − ∑
j∈Z′

log Ψ(ujy(j)). (6)

2.3. Quadratic Regularization via Graph Laplacians (Binary Case)

Let us now formulate a quadratic regularization term for the probit method. Recall our
encoding of the nodes Z and their similarities via a weighted graph G = {X,W} with vertices
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at xj and edge weights wij = wji for i, j ∈ Z. We denote by di the degree of each node i ∈ Z
as

di ∶= ∑
j∈Z

wij ,

and further define the diagonal matrix D ∶= diag(di) ∈ RN×N . Finally, given constants
p, q ∈ R we define the graph Laplacian operator on G

L ∶=D−p(D −W )D−q ∈ RN×N . (7)

Different choices of p and q result in different normalizations of the graph Laplacian, see
Belkin and Niyogi (2007); Chung (1997); Coifman and Lafon (2006); Dunlop et al. (2020);
Garćıa-Trillos et al. (2019); Garćıa-Trillos and Slepčev (2018); Shi and Malik (2000); Slepčev
and Thorpe (2019); Von Luxburg (2007); Von Luxburg et al. (2008) and the references
therein as well as (Hoffmann et al., 2020a, Sec. 5) where a detailed discussion around
various weightings of graph Laplacians and their connection to a family of elliptic operators
is laid out. For example, p = q = 0 leads to the usual unnormalized graph Laplacian, when
p = q = 1/2 we obtain the symmetric normalized graph Laplacian, and p = 1 and q = 0 gives
the random walk graph Laplacian. Different normalizations of the graph Laplacian have
been used for spectral clustering in the literature, but a thorough understanding of the
advantages and disadvantages of certain parameter choices is still lacking, see Von Luxburg
(2007). Throughout we enforce p = q in order to make L symmetric with respect to the
Euclidean inner-product, making no other assumptions regarding the value of p, q; however
our results can be generalized to p ≠ q by using appropriate D−weighted inner-products.
For p = q, we can then write for any vector x ∈ RN ,

⟨x, Lx⟩ = 1

2

N

∑
i,j=1

wij

RRRRRRRRRRR

xi
dpi

− xj

dpj

RRRRRRRRRRR

2

. (8)

Given a graph Laplacian L and parameters α, τ2 > 0 we define a family of covariance
operators

Cτ = τ2α(L + τ2I)−α ∈ RN×N , (9)

where I ∈ RN×N denotes the identity matrix. We then use this covariance matrix to define
the quadratic regularization term in Problem 3. To this end note that in the binary case
we may identify H = RN ; we make this identification in what follows in this section, and
⟨⋅ , ⋅ ⟩ then denotes the standard Euclidean inner-product.

Remark 6 We use the term covariance operator to refer to the matrix Cτ following the
connection between optimization problems of the form (3) and MAP estimators within the
Bayesian formulation of probit given in Bertozzi et al. (2018). In the Bayesian perspective
Cτ is the covariance operator of a Gaussian prior measure on u, and u∗ coincides with
the MAP estimator of u†. We note that the covariance Cτ may be viewed as a form of
discrete Matérn covariance, in the framework of Lindgren et al. (2011). The scaling of Cτ
that we adopt ensures that the spectrum of Cτ lies in [0,1] and hence controls the total
variance of samples u from the prior: EN(0,Cτ )∥u∥2 ≈K, where K is the number of clusters
in the disconnected or nearly-disconnected graph setting. Further study of the connections

10
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between Cτ and Matérn kernels is outside the scope of this article and is postponed to our
companion papers (Hoffmann et al., 2020a,b) where the continuum limits of graph Laplacian
and covariance matrices such as Cτ are studied when the elements of X are drawn i.i.d. at
random from a probability measure, and N →∞. ◇

2.4. Properties of The Probit Minimizer

With the likelihood Φ and covariance matrix Cτ identified we can now discuss properties of
the probit functional

J(u) ∶= 1

2
⟨u,C−1

τ u⟩ +Φ(u; y), u ∈ RN . (10)

Remark 7 In the following we will study the problem of minimizing J. We highlight the
fact that related optimization problems for objective functions of the form

J(u) ∶= 1

2
⟨u, Lu⟩ +Υ(u; y), u ∈ E (11)

have been defined and studied in Bertozzi and Flenner (2012); Bertozzi et al. (2018); Zhu
et al. (2003a), although asymptotic consistency has not been investigated there. In order
to give these methods a Bayesian interpretation we need to define a covariance C = L−1,
noting that L is invertible on the set E = {u ∈ RN ∶ ⟨u,Dp

01⟩ = 0}, where 1 ∈ RN denotes
the vector of ones. L is invertible on E because Dp

01 spans the null-space of L when the
graph is pathwise connected. Introduction of Cτ with τ > 0 not only circumvents the need to
work on E but also allows for consistent prior modeling of the situation in which multiple
clusters have the same prior label. Furthermore the parameter α is needed when the large
data limit N →∞ is considered; see Hoffmann et al. (2020a). ◇

Our first task is to prove existence and uniqueness of the minimizers of J by proving it
is strictly convex. The following proposition follows directly from Bagnoli and Bergstrom
(2005, Thm. 1) and states that the CDF of a log-concave probability distribution function
(PDF) is also log-concave.

Proposition 8 (Convexity of the Likelihood Potential Φ) Let ψ be a continuously
differentiable, symmetric and strictly log-concave PDF with full support on R. Then Ψ
is also strictly log-concave and so Φ(⋅; y) ∶ RN ↦ R is strictly convex.

Convexity of the quadratic regularization term in (10) follows directly from Lemma 34
that establishes that the matrix Cτ is strictly positive-definite whenever τ2, α > 0. With
the convexity of both terms in the definition of J established we can now characterize its
minimizer.

Proposition 9 (Representer Theorem for the Probit Functional) Let G = {X,W}
be a weighted graph and let ψ be a PDF that is continuously differentiable, symmetric and
strictly log-concave with full support on R. Suppose the likelihood potential Φ is given by
(6) and the matrix Cτ is given by (9) with parameters τ2, α > 0. Then the following hold.

11
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(i) The probit functional J has a unique minimizer u∗ ∈ RN .

(ii) The minimizer u∗ satisfies the Euler-Lagrange (EL) equations

C−1
τ u∗ = ∑

j∈Z′
Fj(u∗j )ej , (12)

where ej is the j-th standard coordinate vector in RN and

Fj(s) ∶=
y(j)ψ(sy(j))

Ψ(sy(j)) . (13)

(iii) The minimizer u∗ has a sparse representation

u∗ = ∑
j∈Z′

ăjcj , (14)

where Cτej =∶ cj = (c1j ,⋯, cNj)T are a subset of the column space of Cτ = (cij)i,j∈Z
and ăj ∈ R.

(iv) The vector u∗ defined in (14) solves (12) if and only if the coefficients ăj satisfy the
non-linear system of equations

ăj = Fj (∑
k∈Z′

ăkcjk) , ∀j ∈ Z ′.

Proof (i) Since Ψ is the CDF of a random variable on R with full support then Ψ(s) ∈ (0,1).
Thus, − log Ψ ≥ 0 and so Φ is bounded from below. Furthermore, Φ is convex following
Proposition 8. On the other hand, the matrix C−1

τ is strictly positive definite following
Lemma 34 and so the quadratic term 1

2⟨w,C
−1
τ w⟩ is strictly convex and positive. Thus,

since the functional J is bounded from below and is the sum of strictly convex functions
then J is strictly convex and has a unique minimizer.

(ii) Since ψ is C1(R) the CDF Ψ is C2(R) and ψ/Ψ is C1(R) and locally bounded since
ψ has full support. Then J ∶ RN ↦ R is differentiable and the minimizer u∗ satisfies the first
order optimality condition ∇J(u∗) = 0. The statement now follows by directly computing
the gradient of J(u) with respect to u.

(iii–iv) Multiply (12) by Cτ to get

u∗ = ∑
j∈Z′

Fj(u∗j )Cτej = ∑
j∈Z′

ăjcj ,

where we set ăj = Fj(u∗j ) for j ∈ Z ′. Now substitute the expansion of u∗ into the definition
of ăj to get

ăj = Fj
⎛
⎝
(∑
k∈Z′

ăkck)
j

⎞
⎠
, (15)

This establishes the “only if” statement in (iv). In order to establish the converse, suppose
the ăj satisfy (15). Multiply this equation by ck and sum over j ∈ Z ′ to get

∑
j∈Z′

ăjcj = ∑
j∈Z′

Fj (∑
k∈Z′

ăjcjk)cj .

12
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now define u∗ = ∑j∈Z′ ăjcj to get

u∗ = ∑
j∈Z′

Fj(u∗j )cj .

The claim follows by multiplying this equation by C−1
τ .

Remark 10 (Connection to Kernel Regression) We note that Proposition 9 is closely
related to the representer theorem in Gaussian process and kernel regression see Rasmussen
and Williams (2006, Sec. 6.2). Similar result to ours can also be found in Smola and
Schölkopf (1998, Thm. 1) and Schölkopf and Smola (2002). ◇

Part (iv) of Proposition 9 suggests that the problem of minimizing J is analogous to a
low-dimensional optimization problem. To this end we now define a one-to-one reordering

π ∶ Z ′ ↦ {1,2,⋯, J}, π−1 ∶ {1,2,⋯, J}↦ Z ′, (16)

that allows us to associate the coefficients {ăj}j∈Z′ with a vector a = (a1,⋯aJ)T ∈ RJ via

aπ(j) = ăj , j ∈ Z ′,

and define submatrix C ′ ∈ RJ×J by the identity

(C ′
τ)π(i),π(j) = c′ij , i, j ∈ Z ′. (17)

That is, C ′
τ is the matrix Cτ with the rows and columns of the indices in Z ∖ Z ′ removed.

Finally, we define b ∶= C ′
τa. We then have the following natural dimension reduction for

the probit optimization problem.

Corollary 11 (Probit Dimension Reduction) Suppose the conditions of Proposition 9
are satisfied. Then the following hold.

(i) The problem of finding the minimizer u∗ ∈ RN of the functional J is equivalent to the
problem of finding the vector b∗ ∈ RJ that solves

(C ′
τ)−1b∗ = F ′(b∗), (18)

where the map F ′ ∶ RJ ↦ RJ is defined as

F ′(v) = (f1(v1),⋯, fJ(vJ))T , fk(vk) ∶= Fπ−1(k)(vk)

and Fj are defined in (13).

(ii) Moreover, the vector b∗ solves the optimization problem

b∗ = arg min
v∈RJ

J′(v),

where

J′(b) ∶= 1

2
⟨b, (C ′

τ)−1b⟩ +Φ′(b; y),

and

Φ′(b; y) = −
J

∑
j=1

log Ψ(bjy(π−1(j))).

13
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(iii) The two solutions b∗ ∈ RJ and u∗ ∈ RN satisfy the relationship

u∗ = ∑
j∈Z′

((C ′
τ)−1b∗)

π(j) cj , (19)

and
b∗k = u∗π−1(k), k = {1,2,⋯, J}.

Proof This result follows from Proposition 9 and direct computations.

Remark 12 (Variable Elimination and Gaussian Process Regression) There is a
simple explanation for the finite-dimensional representer theorem which underlies Propo-
sition 9 and Proposition 11. If we re-order the variables in u into components u+ in Z ′ and
u− in Z ∖Z ′, and re-order the components of the precision matrix P = C−1

τ then setting the
gradient of J to 0 in this re-ordered set of variables gives equations of the form

( P ++ P +−

P −+ P −− )( u+

u− ) = ( g(u+)
0

) .

This follows from the fact that Φ(u) does not depend on u−; the term g(u+) results from the
gradient of Φ(u) with respect to u+. From this re-ordering of the equations several things
are apparent: (i) the bottom row provides a linear mapping from u+ to u− since P −− is
invertible whenever Cτ is; (ii) using this linear mapping it is possible to obtain a closed
nonlinear equation for u+ only, from the top row, and the linear part of this equation has
a Schur complement form; (iii) the unknown u− is recovered by solving a linear equation;
(iv) the nonlinear equation for u+ may be viewed as the equation for a critical point of a
functional of u+ only. These four points are encapsulated in the previous results, where they
are rendered in a form familiar from Gaussian process regression and representer theorems.
Ideas analogous to those described in this remark underlie all representer theorems, but are
not so transparent in the infinite-dimensional setting. We present the results in the abstract
form of Proposition 9 and Corollary 11 to highlight the formal analogies with our companion
papers Hoffmann et al. (2020a,b) which study the limiting continuum optimization problems
that arise in the N →∞ limit. ◇

The expansion (14) indicates that the minimizer u∗ ∈ span {cj}j∈Z′ ; we refer to the cj as
representers. In other words, the minimizer u∗ belongs to a subspace of the column space
of the covariance matrix Cτ . Recall that by definition Cτ = τ2α(L + τ2I)−α and so we can
compute the vectors cj by solving the linear equations,

(L + τ2I)αcj = τ2αej , j ∈ Z ′, (20)

that cost J linear solves involving an N × N matrix. With the {cj}j∈Z′ at hand we can
extract the matrix C ′

τ and solve the nonlinear system (18) for b∗ and in turn compute the
solution u∗ by (19); note that Fj is defined in Proposition 9(ii). Then, whenever J ≪ N
solving the dimension reduced problem (18) is typically much faster than solving the full
nonlinear system (12). We present evidence of this improved efficiency in Subsection 4.3 in
the context of the one-hot method for multi-class classification.

14
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We now exploit the geometry in the problem dictated by the nearly-disconnected graph
structure that forms the basic assumption underlining our consistency analysis. It is clear
that the geometry of u∗ is dictated by the geometry of the vectors cj . It is then natural for
us to try to identify the geometry of the cj . By Lemma 35 we have the expansion

cj =
N

∑
k=1

1

λk
(φφφk)jφφφk, (21)

where {λk,φφφk} are the eigenpairs of C−1
τ . Therefore, by analyzing the spectrum of Cτ we

can identify the geometry of the vectors cj which together with the vector b∗ allow us to
identify the minimizer u∗ and eventually prove consistency of the probit minimizer. Spectral
analysis of Cτ is outlined in Appendix A, and in the next subsection we present the main
propositions and assumptions that are used in the remainder of the article.

2.5. Perturbation Theory for Covariance Operators

Consider a disconnected graphG0 = {X,W0} consisting ofK < N connected components G̃k,
i.e., the subgraphs G̃k are connected but there exist no edges between pairs of components
G̃i, G̃k with i ≠ k. Without loss of generality assume the nodes in Z are ordered so that
Z = {Z̃1, Z̃2,⋯, Z̃K} and the Z̃k collect the nodes in the k-th subgraph G̃k. We refer to the

Z̃k as clusters. Thus, the weight matrix W0 = (w(0)ij ) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w
(0)
ij ≥ 0 if i ≠ j and i, j ∈ Z̃k for some k,

w
(0)
ij = 0 if i = j or i ∈ Z̃k, j ∈ Z̃`, for k ≠ `.

(22)

We will show that when τ is small the geometry of cj is dominated by indicator functions
of the clusters Z̃k. First, let us collect some assumptions on the graph G0.

Assumption 1 The graph G0 = {X,W0} satisfies the following conditions with K < N :

(a) The weight matrix W0 satisfies (22) and has a block diagonal form W0 = diag(W̃1,⋯, W̃K)
where W̃k are the weight matrices of the subgraphs G̃k.

(b) Let L̃k be the graph Laplacian matrices of the subgraphs G̃k, i.e.,

L̃k ∶= D̃−p
k (D̃k − W̃k)D̃−p

k

with D̃k denoting the degree matrix of W̃k. There exists a uniform constant θ > 0 so
that for j = 1,⋯,K the submatrices L̃j have a uniform spectral gap, i.e.,

⟨x, L̃jx⟩ ≥ θ⟨x,x⟩, (23)

for all vectors x ∈ RNk and x�D̃p
k1k where 1k ∈ RNk are vectors of ones.

Note that the preceding assumption means that the clusters G̃k are pathwise connected.
Further, condition (23) excludes the possibility of outliers, that is, nodes of zero degree.
This means that the inner product as expressed in (8) is well defined. In the following
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and throughout the remainder of the article we introduce the following notation: We define
the graph Laplacian in terms of the weight matrix W0 and the associated degree matrix

D0 ∶= diag(d(0)i ):
L0 ∶=D−p

0 (D0 −W0)D−p
0 ∈ RN×N . (24)

Let Z = {Z̃1, Z̃2,⋯, Z̃K} and define the weighted indicator functions

(χχχk)j ∶=
⎧⎪⎪⎨⎪⎪⎩

(d(0)j )
p
, if j ∈ Z̃k,

0, otherwise,
and χ̄χχk ∶=

1

∥χχχk∥
χχχk. (25)

Similarly, the weighted indicator function on Z is denoted by

χχχ ∶=Dp
01, and χ̄χχ ∶= 1

∥χχχ∥χ
χχ. (26)

The next proposition, whose proof is given in Appendix A.1, identifies the geometry of the
covariance matrix constructed from L0. The key take away is that, for small τ , the covari-
ance matrix is nearly block diagonal which implies negligible correlation outside clusters.

Proposition 13 Let G0 = {X,W0} satisfy Assumption 1 and let L0 be a graph Laplacian
of form (24) on G0 and define the covariance matrix Cτ,0 on G0 for τ2, α > 0

Cτ,0 ∶= τ2α(L0 + τ2I)−α. (27)

Then as τ ↓ 0,

∥cj,0 − (χ̄χχk)j χ̄χχk∥
2 ≤ Ξτ4α ∀j ∈ Z̃k,

where cj,0 = (c(0)1j ,⋯, c
(0)
Nj)T is the j-th column of Cτ,0, and Ξ > 0 is a uniform constant.

Thus, when τ2α is small the vectors cj,0 have a similar geometry to the set functions
χ̄χχk. We now show that this result remains true when the graph G0 is perturbed.

Consider a perturbation of the matrix W0 by modifying some of the entries w
(0)
ij and

possibly making the graph connected. More precisely, let Gε = {X,Wε} where

Wε =W0 +
∞
∑
h=1

εhW (h). (28)

We need to collect some assumptions on the perturbed matrix Wε to restrict the type of
perturbations that are allowed.

Assumption 2 The graph Gε = {X,Wε} satisfies the following assumptions:

(a) The weight matrix Wε satisfies expansion (28) with W0 satisfying (22).

(b) The sequence of matrix norms satisfies {∥W (h)∥2}h∈Z ∈ `∞, and for each h ∈ Z, W (h) =
(w(h)ij ) is self-adjoint and satisfies

{w(h)ij ≥ 0, if w
(0)
ij = 0 for i, j ∈ Z, i ≠ j, (29)
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Note that w
(h)
ij may be negative for indices i, j such that w

(0)
ij > 0.

Associated to the weight matrix Wε is a graph Laplacian and covariance matrix

Lε ∶=D−p
ε (Dε −Wε)D−p

ε , Cτ,ε ∶= τ2α(Lε + τ2I)−α, (30)

where τ2, α > 0 and p ∈ R. We then have the following result stating that if ε = o(τ2), then
the geometry of the column space of Cτ,ε is close to the set functions χχχk, whilst if ε = Θ(τ2)
then prior correlation between clusters is introduced; see Appendix A.2 for the proof.

Proposition 14 Suppose G0 satisfies Assumption 1 and Gε satisfies Assumption 2. For
τ2, α > 0 define the covariance matrix Cτ,ε as in (30) and denote the j-th column of Cτ,ε by

cj,ε = (c(ε)1j ,⋯, c
(ε)
Nj)T . Then

(a) If ε = o(τ2), then there exists a constant Ξ > 0 independent of ε and τ so that

∥cj,ε − (χ̄χχk)j χ̄χχk∥
2 ≤ Ξ (ε2/τ4 + τ4α + ε2) , ∀j ∈ Z̃k.

.

(b) If ε/τ2 = β > 0 is constant, then there exist constants Ξ,Ξ′ > 0, independent of ε and τ
so that

∥cj,ε − [(1 − β̆)(χ̄χχ)jχ̄χχ + β̆(χ̄χχk)jχ̄χχk]∥
2 ≤ Ξ (ε2 + τ4α) , ∀j ∈ Z̃k,

and where β̆ = (1 +Ξ′β)−α.

2.6. Consistency of the Probit Method

Throughout this section we consider a graph G0 = {X,W0} consisting of K components,
along with perturbed graphs Gε = {X,Wε} as introduced in the previous subsection. As
before, we use Z ′ ⊂ Z to denote the set of points where labels are observed and assume the
usual ordering Z = Z̃1 ∪ Z̃2 ∪ ⋯ ∪ Z̃K where Z̃k denotes the k-th cluster in Z. Recall the
probit assumption on the labelled data, namely that

y(j) = sgn(u†
j + ηj), j ∈ Z ′, (31)

where u† = (u†
1,⋯, u

†
N)T is the vector isomorphic to the ground truth function u†. The

additive noises ηj are assumed to be a rescaling of a sequence of i.i.d. samples from a
reference density ψ. That is, for all j ∈ Z ′,

ηj = γη̆j , η̆j
iid∼ ψ, (32)

where ψ is the PDF of a centered random variable with unit standard deviation, and thus
γ > 0 is the standard deviation of the ηj . Thus the ηj are i.i.d and have distribution

ψγ(t) =
1

γ
ψ ( t

γ
) . (33)

We recall a useful result stating that log-concave random variables have exponential
tails (Bogachev, 2010, Thm. 4.3.7).
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Lemma 15 Let ψ(t) be a log-concave PDF on R. Then there is ωc > 0 such that, for all
ω ∈ [0, ωc), ∫R exp(ω∣t∣)ψ(t)dt < +∞.

With this lemma we can estimate the probability of the event where the observed labels
y(j) have the same value as sgn(u†

j), i.e., the event where the data is exact.

Lemma 16 Let ψ(t) be a log-concave PDF on R. Then there exist constants ω1, ω2 > 0
depending only on ψ, so that

P (y(j) = sgn(u†
j), for all j ∈ Z ′) ≥ ∏

j∈Z′
[1 − ω2 exp(−ω1

γ
∣u†
j ∣)] .

That is, when γ > 0 is small the data y is exact with high probability.

Proof By Lemma 15 there exists a sufficiently small ω1 > 0 and constant ω2 > 0 so that
for γ > 0,

ω2 = ∫
R

exp(ω1

γ
∣t∣)ψγ(t)dt < +∞.

Let ηj ∼ ψγ then by Markov’s inequality for θ > 0

P(ηj ≥ θ) ≤ ω2 exp(−ω1

γ
θ) .

But y(j) ≠ sgn(u†(j)) whenever

ηj < −∣u†
j ∣ if u†

j ≥ 0,

ηj ≥ ∣u†
j ∣ if u†

j < 0.

The result now follows from the symmetry of the ψγ and independence of the ηj .

Lemma 17 Suppose (31) and (32) hold, ψ is log-concave and ∣u†
j ∣ > θ > 0 for all j ∈ Z ′.

Then for any sequence γ ↓ 0, y(j) a.s.ÐÐ→ sgn(u†
j) a.s. with respect to ∏j∈Z′ ψ(tj) the law of

the i.i.d. sequence {η̆j}j∈z′.
Proof Since ψ is log-concave it has exponential tails by Lemma 15 and ∣η̆j ∣ <∞ a.s. 1 Re-

call that value of ηj = γη̆j . Then for any fixed η̆j ∈ (−∞,∞), if γ < θ/∣η̆j ∣ then y(j) = sgn(u†
j).

Since η̆j are a.s. finite the result follows.

Now consider a probit likelihood potential of the form

Φγ(u; y) ∶= ∑
j∈Z′

− log Ψγ(ujy(j)), (34)

where
Ψγ(s) = ∫

s

−∞
ψγ(t)dt, s ∈ R. (35)

For ε, τ2, γ > 0 we study the consistency of minimizers of the functionals

Jτ,ε,γ(u) ∶= 1

2
⟨u,C−1

τ,εu⟩ +Φγ(u; y), u ∈ RN . (36)

This functional is of the same form as (10), and so the results in Section 2.4 apply.

1. In fact the proof reveals that all we need is that the η̆j are a.s. finite, for which log-concavity suffices.
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2.6.1. Probit Consistency With A Single Observed Label

We start with the simple case of a single observed label. Without loss of generality assume
Z ′ = {1}, that is the observed label is the first point in the first cluster Z̃1 and u†

1 > 0.

Proposition 18 Consider the single observation setting above and suppose Assumptions 1
and 2 are satisfied by G0 and Gε. Let u∗ denote the minimizer of Jτ,ε,γ and let γ > 0.

(a) If ε = o(τ2) as τ → 0 then ∃τ0 > 0 so that ∀(τ, γ) ∈ (0, τ0) × (0,∞) and ∀j ∈ Z̃1

P(sgn (u∗j ) = +1) ≥ 1 − ω2 exp(−ω1

γ
∣u†

1∣) , (37)

where ω1, ω2 > 0 are uniform constants depending only on ψ.

(b) If ε = Θ(τ2) then the above statement holds for all j ∈ Z.

Proof (a) By Corollary 11 we have that u∗1 = b where b solves

b = (Cτ,ε)11F1,γ(b). (38)

where we recall F1,γ(s) = y(1)ψγ(sy(1))/Ψγ(sy(1)). Furthermore, by Proposition 14(a)
and equivalence of `∞ and `2 norms we infer that there exists τ0 > 0 so that ∀τ ∈ (0, τ0) we
have

(cj,ε)1 =
⎧⎪⎪⎨⎪⎪⎩

(χ̄χχ1)j (χ̄χχ1)1 +O (ε/τ2 + τ2α + ε) , j ∈ Z̃1,

O (ε/τ2 + τ2α + ε) , j /∈ Z̃1.
(39)

Thus, we can rewrite (38) up to leading order in the form

b = ∣(χ̄χχ1)1∣2F1,γ(b).

Now consider the event where y(1) = +1, i.e., the measurement is exact. Then b > 0 since
F1,γ > 0 and (χ̄χχ1)1 > 0. Finally, by Corollary 11(iii) we can write

u∗ = F1,γ(b)c1,ε = F1,γ(b)(χ̄χχ1)1χ̄χχ1 +O (ε/τ2 + τ2α + ε) .

Thus, when ε/τ2, τ and ε are sufficiently small and the data is exact, u∗ is positive on Z̃1.
The claim now follows by Lemma 16. The statement in (b) follows by an identical argument
except that in this case

c1,ε = [(1 − β̆)(χ̄χχ)1χ̄χχ + β̆(χ̄χχ1)1χ̄χχ1] +O (τ2α + ε)

with β̆ ∈ (0,1). Thus in the event that y(1) = +1 the minimizer u∗ is positive on all of Z.

The following corollary shows that the relationship between τ (which is user-specified)
and ε (which is a property of the unlabelled data) is crucial in determining how the probit
algorithm assigns labels to the entire data set in the small noise limit; case (a) is neutral
about Z ∖ Z̃1 whilst case (b) leads to Z ∖ Z̃1 being labelled the same as Z̃1. The reason
for the difference is that the limit process in (a) corresponds, asymptotically, to a setting

19



Hoffmann, Hosseini, Ren and Stuart

where a priori different clusters have no correlation whilst under the limit process (b) there
is positive correlation; thus, under (b), the one given label is propagated to the entire
set of nodes. When more clusters are labelled then similar effects are present under the
limit process (b), but are harder to express analytically because they set-up a competition
between potentially conflicting prior information and observed label information. This is
investigated numerically in Section 4.

Corollary 19 Consider the single observation setting as above. Suppose Proposition 18 is
satisfied and ∣u†

j ∣ > 0 for all j ∈ Z ′. Then the following holds with a.s. convergence in the
sense of Lemma 17:

(a) For any sequence γ, τ, ε ↓ 0 along which ε = o(τ2) it holds that

sgn (u∗j )
a.s.ÐÐ→ sgn(u†

1), ∀j ∈ Z̃1.

(b) For any sequence γ, τ, ε ↓ 0 along which ε = Θ(τ2) the above statement holds for all
j ∈ Z.

Proof In the the proof of Proposition 18(a) we showed that sgn(u∗j ) = +1 on Z̃1 so long as
the data y(1) = +1 independent of γ > 0. In light of this, (a) follows directly from Lemma 17
implying that the data y(j)→ sgn(u†

j) a.s. as γ ↓ 0. Statement (b) follows in the same way
but using the proof of Proposition 18(b).

2.6.2. Probit Consistency with Multiple Observed Labels

Let us now consider the setting where multiple labels are observed, i.e. ∣Z ′∣ = J ≥ 2. We
need to make an additional assumption on the ground truth function u†.

Assumption 3 Let Z̃k be a cluster within which a label has been observed, i.e., Z̃k∩Z ′ ≠ ∅.
Then sgn(u†) does not change within Z̃k.

It is helpful in the following to define Z ′′ to be the index set of nodes within all clusters
Z̃k where a label has been observed, i.e.,

Z ′′ ∶= ∪{k∶Z̃k∩Z′≠∅}Z̃k. (40)

Theorem 20 Consider the multiple observation setting above and suppose Assumptions 1,
2 and 3 are satisfied by G0, Gε and u†. Let u∗ be the minimizer of Jτ,ε,γ. If ε = o(τ2) as
τ → 0 then ∃τ0 > 0 so that ∀(τ, γ) ∈ (0, τ0) × (0,∞) and ∀j ∈ Z ′′

P(sgn (u∗j ) = sgn(u†
j)) ≥ ∏

i∈Z′
[1 − ω2 exp(−ω1

γ
∣u†
i ∣)] , ∀j ∈ Z ′′,

where ω1, ω2 > 0 are uniform constants depending only on ψ.
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Proof Our proof follows a similar approach to the single observation case. The main
difference is that now the dimension reduced system (18) takes the form

(C ′
τ,ε)−1b∗ = F ′

γ(b∗). (41)

Where C ′
τ,ε is now the submatrix of Cτ,ε with the rows and columns of the indices Z ∖ Z ′

removed. It follows from Proposition 14 that for small τ the matrix C ′
τ,ε = (c′ij) approaches

a block diagonal matrix and so

c′ij =
⎧⎪⎪⎨⎪⎪⎩

(χ̄χχk)π−1(j) (χ̄χχk)π−1(i) +O (ε/τ2 + τ2α + ε) , if π−1(i), π−1(j) ∈ Z̃k,
O (ε/τ2 + τ2α + ε) , if π−1(i) ∈ Z̃k, π−1(j) ∈ Z̃`, k ≠ `.

(42)

Without loss of generality assume that observations are made in the clusters Z̃1,⋯, Z̃K′ .
Note that K ′ ≤ K since we do not need to assume observations are made in every cluster.
Let Z̃ ′

1,⋯, Z̃ ′
K′ denote the indices of the labelled nodes in the corresponding clusters and

define Jk ∶= ∣Z̃ ′
k∣. Then (41) approximately decouples between the clusters and up to leading

order we can write

(χ̄χχk)−1
j b∗π(j) = ∑

i∈Z̃′
k

(χ̄χχk)i Fi,γ(b∗π(i)), for j ∈ Z̃ ′
k and k ∈ {1,⋯,K ′}.

Observe that the right hand side is independent of j and so, writing b∗` = u∗π−1(`) for ` ∈
{1,2,⋯, J} as in Corollary 11(iii), it follows that D−p

0 u∗ is a constant vector on the index
sets Z̃ ′

k. Thus, we can further simplify this equation to get

(χ̄χχk)−1
j u∗j = ∑

i∈Z̃′
k

(χ̄χχk)i Fi,γ(u∗j ), for j ∈ Z̃ ′
k and k ∈ {1,⋯,K ′},

which we only need to solve once on every cluster. Finally, observe that sgn(u†) does not
change on Z̃k following Assumption 3 and so in the event that y is exact we have

u∗j = (χ̄χχk)j
⎛
⎜
⎝
∑
i∈Z̃′

k

(χ̄χχk)i
⎞
⎟
⎠

sgn(u†
j)ψγ (sgn(u†

j)u∗j )

Ψγ (sgn(u†
j)u∗j )

, for j ∈ Z̃ ′
k and k ∈ {1,⋯,K ′}.

To this end, sgn(u∗) agrees with sgn(u†) on the observation nodes. Once again using
Corollary 11(iii) we see that

u∗ = ∑
j∈Z̃′

sgn(u†
j)ψγ (sgn(u†

j)b∗π(j))

Ψγ (sgn(u†
j)b∗π(j))

cj,ε =
K′

∑
k=1

ăkχ̄χχk,

where the last identity is once more up to leading order following Proposition 14 and for
coefficients

ăk ∶= ∑
j∈Z′

sgn(u†
j)ψγ (sgn(u†

j)b∗π(j))

Ψγ (sgn(u†
j)b∗π(j))

(χ̄χχk)j ,
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such that sgn(ăk) agrees with sgn(u†) on Z̃k for k = 1,⋯,K ′. Finally, the claim follows by
applying Lemma 16 to compute the probability of the event where the data is exact.

Similarly to Corollary 19 the next corollary follows from the proof of Theorem 20 and
Lemma 17.

Corollary 21 Suppose Theorem 20 is satisfied and ∣u†
j ∣ > 0 for j ∈ Z ′. Then for any

sequence γ, τ, ε ↓ 0 along which ε = o(τ2) it holds that,

sgn (u∗j )
a.s.ÐÐ→ sgn(u†

j) ∀j ∈ Z ′′,

with a.s. convergence in the sense of Lemma 17.

3. Multi-Class Classification: The One-Hot Method

In the multi-class setting M > 2 we can no longer use the sgn(⋅) function to reduce the
dimension of the latent variable to RM−1 as we did for binary M = 2 classification in
Section 2. Instead we use one-hot encoding and work directly with latent variables taking
value in RM . We set up the one-hot methodology in Subsection 3.1 assuming that M ≥ 2,
though it would be un-necessary to use it for M = 2 and Gaussian label noise when it reduces
to probit. In Subsection 3.2 we study the form of the one-hot likelihood that appears in the
optimization problem, resulting from the labelled data. In Subsection 3.3 we introduce a
quadratic regularization term for the one-hot method that uses the covariance matrix Cτ of
(9) and is analogous to the quadratic penalty used in the probit method. In Subsection 3.4
we study the one-hot minimization problem, formulating a discrete representer theorem for
the one-hot method. Subsection 3.5 concludes the analysis of the one-hot method, studying
consistency in some detail by putting together the results of previous subsection with the
spectral theory introduced in Section 2.5.

3.1. Set-Up

We now turn our attention to the multi-class classification problem, i.e., where the label
function l ∶ Z ↦ {1,⋯,M} assigns one of M ≥ 1 classes to each point in X. In this case the
sign function from Section 2 is no longer an appropriate classifying function and we need a
different method. We shall utilize the one-hot mapping

S(v) = arg max
k

vk, v = (v1,⋯, vM) ∈ RM . (43)

In the case of two maximal elements vk1 = vk2 , we take the smallest index. As with probit,
the case of a near-tie is prone to misclassification by perturbation. For the purpose of
consistency analysis, we later make assumptions that ensure a tie for the maximal element
cannot occur.

The latent variable u ∶ Z ↦ RM is isomorphic to a matrix U = (umj) ∈ RM×N . We use uj
to denote the j-th column of U as a vector in RM . With this notation at hand we consider
the following model for observed labels y:

y(j) = S(uj + ηηηj), j ∈ Z ′, (44)
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where
ηηηj = (η1j ,⋯, ηMj)T ∈ RM , and ηmj

iid∼ ψ.

Here ψ is a probability density function on R as before.

Remark 22 Note that the assumption that ηmj are i.i.d. is not needed in general and one
can consider correlations in the observation noise both between different classes and also
amongst different points in the data set. However, for simplicity we only consider i.i.d.
noise and leave the correlated noise setting for future study. ◇

3.2. The One-Hot Likelihood

We begin by identifying the likelihood potential Φ for the model (44). For j ∈ Z ′ and
m,` ∈ {1,⋯,M} we have

P[y(j) =m∣U] = P[umj + ηmj ≥ u`j + η`j , ∀` ∈ {1,⋯,M}]
= P[η`j ≤ ηmj + umj − u`j , ∀` ∈ {1,⋯,M}]

= E[P[η`j ≤ ηmj + umj − u`j , ∀` ∈ {1,⋯,M}]∣ηmj]

= E[∏
`≠m

P[η`j ≤ ηmj + umj − u`j]∣ηmj]

= ∫
R
ψ(t)∏

`≠m
Ψ(t + umj − u`j)dt =∶ Ψ̆(uj ;m).

where Ψ is the CDF of ψ as in the binary case. To this end, we define the likelihood
potential Φ(U ; y) as

Φ(U ; y) = − ∑
j∈Z′

log Ψ̆(uj ; y(j)) = − ∑
j∈Z′

log
⎛
⎝∫R

ψ(t) ∏
`≠y(j)

Ψ(t + uy(j)j − u`j)dt
⎞
⎠
, (45)

which is in a similar form to (6).

3.3. Quadratic Regularization via Graph Laplacians (Multi-Class Case)

Recall, the matrix Cτ defined in (9) based on the graph Laplacian L. In a similar way to
the probit method we define a quadratic regularization term for matrices U ∈ RM×N of the
form

⟨C−1
τ , UTU⟩F =

N

∑
j,`=1

(C−1
τ )j`(UTU)j` =

M

∑
m=1

N

∑
j,`=1

(C−1
τ )j`um`umj , (46)

where ⟨⋅, ⋅⟩F is the Frobenius inner product. In the following we will us this quadratic term
to regularize Problem 3 in the multi-class setting.

Remark 23 If we think of C−1
τ as a smoothing operator then the above choice for the

regularization term promotes smoothness of the rows of U while the columns of U can be
discontinuous. This means that each component of the function u ∶ Z ↦ RM isomorphic to
U is smooth amongst the vertices of G while the components themselves are allowed to be
discontinuous at each node. ◇
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3.4. Properties of the One-Hot Minimizer

Putting together the one-hot likelihood in (45) and the quadratic regularization term (46)
we define the one-hot functional

J (U) ∶= 1

2
⟨C−1

τ , UTU⟩F +Φ(U ; y), U ∈ RM×N . (47)

We will see shortly that the one-hot functional has very similar properties to the probit
functional J in binary classification. In particular, the regularization term (46) is strictly
convex and provides stability and geometric information via the operator Cτ and the one-
hot likelihood Φ is also convex and makes sure the minimizer of J is a good predictor of
observed labels. We start by showing the convexity of the likelihood potential.

Proposition 24 (Convexity of the One-Hot Likelihood) Let ψ be a log-concave PDF
on R. Then the function

Ψ̆(v;m) = ∫
R
ψ(t)∏

`≠m
Ψ(t + vm − v`)dt, v ∈ RM ,

is log-concave on RM for all m ∈ {1,⋯,M}, and where Ψ is the CDF of ψ.

Proof By Bagnoli and Bergstrom (2005, Thm. 1) the functions Ψ are log-concave when-
ever ψ is log-concave. Furthermore, since log-concavity is preserved under affine transfor-
mations and finite products (see Saumard and Wellner, 2014, Sec 3.1) we conclude that
f(t,v) = ψ(t)∏`≠mΨ(t + vm − v`) is log-concave on RM+1. The result now follows from
the fact that the marginals of a log-concave function are also log-concave following Prékopa
(1980, Thm. 3) and Ψ̆(v;m) is precisely the marginal of f(t,v) over the t variable.

Putting this result together with the fact that the quadratic term in (47) is strictly
convex whenever C−1

τ is strictly positive definite (which is true when τ2 > 0) gives the
following result.

Proposition 25 Let ψ be a continuous and log-concave PDF on R and let C−1
τ be a strictly

positive-definite matrix on RN . Then the functional J defined in (47) with Φ given by (45)
is strictly convex.

We are now set to prove an analog of Proposition 9 for the one-hot functional.

Proposition 26 (Representer Theorem for One-Hot Functional) Let G = {X,W}
be a weighted graph and let ψ be a log-concave PDF. Suppose Φ is given by (45) and the
matrix Cτ is given by (9) with parameters τ2, α > 0. Then,

(i) The one-hot functional J has a unique minimizer U∗ ∈ RM×N .

(ii) The minimizer U∗ satisfies the EL equations

C−1
τ U∗T = ∑

j∈Z′
ej(fj(u∗j ))T , (48)
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where ej is the j-th standard coordinate vector in RN , the vector u∗j denotes the j-th

column of U∗ and the functions fj ∶ RM ↦ RM are defined as

fj(v) = (f1j(v),⋯, fMj(v))T , fmj(v) = 1

Ψ̆(v; y(j))
∂Ψ̆(v; y(j))

∂vm
, (49)

for vectors v = (v1,⋯, vM)T and

∂Ψ̆(v;m)
∂vi

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∫
R
ψ(t)ψ(t + vm − vi) ∏

`≠i,m
Ψ(t + vm − v`)dt if i ≠m,

∑
k≠m
∫
R
ψ(t)ψ(t + vm − vk) ∏

`≠k,m
Ψ(t + vm − v`)dt if i =m.

(iii) The minimizer U∗ can be represented using the expansion

U∗ = ∑
j∈Z′

ăjc
T
j ,

where ăj ∈ RM and cj = Cτej ∈ RN .

(iv) The matrix U∗ solves (48) if and only if the vectors ăj = (ă1j ,⋯, ăMj)T ∈ RM solve
the nonlinear system of equations

ăj = fj (∑
k∈Z′

cjkăk) , ∀j ∈ Z ′, (50)

where cij denote the entries of Cτ .

Proof The method of proof is very similar to Proposition 9. (i) Follows directly from
Proposition 25. (ii) Observe that J (U) is continuously differentiable, and so (48) follows
by directly computing the first order optimality conditions ∇J (U∗) = 0. Proof of (iii) and
(iv) is very similar to Proposition 9(iii) and (iv) and is essentially the result of solving the
EL equations (48) directly.

Proposition 27 (One-Hot Dimension Reduction) Suppose the conditions of Proposi-
tion 26 hold. Then

(i) The problem of finding the matrix U∗ ∈ RM×N the minimizer of the one-hot functional
J , is equivalent to the problem of finding the Matrix B∗ ∈ RM×J that solves

(C ′
τ)−1B∗T = F ′(B∗), (51)

where C ′
τ is as in (17) and, for matrices B ∈ RM×J the map F ′ ∶ RM×J ↦ RJ×M is

defined by

(F ′(B))im ∶= fmπ−1(i)(bi) for (i,m) ∈ {1,⋯, J} × {1,⋯,M},

where the reordering map π is as in (16) and bi denotes the i-th column of B.
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(ii) Moreover, the matrix B∗ solves the optimization problem

B∗ = arg min
B∈RJ×M

J ′(B),

where

J ′(B) ∶= 1

2
⟨(C ′

τ)−1,BTB⟩F −
J

∑
i=1

log Ψ̆(bi; y (π−1(i)) )

(iii) The matrices B∗ and U∗ satisfy the relationship

U∗ = ∑
j∈Z′

b̆∗j c
T
j ,

where b̆∗j denotes the π(j)-th column of B∗(C ′
τ)−T and

b∗k = u∗π−1(k), k = {1,⋯, J}.

Proof (i) Let A = (ami) ∈ RM×J be the matrix with entries ami = ămπ−1(i). That is, the
columns of A are the ăj vectors. Then we can rewrite (50) as

A = − (F ′(C ′
τA

T ))T , (52)

Let
B∗T = C ′

τA
T ∈ RJ×M (53)

then we can rewrite (52) as
(C ′

τ)−1B∗T = F ′(B∗).
(ii) Denote by b∗mi the entries of B∗. Then we can directly verify that

(F ′(B∗))im = − ∂

∂b∗mi

J

∑
i=1

log Ψ̆(b∗i ; y(π−1(i))),

from which we infer that the matrix B∗ indeed solves the following optimization problem

B∗ = arg min
B∈RJ×M

1

2
⟨(C ′

τ)−1,BTB⟩F −
J

∑
i=1

log Ψ̆(bi; y(π−1(j))).

(iii) Following (53) A = B∗(C ′
τ)−T . Let ai denote the columns of A. Then by Proposi-

tion 26(iii),

U∗ = ∑
j∈Z′

ăjc
T
j =

J

∑
i=1

ăπ−1(i)c
T
π−1(i) =

J

∑
i=1

aic
T
π−1(i) = ∑

j∈Z′
b̆∗j c

T
j .

On the other hand, using B∗ = A(C ′
τ)T and Proposition 26(iii) we can write

b∗mk =
J

∑
i=1

amπ−1(i)cπ−1(i),π−1(k) = umπ−1(k),

which gives the desired identity connecting b∗k and u∗π−1(k).
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3.5. Consistency of the One-Hot Method

In analogy with binary classification we now discuss consistency of multi-class classification
using the one-hot method. Our results here make use of the perturbation theory developed
in Subsection 2.5. As in Subsection 2.6 we consider a graph G0 = {X,W0} consisting of K
connected clusters Z̃1,⋯, Z̃K and let Gε = {X,Wε} be a family of graphs parameterized by
ε > 0 that are perturbations of G0. We denote by Cτ,ε the covariance matrix corresponding
to the graph Gε as defined in (30). Further, we assume the data y is generated by a ground
truth function U † ∈ RM×N that is,

y(j) = S(u†
j + ηηηj), j ∈ Z ′, (54)

where S is defined in (43) and we define the noise ηmj through a reference random variable
analogous to (32):

ηmj = γη̆mj , η̆mj
iid∼ ψ, (55)

where ψ is a mean zero PDF with unit standard deviation. Similarly to Subsection 2.6,
our first task is to estimate the probability of the event where the observed labels y(j) are
exact, i.e., y(j) coincides with the index of the maximal element in the j-th column of U †.

Lemma 28 Suppose ψ is log-concave then there exist constants ω1, ω2 > 0 so that

P(y(j) = S(u†
j), ∀j ∈ Z

′)

≥ ∫
R
ψγ(t)∏

j∈Z′
[1 − ω2 exp(−ω1

γ
(t + min

k≠y(j)
{u†

y(j)j − u
†
kj}))]

M−1

dt.

That is, if γ is small the data y is exact with high probability.

Proof Observe that y(j) = S(u†
j) whenever u†

y(j)j + ηy(j)j ≥ u
†
mj + ηmj for all m ≠ y(j).

Therefore,

P (y(j) = S(u†
j) ∀j ∈ Z

′) = P({ηmj ≤ ηy(j)j + u†
y(j)j − u

†
mj ∶ j ∈ Z

′,m ≠ y(j)})

= E P ({ηmj ≤ ηy(j)j + u†
y(j)j − u

†
mj , ∶ j ∈ Z

′,m ≠ y(j)}∣ηy(j)j) .

Now by Lemma 15 and Markov’s inequality (see proof of Lemma 16) along with indepen-
dence of the ηmj we conclude there exist constants ω1, ω2 > 0 so that for fixed j ∈ Z ′,

P({ηmj ≤ ηy(j)j + u†
y(j)j − u

†
mj , ∶m ≠ y(j)}∣ηy(j)j)

≥ P({ηmj ≤ ηy(j)j + min
k≠y(j)

{u†
y(j)j − u

†
kj} ∶m ≠ y(j)}∣ηy(j)j)

≥ ∏
m≠y(j)

[1 − ω2 exp(−ω1

γ
(ηy(j)j + min

k≠y(j)
{u†

y(j)j − u
†
kj}))]

= [1 − ω2 exp(−ω1

γ
(ηy(j)j + min

k≠y(j)
{u†

y(j)j − u
†
kj}))]

M−1

.
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Therefore,

P ({ηmj ≤ ηy(j)j + u†
y(j)j − u

†
mj , ∶ j ∈ Z

′,m ≠ y(j)}∣ηy(j)j)

≥ ∏
j∈Z′

[1 − ω2 exp(−ω1

γ
(ηy(j)j + min

k≠y(j)
{u†

y(j)j − u
†
kj}))]

M−1

.

Integrating the above bound over ηy(j)j gives the desired result.

The following lemma is the analog of Lemma 17 for the one-hot model (54). The method
of proof is identical to that lemma and is therefore omitted.

Lemma 29 Suppose (54) and (55) hold, ψ is log-concave and

min
m,k∈{1,⋯,M},m≠k

{∣u†
mj − u

†
kj ∣} > θ > 0 ∀j ∈ Z ′. (56)

Then for any sequence γ ↓ 0, y(j) a.s.ÐÐ→ S(u†
j) with respect to ∏(m,j)∈{1,...,M}×Z′ ψ(tmj) the

law of the i.i.d. sequence {η̆mj}(m,j)∈{1,⋯,M}×Z′.

With the above lemmata at hand we are now in a position to study consistency of
minimizers of the one-hot functional

Jτ,ε,γ(U) ∶= 1

2
⟨C−1

τ,ε, U
TU⟩F +Φγ(U ; y), U ∈ RM×N , (57)

where

Φγ(U ; y) ∶= − ∑
j∈Z′

log Ψ̆γ(uj ; y(j)), Ψ̆γ(v;m) ∶= ∫
R
ψγ(t)∏

`≠m
Ψγ(t + vm − v`)dt

and Ψγ is the CDF of ψγ(⋅) ∶= 1
γψ(

⋅
γ ) as before.

3.5.1. One-Hot Consistency With A Single Observed Label

Once again we start with the case of a single observed label with Z ′ = {1} belonging to the
first cluster Z̃1 and without loss of generality we assume u†

11 > u
†
m1 for all m ≠ 1 so that the

correct label of the observed node is 1.

Proposition 30 Consider the single observation setting above and suppose Assumptions 1
and 2 are satisfied by G0 and Gε. Let U∗ be the minimizer of Jτ,ε,γ and let γ > 0.

(a) If ε = o(τ2) as τ → 0 then ∃τ0 > 0 so that ∀(τ, γ) ∈ (0, τ0) × (0,∞) and ∀j ∈ Z̃1

P(S(u∗j ) = 1) ≥ ∫
R
ψγ(t)[1 − ω2 exp(−ω1

γ
(t +min

m≠1
{u†

11 − u
†
m1}))]

M−1

dt, (58)

where ω1, ω2 > 0 are uniform constants depending only on ψ.

(b) If ε = Θ(τ2) then the above statement holds for all j ∈ Z.
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Proof (a) The method of proof is very similar to that of Proposition 18. The dimension
reduced system (51) takes the simpler form

b∗1 = (Cτ,ε)11f1(b∗1). (59)

As before, if ε = o(τ2) by Proposition 14(a) there exists τ0 > 0 so that ∀τ ∈ (0, τ0) (39) holds
and so, up to leading order (59) is equivalent to

b∗1 = ∣ (χ̄χχ1)1 ∣2f1(b∗1).

Now consider the event where y(1) = S(u†
1) = 1, i.e., the data is exact. Then, we immediately

see from (49) and the fact that ψγ and Ψγ are positive that, the only entry of f1(b∗1) that
is not negative is the first entry and so b∗11 > 0 while b∗m1 < 0 for all m ≠ 1. Finally, by
Proposition 27(iii) we can write

U∗T = c1,ε ⋅ f1(b∗1)T = (χ̄χχ1)1 χ̄χχ1 ⋅ f1(b∗1)T +O (ε/τ2 + τ2α + ε) .

It is then straightforward to see that when τ is sufficiently small then for all j ∈ Z̃1 we have
S(u∗j ) = y(1) = S(u

†
1) = 1 and the claim follows by bounding the probability of the event

where y(1) = 1 using Lemma 28. Part (b) follows by a very similar argument to proof of
Proposition 18(b).

The following corollary is the analogue of Corollary 19 for the one-hot method. The
proof follows from the proof of Proposition 30 and Lemma 29.

Corollary 31 Suppose Proposition 30 and condition (56) are satisfied. Then the following
holds with a.s. convergence in the sense of Lemma 29:

(a) For any sequence γ, τ, ε ↓ 0 along which ε = o(τ2) it holds that

S (u∗j )
a.s.ÐÐ→ S (u†

1) , ∀j ∈ Z̃1.

(b) For any sequence γ, τ, ε ↓ 0 along which ε = Θ(τ2) the above statement holds for all
j ∈ Z.

3.5.2. One-Hot Consistency With Multiple Observed Labels

We finally consider the general setting where multiple labels are observed and ∣Z ′∣ = J ≥ 2.
We need the analog of Assumption 3 in multi-class classification:

Assumption 4 Let Z̃k be a cluster within which a label has been observed, i.e., Z̃k∩Z ′ ≠ ∅.
Then S(u†

j) is constant for all j ∈ Z̃k.

Proposition 32 Consider the multiple observation setting above and suppose Assump-
tions 1, 2 and 4 are satisfied by G0, Gε and U †. Let U∗ be the minimizer of Jτ,ε,γ and Z ′′

be as in (40) the set of nodes in clusters for which labels have been observed. If ε = o(τ2)
as τ → 0 then ∃τ0 > 0 so that ∀(τ, γ) ∈ (0, τ0) × (0,∞) and ∀j ∈ Z ′′

P(S (u∗j ) = S (u†
j) ) ≥ ∫

R
ψγ(t)∏

j∈Z′
[1 − ω2 exp(−ω1

γ
(t + min

m≠y(j)
{u†

y(j)j − u
†
mj}))]

M−1

dt,

where ω1, ω2 > 0 are uniform constants depending only on ψ.
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Proof The proof follows similar steps to the binary result in Proposition 20 and we use
the same notation as in the proof of that result. Here the dimension reduced system (51)
takes the form

(C ′
τ,ε)−1B∗T = F ′(B∗). (60)

Then, Proposition 41 implies that C ′
τ,ε is nearly block diagonal and (42) holds. Then, up

to leading order (60) takes the form

(χ̄χχk)−1
j b∗π(j) = ∑

i∈Z̃′
k

(χ̄χχk)i fi(b∗π(i)), for j ∈ Z̃ ′
k and k ∈ {1,⋯,K} ,

where we used the same notation as in (49) and made use of the approximation (42) for the
elements of C ′

τ,ε. Once again the right hand side of the above expression is independent of

j and so the (χ̄χχk)−1
j b∗π(j) vectors are constant for all j ∈ Z̃ ′

k. We then have

b∗π(j) = (χ̄χχk)j ∑
i∈Z̃′

k

(χ̄χχk)i fi (
(χ̄χχk)i
(χ̄χχk)j

b∗π(j)) , for j ∈ Z̃ ′
k and k ∈ {1,⋯,K}.

Now consider the event where the data y is exact which happens with high probability
following Lemma 28. Since U † satisfies Assumption 4 then y(j) is constant for all j ∈ Z̃ ′

k.
Using the definition of fj given in (49), we directly verify that the only positive coordinate

of fi ( (χ̄χχk)i(χ̄χχk)jb
∗
π(j)) is the y(j)-th coordinate while all other coordinates are negative. Since

(χ̄χχk)i and (χ̄χχk)j are both strictly positive in the above, we conclude S(b∗π(j)) = y(j) = S(u
†
j).

The desired result now follows by Proposition 27(iii).

Similar to Corollary 31 we obtain the following result by applying Theorem 32 and
Lemma 29.

Corollary 33 Suppose Theorem 32 and condition (56) are satisfied. Then for any sequence
γ, τ, ε ↓ 0 along which ε = o(τ2) it holds that

S (u∗j )
a.s.ÐÐ→ S (u†

j) , ∀j ∈ Z ′′,

with a.s. convergence in the sense of Lemma 29.

4. Numerical Experiments

In this section we turn our attention to numerical experiments that are designed to confirm
our theoretical findings, and to expand upon the behavior of the probit and one-hot methods
beyond our theory. In Subsection 4.1 we study the spectrum of graph Laplacians on a
graph consisting of three clusters that are weakly connected reaffirming the analysis of
Appendix A. Subsection 4.2 is dedicated to the consistency of the probit method. Here
we demonstrate a curve in the (ε/τ2, α) plane across which probit transitions from being
consistent to propagating the majority label. Finally, we repeat similar experiments for
the one-hot method in Subsection 4.3 demonstrating a similar phase transition curve in the
(ε/τ2, α) plane and showing that the curve is sensitive to the number of observed labels in
different clusters.
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4.1. Spectrum of Covariance Operators

We begin with a numerical demonstration of the perturbation theory of Appendix A and
in particular the result of Proposition 39. At the same time we will introduce a synthetic
experiment which is used throughout this section for illustration.

We consider a random data set using points drawn from a mixture of three Gaussian
distributions centered at (1,0,0), (0,1,0) and (0,0,1) with variance 0.1. We draw N = 150
points in total and the data set has three clusters with 50 points in each one. In order to
construct a weighted graph on this data set we choose the kernel function

κ(t) = 1{t≤0.25}(t),

and set w
(0)
ij = κ(∣xi − xj ∣) where ∣ ⋅ ∣ denotes the Euclidean norm in R3. Figure 1(a) shows

the data points as well as the connected components of the resulting weighted graph in
this example. With the weight matrix W0 at hand we define the graph Laplacian operator
L0 = D0 −W0 and let C−1

τ,0 = τ−2α(L0 + τ2I)α. In other words, we fix p = 0 and so the

functions {χ̄χχk}Kk=1 simplify to the indicator functions on the clusters Z̃1, ..., Z̃K . We further

define a perturbation of this matrix by replacing W0 with Wε with entries w
(ε)
ij = κε(∣xi−xj ∣)

where the perturbed kernel has the form

κε(t) = κ(t) + ε exp(− t2

(0.25 + ε)2
) . (61)

Clearly, the resulting weighted graph for any positive value of ε is fully connected but
the weight of edges connecting the three clusters are at most of order ε. We consider the
perturbed covariance matrix C−1

τ,ε = τ−2α(Lε+τ2I)α and study its low-lying spectrum. In the
notation of Appendix A we use λ2,ε and λ3,ε to denote the first two non-trivial eigenvalues
of Cτ,ε. Figure 1(b) shows that as ε/τ2 becomes small λj,ε − 1 vanishes linearly in ε/τ2 for
j = 2,3 which is in perfect agreement with Proposition 39(ii). We also observe that λ4,ε

blows up with τ−2 as predicted in Proposition 40. On the other hand, Figure 1(c) shows
the `2 distance between the second and third eigenvectors of Cε,τ with their projection onto
the span of the set functions {χ̄χχk}3

k=1. We displayed the case α = 1, the behavior for other
choices of α is similar. Here P0 denotes the projection onto the span of {χχχk}3

k=1 following
the notation of Appendix A. We observed that ∥(I − P0)φφφj,ε∥2 goes to zero linearly in ε
for j = 2,3, which is precisely the rate predicted in Proposition 39(iii) suggesting that the
bound is sharp.

4.2. Binary Classification With Probit

We now consider a binary classification problem on the synthetic data set of Subsection 4.1.
Figure 2(a) shows the true label of the 150 points in the data set. Blue points have label +1
while red points have label −1. For the SSL problem we assume one label is observed within
each cluster and that the observed labels are correct, i.e., y = (+1,+1,−1)T . We take the
observation noise ηj to be i.i.d. logistic random variables with mean zero. More precisely,

ψγ(t) =
exp(−t/γ)

γ(1 + exp(−t/γ)) , Ψγ(t) = (1 + exp(−t/γ))−1.
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Figure 1: (a) The disconnected graph G0 constructed by random draws from a mixture
of three Gaussians. (b) The first three eigenvalues of the perturbed inverse co-
variance operator C−1

τ,ε with α = 1 for different choices of ε and τ2. The fourth

eigenvector λ4,ε blows up with τ−2 as predicted while λ2,ε and λ3,ε converge to 1
linearly in ε/τ2. (c) The distance between φφφ2,ε and φφφ3,ε and their projections onto
the span of the set functions {χχχj}3

j=1. The distance vanishes linearly in ε.
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We use the κε kernel of (61) and construct the graph Laplacian Lε and the covariance
operator Cτ,ε as in subsection 4.1 above. Since the matrix C−1

ε,τ is ill-conditioned for small τ
and large values of α we found it crucial to use a low-rank approximation to Cε,τ in order
to solve the EL equations (12) in a stable manner. Following the expansion (21) and the
fact that there exists a uniform spectral gap between λ3,ε and λ4,ε (recall Figure 1(b)) we
consider the truncated expansion

Ĉε,τ =
n

∑
k=1

1

λk,ε
φφφk,εφφφ

T
k,ε , (62)

where a suitable truncation n < N will be chosen later, and solve the approximate EL
equations

u∗ = ∑
j∈Z′

Ĉε,τFj(u∗j )ej .

We used MATLAB’s fsolve function for this task. For our first set of experiments we fix
the noise parameter γ = 0.5 and used n = 10 terms in the approximation of Ĉτ,ε. We then
vary ε, τ and α. We considered τ ∈ (0.01,1), ε/τ2 ∈ (0.01,0.5), and α ∈ (0.25,10), i.e., for
each value of α we pick two sequences of τ and ε/τ2 values and set ε = τ2×ε/τ2. Figure 2(b)
shows the percentage of mislabelled points when sgn(u∗) is used as the label predictor. The
maximum error of 33% corresponds to all red points being labelled as blue. Our results
suggest that when ε/τ2 is large the Probit classifier u∗ tends to assign the majority labels
to all points in the data set. Furthermore, we observe a sharp transition between perfect
label recovery and assignment of majority labels. This effect is amplified for larger values
of α in that the transition seems to happen for a smaller value of ε/τ2.

We also consider the distance between the span of the set functions χχχj and the minimizer
u∗. Figure 2(c) shows ∥(I −P0)u∗∥2 as a function of τ2 and for different values of α. We see
that for smaller values of α the projection error is O(τ2α) which is in line with the predicted
error between cj,ε and the span of χχχj in Proposition 14(a) since for smaller values of α the
leading order error term is O(τ2α). When α is large the projection error is controlled by
the O(ε/τ2 + ε) terms in the error bound of Proposition 14(a) and no longer depends on α.

We noticed that the labelling accuracy is more or less independent of γ so long as the
data y is correct as demonstrated in Figure 3. We also note that, for the most part, the
labelling accuracy is independent of n as well. As shown in Figure 3 the labelling accuracy
increases slightly only for small values of α and larger values of ε/τ2.

For our final set of experiments we consider noisy data. First, we fix τ = 0.5, ε/τ2 = 0.1,
n = 10, and take α ∈ (0.25,10) and γ ∈ (0.1,1). For each value of α and γ we perform 100
experiments where we randomly perturb the data y by drawing independent measurement
noise ηj using the model (31) and consider the labelling accuracy of the probit model.
If all labels are recovered correctly by sgn(u∗) we consider the experiment a success and
otherwise a failure.

In Figure 4(a), we plot the probability of success of predicting the correct label of all
points as a function of γ and ε/τ2 for fixed α = 2. We chose τ = 0.5, ε/τ2 ∈ (0.1,0.6) and
γ ∈ (0.1,1). Here we see a clear transition in the success probability as a function of ε/τ2.
When ε/τ2 is small the success probability is almost independent of ε/τ2 and depends only
on γ but for larger values of ε/τ2 the success probability suddenly drops to zero meaning
that some points are always mislabelled. This behavior is in line with Figure 3 where we
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Figure 2: (a) The true binary labels in the synthetic data set of subsection 4.2. Blue points
have label +1 and red points have label −1. (b) Heat map of the percentage of
mislabelled points using the probit classifier. The 33% error mark corresponds
to assigning label +1 to all red points which constitute a third of the data set.
For fixed values of α we observe a sharp transition as ε/τ2 increases where we go
from labelling all of the points correctly to labelling the red points as blue. (c)
The distance between u∗ and the span of {χχχj}3

j=1. This distance is O(τ2α) when
α is small and does not depend on α when it is large indicating that the distance
is controlled by O(ε/τ2 + ε).
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Figure 3: Demonstrating the labelling accuracy of probit as a function of measurement
noise γ and the truncation parameter n. In the top row we fix n = 10 and modify
γ, while in the bottom row we fix γ = 0.5 and modify n. We do not observe much
sensitivity to n, in particular when α is large. When α is small we can see a slight
increase in error for large values of ε/τ2 as n grows larger. Modifying γ does not
have a significant impact so long as the data y is correct.
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observed a sharp increase in the prediction error when ε/τ2 is too large. We emphasize that
this behavior is also in line with Proposition 20 stating that the probability of success is
controlled only by γ provided that ε/τ2 and ε are sufficiently small.

Next, we fixed ε/τ2 = 0.1 and modified α, see Figure 4(b). We do not observe any
dependence of the success probability on α. This is in line with Proposition 20, which
states that if ε and ε/τ2 are sufficiently small then the success probability is essentially
controlled by the probability of the event where the data is correct which depends only on
γ.
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Figure 4: Heat map of the probability of success of probit in predicting the correct label of
all the points in the data set. (a) We plot the success probability of probit as a
function of ε/τ2 and γ for fixed value of α = 2. When ε/τ2 is small the success
probability appears to only depend on γ but as ε/τ2 increases we see a sharp
transition where the success probability drops to zero indicating that some points
are always mislabelled in this regime. (b) The success probability for different
values of α and γ for fixed value of ε/τ2 = 0.1. We do not observe any strong
dependence on α and the success probability appears to depend on γ only.

4.3. Multi-Class Classification Using One-Hot

For the next set of numerical experiments we consider multi-class classification with the
One-hot method. Once again we use the synthetic data set of subsection 4.1 but now we
assume there exist three classes within the graph as depicted in Figure 5. Similar to previous
sections we take ψγ to be the logistic distribution but this time use the model (44) for the
observed labels. We are assuming that we are given one label in each cluster, i.e. J = 3. In
the perfect measurement case y = (1,2,3)T . The main modification in this case, as compared
to binary classification is that now we need to minimize the one-hot functional which has
a more complicated misfit function as in (45). Furthermore, the minimizer is now a matrix
U∗ ∈ RM×N where M = 3 and N = 150. In this case (48) is a nonlinear system of equations
in 3×150 dimensions which is slow to solve. Instead, we solve the dimension reduced system
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(51) and identify U∗ via B∗. We noticed that this approach offers significant speedup in our
calculations. The dimension reduced system (51) is small enough that MATLAB’s fsolve

can still be very effective. We highlight that we approximate the matrix C ′
ε,τ by finding

Ĉε,τ as in (62) and then keep only the rows and columns of Ĉε,τ that correspond to the
observation vertices in Z ′.

Overall we find that the one-hot method behaves similarly to probit as expected following
our analysis. In Figures 6 we show the accuracy of the one-hot method in predicting the
correct label of the points using perfect observed labels y. Similarly to the probit case we
see little sensitivity to n and γ but a clear phase transition in the prediction error as ε/τ2

increases for each value of α. We see that the prediction error is either very small or close
to 66%. The latter value is a result of all three clusters being labelled as the same class.
Overall, it seems that the prediction error is smaller and less sensitive to ε/τ2 when α is
small.

Similarly to the probit case we also study the success probability of one-hot for different
values of α, ε/τ2 and γ. Here we say that the one-hot classification is successful if all labels
within the data set are predicted correctly. As before we vary the value of γ between 0
and 1 and estimate the success probability of one-hot by averaging over 100 trial runs with
randomly perturbed observed labels y. Figure 7(a) and (b) show a heat-map of success
probability of one-hot for different values of ε/τ2 and γ. Here we observe some dependence
between the success probability and ε/τ2. In fact, for fixed value of γ we see a small increase
in success probability as ε/τ2 increases. However, as depicted in Figure 7(b) increasing ε/τ2

eventually leads to a sudden drop in probability of success. This behavior is again in line
with the phase transition observed in Figure 6. On the other hand, we observe in Figure 7(c)
that for fixed values of ε/τ2 the success probability is effectively independent of α and only
controlled by γ. This is in line with our numerical results in the binary case, see Figure 4(a).

x
3

x
2

x
1

Figure 5: Visualization of the three classes within the three cluster data set for multi-class
classification using one-hot. We observe a single label in each cluster.
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Figure 6: Prediction error of the one-hot classifier using perfect measurements for different
values of γ while fixing n = 10 (top row) and values of n while fixing γ = 0.5
(bottom row). A clear phase transition is observed as ε/τ2 increases for each
value of α. For large values of ε/τ2 and small α we observe a slight increase in
prediction error as n increases (compare to bottom row when α ≈ 1).
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Figure 7: Heat map of success probability of one-hot as a function of γ, α and ε/τ2. (a)
and (b) show the success probability as a function of ε/τ2 for α = 2 and α = 6. In
the latter case we see a sudden drop in the success probability as ε/τ2 increases,
even for very small values of γ. (c) shows the success probability as a function of
α and γ for fixed ε/τ2 = 0.1. Here the success probability is mostly controlled by
γ and does not appear to depend on α.
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4.3.1. Effect of Number of Observations In Each Cluster

For our final set of observations we consider varying the number of observations in each
cluster. We use the same data set as above with N = 150 in three distinct clusters but this
time we vary the number of observed labels in each cluster. In Figure 8 (a) and (b) we
compare the accuracy of one-hot with a single observation in all clusters and with three
observations in all clusters respectively. We only consider noiseless observations in this case.
We see a small perturbation in the error phase transition for larger number of observations
but overall the accuracy appears to depend weakly on the number of observations so long
as we have the same number of observations in all clusters. Figure 8(c) shows the same
experiment as above except that here we took two observations in one of the clusters and
a single observation in the other two. Figure 9(d) shows a similar calculation with three
observations in one cluster and a single observation in the rest. In comparison to Figure 8(a)
and (b) we now see a major change in the accuracy of one-hot, namely that the jump in
error now occurs for smaller values of ε/τ2 indicating that the majority label of one of the
clusters is propagated to the rest of the data set when we have an unbalanced number of
observations within the clusters.

In Figure 9 we show the success probability of one-hot when an unbalanced number of
labels are observed in the clusters: three labels are observed in one cluster and single labels
are seen in the rest. As in previous success probability calculations we randomly perturbed
the observed labels in 100 trials and approximated the success probability of one-hot as a
function of ε/τ2 and γ. As before, we see a sharp transition in the success probability as
ε/τ2 grows but below a certain critical value of ε/τ2 the success probability appears to only
depend on γ. We also note that this critical value of ε/τ2 appears to shift towards smaller
values for larger α.

These experiments reveal an interesting and complicated feature of the probit and one-
hot minimizers in connection to the balancing of labelled points in clusters that warrant
future analysis. It appears that having a balanced number of labels in different clusters
allows for a larger range of acceptable ε, τ2 parameters; note that the blue regions are larger
in Figure 8(a,b) when all clusters have the same number of labelled points compared to
Figure 8(c, d) where one cluster has more labelled points. This suggests that balancing
of labelled points in practical applications might lead to better accuracy albeit at a high
computational cost. The sensitivity to the balancing of labelled points further highlights
the importance hierarchical Bayesian methods can tune the τ,α parameters automatically.

5. Conclusions

We have studied the consistency of the probit and one-hot methods for SSL, demonstrating
that the combination of ideas from unsupervised learning and supervised learning can lead
to consistent labelling of large data sets, given only a few labels. Our theory and numerical
results demonstrate that with careful choice of the function of the graph Laplacian appearing
in the quadratic penalty, namely the parameters α, τ and ε, correct labelling of the data
set can be achieved asymptotically.

However, our theory and numerics also indicate that the choice of these parameters
is crucial and can lead to failure of the methods. For example, we observed that when
ε/τ2 is too large then the methods have a tendency to propagate the majority label rather
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Figure 8: Effect of the number of observed labels on accuracy of one-hot for n = 10 and
γ = 0.5 as a function of α and ε/τ2. (a) A single label is observed in each of the
three clusters. (b) Three labels are observed in each cluster. (c) Two observations
in one cluster and a single observation in the other two. (d) Three observations
in one cluster and single observations in the other two.
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Figure 9: Success probability of one-hot with three observations in one cluster and single
observations in the other two clusters for n = 10, α = 2 and 6, and as a function
of ε/τ2 and γ. As ε/τ2 grows there appears to be a phase transition where the
success probability suddenly drops.

than matching the observed labels. This sensitivity strongly suggests the importance of
hierarchical Bayesian techniques which can determine such choices in a data-driven fashion.
Proving that hierarchical methods can learn the scaling of τ in terms of ε that emerges from
our analysis would be of interest.

There are a number of directions in which this work can be taken, including the study
of Bayesian posterior consistency, which we undertake in Bertozzi et al. (2020) for the
harmonic-function based approach to graph-based SSL, and the study of the limit of large
unlabelled data sets in Hoffmann et al. (2020b,a). Another interesting question is a detailed
analysis of the majority label propagation phenomenon that is observed when ε/τ2 is too
large. Furthermore, throughout this paper we mainly focused on the setting where the
ground truth function u† is consistent with the clustering and assigns the same label to
all points within the same cluster. Then the question arises, how do probit and one-hot
behave when mislabelled points are present in the data or u† assigns more than one class
to a cluster. It would also be interesting to study different clustering assumptions, such as
those arising from the stochastic block models of Lei and Rinaldo (2015).
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Appendix A. Spectral Analysis of Covariance Operators

Here we study the spectrum of the covariance operators Cτ,0 and Cτ,ε and prove Proposi-
tions 13 and 14. Throughout this section we use the notation of Subsection 2.5. We start
with some preliminary results regarding the spectrum of Cτ,0. Recall that Assumption 1
ensures that G0 consists of K < N disconnected components G̃k and that the graph Lapla-
cian restricted to each G̃k has a one-dimensional null-space consisting of constant functions
on G̃k.

Lemma 34 Suppose G0 = {X,W} is a proximity graph satisfying Assumption 1, and let L0

be a graph Laplacian operator on G0 as in (7) with p = q. Then L0 is positive semi-definite
for any choice of p ∈ R and the matrix C−1

τ,0 as in (27) is symmetric and strictly positive

definite for any values of τ2 > 0 and α > 0.

Proof Assume Z = {Z̃1, Z̃2,⋯, Z̃K} where Z̃k are the collection of nodes in the kth compo-
nent G̃k of G0 and let L̃k denote the graph Laplacian operator on G̃k constructed as in (7)
by replacing D0 and W0 with D̃k and W̃k the submatrices corresponding to G̃k.

Then by (Chung, 1997, Lem. 1.7) the matrices L̃k are positive semi-definite with eigenval-
ues 0 = σ̃1,k < σ̃2,k ≤ σ̃3,k ≤ ⋯ ≤ σ̃Nk,k whereNk = ∣Z̃k∣. It follows that L0 = diag(L̃1, L̃2,⋯, L̃K)
and so L0 is also positive semi-definite with eigenvalues 0 = σ1,0 = σ2,0 = ⋯ = σK,0 < σK+1,0 ≤
σK+2,0 ≤ ⋯ ≤ σN,0.

Now suppose α = 1. Then it is straightforward to check that C−1
τ,0 has eigenvalues

λk,0 = (τ−2σk,0 + 1), so that 1 = λ1,0 = λ2,0 = λK,0 < λK+1,0 ≤ λK+2,0 ≤ ⋯ ≤ λN,0 and so it is
strictly positive definite. The case with α > 0 then follows since the eigenvalues are simply
λk,0 = (τ−2σk,0 + 1)α.

Lemma 35 Suppose τ2, α > 0 and let {λk,0}Nk=1 and {φφφk,0}Nk=1 be the eigenvalues and eigen-
vectors of C−1

τ,0 respectively. Then

cj,0 =
N

∑
k=1

1

λk,0
(φφφk,0)jφφφk,0. (63)

Proof Since C−1
τ,0 is self-adjoint and positive it has an eigendecomposition

C−1
τ,0 = QΛQ−1,

where Λ is a diagonal matrix with diagonal elements λk,0 and Q = [φφφ1,0,⋯,φφφN,0] is a unitary
matrix with columns φφφk,0. Substituting this expression in the identity cj,0 = Cτ,0ej and
noting that Q−1 = QT then gives

cj,0 = QΛ−1QTej = [ 1
λ1,0

φφφ1,0,
1
λ2,0

φφφ2,0,⋯, 1
λN,0

φφφN,0]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(φφφ1,0)j
(φφφ2,0)j

⋮
(φφφN,0)j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

which concludes the proof.
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A.1. Proof of Proposition 13: Disconnected Clusters

Proposition 36 (Disconnected Clusters) Let G0 satisfy Assumption 1 with K < N
components G̃k. Let χ̄χχk be as in (25). Then for k = 1,⋯,K

λk,0 = 1 and φφφk,0 ∈ span{χ̄χχj}Kj=1,

and λK+1,0 > 1.

Proof The statement involving the eigenvalues {λk,0}K+1
k=1 follows from the proof of Lemma 34

and so we only prove the result regarding the eigenfunctions. Observe that since G0 consists
of K disconnected components then L0 = diag(L̃1,⋯, L̃K) and each block matrix L̃k is itself
a graph Laplacian. Writing the inner product ⟨x, Lx⟩ in symmetric form as in (8), it is easy
to see that the first eigenvector of any graph Laplacian operator L of the form (7) is Dp

01
for p = q with corresponding zero eigenvalue. Using this fact for the submatrices L̃k, we
infer that L0χ̄χχk = 0 for k = 1,⋯,K. We now conclude the proof by noting that C−1

τ,0 and L0

have the same eigenvectors.

Proposition 37 Suppose G0 satisfies Assumption 1. Then

cj,0 = (χ̄χχk)j χ̄χχk +O(τ2α) ∀j ∈ Z̃k.

Proof Follows directly from the expansion (63) and the observation that λ1,0 = ⋯ = λK,0 = 1
while λ−1

K+1,0 = O(τ−2α). Finally, note that

K

∑
`=1

(χ̄χχ`)jχ̄χχ` = (χ̄χχk)j χ̄χχk ∀j ∈ Z̃k.

A.2. Proof of Proposition 14: Weakly Connected Clusters

We now analyze the spectrum of the Cτ,ε operators beginning with auxiliary results regard-
ing the matrices Wε and Lε.

Lemma 38 Let Wε be as in (28) and suppose Assumptions 1 and 2 are satisfied. Let Lε be
as in (30). Then there exists ε0 > 0 so that for all ε ∈ (0, ε0) the matrix Wε has non-negative
weights and the graph Laplacian operator Lε satisfies an expansion of the form

Lε = L0 +
∞
∑
h=1

εhL(h) (64)

with ∥L(h)∥2 ∈ `∞.
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Note that in the above, the perturbations L(h) are not necessarily of graph Laplacian
form.

Proof First, we prove that for sufficiently small ε the Wε matrix has non-negative weights
and is therefore a well-defined weight matrix for the graph Gε. By (29), we only need

to consider indices i, j for which w
(0)
ij > 0 since w

(h)
ij may be negative for such indices,

i.e., by Assumption 2 these are only the edge weights within clusters since perturbed edge
weights between different clusters are constrained to be positive. Since ∥W (h)∥2 is uniformly
bounded we can use the equivalence of the `2 and `∞ norms to infer that all entries of W (h)

are also uniformly bounded. Then for i, j ∈ Z̃k we have

w
(ε)
ij = w(0)ij +

∞
∑
h=1

εhw
(h)
ij ≥ w(0)ij − sup

h
∣w(h)ij ∣ ( ε

1 − ε) ,

which is positive for all i, j ∈ Z̃k for sufficiently small ε ≤ εk. Taking the infimum of εk we
get the uniform constant ε0.

It is straightforward to check that Dε =D0+∑∞h=1 ε
hD(h) where the D(h) ∶= diag(W (h)1)

are the degree matrices of the W (h). Let d
(0)
i , d

(ε)
i and d

(h)
i denote the diagonal entries of

D0,Dε and D(h) respectively. Then for i = 1,⋯,N ,

d
(ε)
i = d(0)i

⎛
⎝

1 +
∞
∑
h=1

εh
d
(h)
i

d
(0)
i

⎞
⎠
.

It follows from Assumption 1(b) that the entries d
(0)
ii of the degree matrix D0 are strictly

positive (i.e., the components G̃k are pathwise connected) and so the ratio inside the inner
sum is bounded. Thus, we can further write

d
(ε)
i = d(0)i

⎛
⎝

1 + ε
∞
∑
h=0

εh
d
(h+1)
i

d
(0)
i

⎞
⎠
= d(0)i (1 + εd̂i).

where the entries d̂i are well-defined since the sum inside the bracket converges for ε < 1.
Assuming ε is sufficiently small so that εd̂i < 1 we can use the generalized binomial expansion
to write for any β ∈ R

(d(ε)i )
β
= (d(0)i )

β
(1 + εd̃i)

β

= (d(0)i )
β
(1 +

∞
∑
h=1

(β
h
)εh (d̂i)

h) .

Thus, for any p ∈ R there exists a diagonal matrix D̂(p) so that

D−p
ε =D−p

0 + εD̂(p),
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and the entries of D̂(p) are uniformly bounded for sufficiently small ε. Therefore, we can
write

Lε =D−p
ε (Dε −Wε)D−p

ε

=D−p
ε (D0 +

∞
∑
h=1

εhD(h) −W0 −
∞
∑
h=1

εhW (h))D−p
ε

=D−p
ε (D0 −W0 +

∞
∑
h=1

εh(D(h) −W (h)))D−p
ε

=D−p
ε (D0 −W0)D−p

ε +
∞
∑
h=1

εhD−p
ε (D(h) −W (h))D−p

ε

= L0 +
∞
∑
h=1

εhL(h),

where the L(h) matrices are obtained by gathering the O(εh) terms. Note that since the
entries of W (h) and D̂(p) are uniformly bounded then all entries of the L(h) are bounded
uniformly from which it follows that ∥L(h)∥2 ∈ `∞.

We now characterize the low-lying eigenvalues and eigenvectors of C−1
ε,τ .

Proposition 39 (The Spectrum of C−1
τ,ε) Suppose Assumptions 1 and 2 are satisfied and

let {λj,ε,φφφj,ε} denote the orthonormal eigenpairs of C−1
τ,ε. Then there exists ε0 > 0 so that

(i) λ1,ε = 1 and φφφ1,ε = χ̄χχ, as in (26).

(ii) ∀ε ∈ (0, ε0), there exists constants Ξ1(K, ∥L(1)∥2) > 0 and Ξ2(K, suph≥2 ∥L(h)∥2, ε0) > 0
independent of ε so that

λk,ε ≤ (1 +Ξ1ετ
−2 +Ξ2ε

2τ−2)α , ∀k ∈ {2,⋯,K}. (65)

(iii) If there exists a uniform constant ϑ > 0 so that λK+1,ε − 1 ≥ ϑ then there exists a
constant Ξ3(K, ∥L(1)1∥2, ϑ) > 0 independent of ε ∈ (0, ε0) so that

RRRRRRRRRRR
1 −

K

∑
j=1

⟨φφφj,ε, χ̄χχk⟩2
RRRRRRRRRRR
≤ Ξ3ε

2 +O(ε3), ∀j ∈ {1,⋯,K}, (66)

with χ̄χχk as in (25).

Proof (i) Follows from the fact that Lε is a graph Laplacian operator with first eigenvalue
σ1,ε = 0 and first eigenvector φφφ1,ε =Dp

ε1/∥Dp
ε1∥.

(ii) Let σj,ε for j = 1,⋯,N denote the eigenvalues of Lε. By the min-max principle (see
Golub and Van Loan, 1996, Thm. 8.1.2)

σk,ε = min
U∈Vk

max
x∈U
∥x∥=1

⟨x, Lεx⟩, (67)

where Vk is the set of all k-dimensional subsets in RN . Now for k ≤K take U = span{χ̄χχj}kj=1.
Since the vectors χ̄χχj are by definition orthonormal then U is a k-dimensional subspace of
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RN . These vectors are also in the null space of L0 and so we have for i, j ∈ {1, . . . ,K}

⟨χ̄χχi, Lεχ̄χχj⟩ =
∞
∑
h=1

εh⟨χ̄χχi, L(h)χ̄χχj⟩ ≤
∞
∑
h=1

εh∥L(h)∥2

= ε∥L(1)∥2 + ε2 (∥L(2)∥2 + ( sup
h=2,3,⋯

∥L(h)∥2)
ε

1 − ε) .
(68)

We can now generalize this bound to all unit vectors x ∈ U to get

⟨x, Lεx⟩ ≤ Ξ1ε +Ξ2ε
2

where

Ξ1 ∶=K2∥L(1)∥2 , Ξ2 ∶=
K2

(1 − ε0)
( sup
h=2,3,⋯

∥L(h)∥2) .

From (67) we now infer that

σk,ε ≤ Ξ1ε +Ξ2ε
2 , ∀k ∈ {2, . . . ,K}. (69)

Then (65) follows by noting that λk,ε = τ−2α(σk,ε + τ2)α.
(iii) Using the fact that L0χ̄χχk = 0 for k = 1, . . . ,K we can write

∥Lεχ̄χχk∥2 = ⟨Lεχ̄χχk, Lεχ̄χχk⟩ =
∞
∑
h=1

∞
∑
`=1

εhε`⟨L(h)χ̄χχk, L(`)χ̄χχk⟩

≤ ε2∥L(1)∥2
2 + ( sup

`=2,3,⋯
∥L(`)∥2

2)( ε2

1 − ε)
2

.

Now let χ̄χχk = ∑Nj=1 qkjφφφj,ε and assume σK+1,ε ≥ ϑ. Note that qkj ≤ 1 for all k ∈ {1, ...,K} and
j ∈ Z since χ̄χχk is normalized. Then the above calculation yields

⟨Lεχ̄χχk, Lεχ̄χχk⟩ =
N

∑
j=1

q2
kjσ

2
j,ε ≤ ε2∥L(1)∥2

2 +O(ε4).

From this it follows that

ϑ2 ⎛
⎝

1 −
K

∑
j=1

q2
kj

⎞
⎠
= ϑ2

N

∑
j=K+1

q2
kj ≤

N

∑
j=K+1

q2
kjσ

2
j,ε

≤ ε2∥L(1)∥2
2 −

K

∑
j=1

q2
kjσ

2
j,ε +O(ε4).

Now using (69) we obtain

RRRRRRRRRRR
1 −

K

∑
j=1

⟨φφφj,ε, χ̄χχk⟩2
RRRRRRRRRRR
=
RRRRRRRRRRR
1 −

K

∑
j=1

q2
kj

RRRRRRRRRRR

≤ 1

ϑ2

⎛
⎝
ε2∥L(1)∥2

2 +
K

∑
j=1

σ2
j,ε +O(ε4))

⎞
⎠

≤ Ξ3ε
2 +O(ε3).
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The desired result follows since C−1
ε,τ has the same eigenfunctions as Lε.

The result in part (iii) of Proposition 39 is central to the rest of our arguments as it
states that the eigenvectors {φφφj,ε}Kj=1 and the functions {χ̄χχj}Kj=1 have nearly the same span
for small ε provided that Lε has a uniform spectral gap between σK,ε and σK+1,ε. We now
show that this condition is satisfied under very general conditions.

Proposition 40 (Existence of Spectral Gaps) Suppose Assumptions 1 and 2 are sat-
isfied. Then

σK+1,ε ≥ θ −
∞
∑
h=1

εh∥L(h)∥2 and λK+1,ε ≥ τ−2α (τ2 + θ −
∞
∑
h=1

εh∥L(h)∥2)
α

,

where θ > 0 is the constant appearing in Assumption 1(b).

Proof By the max-min principle

σk+1,ε = max
U∈Vk

min
x�U
∥x∥=1

⟨x, Lεx⟩. (70)

where Vk denotes the set of k-dimensional subspaces of RN and x�U means the vector x
belongs to the orthogonal complement of U.

Now take U = span{χ̄χχj}Kj=1. Let xk ∈ RNk denote the restriction of x to the subset of

indices Z̃k. Then xTk (D̃
p
k1) = 0, where we recall D̃k is the degree matrix of the k-th cluster

G̃k. Now we can write for all k ∈ {1, ...,K},

⟨x, Lεx⟩ = ⟨x, L0x⟩ +
∞
∑
h=1

εh⟨x, L(h)x⟩

=
K

∑
k=1

⟨xk, L̃kxk⟩ +
∞
∑
h=1

εh⟨x, L(h)x⟩

≥ θ
K

∑
k=1

⟨xk,xk⟩ +
∞
∑
h=1

εh⟨x, L(h)x⟩

≥ θ∥x∥2 −
∞
∑
h=1

εh∥L(h)∥∥x∥2

= (θ −
∞
∑
h=1

εh∥L(h)∥2)∥x∥2 .

The lower bound on σK+1,ε now follows from (70) while the lower bound on λK+1,ε follows
from the observation that λj,ε = τ−2α(σj,ε + τ2)α from the definition of C−1

τ,ε.

Example 1 (Perturbed Kernels) Consider a proximity graph G where the weight matrix
W0 is given by

w
(0)
ij = κ(xi − xj), i, j ∈ Z,
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where κ ∶ RN ↦ R is a positive, uniformly bounded, radially symmetric and non-increasing
kernel with full support and ∫RN κ(x)2dx < +∞. Now let κ̃ ∶ RN ↦ R be another radially
symmetric, positive and uniformly bounded function and define the perturbed weight matrix
Wε by

w
(ε)
ij = w(0)ij + εκ̃(xi − xj).

Then the resulting perturbed graph Laplacian Lε satisfies the conditions of Propositions 39
and 40. As a concrete example take κ(x) = exp(−∥x∥) and take κ̃(x) = 1. For more details
on applications using this type of weight matrix, see Zhu (2005). ◇

Example 2 (Adding a Few Edges) As another example consider a weight matrix W0

of block diagonal form consisting of two matrices W+ and W− corresponding to two disjoint
and connected subgraphs, i.e,

W0 = diag(W+,W−)
and any pair of nodes, both in W+ (resp. W−) are connected by a sequence of edges with
strictly positive weights. Since each subgraph is assumed to be connected then the graph G0

satisfies Assumption 1. Let Z denote the collection of all nodes in the graph and select a
subset Z̃ ⊂ Z such that 2 ≤ ∣Z̃ ∣ ≤ ∣Z ∣ and Z̃ contains at least one point in each of the two
disjoint components. Define the matrix

w
(1)
ij = {

1, i, j ∈ Z̃, i ≠ j,
0 otherwise,

and consider the perturbation
Wε =W0 + εW (1).

This perturbation corresponds to weak coupling of two disjoint subgraphs by adding edges
between subgraphs. Once again, we can directly verify that the resulting perturbed graph
Laplacian Lε satisfies the conditions of Propositions 39 and 40. ◇

At the end of this section we use our results on the closeness of the eigenvectors {φφφj,ε}Kj=1

and {χ̄χχj}Kj=1 to identify the geometry of the cj,ε the columns of Cε,τ .

Proposition 41 Suppose Assumptions 1 and 2 are satisfied. Then

(a) If ε = o(τ2) there exists a constant Ξ4 > 0 independent of ε and τ so that

∥c`,ε − (χ̄χχk)` χ̄χχk∥
2 ≤ Ξ4 (

ε2

τ4
+ τ4α + ε2) , ∀ ` ∈ Z̃k.

That is, the columns of Cτ,ε have the same geometry as the weighted set functions χ̄χχk
when ε, τ and ε/τ2 are small.

(b) If ε/τ2 = β is constant, there exists a constant Ξ5 > 0 independent of ε and τ so that

∥c`,ε − [(1 − β̆) (χ̄χχ)`χ̄χχ + β̆(χ̄χχk)`χ̄χχk]∥
2 ≤ Ξ5 (ε2 + τ4α) , ∀ ` ∈ Z̃k ,

where β̆ = (1 +Ξ1β)−α and Ξ1 is the constant in (65).
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Proof Let Pε ∈ RN×N denote the projection matrix onto span{φφφj,ε}Kj=1 and P0 ∈ RN×N

denote the projection onto span{χ̄χχk}Kk=1. Define the residuals

rk ∶= (I − Pε)χ̄χχk = χ̄χχk −
K

∑
j=1

⟨φφφj,ε, χ̄χχk⟩φφφj,ε ,

sj ∶= (I − P0)φφφj,ε = φφφj,ε −
K

∑
k=1

⟨φφφj,ε, χ̄χχk⟩χ̄χχk .

By Proposition 39(iii) there exists a uniform constant Ξ6 > 0 so that

K

∑
k=1

∥rk∥2 =
K

∑
j=1

∥sj∥2 =K −
K

∑
k=1

K

∑
j=1

⟨φφφj,ε, χ̄χχk⟩2 ≤KΞ6ε
2 . (71)

Writing φφφj,ε = P0φφφj,ε + sj for any j ∈ {1, ...,N} and using the fact that the {φφφj,ε}Kj=1 and

{χ̄χχk}Kk=1 are unit vectors, we can estimate

XXXXXXXXXXX

K

∑
j=1

(φφφj,ε)`φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk
XXXXXXXXXXX

2

=
XXXXXXXXXXX

K

∑
j=1

(φφφj,ε)` P0φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk +
K

∑
j=1

(φφφj,ε)` sj
XXXXXXXXXXX

2

≤ 2
XXXXXXXXXXX

K

∑
j=1

(φφφj,ε)` P0φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk
XXXXXXXXXXX

2

+ 2K
K

∑
j=1

∥sj∥2

= 2

XXXXXXXXXXXX

K

∑
k=1

⎡⎢⎢⎢⎢⎣

⎛
⎝
K

∑
j=1

(φφφj,ε)` ⟨χ̄χχk,φφφj,ε⟩
⎞
⎠
− (χ̄χχk)`

⎤⎥⎥⎥⎥⎦
χ̄χχk

XXXXXXXXXXXX

2

+ 2K
K

∑
j=1

∥sj∥2

= 2∥
K

∑
k=1

((Pε − I)χ̄χχk)` χ̄χχk∥
2

+ 2K
K

∑
j=1

∥sj∥2

≤ 2K
K

∑
k=1

∥(Pε − I)χ̄χχk∥2 + 2K
K

∑
j=1

∥sj∥2

= 2K
K

∑
k=1

∥rk∥2 + 2K
K

∑
j=1

∥sj∥2 ≤ 4K2Ξ6ε
2 , (72)

where the last inequality follows from (71).
Now recall the expansion (21) for columns of Cε,τ ,

c`,ε =
N

∑
j=1

1

λj,ε
(φφφj,ε)`φφφj,ε.

For (a), we want to estimate

∥c`,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk∥
2

≤ 3
XXXXXXXXXXX

N

∑
j=K+1

1

λj,ε
(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

+ 3
XXXXXXXXXXX

K

∑
j=1

( 1

λj,ε
− 1)(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

+ 3
XXXXXXXXXXX

K

∑
j=1

(φφφj,ε)`φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk
XXXXXXXXXXX

2

(73)
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The last term is of order ε2 by (72). The first term can be controlled using Proposition 40
together with the same bound as in (68),

XXXXXXXXXXX

N

∑
j=K+1

1

λj,ε
(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

≤ ((N −K)
λK+1,ε

)
2

≤ (N −K)2τ4α (τ2 + θ − ε∥L(1)∥2 − ε2 (sup
h≥2

∥L(h)∥2))
−2α

≤ (N −K)2θ−2ατ4α +O (τ4α (τ2 + ε)) ,

where θ > 0 is the constant appearing in Assumption 1(b). Next, when ε/τ2 is small, we
can estimate the second term in the right-hand side of (73) using Proposition 39(ii): recall
that λ1,ε = 1, and so

∣ 1

λj,ε
− 1∣ = ∣1 − λj,ε∣

∣λj,ε∣
≤ ∣1 − λj,ε∣ ≤ αΞ1

ε

τ2
+O (ε2τ−4) for j ∈ {2, ...,K} , (74)

and therefore

XXXXXXXXXXX

K

∑
j=1

( 1

λj,ε
− 1)(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

≤K
K

∑
j=1

∣ 1

λj,ε
− 1∣

2

∣(φφφj,ε)`∣
2 ∥φφφj,ε∥2

≤ α2K2Ξ2
1 (

ε

τ2
)

2

+O (ε3τ−6) .

Putting the above estimates together, we can find a constant Ξ7 = Ξ7(N,K, θ,α, ε0) > 0
independent of ε and τ such that for all ` ∈ Z,

∥c`,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk∥
2

≤ Ξ7 (τ4α + ( ε

τ2
)

2

+ ε2) +O (τ4α (τ2 + ε))) +O (( ε

τ2
)

3

) .

Finally, note that for each ` ∈ Z, there exists a unique k0 ∈ {1, ...,K} such that ` ∈ Z̃k0 .
Then

K

∑
k=1

(χ̄χχk)` χ̄χχk = (χ̄χχk0)` χ̄χχk0 ,

which concludes the proof of statement (a).

To prove (b), the argument is similar. For β ∶= ε/τ2, we have

β̆ = (1 + βΞ1)−α > 0 .

Then, instead of (74), we use the bound in Proposition 39(ii) to estimate

∣ 1

λjε
− β̆∣ = ∣1 − β̆λj,ε∣

∣λj,ε∣
≤ ∣1 − β̆λj,ε∣ = β̆ ∣λj,ε −

1

β̆
∣

≤ β̆ ∣(β̆−1/α + εβΞ2)
α
− β̆−1∣ = αβΞ2

(1 + βΞ1)
ε +O(ε2) for j ∈ {2, ...,K}.
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Therefore, our goal is to control

∥c`,ε − (1 − β̆) (φφφ1,ε)`φφφ1,ε − β̆
K

∑
k=1

(χ̄χχk)` χ̄χχk∥
2

≤ 3
XXXXXXXXXXX

N

∑
j=K+1

1

λj,ε
(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

+ 3
XXXXXXXXXXX

K

∑
j=1

1

λj,ε
(φφφj,ε)`φφφj,ε − (1 − β̆) (φφφ1,ε)`φφφ1,ε − β̆

⎛
⎝
K

∑
j=1

(φφφj,ε)`φφφj,ε
⎞
⎠

XXXXXXXXXXX

2

+ 3
XXXXXXXXXXX
β̆
⎛
⎝
K

∑
j=1

(φφφj,ε)`φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk
⎞
⎠

XXXXXXXXXXX

2

= 3
XXXXXXXXXXX

N

∑
j=K+1

1

λj,ε
(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

+ 3
XXXXXXXXXXX

K

∑
j=2

( 1

λj,ε
− β̆)(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

+ 3β̆2
XXXXXXXXXXX

K

∑
j=1

(φφφj,ε)`φφφj,ε −
K

∑
k=1

(χ̄χχk)` χ̄χχk
XXXXXXXXXXX

2

.

(75)

Thanks to the previous estimate, the second term can be bounded by

XXXXXXXXXXX

K

∑
j=2

( 1

λj,ε
− β̆)(φφφj,ε)`φφφj,ε

XXXXXXXXXXX

2

≤ (K − 1)2 ( αβΞ2

(1 + βΞ1)
)

2

ε2 +O(ε3) .

The first and last terms in (75) can be estimated as for part (a), and so we can find a
constant Ξ8 = Ξ8(N,K, θ,α, ε0) > 0 independent of ε and τ such that for all ` ∈ Z,

∥c`,ε − (1 − β̆) (φφφ1,ε)`φφφ1,ε − β̆
K

∑
k=1

(χ̄χχk)` χ̄χχk∥
2

≤ Ξ8 (τ4α + ε2) +O (τ4α (τ2 + ε))) +O (ε3) .

From Proposition 39(i), we know that φφφ1,ε = Dp
ε1/∥Dp

ε1∥. Further, using the expansion
Dp
ε =Dp

0 + εD̂(p) derived in the proof of Lemma 38, we can simplify the middle term in the
expression on the left-hand side above,

(1 − β̆) (φφφ1,ε)`φφφ1,ε = (1 − β̆)(χ̄χχ)`χ̄χχ +O(ε) .

This concludes the proof of Proposition 41.
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