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The subject of inverse problems in differential equations is of enormous practi-
cal importance, and has also generated substantial mathematical and compu-
tational innovation. Typically some form of regularization is required to ame-
liorate ill-posed behaviour. In this article we review the Bayesian approach
to regularization, developing a function space viewpoint on the subject. This
approach allows for a full characterization of all possible solutions, and their
relative probabilities, whilst simultaneously forcing significant modelling is-
sues to be addressed in a clear and precise fashion. Although expensive to
implement, this approach is starting to lie within the range of the available
computational resources in many application areas. It also allows for the
quantification of uncertainty and risk, something which is increasingly de-
manded by these applications. Furthermore, the approach is conceptually
important for the understanding of simpler, computationally expedient ap-
proaches to inverse problems.

We demonstrate that, when formulated in a Bayesian fashion, a wide range
of inverse problems share a common mathematical framework, and we high-
light a theory of well-posedness which stems from this. The well-posedness
theory provides the basis for a number of stability and approximation results
which we describe. We also review a range of algorithmic approaches which
are used when adopting the Bayesian approach to inverse problems. These
include MCMC methods, filtering and the variational approach.
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1. Introduction

A significant challenge facing mathematical scientists is the development of
a coherent mathematical and algorithmic framework enabling researchers to
blend complex mathematical models with the (often vast) data sets which
are now routinely available in many fields of engineering, science and tech-
nology. In this article we frame a range of inverse problems, mostly arising
from the conjunction of differential equations and data, in the language of
Bayesian statistics. In so doing our aim is twofold: (i) to highlight common
mathematical structure arising from the numerous application areas where
significant progress has been made by practitioners over the last few decades
and thereby facilitate exchange of ideas between different application do-
mains; (ii) to develop an abstract function space setting for the problems
in order to evaluate the efficiency of existing algorithms, and to develop
new algorithms. Applications are far-reaching and include fields such as the
atmospheric sciences, oceanography, hydrology, geophysics, chemistry and
biochemistry, materials science, systems biology, traffic flow, econometrics,
image processing and signal processing.

The guiding principle underpinning the specific development of the sub-
ject of Bayesian inverse problems in this article is to avoid discretization
until the last possible moment. This principle is enormously empowering
throughout numerical analysis. For example, the first-order wave equation
is not controllable to a given final state in arbitrarily small time because of
finite speed of propagation. Yet every finite difference spatial discretization
of the first-order wave equation gives rise to a linear system of ordinary
differential equations which is controllable, in any finite time, to a given
final state; asking the controllability question before discretization is key to
understanding (Zuazua 2005). As another example consider the heat equa-
tion. If this is discretized in time by the theta method (with 6 € [0, 1] and
6 = 0 being explicit Euler, # = 1 implicit Euler), but left undiscretized in
space, the resulting algorithm on function space is only defined if 6 € [%, 1];
thus it is possible to deduce that there must be a Courant restriction if
0 € [0,2) (Richtmyer and Morton 1967) before even introducing spatial
discretization. Yet another example may be found in the study of Newton
methods: conceptual application of this algorithm on function space, before
discretization, can yield considerable insight when applying it as an itera-
tive method for boundary value problems in nonlinear differential equations
(Deuflhard 2004). The list of problems where it is beneficial to defer dis-
cretization to the very end of the algorithmic formulation is almost endless.
It is perhaps not surprising, therefore, that the same idea yields insight
in the solution of inverse problems and we substantiate this idea in the
Bayesian context.
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The article is divided into five parts. The next section, Section 2, is de-
voted to a description of the basic ideas of Bayesian statistics as applied to
inverse problems in the finite-dimensional setting. It also includes a pointer
to the common structure that we will highlight in the remainder of the article
when developing the Bayesian viewpoint in function space. Section 3 con-
tains a range of inverse problems arising in differential equations, showing
how the Bayesian approach may be applied to inverse problems for func-
tions; in particular, we discuss the problem of recovering a field from noisy
pointwise data, recovering the diffusion coefficient from a boundary value
problem, given noisy pointwise observations of the solution, recovering the
wave speed from noisy observations of solutions of the wave equation and
recovering the initial condition of the heat equation from noisy observation
of the solution at a positive time. We also describe a range of applications,
involving similar but more complex models, arising in weather forecasting,
oceanography, subsurface geophysics and molecular dynamics. In Section 4
we describe, and exploit, the common mathematical structure which un-
derlies all of these Bayesian inverse problems for functions. In that section
we prove a form of well-posedness for these inverse problems, by showing
Lipschitz continuity of the posterior measure with respect to changes in
the data; we also prove an approximation theorem which exploits this well-
posedness to show that approximation of the forward problem (by spectral
or finite element methods, for example) leads to similar approximation re-
sults for the posterior probability measure. Section 5 is devoted to a survey
of the existing algorithmic tools used to solve the problems highlighted in
the article. In particular, Markov chain Monte Carlo (MCMC) methods,
variational methods and filtering methods are surveyed. When discussing
variational methods we show, in the setting of Section 4, that posterior
probability maximizers can be characterized through solution of an optimal
control problem, and that this optimal control problem has a minimizer
under the same conditions that lead to a well-posed Bayesian inverse prob-
lem. Section 6 contains the background probability required to read the
article; the presentation in this section is necessarily terse and the reader is
encouraged to follow up references in the bibliography for further detail.

A major theme of the article is thus to confront the infinite-dimensional
nature of many inverse problems. This is important because, whilst all
computational algorithms work on finite-dimensional approximations, these
approximations are typically in spaces of very high dimension and many
significant challenges stem from this fact. By formulating inverse problems
in an infinite-dimensional setting we build these challenges into the fabric
of the problem setting. We provide a clear concept of the ideal solution
to the inverse problem when blending a forward mathematical model with
observational data. This concept can be used to test the practical algorithms
used in applications which, in many cases, use crude approximations for
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reasons of computational efficiency. Furthermore, it is also possible that
the function space Bayesian setting will also lead to the development of
improved algorithms which exploit the underlying mathematical structure
common to a diverse range of applications. In particular, the theory of
(Bayesian) well-posedness which we describe forms the cornerstone of many
perturbation theories, including finite-dimensional approximations.

Kaipio and Somersalo (2005) provide a good introduction to the Bayesian
approach to inverse problems, especially in the context of differential equa-
tions. Furthermore, Calvetti and Somersalo (2007b) provide a useful in-
troduction to the Bayesian perspective in scientific computing. Another
overview of the subject of inverse problems in differential equations, in-
cluding a strong argument for the philosophy taken in this article, namely
to formulate and study inverse problems in function space, is the book by
Tarantola (2005) (see, especially, Chapter 5); however, the mathematics as-
sociated with this philosophical standpoint is not developed there to the
same extent that it is in this article, and the focus is primarily on Gaussian
problems. A frequentist viewpoint for inverse problems on function space is
contained in the book by Ramsay and Silverman (2005); however, we adopt
a different, Bayesian, perspective here, and study more involved differential
equation models than those arising in Ramsay and Silverman (2005). These
books indicate that the development that we undertake here is a natural
one, which builds upon the existing literature.

The subject known as data assimilation provides a number of impor-
tant applications of the material presented here. Its development has been
driven, to a large extent, by practitioners working in the atmospheric and
oceanographic sciences and in the geosciences, resulting in a plethora of al-
gorithmic approaches and a number of significant algorithmic innovations.
A good source for an understanding of data assimilation in the context of the
atmospheric sciences, and weather prediction in particular, is the book by
Kalnay (2003). A book motivated by applications in oceanography, which
simultaneously highlights some of the underlying function space structure of
data assimilation for linear, Gaussian problems, is that of Bennett (2002).
The book by Evensen (2006) provides a good overview of many computa-
tional aspects of the subject, reflecting the author’s experience in geophys-
ical applications and related areas. The recent special edition of Physica D
devoted to data assimilation provides a good entry point to some of the cur-
rent research in this area (Ide and Jones 2007). Another application that
fits the mathematical framework developed here is molecular dynamics. The
problems of interest do not arise from Bayesian inverse problems, as such,
but rather from conditioned diffusion processes. However, the mathemat-
ical structure has much in common with that arising in Bayesian inverse
problems, and so we include a description of this problem area.
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Throughout the article we use standard notation for Banach and Hilbert
space norm and inner products, || - ||, (-,-), and the following notation for
the finite-dimensional Euclidean norm and inner product: |-|, (-, -). We also
use the concept of weighted inner products and norms in any Hilbert space.
For any self-adjoint positive operator A, we define

(o a= (AT A2 fa= AT
in the general setting and, in finite dimensions,
[ la= A2,

For any a,b € H, a Hilbert space, we define the operator a®b by the identity
(a®b)c = (b,c)a for any c € H. We use * to denote the adjoint of a linear
operator between two Hilbert spaces. In particular, we may view a,b € ‘H
as linear operators from R to H and then a ® b = ab*.

In order to highlight the common structure arising in many of the prob-
lems in this book, we will endeavor to use the same notation repeatedly
in the different contexts. A Gaussian measure will be denoted as N'(m,C)
with m the mean and C the covariance operator/matriz. The mean of the
prior Gaussian measure will be mg and its covariance matrix/operator will
be ¥y or Cp (we will drop the subscript 0 on the prior where no confusion
arises in doing so). We will use the terminology precision operator for the
(densely defined) £ := C~!. For inverse problems the operator mapping the
unknown vector /field to the observations will be denoted by G and termed
the observation operator, and the observational noise will be denoted by 7.

We emphasize that in this article we will work for the most part with
Gaussian priors. In terms of the classical theory of regularization this means
that we are limiting ourselves to quadratic regularization terms, typically
a Sobolev-type Hilbert space norm. We recognize that there are many ap-
plications of importance where other regularizations are natural, especially
in image processing (Rudin, Osher and Fatemi 1992, Scherzer, Grasmair,
Grossauer, Haltmeier and Lenzen 2009). A significant challenge is to take
the material in this article and generalize it to these other settings, and
there is some recent interesting work in this direction (Lassas, Saksman and
Siltanen 2009).

There are other problem areas which lead to the need for computation of
random functions. For example, there is a large body of work concerned with
uncertainty quantification (DeVolder et al. 2002, Kennedy and O’Hagan
2001, Mohamed, Christie and Demyanov 2010, Efendiev, Datta-Gupta, Ma
and Mallick 2009). In this field the input data to a differential equation is
viewed as a random variable and the interest is in computing the resulting
variability in the solution, as the input data varies. This is currently an
active area of research in the engineering community (Spanos and Ghanem
1989, 2003). The work is thus primarily concerned with approximating
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measures which are the push forward, under a nonlinear map, of a Gaussian
measure; in contrast, the inverse problem setting which we study here is
concerned with the approximation of non-Gaussian measures whose Radon—
Nikodym derivative with respect to a Gaussian measure is defined through
a related nonlinear map. A rigorous numerical analysis underpinning the
work of Spanos and Ghanem (1989, 2003) is an active area of research: see in
particular Schwab and Todor (2006) and Todor and Schwab (2007), where
the problem is viewed as an example of Schwab’s more general program
of tensor product approximation for high-(infinite)-dimensional problems
(Gittelson and Schwab 2011). A different area where tensor products are
used to form approximations of functions of many variables is computational
quantum mechanics and approximation of the Schrédinger equation (Lubich
2008); this work may also be seen in the more general context of tensor
product approximations in linear algebra (Kolda and Bader 2009). It would
be interesting to investigate whether any of these tensor product ideas can
be transferred to the approximation of probability density functions in high-
dimensional spaces, as arise naturally in Bayesian inverse problems.

More generally speaking, this article is concerned with a research area
which is at the interface of applied mathematics and statistics. This is a
rich research interface, where there is currently significant effort. Exam-
ples include work in compressed sensing, which blends ideas from statis-
tics, probability, approximation theory and harmonic analysis (Candes and
Wakin 2008, Donoho 2006), and research aimed at efficient sampling of
Gaussian random fields combining numerical linear algebra and statistics
(Rue and Held 2005).

2. The Bayesian framework
2.1. Overview

This section introduces the Bayesian approach to inverse problems and out-
lines the common structure that we will develop in the remainder of the
article. In Section 2.2 we introduce finite-dimensional inverse problems and
describe the Bayesian approach to their solution, highlighting the role of
observational noise which pollutes the data in many problems of practical
interest. We show how to construct a formula for the posterior measure on
the unknown of interest, from the data and from a prior measure incorpo-
rating structural knowledge about the problem which is present prior to the
acquisition of the data. In Section 2.3 we study the effect on the posterior
of small observational noise, in order to connect the Bayesian viewpoint
with the classical perspective on inverse problems. We first study problems
where the dimensions of the data set and the unknown match; we show
that the prior measure is asymptotically irrelevant and that, in the limit
of zero noise, the posterior measure converges weakly to a Dirac measure
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centred on the solution of the noise-free equation. We next study the special
structure which arises when the mathematical model and observations are
described through linear operators, and when the prior and the noise are
Gaussian; this results in a Gaussian posterior measure. In this Gaussian
setting we first study the limit of vanishing observational noise in the case
where the dimension of the data set is greater than that of the unknown,
showing that the prior is asymptotically irrelevant, and that the posterior
measure approaches a Dirac concentrated on the solution of a natural least-
squares problem. We then study the situation where the dimension of the
data set is smaller than that of the unknown. We show that, in the limit
of small observational noise, the prior remains important and we charac-
terize this effect explicitly. Section 2.4 completes the introductory material
by describing the common framework which we will illustrate and exploit
in the remainder of the article when developing the Bayesian viewpoint on
function space.

2.2. Linking the classical and Bayesian approaches

In applications it is frequently of interest to solve inverse problems: to
find u, an input to a mathematical model, given y an observation of (some
components of, or functions of) the solution of the model. We have an
equation of the form

y=G(u) (2.1)

to solve for u € X, given y € Y, where X,Y are Banach spaces. We
will refer to G as the observation operator.! We refer to y as data. It is
typical of inverse problems that they are ill-posed: there may be no solution,
or the solution may not be unique and may depend sensitively on y. One
approach to the problem in this situation is to replace it by the least-squares
optimization problem of finding, for the norm | - |y on Y,

. 1
argmin, e x oy — G- (2.2)

This problem, too, may be difficult to solve as it may possess minimizing
sequences u(™ which do not converge to a limit in X, or it may possess
multiple minima and sensitive dependence on the data y. These issues can
be somewhat ameliorated by solving a regularized minimization problem
of the form, for some Banach space (F,| - ||g) contained in X, and point
mo € I,

. 1 1
angmin,es (319~ G + = molfs ). (2.3

! This operator is often denoted with the letter 7 in the atmospheric sciences community;
because we need H for Hilbert space later on, we use the symbol G.
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However, the choice of norms || - ||z, || - ||y and the point mg are somewhat
arbitrary, without making further modelling assumptions. We will adopt
a statistical approach to the inverse problems, in which these issues can
be articulated and addressed in an explicit fashion. Roughly speaking, the
Bayesian approach will lead to the notion of finding a probability measure
1Y on X, containing information about the relative probability of different
states u, given the data y. For example, in the case where X,Y are both
finite-dimensional, the noise polluting (2.1) is additive and Gaussian, and
the prior measure is Gaussian, the posterior measure will have density 7Y
given by

w0) xoxp( gy - Gl - plu-maly). @4

The properties of a measure p¥ with such a density n¥ are intimately related
to the minimization problem (2.3): the density is largest at minimizers.
But the probabilistic approach is far richer. For example, the derivation of
the probability measure p¥ will force us to confront various modelling and
mathematical issues which, together, will guide the choice of norms || - ||z,
Il - lly and the point mg. Furthermore, the probabilistic approach enables
us to answer questions such as: ‘What is the relative probability that the
unknown function u is determined by the different local minimizers of (2.3)?’
‘How certain can we be that a prediction made by a mathematical model
will lie in certain specified regimes?’

We now outline a probabilistic framework which will include the specific
probability measure with density given by (2.4) as a special case. This
framework starts from the observation that a deeper understanding of the
source of data often reveals that the observations y are subject to noise and
that a more appropriate model equation is often of the form

y=G(u)+mn, (2.5)

where 77 is a mean zero random variable, whose statistical properties we
might know, but whose actual value is unknown to us; we refer to n as
the observational noise. In this context it is natural to adopt a Bayesian
approach to the problem of determining u from y: see Section 6.6. We
describe our prior beliefs about wu, in terms of a probability measure puyg,
and use Bayes’ formula (see (6.24)) to calculate the posterior probability
measure pY, for u given y.

To be concrete, in the remainder of this subsection and in the next sub-
section we consider the case where u € R",y € R? and we let my and 7¥
denote the p.d.f.s (see Section 6.1) of measures 9 and p¥. We assume that
n € RY is a random variable with density p. Then the probability of y given
u has density

plylu) := ply — G(u)).
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This is often referred to as the data likelihood. By Bayes’ formula (6.24) we
obtain

_ Py —=G(u))mo(u)
fRn p(y — G(u))mo(u) du’

¥ (u) (2.6)

Thus
™ (u) o< p(y — G(u))mo(u) (2.7)

with constant of proportionality depending only on y. Abstractly (2.7)
expresses the fact that the posterior measure p¥ (with density n¥) and
prior measure po (with density mp) are related through the Radon-Nikodym
derivative (see Theorem 6.2)

du

) ¢ ply — G(w). (2.8

Since p is a density and thus non-negative, without loss of generality we may
write the right-hand side as the exponential of the negative of a potential
®(u;y), to obtain

dp”

4 (u) o< exp(—=P(u;y)). (2.9)

It is this form which generalizes naturally to situations where X, and pos-
sibly Y, is infinite-dimensional. We show in Section 3 that many inverse
problems can be formulated in a Bayesian fashion and that the posterior
measure takes this form.

In general it is hard to obtain information from a probability measure in
high dimensions. One useful approach to extracting information is to find
a mazximum a posteriori estimator, or MAP estimator: a point u which
maximizes the posterior p.d.f. 7¥%; such variational methods are surveyed in
Section 5.3. Another commonly used method for interrogating a probability
measure in high dimensions is sampling: generating a set of points {u, }_,
distributed (perhaps only approximately) according to 7¥(u). In this context
formula (2.7) (or (2.9) in the general setting), in which the posterior density
is known only up to a constant, is useful because MCMC methods may be
used to sample from it: MCMC methods have the advantage of sampling
from a probability measure only known up to a normalizing constant; we
outline these methods in Section 5.2. Time-dependent problems, where the
data is acquired sequentially, also provide a class of problems where useful
approximations can be developed; these filtering methods are outlined in
Section 5.4.

We will often be interested in problems where prior uo and observational
noise 7 are Gaussian. If n ~ N (0, B) and pg = N (mg, Xo), then we obtain
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from (2.7) the formula?
1 1,—
) ocexp (3|80 — G - 155w —ma) )

—exp (=3 (s~ [} - 3w mo)l3, ) (2.10)

In terms of measures this is the statement that

du?
V2 ) o ex (30— ) 3 ) 2:1)

The maximum a posteriori estimator, or MAP estimator, is then

1
argminueRn< ly — G(u ‘B 2‘u—m0};0). (2.12)

This is a specific instance of the regularized minimization problem (2.3).
Note that in the Bayesian framework the norms || - ||y, | - ||z and the point
mg all have a clear interpretation in terms of the statistics of the observa-
tional noise and the prior measure. In contrast, these norms and point are
somewhat arbitrary in the classical approach.

In general the posterior probability measure (2.10) is not itself Gaussian.
However, if G is linear then the posterior p¥ is also Gaussian. Identifying the
mean and covariance (or precision) matrix can be achieved by completing
the square, as formalized in Theorem 6.20 and Lemma 6.21 (see also Exam-
ples 6.22 and 6.23). The following simple examples illustrate this. They also
show further connections between the Bayesian and classical approaches to
inverse problems, a subject we develop further in the following subsection.

Example 2.1. Let ¢ =1 and G be linear so that

y={(g,u) +1n

for some g € R™. Assume further that n ~ AN(0,7?) and that we place a
prior Gaussian measure N (0, Xy) on u. Then

Y (u) < exp (—2;]3/ - <g,u>]2 - %(u, Zalu)>. (2.13)

As the exponential of a quadratic form, this is the density of a Gaussian
measure.

2 The notation for weighted norms and inner products is defined at the end of Section 1.
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From Theorem 6.20 we find that the posterior mean and covariance are

given by
__ (Zog)y
72+ (9,%209)’

_ (B09)(Z0g)”

72+ (g9, Xog)
If we consider the case where observational noise disappears from the sys-
tem, then we find that

Y =2

m"r::hmm:M z+::1h%z:go_w.
'y—>

=0 (9, %0g)’ (9, Zog)
Notice that ¥*tg = 0 and (m™,g) = y. This states the intuitively reason-
able fact that, as the observational noise decreases, knowledge of u in the
direction of g becomes certain. In directions not aligned with g, uncertainty
remains, with magnitude determined by an interaction between properties
of the prior and of the observation operator. Thus the prior plays a cen-
tral role, even as observational noise disappears, in this example where the
solution is underdetermined. &

Example 2.2. Assume that ¢ > 2 and n = 1, and let G be nonlinear with
the form
y = g(u+ Bu’) +1,

where g € R9\{0}, 3 € R and n ~ N(0,72I). Assume further that we place
a Gaussian measure N(0,1) as a prior on u. Then

This measure is not Gaussian unless § = 0.
Consider the linear case where 5 = 0. The posterior measure is then
Gaussian:

1 1
() x oxp ~g-gly  guf - 5lul).
By Theorem 6.20, using the identity

-1 -1
(VPI+g9%) 9= (P +191) g,
we deduce that the posterior mean and covariance are given by

_ {9y
v+ gl

2 ’72

0" = —5—07s.
72+ gl?
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In the limit where observational noise disappears, we find that

mT = limm =
7—0

(6T)? = limo? = 0.

v—0
The point m™ is the least-squares solution of the overdetermined linear
equation y = gu found from the minimization problem

argmin, ep|y — gul®,

This is a minimization problem of the form (2.2). In this case, where the
system is overdetermined, the prior plays no role in the limit of zero obser-
vational noise. o

2.8. Small noise limits of the posterior measure

We have shown that the Bayesian and classical perspectives are linked
through the relationship between the posterior probability density given by
(2.10) and the MAP estimator (2.12). This directly connects minimization
of a regularized least-squares problem with the Bayesian perspective. Our
alm now is to further the link between the Bayesian and classical approaches
by considering the limit of small observational noise.

The small observational noise limit is illustrated in the two examples con-
cluding the previous subsection. In the first, where the underlying noise-free
problem is underdetermined, the prior provides information about the pos-
terior mean, and uncertainty remains in the posterior, even as observational
noise disappears; furthermore, that uncertainty is related to the choice of
prior. In the second example, where the underlying noise-free problem is
overdetermined, uncertainty disappears and the posterior converges to a
Dirac measure centred on the least-squares solution of the limiting deter-
ministic equation. The intuition obtained from these two examples, con-
cerning the behaviour of the posterior measure in the small noise limit,
is important. The first example suggests that in the underdetermined case
the prior measure plays a role in determining the posterior measure, even as
the observational noise disappears; in contrast, the second example suggests
that, in the overdetermined case, the prior plays no role in the small noise
limit. Many of the inverse problems for functions that we study later in this
paper are underdetermined. For these problems the prior measure plays an
important role in the solution, even when observational noise is small. A
significant advantage of the Bayesian framework over classical approaches
is that it makes the modelling assumptions which underly the prior both
clear and explicit.

In the remainder of this subsection we demonstrate that the intuition
obtained from the two examples can be substantiated on a broad class of
finite-dimensional inverse problems. We first concentrate on the general
case which lies between these two examples, where ¢ = n and, furthermore,
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equation (2.1) has a unique solution. We then restrict our attention to
Gaussian problems, studying the over- and underdetermined cases in turn.
We state the results first, and provide proofs at the end of the subsection.
The results are stated in terms of weak convergence of probability measures,
denoted by =; see the end of Section 6.1 for background on this concept.
Throughout this subsection we consider the data y to be fixed, and we study
the limiting behaviour of the posterior measure p¥ as the observational noise
tends to zero. Other limits, where ¥ is a random variable, depending on the
observational noise, are also of interest, but we stick to the simpler setting
where y is fixed, for expository purposes.
We start with the case ¢ = n and assume that equation (2.1) has a unique
solution
u=F(y) (2.14)

for every y € R™. Intuitively this unique solution should dominate the
Bayesian solution to the problem (which is a probability distribution on R",
not a single point). We show that this is indeed the case: the probability
distribution concentrates on the single point given by (2.14) as observational
noise disappears.

We assume that there is a positive constant C' such that, for all y,§ € R™,

ly — G(F(y) +0)|* = Cmin{1, |5} (2.15)

This condition implies that the derivative DG(u) is invertible at u = F(y),
so that the implicit function theorem holds; the condition also excludes the
possibility of attaining the minimum 0 of 1|y — G(u)|*> along a sequence
up — 00. We then have the following.

Theorem 2.3. Assume that k = n, that G € C?(R",R") and that equa-
tion (2.1) has a unique solution given by (2.14), for every y € R™. We place
a Gaussian prior py = N (mg, o) on u and assume that the observational
noise 7 in (2.5) is distributed as A'(0,~2I). Then the posterior measure Y,
with density given by (2.10) and B = %I, satisfies ¥ = Or@) asy — 0.0

The preceding theorem concerns problems where the underlying equa-
tion (2.1) relating data to model is uniquely solvable. This situation rarely
arises in practice, but is of course important for building links between the
Bayesian and classical perspectives.

We now turn to problems which are either over- or underdetermined and,
for simplicity, confine our attention to purely Gaussian problems. We again
work in arbitrary finite dimensions and study the small observational noise
limit and its relation to the the underlying noise-free problem (2.1). In The-
orem 2.4 we show that the posterior measure converges to a Dirac measure
concentrated on minimizers of the least-squares problem (2.2). Of course,
when (2.1) is uniquely solvable this will lead to a Dirac measure as its solu-
tion, as in Theorem 2.3; but more generally there may be no solution to (2.1)
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and least-squares minimizers provide a natural generalized solution concept.
In Theorem 2.5 we study the Gaussian problem in the undetermined case,
showing that the posterior measure converges to a Gaussian measure whose
support lies on a hyperplane embedded in the space where the unknown
lies. The structure of this Gaussian measure is determined by an interplay
between the prior, the forward model and the data. In particular, prior
information remains in the small noise limit. This illustrates the important
idea that for (frequently occurring) underdetermined problems the prior
plays a significant role, even when noise is small, and should therefore be
treated very carefully from the perspective of mathematical modelling.

If the observational noise 1 is Gaussian, if the prior pg is Gaussian and
if G is a linear map, then the posterior measure p¥ is also Gaussian. This
follows immediately from the fact that the logarithm of 7¥ given by (2.6)
is quadratic in v under these assumptions. We now study the properties of
this Gaussian posterior.

We assume that

T]NN(OrB)a MOZN(mmEO), g(u) = Au

and that B and X are both invertible.
Then, since ylu ~ N (Au, B), Theorem 6.20 shows that the posterior
measure ¥ is Gaussian N (m, X)) with

m = mg + A" (B + AXgA*) "1 (y — Amy), (2.16a)

¥ =%y — SgA*(B + ATgA*) LAY, (2.16b)

In the case where kK = n and A, ¥( are invertible, we see that, as B — 0,
m— A"ly, ¥ 0.

From Lemma 6.5 we know that convergence of all characteristic functions
implies weak convergence. Furthermore, the characteristic function of a
Gaussian is determined by the mean and covariance: see Theorem 6.4.
Hence, for a finite-dimensional family of Gaussians, convergence of the mean
and covariance to a limit implies weak convergence to the Gaussian with
that limiting mean and covariance. For this family of measures the limiting
covariance is zero and thus the B — 0 limit recovers a Dirac measure on
the solution of the equation Au = y, in accordance with Theorem 2.3. It is
natural to ask what happens in the limit of vanishing noise, more generally.
The following two theorems provide an answer to this question.

Theorem 2.4. Assume that B and X are both invertible. The posterior
mean and covariance can be rewritten as

m=(A*B7 A+ ;)Y (A* By + S5 my), (2.17a)
Y =(A*BtA+ ;)L (2.17b)
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If Null(A) = {0} and B = 42 By then, in the limit 2 — 0, ¥ = §,,+, where
m™ is the solution of the least-squares problem

. —-1/2
* = argmin,cgn | B, / (y — Au)|?. %

m

The preceding theorem shows that, in the overdetermined case where
A*BA is invertible, the small observational noise limit leads to a poste-
rior which is a Dirac, centred on the solution of a least-squares problem
determined by the observation operator and the relative weights on the ob-
servational noise. Uncertainty disappears, and the prior plays no role in
this limit. Example 2.2 illustrates this situation.

We now assume that y € R? and v € R with ¢ < n, so that the problem
is underdetermined. We assume that rank(A) = ¢, so that we may write

A=(4Ay 0)Q* (2.18)

with @ € R™ ™ an orthogonal matrix so that Q*Q = I, Ay € R9*? an
invertible matrix and 0 € R9*("~9) a zero matrix. We also let Ly = X L
the precision matrix for the prior, and write

N L1 Lo
L = .
Q OQ <L>{2 LQQ)

Here L1 € R7%9, L1y € RI*("=9) and Loy € R(=9X(=9): both L and Lo
are positive definite symmetric, because ¥ is.
If we write

(2.19)

Q= (@1 Q2) (2.20)

with Q1 € R"*? and Qq € R"*("=9) then Q)] projects onto a g-dimensional
subspace O and Q3 projects onto an (n — q)-dimensional subspace O; here
O and O are orthogonal.

Assume that y = Au for some u € R™. This identity is at the heart of the
inverse problem in the small v limit. If we define z € R? to be the unique
solution of the system of equations Agz = y, then z = Qju. On the other
hand, Q3u is not determined by the identity y = Awu. Thus, intuitively we
expect to determine z without uncertainty, in the limit of small noise, but
for uncertainty to remain in other directions. With this in mind we define
w € R? and w’ € R"? via the equation

w

S3tmo = Q (“’) (2.21)

and then set

2= Ly Liyz + Lygw' € R"4.
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Theorem 2.5. Assume that B and ¥y are both invertible and let B =
v2By. Then, in the limit 42 — 0, u¥ = N (m*,S), where

mt =Q (Z,>, (2.22a)

z

Y = QoL Q5. (2.22b)

<o

We now interpret this theorem. Since 51 = 0, the limiting measure
may be viewed as a Dirac measure, centred at z in O, and a Gaussian
measure N(z/, Ly, ) in Ot. These measures are independent, so that the

theorem states that
:U’y = 62 ®N(zlv L;21))

viewed as a measure on @ @ O+. Thus, in the small observational noise
limit, we determine the solution without uncertainty in ©, whilst in O+
uncertainty remains. Furthermore, the prior plays a role in the posterior
measure in the limit of zero observational noise; specifically it enters the
formulae for 2’ and Los.

We finish this subsection by providing proofs of the preceding three results.

Proof of Theorem 2.3. Define ¢ := u — F(y) and let
1 —1/2
16) = 5 5ly = G(F W) + ) = J1%5A(Fy) + 6 — mo)|.
Fix £ € R™. Then, with E denoting expectation under u¥,

Eexp(i{t,u) = — exp(i{t, F(y))) /R exp(i{t,6) + 7(5)) do,
where

7z - /nexp(f(é))dé.

Thus, by Lemma 6.5, it suffices to prove that, as v — 0,

% exp(i{t, 6) + £(6)) d6 — 1.
R?’L

Define
I(¢) = /R" exp(i(¢,6) + f(8)) dé,

noting that Z = I(0). For a € (2/3,1), we split I(¢) into I(¢) = I;(¢) + I2(¥)
where

n() = /6| exp(i(6,8) + £(6)) 6,
e

L) = /5|> “exp(i{L,6) + £(6)) b
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We consider I () first so that |§] < 4*. By Taylor-expanding f(4) around
6 = 0, we obtain

1 1 5
10) = —551B3 = 5% V2 F(y) + 8 —mo) |+ 0(72)

where B = DG(F(y)). Thus, for b=a A (3a —2) = 3a — 2,

(6,0) + £0) = =515 (F(0) = mo) [ = 55 1BSE + OG0,

Thus
1, 1

L() = exp<_yzo Y2 (F(y) —mo) ]2> / exp<—2|B5|2 +O(7b)>d5.
2 18] <ye 2y

It follows that

10 = exp( 3155 () — mo) ) /w|< e~ g5l
x (1+0("))ds

1, 1
zynexp(‘Zo 1/2(]:(y)m0)’2> / eXp<Bz|2>
2 fol<yo= 2
x (14 O(vb)) dz.

We now estimate I3(¢) and show that it is asymptotically negligible com-
pared with I;(¢). Note that, by (2.15),

Cmin{1, |5*} 1
< _Z—\wE S -

< ~ Cmin{l, ]5|2}'
272

1562 (F(y) + 6 — mo)|”

Thus

2
L) < / exp<—0‘i)da
12]6]|>~7 Y

1,__
+/ exp(%) exp(’ZO 1/2(f(y)+5m0)‘2>d5.
|6]>1 Y 2

Since a < 1, it follows that I5(¢) is exponentially small in v — 0. As
I,(?) is, to leading order, O(7™) and independent of ¢, we deduce that

% [ exp(i(6,0) + £(9) d5 = %; -l

as v — 0, and the result follows. L]
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Proof of Theorem 2.4. We first note the identity
A*BH(B + AXpA*) = (A*B1A+ 551D A%,

which follows since Yy and B are both positive definite. Since A*B*1A+Za !
and B + AXgA* are also positive definite, we deduce that

(A*B'A+ 3, TA* B! = g A*(B + AXpA*) !
Thus the posterior mean may be written as
m=mo+ (A*B'A+ 3 ) A* B (y — Amy)
= (A B A+ ) (A B iy + A* B Amg + Xy 'mg — A* B Amy)
= (A*B'A+ 2 ;H N (A By + 25 my),

as required. A similar calculation establishes the desired property of the
posterior covariance.
If B = ~2By then we deduce that

= (A"By A+ T A By ly +475g tmo),

= (A* Byt A+ 425!
Since Null(A) = {0}, we deduce that there is a > 0 such that
(€, A*BylAE) = |By P AL? = al¢?, Ve ER™

Thus A* B ! A is invertible and it follows that, as v — 0, the posterior mean
converges to

+ (A*Bo—lA)flA*Bo—ly
and the posterior covariance converges to zero. By Lemma 6.5 we deduce

the desired weak convergence of p¥ to d,,+. It remains to characterize m™.
Since the null space of A is empty, minimizers of

b(u) = 51185 2y — Au)?
are unique and satisfy the normal equations
A*By'Au = A*Byly.
Hence m™ solves the desired least-squares problem and the proof is com-
plete. U]

Proof of Theorem 2.5. By Lemma 6.5 we see that it suffices to prove that the
mean m and covariance ¥ given by the formulae in Theorem 2.4 converge
tom™ and X1 given by (2.22). We start by studying the covariance matrix
which, by Theorem 2.4, is given by

1 -1
Y= (QA*BolA + L0> .
Y



INVERSE PROBLEMS 469

Using the definition (2.18) of A, we see that

*—1
A'BF'A=Q <A033 Ao 8) Q"

Then, by (2.19) we have

s1_Q (71214830_1:40 + L1 L12> o
L7, Lo

Applying the Schur complement formula for the inverse of a matrix as in
Lemma 6.21, we deduce that

5-0 ( PGB )0

00 Y QA (2.23)
—72 Loy Lis (A5 By Ag) ™! L221>

where
712(|A11| +|Ag1]) = 0
as v — 0, and there is a constant C' > 0 such that
|Asg] + [Ags| < CH?

for all ~ sufficiently small. From this it follows that, as v — 0,

0 0 x .yt
2ﬁQ(O Lz_zl)Q =

writing @ as in (2.20). We see that ©1 = Q2L2_21Q§, as required.
We now return to the mean. By Theorem 2.4 this is given by the formula

m = E(A*Bily + 251m0).
Using the expression A = (A4p 0)Q*, we deduce that
1 (AsB;! 1
m—>2(72Q< 000 )y—i—EO m()).
By definition of w,w’, we deduce that

1 pAxn—1
m=YQ <72AOBOI y+ w).
w
Using equation (2.23), we find that
_ z _ Y.+
m=e <_L221LT22 + L221W,> - <Z/> s

This completes the proof. L]
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2.4. Common structure

In the previous subsection we showed that, for finite-dimensional problems,
Bayes’ rule gives the relationship (2.6) between the prior and posterior
p.d.f.s mp and 7Y respectively. Expressed in terms of the measures p¥ and
o corresponding to these densities, the formula may be written as in (2.9):
dpy 1
——(u) = exp(—®(u; ). (2.24)
dpo Z(y)
The normalization constant Z(y) is chosen so that p¥ is a probability mea-
sure:

2(y) = /X exp(—®(u; ) dpo (u). (2.25)

It is this form which generalizes readily to the setting on function space
where there are no densities 7¥ and my with respect to Lebesgue measure,
but where p¥ has a Radon-Nikodym derivative (see Theorem 6.2) with
respect to po.

In Section 3 we will describe a range of inverse problems which can be
formulated in terms of finding, and characterizing the properties of, a prob-
ability measure p¥ on a separable Banach space (X, | - ||x), specified via
its Radon—Nikodym derivative with respect to a reference measure pg as in
(2.24) and (2.25). In this subsection we highlight the common framework
into which many of these problems can be placed, by studying conditions
on ® which arise naturally in a wide range of applications. This framework
will then be used to develop a general theory for inverse problems in Sec-
tion 4. It is important to note that, when studying inverse problems, the
properties of ® that we highlight in this section are typically determined by
the forward PDE problem, which maps the unknown function u to the data
y. In particular, probability theory does not play a direct role in verifying
these properties of ®. Probability becomes relevant when choosing the prior
measure so that it charges the Banach space X, on which the desired prop-
erties of ® hold, with full measure. We illustrate how to make such choices
of prior in Section 3.

We assume that the data y is in a separable Banach space (Y, - |ly).
When applying the framework outlined in this article we will always assume
that the prior measure is Gaussian: pg ~ N(mg,Cp). The properties of
Gaussian random measures on Banach space, and Gaussian random fields
in particular, may be found in Sections 6.3, 6.4 and 6.5. The two key
properties of the prior that we will use repeatedly are the tail properties of
the measure as encapsulated in the Fernique Theorem (Theorem 6.9), and
the ability to establish regularity properties from the covariance operator:
see Theorem 6.24 and Lemmas 6.25 and 6.27. It is therefore possible to
broaden the scope of this material to non-Gaussian priors, for any measures



INVERSE PROBLEMS 471

for which analogues of these two key properties hold. However, Gaussian
priors do form an important class of priors for a number of reasons: they are
relatively simple to define through covariance operators defined as fractional
inverse powers of differential operators; they are relatively straightforward to
sample from; and the Hélder and Sobolev regularity properties of functions
drawn from the prior are easily understood.

The properties of & may be formalized through the following assump-
tions, which we verify on a case-by-case basis for many of the PDE inverse
problems encountered in Section 3.

Assumption 2.6. The function ®: X xY — R has the following properties.

(i) For every € > 0 and r > 0 there is an M = M(e,r) € R such that, for

all w e X and all y € Y with |y|ly <,
O(usy) > M —elullk-
(ii) For every r > 0 there is a K = K(r) > 0 such that, for all u € X and
y € Y with max{]|ullx, [lyly} <7,
(u;y) < K.
(iii) For every r > 0 there is an L(r) > 0 such that, for all u;,us € X and
y € Y with max{[Ju1|x, [luallx, [lylly} <7,
[@(u1;y) — (uz; y)| < Lijur — ual|x.
(iv) For every € > 0 and 7 > 0 there is a C' = C(g,r) € R such that, for all
y1,y2 € Y with max{||y1|ly, |ly2]ly} < r, and for all u € X,
| (u; y1) — ®(us92)| < exp(eflullk +C)lyr — w2l <
These assumptions are, in turn, a lower bound, an upper bound and

Lipschitz properties in v and in y. When Y is finite-dimensional and the
observational noise is N(0,T'), then ® has the form

B(uiy) = 5|02 (5 = G(w)

= %|(y—g(u))\§. (2.26)
It is then natural to derive the bounds and Lipschitz properties of @ from
properties of G.
Assumption 2.7. The function G : X — RY satisfies the following.
(i) For every € > 0 there is an M = M (e) € R such that, for all u € X,
1G(u)|r < exp(el|ullk + M).

(ii) For every r > 0 there is a K = K(r) > 0 such that, for all uj,us € X
with max{||lu||x, [uz]lx} < r,

1G(u1) — G(u2)lr < KlJur — uzlx. %
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It is straightforward to see the following.

Lemma 2.8. Assume that G : X — R satisfies Assumption 2.7. Then
®: X x R? — R given by (2.26) satisfies Assumption 2.6 with (V.| - |ly) =
(R [ [r). o

Many properties follow from these assumptions concerning the density
between the posterior and the prior. Indeed, the fact that p¥ is well-defined
is typically established by using the continuity properties of ®(+;y). Further
properties following from these assumptions include continuity of p¥ with
respect to the data y, and desirable perturbation properties of u¥ based
on finite-dimensional approximation of ® or G. All these properties will be
studied in detail in Section 4. We emphasize that many variants on the
assumptions above could be used to obtain similar, but sometimes weaker,
results than those appearing in this article. For example, we work with
Lipschitz continuity of @ in both arguments; similar results can be proved
under the weaker assumptions of continuity in both arguments. However,
since Lipschitz continuity holds for most of the applications of interest to
us, we work under these assumptions.

We re-emphasize that the properties of ® encapsulated in Assumption 2.6
are properties of the forward PDE problem, and they do not involve inverse
problems and probability at all. The link to Bayesian inverse problems
comes through the choice of prior measure pg which, as we will see in Sec-
tions 3 and 4, should be chosen so that (X ) = 1; this means that functions
drawn at random from the prior measure should be sufficiently regular that
they lie in X with probability one, so that the properties of ® from As-
sumptions 2.6 apply to it. In the function space setting, regularity of the
mean function, together with the spectral properties of the covariance op-
erator, determines the regularity of random draws. In particular, the rate
of decay of the eigenvalues of the covariance operator plays a central role in
determining the regularity properties. These issues are discussed in detail
in Section 6.5. For simplicity we will work throughout with covariance op-
erators which are defined through (possibly fractional) negative powers of
the Laplacian, or operators that behave like the Laplacian in a sense made
precise below.

To make these ideas precise, consider a second-order differential operator
A on a bounded open set D C R%, with domain chosen so that A is positive
definite and invertible. Let H C L?(D). For example, H may be restricted
to the subspace where

/ u(z)de =0 (2.27)
D

holds, in order to enforce positivity for an operator with Neumann or pe-
riodic boundary conditions, which would otherwise have constants in its
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kernel; or it may be restricted to divergence-free fields when incompressible
fluid flow is being modelled.

We let {(¢k, Ak) }rex denote a complete orthonormal basis for H, compris-
ing eigenfunctions/eigenvalues of A. Then K C Z%\{0}. For Laplacian-like
operators we expect that the eigenvalues will grow like |k|? and that, in
simple geometries, the ¢ will be bounded in L* and the gradient of the ¢y
will grow like |k| in L*°. We make these ideas precise below. For all infinite
sums over K in the following we employ standard orderings.

For any v € 'H we may write

w="> (u,ér) b
keK
We may then define fractional powers of A as follows, for any « € R:
A= 37 0% (u, @) . (2.28)
keK

For any s € R we define the separable Hilbert spaces H* by

HE = {u: D N, o) P < oo}. (2.29)

kek

These spaces have norm || - ||s defined by

lall =D Al (u, @)%
keK
If s > 0 then these spaces are contained in H, but for s < 0 they are larger
than H. The following assumptions characterize a ‘Laplacian-like’ operator.
These operators will be useful to us when constructing Gaussian priors, as
they will enable us to specify regularity properties of function drawn from
the prior in a transparent fashion.

Assumption 2.9. The operator A, densely defined on a Hilbert space
H C L%(D;R"™), satisfies the following properties.

(i) A is positive definite, self-adjoint and invertible.

(ii) The eigenfunctions/eigenvalues {¢px, Ax }rex of A, indexed by k € K C
Z\{0}, form an orthonormal basis for H.

(iii) There exist C* > 0 such that the eigenvalues satisfy, for all k € K,

(iv) There exists C' > 0 such that

1

sup<u¢kumo n ||D¢k||Loo) <C o
keK K|
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Note that if A is the Laplacian with Dirichlet or Neumann boundary
conditions, then the spaces H* are contained in the usual Sobolev spaces
H?. In the case of periodic boundary conditions they are identical to the
Sobolev spaces Hp,,. Thus the final assumption (v) above is a generalization

of the following Sobolev Embedding Theorem for the Laplacian.

Theorem 2.10. (Sobolev Embedding Theorem) Assume that A :=
— A\ is equipped with periodic, Neumann or Dirichlet boundary conditions
on the unit cube. If uw € H* and s > d/2, then u € C(D), and there is a
constant C' > 0 such that ||u|ze~ < Cl|ulls.

2.5. Discussion and bibliography

An introduction to the Bayesian approach to statistical problems in gen-
eral is Bernardo and Smith (1994). The approach taken to Bayesian in-
verse problems as outlined in Kaipio and Somersalo (2005) is to first dis-
cretize the problem and then secondly apply the Bayesian methodology
to a finite-dimensional problem. This is a commonly adopted methodol-
ogy. In that approach, the idea of trying to capture the limit of infinite
resolution is addressed by use of statistical extrapolation techniques based
on modelling the error from finite-dimensional approximation (Kaipio and
Somersalo 2007b). The approach that is developed in this article reverses
the order of these two steps: we first apply the Bayesian methodology to an
infinite-dimensional problem, and then discretize. There is some literature
concerning the Bayesian viewpoint for linear inverse problems on function
space, including the early study by Franklin (1970), and the subsequent
papers by Mandelbaum (1984), Lehtinen, Paivarinta and Somersalo (1989)
and Fitzpatrick (1991); the paper by Lassas et al. (2009) contains a good lit-
erature review of this material, and further references. The papers of Lassas
et al. (2009) and Lassas and Siltanen (2004) also study Bayesian inversion
for linear inverse problems on function space; they introduce the notion of
discretization invariance and investigate the question of whether it is pos-
sible to derive regularizations of families of finite-dimensional problems, in
a fashion which ensures that meaningful limits are obtained; this idea also
appears somewhat earlier in the data assimilation literature, for a partic-
ular PDE inverse problem, in the paper of Bennett and Budgell (1987).
In the approach taken in this article, discretization invariance is guaran-
teed for finite-dimensional approximations of the function space Bayesian
inverse problem. Furthermore, our approach is not limited to problems in
which a Gaussian posterior measure appears; in contrast, existing work on
discretization invariance is confined to the linear, Gaussian observational
noise setting in which the posterior is Gaussian if the prior is Gaussian.
The least-squares approach to inverse problems encapsulated in (2.3) is of-
ten termed Tikhonov regularization (Engl, Hanke and Neubauer 1996) and,
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more generally, the variational method in the applied literature (Bennett
2002, Evensen 2006). The book by Engl et al. (1996) discusses regulariza-
tion techniques in the Hilbert space setting and the Banach space setting is
discussed in, for example, the recent papers of Kaltenbacher, Schopfer and
Schuster (2009), Neubauer (2009) and Hein (2009). As we demonstrated,
regularization is closely related to finding the MAP estimator as defined in
Kaipio and Somersalo (2005). As such it is clear that, from the Bayesian
standpoint, regularization is intimately related to the choice of prior. An-
other classical regularization method for linear inverse problems is through
iterative solution (Engl et al. 1996); this topic is related to the Bayesian ap-
proach to inverse problems in Calvetti (2007) and Calvetti and Somersalo
(2005a).

Although we concentrate in this paper on Gaussian priors, and hence
on regularization via addition of a quadratic penalization term, there is
active research in the use of different regularizations (Kaltenbacher et al.
2009, Neubauer 2009, Hein 2009, Lassas and Siltanen 2004). In particular,
the use of total variation-based regularization, and related wavelet-based
regularizations, is central in image processing (Rudin et al. 1992, Scherzer
et al. 2009). We will not address such regularizations in this article, but note
that the development of a function space Bayesian viewpoint on such prob-
lems, along the lines developed here for Gaussian priors, is an interesting
research direction (Lassas et al. 2009).

Theorem 2.4 concerns the small noise limit for Gaussian noise. This topic
has been studied in greater detail in the papers by Engl, Hofinger and Kin-
dermann (2005), Hofinger and Pikkarainen (2007, 2009) and Neubauer and
Pikkarainen (2008), where the convergence of the posterior distribution is
quantified by use of the Prokohorov and Ky Fan metrics. Gaussian problems
are often amenable to closed-form analysis, as illustrated in this section, and
are hence useful for illustrative purposes. Furthermore, there are many in-
teresting applications where Gaussian structure prevails. Thus we will, on
occasion, exploit Gaussianity throughout the article, for both these reasons.

The common structure underlying a wide range of Bayesian inverse prob-
lems for functions, and which we highlight in Section 2.4, is developed in
Cotter, Dashti, Robinson and Stuart (2009, 2010b) and Cotter, Dashti and
Stuart (2010a).

In the general framework established at the start of this section we have
implicitly assumed that the observation operator G(-) is known to us. In
practice it is often approximated by some computer code G(-;h) in which
h denotes a mesh parameter, or parameter controlling missing physics. In
this case (2.5) can be replaced by the equation

y=G(u;h) +e+mn, (2.30)
where ¢ := G(u) — G(u; h). Whilst it is possible to lump ¢ and 7 together
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into one single error term, and work again with equation (2.1), this can be
misleading because the observation error 7 and the computational model
error ¢ are very different in character. The latter is typically not mean zero,
and depends upon w; in contrast it is frequently realistic to model 7 as a
mean zero random variable, independent of u. Attempts to model the effects
of € and 7 separately may be found in a number of publications, including
Kaipio and Somersalo (2005, Chapter 7), Kaipio and Somersalo (2007a),
Kaipio and Somersalo (2007b), Glimm, Hou, Lee, Sharp and Ye (2003), Or-
rell, Smith, Barkmeijer and Palmer (2001), Kennedy and O’Hagan (2001),
O’Sullivan and Christie, (20065, 2006a), Christie, Pickup, O’Sullivan and
Demyanov (2008) and Christie (2010). A different approach to dealing with
model error is to extend the variable u to include model terms which rep-
resent missing physics or lack of resolution in the model and to try to learn
about such systematic error from the data; this approach is undertaken in
Cotter, Dashti, Robinson and Stuart (2009).

3. Examples
3.1. Overview

In this section we study a variety of inverse problems arising from boundary
value problems and initial-boundary value problems. Our goal is to enable
application of the framework for Bayesian inverse problems on function
space that is developed in Section 4, in order to justify a formula of the
form (2.24) for a posterior measure p¥ on a function space, and to establish
properties of the measure pY.

In order to carry this out it is desirable to establish that, for a wide range
of problems, the common structure encapsulated in Assumptions 2.6 or 2.7
may be shown to hold. These assumptions concern properties of the forward
problem underlying the inverse problem, and have no reference to the in-
verse problem, its Bayesian formulation or to probability. The link between
the forward problem and the Bayesian inverse problem is provided in this
section, and in the next section. In this section we show that choosing the
prior measure so that po(X) = 1, where X is the space in which Assump-
tions 2.6 or 2.7 may be shown to hold, ensures that the posterior measure
is well-defined; this may often be done by use of Theorem 6.31. The larger
the space X, the fewer restrictions the condition po(X) = 1 places on the
choice of prior, since it is equivalent to asking that draws from pg are al-
most surely in the space X; the larger X is, the easier this is to satisfy.
The next section is concerned with ramifications of Assumptions 2.6 or 2.7
for various stability properties of the posterior measure ¥ with respect to
perturbations.

We will work in a Banach space setting and will always specify the prior
measure as a Gaussian. The required background material on Gaussian
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measures in Banach space, and Gaussian random fields, may be found in
Section 6. We also make regular use of the key Theorem 6.31, from Sec-
tion 6.6, to show that the posterior is well-defined and absolutely continuous
with respect to the prior. For simplicity we work with priors whose covari-
ance operator is a fractional negative power of an operator such as the
Laplacian. The reader should be aware that much greater generality than
this is possible and that the simple setting for choice of priors is chosen for
expository purposes. Other Gaussian priors may be chosen so long as the
constraint po(X) = 1 is satisfied.

We start in Section 3.2 by studying the inverse problems of determining
a field from direct pointwise observations. We use this example to illustrate
our approach to identifying the Radon—Nikodym derivative between poste-
rior and prior measures. All of the subsequent subsections in this chapter
involve Bayesian inference for random fields, but in contrast to the first sub-
section they are based on indirect measurements defined through solution
of a differential equation. In Section 3.3 we study the problem of finding the
diffusion coefficient in a two-point boundary value problem, from observa-
tions of the solution. In Section 3.4 we consider the problem of determining
the wave speed for the scalar wave equation from observations of the solu-
tion. Section 3.5 concerns the problem of recovering the initial condition
for the heat equation, from observation of the entire solution at a positive
time, when polluted by an additive Gaussian random field. We then de-
scribe several more involved examples arising in applications such as fluid
mechanics, geophysics and molecular dynamics, all of which can be placed in
the common framework developed here, but for which space precludes a full
development of the details; see Sections 3.6, 3.7 and 3.8. The problems in
fluid mechanics are natural extensions of the inverse problem for the initial
condition of the heat equation, and those arising in subsurface geophysics
generalize the inverse problem for the diffusion coefficient in a two-point
boundary value problem. The problem in molecular dynamics is somewhat
different, as it does not arise from a Bayesian inverse problem but rather
from a conditioned diffusion process. However, the resulting mathematical
structure shares much with the inverse problems and we include it for this
reason. References to some of the relevant literature on these applications
are given in Section 3.9.

3.2. Pointwise data for a random field

Let D C R? be a bounded open set. Consider a field u : D — R™. We view
u as an element of the Hilbert space H = L?(D). Assume that we are given
noisy observations {yj}{_, of a function g : R" — R’ of the field at a set of
points {z}7_,. Thus

Yk = g(u(wg)) + 0k, (3.1)
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where the {n}{_, describe the observational noise. Concatenating data,
we have

y=6(u)+mn, (3.2)

where y = (y7,...,y;)" € R and n = (n},..., ny)" € R The observation
operator G maps X := C(D) C H into Y := R%. The inverse problem is to
reconstruct the field u from the data y.

We assume that the observational noise 7 is Gaussian AV(0,T"). We spec-
ify a prior measure gy on u which is Gaussian N (mg,Cp) and determine
the posterior measure p¥ for u given y. Since P(dy|u) = N (G(u),T), infor-
mal application of Bayes’ rule leads us to expect that the Radon—Nikodym
derivative of p¥ with respect to pg is

dp? 1
2 ) x oxp 5l ~ G ). (3.3
Below we deduce appropriate choices of prior measure which ensure that
this measure is well-defined and does indeed determine the desired posterior
distribution for w given y.

If g : R® — R’ is linear, so that G(u) = Au for some linear operator
A : X — RY, then the calculations in Example 6.23 show that the posterior
measure p¥ is also Gaussian with p¥ = N (m,C) where

m = mg + CoA* (T + ACoA*) "1 (y — Amy), (3.4a)
C =Cy— CoA*(T + ACoA*)~LAC,. (3.4b)

Let A denote the Laplacian on D, with domain chosen so that Assump-
tions 2.9(i)—(iv) hold. Recall the (Sobolev-like) spaces H® from (2.29).
The following theorem is proved by application of Theorem 6.31, which
the reader is encouraged to study before continuing in this section.

Theorem 3.1. Assume that the domain of —A is chosen so that Assump-
tions 2.9(1)—(v) hold. Let g : R® — R’ be continuous. Assume that Cp o
(=A)~® with o > d/2 and assume that mg € H®. Then p¥(du) = P(duly)
is absolutely continuous with respect to po(du) = N (mg,Cy) with Radon—
Nikodym derivative given by (3.3). Furthermore, when g is linear, so that
G(u) = Au for some linear A : X — R’ then the posterior is Gaussian
with mean and covariance given by (3.4).

Proof. The formulae for the mean and covariance of the Gaussian pos-
terior measure p¥ = N(m,C), which arises when ¢ is linear, follow from
Example 6.23. We now proceed to determine the posterior measure in the
non-Gaussian case. Define L, : X — R” to be the pointwise evaluation
operator at z € D. Notice that

|[Lew = Lav| = |u(z) = v(2)] < [Ju—vf[p=



INVERSE PROBLEMS 479

so that L, : X — R" is continuous. The function G is found by composing
the continuous function g with the operator L. at a finite set of points and
is thus itself continuous from X into R®. To apply Theorem 6.31 it suffices
to show that po(X) = 1. Since H® is the Cameron—Martin space for Cp and
since mgy € H*, we deduce that pog = N (mqg,Co) and N (0,Cy) are equivalent
as measures, by Theorem 6.13. Thus po(X) = 1 since, by Lemma 6.25,
draws from N (0,Cp) are a.s. s-Holder for all s € (0, min{1l,a —d/2}). O

In Section 2.4 we indicated that obtaining bounds and Lipschitz proper-
ties of G or ®, the mappings appearing in the Radon—Nikodym derivative
between p¥ and pg, will be important to us below. The following lemma
studies this issue.

Lemma 3.2. In the setting of Theorem 3.1 assume, in addition, that
g € CY(R"™,RY) and that g is polynomially bounded. Then G satisfies As-
sumption 2.7 with X = C(D) and Y = R%. Furthermore, if Dg is polyno-
mially bounded then K(r) is polynomially bounded.

Proof.  Since g is polynomially bounded and G is found by pointwise eval-
uation at a finite number of points, it follows that

G(u)l < p(llullx)

for some polynomial p : R — R. The bound (i) of Assumption 2.7 follows.
By the mean-value theorem (Taylor theorem with remainder) we have that

1
|| Dalsuten) + (1= spo(an)) dsuan) ~ via) |
0
Thus, for all u,v satisfying max{||u|/x, [[v]x} <,

G(u) = G()Ir < K(r)]u = vllx.

Furthermore, K may be bounded polynomially if Dg is bounded polynomi-
ally. The result follows. 0

G(w) =~ Gv)lr < max

3.8. Inverse problem for a diffusion coefficient

The previous example illustrated the formulation of an inverse problem for
a function, using the Bayesian framework. However, the observations of
the function comprised direct measurements of the function at points in its
domain D. We now consider a problem where the measurements are more
indirect, and are defined through the solution of a differential equation.
We consider the inverse problem of determining the diffusion coefficient
from observations of the solution of the two-point boundary value problem

_% <k(a:)ji> =0, (3.5a)

p(0)=p~, p(1)=p". (3.5b)
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We assume that p™ > p~ > 0 and we make observations of {p(zx)}1_;,

at a set of points 0 < z1 < --- < 74 < 1 subject to Gaussian measurement
error. We write the observations as
yi=plxj)+mn, j=1,...,q (3.6)

and, for simplicity, assume that the n; form an i.i.d. sequence with 7; ~
N(0,42). Our interest is in determining the diffusion coefficient k from .
To ensure that k is strictly positive on [0, 1], we introduce u(z) = In(k(x))
and view u € L%((0,1)) as the basic unknown function.

The forward problem (3.5) for p given u is amenable to considerable
explicit analysis, and we now use this to write down a formula for the
observation operator G and to study its properties. We first define J, :
L>((0,1)) = R by

Ju(w) = /0 " exp(—w(2)) dz. (3.7)

The solution of (3.5) may be written as

+p (3.8)

and is monotonic increasing; furthermore, p(z) is unchanged under u(x) —
u(z) + A for any A € R. The observation operator is then given by the
formula

Gu) = (p(x1); - plq)) " (3.9)
Lemma 3.3. The observation operator G : C([0,1]) — R? is Lipschitz and
satisfies the bound
G(w)] < Vap™ (3.10)
Indeed, G satisfies Assumption 2.7 with X = C(]0,1]) and K(-) exponen-
tially bounded: there are a,b > 0 such that K (r) < aexp(br).

Proof. The fact that G is defined on C([0, 1]) follows from the explicit solu-
tion given in equation (3.8). The bound on G follows from the monotonicity
of the solution. For the Lipschitz property it suffices to consider the case
g = 1 and, without loss of generality, take 1 = 1/2. Note that then

1G(u) —G(v)| 1 . o )
= I @A) = T AW
- M’J; () (J1(v) = Ji(w) + Ji(w) (T (w) = 1 (0))]

< J1(v)*1\J1(v) — Ji(u)| + J1(v)*1‘J%(u) — J%(v)‘
But
Ji(v) 7! < exp(flvflo)
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and
| Jo (1) — Jo(v)| < 2 exp(max{||w]|oo; 0]l }) [t — vloo-
Thus we deduce that

G(u) = G(v)| < g(p+ =) exp([[v]loc +max{[Jullos, [[v]loc}) [lu = v]|oe. O

We place a Gaussian prior measure ug ~ N(ug,Cp) on u. We say that k
is log-normal. Since changing v by an arbitrary additive constant does not
change the solution of (3.5), we cannot expect to determine any information
about the value of this constant from the data. Thus we must build our
assumptions about this constant into the prior. To do this we assume that
u integrates to zero on (0,1) and define the prior measure o on the space

M= {ueL2((o, 1)))/01u(x)dx:o}. (3.11)

We define A = —d?/dz? to be a densely defined operator on H with

D(A) = {u € HZ,.((0, 1))’ /01 u(z) dz = 0}.

Then A is positive definite self-adjoint and, for any 5 > 0 and o > 1/2
(which ensures that the covariance operator is trace-class), we may define
the Gaussian measure N (mg, BA™%) on H.

We have

y=G(u)+n,

where y = (y1,...,y,)* € R? and n € R? is distributed as N'(0,~%I). The
probability of y given u (the data likelihood) is

P () o exp (51l — G0 ).

We wish to find p¥(du) = P(duly). Informal use of Bayes’ rule suggests that

du? 1 9

o ——|y — . 3.12
V2 ) o exp (sl — 60 (3.12)
We now justify this formula. Since G(-) is Lipschitz on X := C([0,1]),
by Lemma 3.3, the basic idea underlying the justification of (3.12) in the
next theorem is to choose « so that pg(X) = 1, so that we may apply
Theorem 6.31.

Theorem 3.4. Consider the Bayesian inverse problem for u(z) = In(k(x))
subject to observation in the form (3.6), with p solving (3.5), and prior
measure pog = N (mg,Cy) with mg € H* and Cyp = A~ If > 0 and o >
1/2 then p¥(du) = P(du|y) is absolutely continuous with respect to uo(du)
with Radon-Nikodym derivative given by (3.12), with G defined in (3.9).
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Proof.  We apply Theorem 6.31. The function G is continuous from X into
RY. Hence it suffices to show that po(X) = 1. Since H* is the Cameron—
Martin space for Cp and since mg € H®, we deduce that pg = N (mg,Co)
and NV(0,Cp) are equivalent as measures, by Theorem 6.13. Thus po(X) =1
since, by Lemma 6.25, draws from N(0,Cy) are a.s. s-Holder for all s €
(0, min{1, v — 1/2}). O

3.4. Wave speed for the wave equation

Consider the equation

ov ov
T + c(x)% =0, (z,t)€Rx(0,00) (3.13a)
v=Ff, (z,t)€Rx{0} (3.13b)

We assume that the wave speed ¢(x) is known to be a positive, one-periodic
function, and that we are interested in the inverse problem of determining
c given the observations

yi =v(L,t))+n;, j=1,...,q (3.14)

We assume that the observational noise {n]} _; is mean zero Gaussian.
Since ¢ is positive, we write ¢ = exp(u) and view the inverse problem as
being the determination of u. We thus concatenate the data and write

y=G(u)+mn,

where n ~ N(0,T) and G : X — RY where X = C'(S); here S denotes the
unit circle [0, 1) with end points identified to enforce periodicity. We equip
X with the norm

Jullx = sup u(z)| + sup | $(2)|
€S €S

Note that we may also view u as a function in Xper := Cho,(R), the space of

1-periodic C! functions on R. Before defining the inverse problem precisely,
we study the properties of the forward operator G.

Lemma 3.5. Assume that f € C'(R;R) and f is polynomially bounded:
there are constants K > 0 and p € Z* such that

|f(a)| < K(1+ |zP).
Then G : X — RY satisfies the following conditions.
e There is a constant C' > 0:
G(u)] < C(1 + exp(pllullx))-
e For all u,w € X : ||lu|]|x, [Jw|]|x < r there exists L = L(r):
1G(u) — G(w)| < Lllu — wl|eo.
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Proof. It suffices to consider the case ¢ = 1 and take t; = 1 for simplicity.
Let U(-;t,u) : R — R denote the one-parameter group given by the solution
operator for the equation
dx
dt
where we view u as an element of X in order to define the solution of this
equation. Then v solving (3.13) with ¢ = exp(u) is given by the formula

v(z,t) = f(‘lf(x, t, u))

= —exp(u(x)), (3.15)

Thus
G(u) =v(1,1) = f(¥(1;1,u)) (3.16)
and
1G(w)| = [v(1,1)] < K(1+[¥(1;1,u)P).

But the solution of (3.15) subject to the condition x(0) = 1 satisfies

1
lz(1)] <1 —i—/o exp(u(z(s))) ds
< 1+ exp([ullx).

Hence
U(1;1,u) <1+ exp(|lullx), (3.17)

and the first result follows.
For the second result let z(t) = ¥(1;¢,u) and y(t) = ¥(1;¢,w) so that,
by (3.15),

z(t)y=1-— /0 exp(u(z(s))) ds,

y(t)=1-— /0 exp(u(y(s))) ds —l—/o exp(u(y(s))) ds —/0 exp(w(y(s)))ds.

Thus, using (3.17),

1
2(t) = y(O) < Clullxs Jwllx) ( /0 2(s) — y(s)|ds + lu — w|oo).
Application of the Gronwall inequality gives

sup |z(t) — y(t)] < C(llullx, [[w][x)]v — wle-
t€(0,1]

Thus
(U(L1,u) — ¥(L, 1L, w)| < C(fJullx, [[wllx)]lu — v
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Hence, using (3.16), the fact that f is C! and the bound (3.17), we deduce
that

1G(w) = G(w)| = [f(T(1;1,u) — F(¥(1;1,w))]
< L(r)[lu = wlloo
< L(r)||u — wlx. ]

We wish to find p¥(du) = P(du|y). Informal use of Bayes’ rule gives us

dpy 1
12w scexp( Iy~ G ). (.19

We now justify this formula by choice of prior and by application of Theo-
rem 6.31.

We place a prior measure pg on the space X by assuming that u ~ pg is
Gaussian and that

du
/ _du
u'(z) .

where A = —d?/dx? is a densely defined operator on H = L?(S) with

D(A) = {u e H(S) /Olu(g;) dz — 0}.

If >0 and a > 1/2 then v is almost surely a continuous function, by
Lemma 6.25. Defining

(x) ~ N(0, BA™?),

u(z) = ug + /Dw u'(s)ds,

where ug ~ N(0,02), determines the distribution of u completely. Further-
more, for 5> 0 and o > 1/2 we have that u drawn from this measure is in
X with probability 1: po(X) = 1. Hence we deduce the following result.

Theorem 3.6. Consider the Bayesian inverse problem for u(x) = In(c(x))
subject to observation in the form (3.14), with v solving (3.13), and prior
measure Lo as constructed immediately preceding this theorem. If 3 > 0
and a > 1/2 then p¥(du) = P(duly) is absolutely continuous with respect
to po(du), with Radon-Nikodym derivative given by (3.18).

Proof. To apply Theorem 6.31 it suffices to show that po(X) = 1, since
the function G is continuous from X into R?. The fact that po(X) =1 is
established immediately prior to this theorem. UJ

3.5. Initial condition for the heat equation

We now study an inverse problem where the data y is a function, and
is hence infinite-dimensional, in contrast to preceding examples where the
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data has been finite-dimensional. We assume that our observation is the
solution of the heat equation at some fixed positive time 7' > 0, with an
added Gaussian random field as observational noise, and that we wish to
determine the initial condition.

To be concrete we consider the heat equation on a bounded open set
D c RY with Dirichlet boundary conditions, and written as an ODE in
Hilbert space H = L?(D):

dv +Av =0, v(0)=u. (3.19)
dt

Here A = —A with D(A) = H} (D) H?(D). We assume sufficient regular-
ity conditions on D and its boundary 9D to ensure that the operator A is
positive and self-adjoint on H, and is the generator of an analytic semigroup.
We define the (Sobolev-like) spaces H*® as in (2.29).

Assume that we observe the solution v at time 7', subject to error which
has the form of a Gaussian random field, and that we wish to recover the
initial condition u. This problem is classically ill-posed, because the heat
equation is smoothing, and inversion of this operator is not continuous on
‘H. Nonetheless, we will construct a well-defined Bayesian inverse problem.

We place a prior measure on u, which is a Gaussian pg ~ N (mg,Cp) with
Co = A, for some [ > 0 and o > d/2; consequently u € H po-a.s. by
Lemma 6.27. Our aim is to determine conditions on «, and on mg, which
ensure that the Bayesian inverse problem is well-defined. In particular, we
would like conditions under which the posterior measure is equivalent (as a
measure, see Section 6) to the prior measure.

We model the observation y as

Yy = e ATy + n, (3.20)

where n ~ N(0,C;) is independent of u. The observation operator G : H —
H is given by G(u) = e"4Tw and, in fact, G : H — H’ for any £ > 0. If we
assume that C; = A~ for some v > d/2 and § > 0, we then have that,
almost surely, n € H by Lemma 6.27.

Consider the Gaussian random variable (u,y) € H x H. We have

AT

E(u,y) := (u,g) = (mo,e” " myg).

Straightforward calculation shows that
E(u —u) ® (u —a) = Co,
E(u—1) @ (y—y) =Coe ",
Ey-9)®@y—7) =eTCe " +Ci.

By Theorem 6.20 we find that the posterior measure p¥ for u given y is also
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Gaussian, with mean
-1
m = mg + ge_ATAV_O‘ (I + ?e_QATAV_a> (y—e 4 Tmg)  (3.21)

and covariance operator
C=Co(I+e2Tcyc )™ (3.22)

3 -1
=A™ <I +5 eQATAM> . (3.23)

We now show that the posterior (Gaussian) measure on H is indeed equiv-
alent to the prior. We will assume « > d/2 since this ensures that samples
from the prior are continuous functions, by Lemma 6.25.

Theorem 3.7. Consider an initial condition for the heat equation (3.19)
with prior Gaussian measure pg ~ N (mg, BA~%), mg € H*, 3 > 0 and a >
d/2. If an observation is given in the form (3.20) then the posterior measure
pY is also Gaussian, with mean and variance determined by (3.21) and
(3.23). Furthermore, p¥ and the prior measure pg are equivalent Gaussian
measures.

Proof. Let {¢n, M\ }rex, K = Z¥\{0}, denote the eigenvalues of A and
define £ := 2 supjex e~ 2 \) " which is finite since T > 0 and A generates
an analytic semigroup. Furthermore, the operator

-1
K = (I + ?eZATA'VO‘)

is diagonalized in the same basis as A, and is a bounded and invertible linear
operator with all eigenvalues lying in [(1 + x)~!, 1]. Now, from (3.22), for
any h € H,

1

< = < .
1 (b Coh) < (. Ch) = (. CoKh) < (h. Coh)

Thus, by Lemma 6.15, we deduce that condition (i) of Theorem 6.13 is
satisfied, with £ = H® = Im(Cé/z).
From (3.21) we deduce that

B
5

Since A generates an analytic semigroup and since K is bounded, we deduce
that m —mgo € H" for any r € R. Hence condition (ii) of Theorem 6.13 is

m—mo==e ATA K (y —e T my).
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satisfied. To check the remaining condition (iii), define

T =c; ey ? — 1

—1
— _g ([ + ’ge_zATA’Y—a) A’y—ae—2AT_

The operator T is clearly Hilbert—Schmidt because its eigenvalues py, satisfy

B yea
|,uk‘ < g}\z ae 22T

and hence decay exponentially fast. This establishes (iii) of Theorem 6.13
and the proof is complete. L]

The preceding theorem uses the Gaussian structure of the posterior mea-
sure explicitly. To link the presentation to the other examples in this section,
it is natural to ask whether a similar result can be obtained less directly.

We define @ : ' H x H — R by

1, _ _
(I)(u; y) = 5”6 ATUHa - <e ATu’ y>01’

and use this function to derive Bayes’ formula for the measure p¥(du) =
P(duly). We will show that p¥(du) is absolutely continuous with respect to
the prior po(du) with density

dp¥y
dpo
Remark 3.8. It would be tempting to define a potential

1
W) = 5y — G,

(u) o< exp(—P(u;y)). (3.24)

1 —A
=5lly—e Tul,

in analogy with the examples in the two previous sections: this W is a
least-squares functional measuring model/data mismatch. However, this
quantity is almost surely infinite, with respect to the random variable y,
since draws from a Gaussian measure in infinite dimensions do not lie in
the corresponding Cameron-Martin space Im(C% 2): see Lemma 6.10. This
undesirable property of ¥ stems directly from the fact that the data y is a
function rather than a finite-dimensional vector. To avoid the problem we
work with ®(u;y) which, informally, may be viewed as being given by the
identity

1
P(usy) = V(usy) — §Hy||%1-

Thus we ‘subtract off’ the infinite part of ¥. Since Bayes’ formula in the form
(3.24) only gives the density up to a y-dependent constant, we see intuitively
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why this subtraction of a term involving y is reasonable. The issues outlined
in this remark arise quite generally when the data y is infinite-dimensional
and the observational noise 7 is Gaussian. <

The form of ® arising in this problem, and the fact that the data is infinite-
dimensional, precludes us from using Theorem 6.31 to establish that (3.24)
is correct; however, the method of proof is very similar to that used to prove
Theorem 6.31.

Before proving that (3.24) is correct, we state and prove some properties
of the potential ®.

Lemma 3.9. The function & : H x H — R satisfies Assumptions 2.6 with
X =Y ="H and L(r) linearly bounded.

Proof. We may write
D(u;y) fHC_I/Q —AT H — <Cl_1/2e_%ATu,Cfl/Qe_%ATy>.

Since C1_1 = JAY we deduce that Ky := Cl_l/Qe*)‘AT is a compact operator
on H for any A > 0. By the Cauchy—Schwarz inequality we have, for any
a >0,

2
Bluiy) > o e T - e ety

By the compactness of Ky /5 and by choosing a arbitrarily small, we deduce
that Assumption 2.6(i) holds. Assumption 2.6(ii) holds by a similar Cauchy—
Schwarz argument. Since ® is quadratic in u, and using the compactness of
K1/2 and Ky, we see that

@ (u13y) — P(uzs y)| < C([Krun || + [[Krual + [[K1 /oyl 1K1 j2(ur — ua)|
< C(luall + fluzll + ) le™ 34T (ur — ua)||  (3.25)
< O]l + [luzll + lyl) llur = wal, (3.26)
and similarly
@ (u; 1) — @(u; y2)| < Cllullllyr — v2ll,

so that Assumptions 2.6(iii) and (iv) hold. O
Theorem 3.10. Consider the inverse problem for the initial condition u
n (3.19), subject to observation in the form (3.20) and with prior Gaussian
measure g = N(mg, BA™). If mg € H*, 8 > 0 and o > d/2, then the

posterior measure p¥(du) = P(duly) and the prior pg(du) are equivalent
with Radon—Nikodym derivative given by (3.24).
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Proof. Recall that C; = §A™" and that Cy = SA™“. Define the measures

Qo(dy) = N(0,Cy),
Q(dylu) = N (e, C1),
po(du) = N (myg,Co),
and then define

vo(dy, du) = Qo(dy) ® po(du),
v(dy, du) = Q(dylu)pio(du).
By Theorem 6.14 we deduce that

d 1

o) = exp (=gl Tl + (e e, ).

The measure v is well-defined because the function ®(;y) : H — R is
continuous and hence pp-measurable if po(H) = 1. This last fact follows
from Lemma 6.27, which shows that draws from pg are almost surely in H.

Hence

dv 1, _ _
) = exp( =gl Tull, + (e Tuge, )

By applying Theorem 6.29, noting that under vy the random variables y
and u are independent with v ~ g, we deduce that

du? 1, _ _
12 1 s exp( =l A Tull, + (e Tunle, )

with constant of proportionality independent of wu. L]

3.6. Fluid mechanics

The preceding four subsections provide a range of examples where some-
what explicit calculations, using the solution of various forward linear PDE
problems, establish that the associated inverse problems may be placed in
the general framework that we outlined in Section 2.4 and will study further
in Section 4. However, it is by no means necessary to have explicit solutions
of the forward problem to use the framework developed in this article, and
the examples of this subsection, and the two subsections which follow it,
illustrate this.

Fluid mechanics provides an interesting range of applications where the
technology of inverse problems is relevant. We outline examples of such
problems and sketch their formulation as Bayesian inverse problems for
functions. We also show that these problems may be formulated to satisfy
Assumptions 2.7. Unlike the previous three sections, however, we do not
provide full details; we refer to other works for these, in the bibliography
subsection.
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In weather forecasting a variety of instruments are used to measure the ve-
locity of the air in the atmosphere. Examples include weather balloons, data
from commercial and military aircraft, as well as special-purpose aircraft,
and satellites. An important inverse problem is to determine the global
velocity field, and possibly other fields, from the Fulerian data comprising
the various noisy measurements described above.

As a concrete, and simplified, model of this situation we consider the lin-
earized shallow water equations on a two-dimensional torus. The equations
are a coupled pair of PDEs for the two-dimensional velocity field v and a
scalar height field h, with the form

v

5p = Sv—=Vh, (z,t) € T? x [0, 00), (3.27a)
i -V v, (z,t) € T x [0, 00). (3.27b)

The two-dimensional unit torus T? is shorthand for the unit square with
periodic boundary conditions imposed. The skew matrix S is given by

o= (4 o)

and the term involving it arises from the Coriolis effect.
The objective is to find the initial velocity and height fields (v(0), h(0)) =

(u,p) € H, where
H = {u c L2(’H‘2;R3)‘/ udx}.
T2

We assume that we are given noisy observations of the velocity field at
positions {xj}}l‘:l and times {t;}X_,, all positive. Concatenating data, we
write

y = G(u,p) + . (3.28)

Here G maps a dense subset of H into R?'X and is the observation operator.
Because the PDE (3.27) is linear, so too is G. We assume that n ~ N(0,T")
is independent of v and we consider the Bayesian inverse problem of finding
the posterior measure p¥(du) = P(du|y) from the prior po. We let A = —A

on T? with domain
D(A) = {HQ(']IQ)‘ / wdz = o}
’]I‘Q

and define the prior through fractional powers of A.

Theorem 3.11. Consider an initial condition for the shallow water equa-
tions (3.27) with prior Gaussian measure po = N (mg, BA™) with mg € H®,
B> 0 and « > 2. If a noisy observation is made in the form (3.28), then the
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posterior measure p? is also Gaussian, and is absolutely continuous with
respect to the prior measure g, with Radon—Nikodym derivative

duY 1
p ly — g<u,p>|%), (3.29)

dTm(U,p) x eXP<—2
where G is given by (3.28). Furthermore, the observation operator G satisfies
Assumptions 2.7 with X = H® and K globally bounded, for any s > 1. <

In oceanography a commonly used method of gathering data about ocean
currents, temperature, salinity and so forth is through the use of Lagrangian
instruments which are transported by the fluid velocity field and transmit
positional information using GPS. An important inverse problem is to de-
termine the velocity field in the ocean from the Lagrangian data comprising
the GPS information about the position of the instruments. As an idealized
model consider the incompressible Stokes (¢ = 0) or Navier—Stokes (v = 1)
equations written in the form:

% +w. Vv =vAv—Vp+f, (z,t) € T?x[0,00), (3.30a)
V-0 =0, (z,t) € T? x [0, 00), (3.30b)
v =u, (z,t) € T? x {0}. (3.30¢)

As in the preceding example we impose periodic boundary conditions, here
on the velocity field v and the pressure p. We assume that f has zero
average over D, noting that this implies the same for v(z,t), provided that
u(z) = v(x,0) has zero initial average. We define the Stokes operator A
and Leray projector P in the standard fashion, together with the Sobolev
spaces H® = D(A®/?) as in (2.29). The equations (3.30) can be written as
an ODE in the Hilbert space H:

d
£ + tB(v,v) + vAu = 1, (3.31)

where ¢p = Pf and B(v,v) represents the projection, under P, of the non-
linear convective term.

We assume that we are given noisy observations of Lagrangian tracers
with position z solving the integral equation

zj(t) = zjo0 +/0 v(z;(s),s)ds. (3.32)

These equations have a unique solution if u € H and ¥ € L?((0,T); H).

For simplicity assume that we observe all the tracers z at the same set of
times {t;}h_,, and that the initial particle tracer positions z;o are known
to us:

yik =2i(te) + ik, J=1,...,7 and k=1,... K, (3.33)
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where the n;; are zero mean Gaussian random variables. The times {t;}
are assumed to be positive. Concatenating data, we may write

y=9G(u)+n, (3.34)

with y = (y71,...,¥jx)" and n ~ N(0,T) for some covariance matrix I
capturing the correlations present in the noise. The function G maps a
dense subspace of H into R?K. The objective is to find the initial velocity
field u, given y. We start by stating a result concerning the observation
operator.

Lemma 3.12. Assume that ¢ € C([0,7];HY) for some v > 0. Then G
given by (3.34) satisfies Assumptions 2.7 with X = H¢ for any £ >0. <

These properties of the observation operator G lead to the following result.

Theorem 3.13. Let puy = N (mg, BA™%) denote a prior Gaussian measure
on po. If my € H*, > 0 and a > 1 then the measure p¥(du) = P(duly) is
absolutely continuous with respect to pg, with Radon—Nikodym derivative
given by

dgp? 1 9
2 w) < oxp 5l - G ). (3.35)
with G defined by (3.34). &

Notice that the required lower bound on the exponent « in the preceding
theorem is lower than that appearing in Theorem 3.11. This is because the
(Navier—)Stokes equation is smoothing, and hence less regularity is required
on the initial condition in order to define the observation operator G than
for the linearized shallow water equations.

3.7. Subsurface geophysics

Determining the permeability of subsurface rock is enormously important in
a range of different applications. Among these applications are the predic-
tion of transport of radioactive waste from underground waste repositories,
and the optimization of oil recovery from underground fields. We give an
overview of some inverse problems arising in this area. As in the previous
subsection we do not give full details, leaving these to the cited literature
in the bibliography subsection.

The permeability tensor K is a central component of Darcy’s law, which
relates the velocity field v to the gradient of the pressure p in porous media
flow:

v=—KVp. (3.36)

In general K is a tensor field. However, the problem is often simplified by
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assuming that K = kI, where k is a scalar field and I the identity tensor;
we make this simplification.

In many subsurface flow problems it is reasonable to model the velocity
field as incompressible. Combining this constraint with Darcy’s law (3.36)
shows that the pressure p is governed by the PDE

V- (=kVp)=0, zeD, (3.37a)
p=h, z€dD. (3.37b)

This model is a widely used simplified model in groundwater flow mod-
elling. The inverse problem is to find the permeability k from observations
of the pressure at points in the interior of D; this information can be found
by measuring the height of the water table. For simplicity we work in two
or three dimensions d and assume that D C R? is bounded and open. As in
Section 3.3 it is physically and mathematically important that k& be positive,
in order that the elliptic equation for the pressure is well-posed. Hence we
write k = exp(u) and consider the problem of determining u.

We assume that we observe

yi =plz;)+mn5, j=1,...,7, (3.38)
and note that this may be written as
y=G(u)+n (3.39)

for some implicitly defined function G. We assume that n ~ AN(0,T) is
independent of w. Before formulating the Bayesian inverse problem, we
state the following result concerning the forward problem.

Lemma 3.14. Assume that the boundary of D, 9D, is C'-regular and
that the boundary data h may be extended to a function h € Wlir (D)
with 7 > d/2. The function G satisfies Assumptions 2.7 with X = C'(D). <

We define the prior Gaussian measure through fractional powers of the
Laplacian A = —A with

D
Here n denotes the unit outward normal on the boundary of D.

Theorem 3.15. Let the assumptions of Lemma 3.14 hold and let pg =
N(0,BA™%) denote a prior Gaussian measure on pg. If 3 > 0 and a >
d — 1/2, then the measure p¥(du) = P(du|y) is absolutely continuous with
respect to pg, with Radon—Nikodym derivative

dp¥ 1
P2 @) ocexp( gl - G2 (3.40)

and G given by (3.39). O
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Once the posterior measure on w is known it can be used to quantify
uncertainty in predictions made concerning the Lagrangian transport of ra-
dioactive particles under the velocity field v given by (3.36). In particular,
the push forward of the measure u¥ onto v, and hence onto particle trajec-
tories z obeying

dz
a - U(Z)v

will define a measure on the possible spread of radioactive contaminants,
enabling risk assessment to be undertaken.

The oil industry routinely confronts an inverse problem similar to but
more complex than that arising in the nuclear waste industry. Again, un-
certainty quantification is important as it enables more effective decision
making concerned with the substantial investment of resources required to
extract oil from increasingly complex environments. The primary difference
between the simple model we have described for nuclear waste management
and that which we are about to describe for oil extraction arises because
the subsurface fluid flow for oil extraction is multiphase (gas, water, oil)
and significant on much shorter time scales than in the nuclear waste man-
agement scenario. We study a simplified two-phase problem, for oil and
water alone. The physical model contains two unknown scalar fields, the
water saturation S (volume fraction of water in an oil-water mixture) and
pressure p, and is posed in a bounded open set D C R?. Darcy’s law now
takes the form

v=—\(S)kVp. (3.41)
Mass conservation and transport, respectively, give the equations

=V - (A(S)kVp) = hq, (z,t) € D x [0,00),
§+U-Vf(5):77AS, (x,t) € D x [0, 00), (

5 3.42)
p = ha, (x,t) € 9D x [0, 00). (3.

4
43)
The flux function f is known (typically the Buckley—Leverett form is used)
and the source/boundary terms hq, ho are also both assumed known. The
scalar 7 is the (also assumed known) diffusivity of the multiphase flow, typ-
ically very small. Initial conditions for .S are specified on D at time ¢t = 0.
There are additional boundary conditions on S which we now describe. We
partition 9D = 9D°" | JOD™. We think of pumping water in on the bound-
ary OD™, so that S = 1 there, and specify a Robin boundary condition on
0D determining the flux of fluid in terms of S the water saturation.
We assume that we have access to noisy measurements of the fractional
flow F(t), which quantifies the fraction of oil produced on a subset D™
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of the outflow boundary dD°". This measurement is via the function

o faDmeas f(S)U’IL dl
faDmeas 'Un dl

where v,, is the component of the velocity v which is normal to the bound-

ary and dl denotes integration along the boundary. Assume that we make

measurements of F at times {tz}}*_ , polluted by Gaussian noise. Then the
data are as follows:

F(t)=1

)

yk:F(tk)+77k7 k=1,...,K,

where the 7, are zero mean Gaussian random variables. Concatenating
data, we may write

y=G(u)+n

where, as before, k(z) = exp(u(z)). We assume that n ~ N(0,T) for some
covariance matrix I' encapsulating measurement errors. The prior pg is a
Gaussian measure on u, specified as in the previous section. We once again
anticipate that

du 1 9

— () xexp| —<|y — G(u . 3.44

L 0) x xp (gl - G0 (3.44)
This is similar to the nuclear waste problem, but the observation operator
G is now more complicated. However, similar analyses of the properties of
the forward problem, and the resulting Bayesian inverse problem, can be
undertaken.

3.8. Molecular dynamics

Consider a molecule described by the positions 2 of N atoms moving in R,
with d = 1,2 or 3. If we assume that the particles interact according to a
potential V : R — R and are subject to thermal activation, then, in the
over-damped limit where the inertial relaxation time is fast, we obtain the
Brownian dynamics model for the position of x:

do 2 AW
=YV + \/;dt. (3.45)

Here W is a standard RV%-valued Brownian motion and /3 the inverse tem-
perature. One of the key challenges in molecular dynamics is to understand
how molecules rearrange themselves to change from one configuration to
another: in some applications this may represent a chemical reaction, and
in others a conformational change such as seen in biomolecules. When the
temperature is small (3 > 1), the solutions of (3.45) spend most of their
time near the minima of the potential V. Transitions between different
minima of the potential are rare events. Simply solving the SDE start-
ing from one of the minima will be a computationally infeasible way of
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generating sample paths which jump between minima, since the time to
make a transition is exponentially small in (. Instead we may condition
on this rare event occurring. This may be viewed as an inverse problem
to determine the control W which drives the system from one configura-
tion to another. However, we will work directly with the functions x which
result from this control, as these constitute the more physically interest-
ing quantity. Because the Brownian motion W is a random function, this
leads naturally to the question of determining the probability measure on
functions z undergoing the desired transition between configurations. The
desired transition can be defined by conditioning the dynamics given by
(3.45) to satisfy the boundary conditions

z(0) =2, zT)=uz". (3.46)

We view z as an element of L2((0,T); RN9) and denote the Nd-dimen-
sional Brownian bridge measure arising from (3.45) and (3.46) in the case
V =0 by pg. We also define p to be the desired bridge diffusion measure
arising from the given V. We may view both pg and p as measures on
L2((0,T); RN9); the measure pg is Gaussian but, unless V is quadratic,
the measure p is not. We now proceed to determine the Radon—-Nikodym
derivative of © with respect to the Gaussian bridge diffusion pg.

Theorem 3.16. Assume V € C?(RV% R) and that the stochastic initial
value problem, found from (3.45) and (3.46) without the condition z(7T) =
x", has solutions which do not explode almost surely on ¢ € [0,7]. Then
the measure ;1 defined by the bridge diffusion problem (3.45) and (3.46) is
absolutely continuous with respect to the Brownian bridge measure pg found
from (3.45) and (3.46) in the case V' = 0. Furthermore, the Radon-Nikodym
derivative is given by

dp

di(iﬂ) o exp(—®(x)), (3.47)
Ho
where the potential ® is defined by
o(z) = D / " ) dt (3.482)
2 Jo ’ )
Glz) = %HVV(J:)HZ - ;AV(m). (3.48D)

<

In addition, we find that a large class of problems leads to the common
structure of Section 2.4. There is no explicit data y € Y in this problem,
but we can let y € RP denote the parameters appearing in the potential V',
and hence in G. (Note that [ is not such a parameter, as it appears in G
but not in V; more fundamentally it appears in pg and so is not simply a
parameter in the potential ®). We thus write V(x;y) and G(z;y).
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Lemma 3.17. Consider the function ® defined by (3.48a) and (3.48b)
with V : RN4 x RP — R. Assume that for any ¢, > 0 there exists M =
M (e,r) € R such that, for all ||y| < r,

G(z;y) > —2|z)? + M;

assume also that G € C1(RV? x RP, R) with derivative D,G (z;y) which is
polynomially bounded in z. Then & satisfies Assumptions 2.6 with X =
H'((0,T)). &

3.9. Discussion and bibliography

We started this section by studying the problem of determining a field from
observation. This is intimately related to the study of interpolation of data
by splines, a subject comprehensively developed and reviewed in Wahba
(1990). The link between spline interpolation and inverse problems using
Gaussian fields is surveyed in Gu (2002).

The inverse problem for the diffusion coefficient in Section 3.3 is a one-
dimensional analogue of the inverse problems arising in the geophysics com-
munity, which we outline in Section 3.7; these problems, which arise in the
study of groundwater flow and are hence of interest to the burial of (radioac-
tive nuclear and other) waste, are discussed in Zimmerman et al. (1998).
A related inverse problem for the diffusion coefficient of an elliptic PDE is
that arising in electrical impedence tomography; this widely studied inverse
problem requires recovery of the diffusion coefficient from measurements of
the boundary flux. It is of central importance in the medical sciences, and
also has a rich mathematical structure; see Borcea (2002) and Uhlmann
(2009) for reviews.

Inverse problems for the heat equation, the subject of Section 3.5, are
widely studied. See, for example, the cited literature in Beck, Blackwell and
Clair (2005) and Engl et al. (1996). An early formulation of this problem
in a Bayesian framework appears in Franklin (1970).

We study applications to fluid dynamics in Section 3.6: the subject known
as data assimilation. Kalnay (2003) and Bennett (2002) survey inverse
problems in fluid mechanics from the perspective of weather prediction and
oceanography respectively; see also Apte, Jones, Stuart and Voss (2008b),
Lorenc (1986), Ide, Kuznetsov and Jones (2002), Kuznetsov, Ide and Jones
(2003), Nichols (2003a) and Nodet (2006) for representative examples, some
closely related to the specific model problems that we study in this article.
Theorem 3.11, arising in our study of Eulerian observations and integration
into a wave equation model, is proved in Dashti, Pillai and Stuart (2010b).
Lemma 3.12 and Theorem 3.13, arising in the study of Lagrangian obser-
vations, are proved in Cotter et al. (2009) (Navier—Stokes case) and Cotter
et al. (2010a) (Stokes case). A major question facing the research commu-
nity in data assimilation for fluid mechanics applications is to determine
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whether future increase in available computer resources is used to increase
resolution of the computational models, or to improve estimates of uncer-
tainty. (The question is discussed, in the context of climate modelling, in
Palmer et al. (2009).) The framework developed in Section 3.6 allows for a
systematic treatment of uncertainty, as quantified by the variability in the
posterior measure; furthermore, the framework may be extended to make
inference not only about the initial condition but also about forcing to the
model, thereby enabling model error to be uncovered in a systematic fashion.
In this context we define model error to be an error term in the dynamical
model equations, as in Hagelberg, Bennett and Jones (1996). Note, however,
that in practical data assimilation, model errors are sometimes combined
with the observation errors (Cohn 1997). Further discussion of model error
for problems arising in the atmospheric sciences may be found in the pa-
pers of Nichols (2003b) and Fang et al. (2009b). In Cotter et al. (2009) we
discuss both Eulerian and Lagrangian data assimilation with and without
model error, with fluid flow model given by the Navier—Stokes equations
(3.30) with ¢ = 1.

The subject of minimal regularity required to define Lagrangian trajecto-
ries (3.32) in a Navier—Stokes velocity field is covered in Chemin and Lerner
(1995) and Dashti and Robinson (2009). This theory is easily extended to
cover the case of the Stokes equations.

The systematic treatment of Lagrangian data assimilation is developed in
the sequence of papers by Ide et al. (2002), Kuznetsov et al. (2003), Salman,
Kuznetsov, Jones and Ide (2006) and Salman, Ide and Jones (2008) with
recent application in Vernieres, Ide and Jones (2010). Although the subject
had been treated in an applied context, these were the first papers to develop
a clear dynamical systems framework in which the coupled (skew-product)
dynamical system for the fluid and the Lagrangian particles was introduced
as the fundamental object of study.

The papers by Pimentel, Haines and Nichols (2008a, 2008b), Bell, Mar-
tin and Nichols (2004), Huddleston, Bell, Martin and Nichols (2004) and
Martin, Bell and Nichols (2002) describe a variety of applications of ideas
from data assimilation to problems in oceanography. The paper by Wlasak,
Nichols and Roulstone (2006) discusses data assimilation in the atmospheric
sciences, using a potential vorticity formulation. In Bannister, Katz, Cullen,
Lawless and Nichols (2008), forecast errors are studied for data assimilation
problems in fluid flow. The paper by Alekseev and Navon (2001) uses a
wavelet-based approach to study the inverse problem of determining inflow
fluid properties from outflow measurements.

Some of the earliest work concerning the statistical formulation of inverse
problems was motivated by geophysical applications (Backus 1970a, 19700,
1970¢), such as those introduced in Section 3.7. The interpolation of a ran-
dom field, observed at a finite set of points, is outlined in Gu (2008) and
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is often referred to as ‘kriging’ (Cressie 1993). Overviews of issues aris-
ing in oil reservoir simulation may be found in Farmer (2005, 2007). The
mathematical statement of the oil reservoir simulation problem as outlined
here is formulated in Ma, Al-Harbi, Datta-Gupta and Efendiev (2008) and
further discussion of numerical methods is undertaken in Dostert, Efendiev,
Hou and Luo (2006). Lemma 3.14 and Theorem 3.15, concerning the el-
liptic inverse problem for subsurface flow, are proved in Dashti, Harris and
Stuart (2010a).

The formulation of problems from molecular dynamics in terms of prob-
ability measures on time-dependent functions has a long history. On the
mathematical side this is intimately related to the theory of rare events
(Freidlin and Wentzell 1984) and an overview of some of the sampling tech-
niques used for this problem may be found in Bolhuis, Chandler, Dellago
and Geissler (2002). The particular formulation of the problem that we
undertake here, in which the length of the transition T is specified a priori,
can be found in Dashti et al. (20100); see also Reznikoff and Vanden Eijnden
(2005), Hairer, Stuart, Voss and Wiberg (2005) and Hairer, Stuart and Voss
(2007). A generalization to second-order Newtonian dynamics models, in
place of the over-damped Brownian dynamics model (3.45) may be found
in Hairer, Stuart and Voss (2010a).

4. Common structure
4.1. Overview

It is natural to view the posterior measure p¥ given by (2.24) as the ideal
solution to the problem of combining a mathematical model with data y.
However, obtaining a formula such as this is only the beginning: we are
confronted with the formidable task of extracting information from this for-
mula. At a high level this entire section is devoted to the question of the
stability of measures p¥Y to perturbations of various kinds, under Assump-
tions 2.6 or 2.7. These stability results help to create firm foundations for
the algorithms designed to obtain information from the measure u¥; these
algorithms are summarized in the next section.

In this section, then, we study the well-posedness of problems with respect
to parameters, or data, entering the definition of the measure: we show
Lipschitz properties of the posterior measure with respect to changes in the
data. We also study the related issue of approximating the measure, in
particular the approximation by measures defined over a finite-dimensional
space. Section 4.2 concerns well-posedness in the setting where the data is
in the form of a function: it is infinite-dimensional. In practical applications
the data will always be finite, but when the data is very dense it is a useful
abstraction to consider the data as being a function, and so this situation
is conceptually important. However, when the data is sparse it is best
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viewed as finite, as a number of mathematical simplifications follow from
this. The well-posedness of the posterior measure in this finite data situation
is studied in Section 4.3. In Section 4.4 we study the effect of approximating
the potential ® and the effect of this approximation on the measure p¥ given
by (2.24).

A key idea throughout this section is the use of metrics to study distances
between probability measures. This topic is discussed in Section 6.7 and,
in particular, the Hellinger metric which we use throughout this section is
introduced. The primary message concerning the Hellinger metric is this:
consider two measures which are absolutely continuous with respect to a
common Gaussian reference measure and which are distance € apart in the
Hellinger metric. Then the expectations of polynomially bounded functions
under these two measures are also O(e) apart. In particular, the mean and
covariance operator are O(e) apart.

4.2. Well-posedness

The probability measure of interest is typically defined through a density
with respect to a Gaussian reference measure py = N(0,C) on a Hilbert
space ‘H which, by shift of origin, we have taken to have mean zero. We
assume that, for some separable Banach space X, we have po(X) = 1. We
let {¢r, Vi}po, denote the eigenfunctions and eigenvalues of C.

As in our previous developments, p¥ denotes the measure of interest,
with y denoting parameters, or data, entering its definition. As in (2.24) we
assume that

dp¥ 1
d%o(u) "~ Z(y)

Recall that ®(u;y) is the potential and that the normalization constant Z(y)
is chosen so that ¥ is a probability measure:

25) = [ exp(~0(uig) dn(w). (4.2)

Both for this integral, and for others below, we observe that if pg(X) =1
we may write

exp(—®(u;)). (4.1)

2(y) = /X exp(—®(u;y)) duo(u),

and hence use properties of ®(-;y) which hold on X.

In the preceding section we showed that a number of inverse problems give
rise to a probability measure p¥ of the form (4.1), where ® : X x Y — R
satisfies Assumptions 2.6. The data (or parameters) y is (are) assumed
to lie in a Banach space (Y, | - [ly). We allow for the case where Y is
infinite-dimensional and the data is in the form of a function. The four
Assumptions 2.6(i)—(iv) play different roles, indicated by the following two
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theorems. The third assumption is important for showing that the poste-
rior probability measure is well-defined, whilst the fourth is important for
showing continuity with respect to data. The first and second assumptions
lead to bounds on the normalization constant Z from above and below,
respectively.

Theorem 4.1. Let ® satisfy Assumptions 2.6(i), (ii) and (iii) and assume
that po is a Gaussian measure satisfying 1o(X) = 1. Then u¥ given by (4.1)
is a well-defined probability measure on H.

Proof. Assumption 2.6(ii) may be used to show that Z is bounded below,
as shown in the proof of Theorem 4.2 below. Under Assumption 2.6(iii) it
follows that ® is pg-measurable, and hence the measure p¥ is well-defined by
(4.1). By Assumption 2.6(i) we have that, for ||y||y < r and all € sufficiently
small,

2(y) = /X exp(—(u; ) dpio(u)

< /X exp(ellul% — Mz, ) dpo(u)

< Cexp(—M(a,r)) < 0,

since pg is a Gaussian probability measure and we may choose ¢ sufficiently
small so that the Fernique Theorem (Theorem 6.9) applies. Thus the mea-
sure is normalizable and the proof is complete. L]

This proof directly shows that the posterior measure is a well-defined
probability measure, without recourse to a conditioning argument. The
conditioning argument used in Theorem 6.31 provides the additional fact
that ¥ (du) = P(duly).

Now we study continuity properties of the measure p¥ with respect to y €
Y, under Assumptions 2.6(i), (ii) and (iv). This establishes the robustness
of many of the problems introduced in the preceding section to changes
in data.

Theorem 4.2. Let ® satisfy Assumptions 2.6(i), (ii) and (iv). Assume
also that po is a Gaussian measure satisfying po(X) = 1 and that the
measure Y < pog with Radon—Nikodym derivative given by (4.1), for each
y € Y. Then p¥ is Lipschitz in the data y, with respect to the Hellinger
distance: if p¥ and uy, are two measures corresponding to data y and 1’ then
there exists C' = C(r) > 0 such that, for all y, v/ with max{||y||y, |||y} <,

dHell(ﬂyvﬂy/) <Clly =9y

Consequently the expectation of any polynomially bounded function f :
X — FE is continuous in y. In particular the mean and, in the case where
X is a Hilbert space, the covariance operator, are continuous in y.
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Proof. Throughout the proof, all integrals are over X, unless specified
otherwise. The constant C' may depend on € and r and changes from occur-

rence to occurrence. Let Z = Z(y) and Z' = Z(y') denote the normalization
constants for p¥ and p¥ so that

Z = /eXp(_(I)(w y)) dpo(u),
7' = /eXp(_‘I’(U; y')) dpo(u).
Using Assumption 2.6(ii) gives, for any r > 0,
o /{||U||X<r} exp(—K () dpo(u) = exp(—K (r))po{[lullx < r}-

This lower bound is positive because pg has full measure on X and is Gaus-
sian, so that all balls in X have positive probability. We have an analogous
lower bound for |Z’|.

Using Assumptions 2.6(i) and (iv) and using the Fernique Theorem, for y,

17— 27 < ( [ exp(elulie = M) exp(elull +©) dﬂo(u)> ly—o/lly
<Clly—9|lv.

From the definition of Hellinger distance, we have

2dHell(,uyy,uy,)2 = /<Z1/2 exp(—é@(u;y))

2
— (Z’)_l/2 exp(—é@(u;y’))) dpg(u)
<h+D

/<eXp< ; y)> —exp(—;@(U;y’)>)2duo(U),
Iy =2|7712 — (z/)~1/?? /exp y')) dpo(u).

Now, again using Assumptions 2.6(i) and (iv) and the Fernique Theorem,

where

1
<Clly—y'|3.

A similar use of the Fernique Theorem and Assumption 2.6(i) shows that

A 1
31 < [ explelull - M) exp(2efull +20) Iy — o dpo(u)
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the integral in I5 is finite. Also, using the bounds on Z, Z’ from below,
lz—l/Q _ (Z/)—1/2’2 < 0(2—3 V, (Z/)_3)|Z _ Z/|2
<Cly—v'IIy-

Combining gives the desired continuity result in the Hellinger metric.
Finally all moments of v in X are finite under p¥ and ,uy/ because the
change of measure from Gaussian pg involves a term which may be bounded
by use of Assumption 2.6(i). The Fernique Theorem may then be ap-
plied. The desired result concerning the continuity of moments follows from
Lemma 6.37. U

Example 4.3. An example in which the data is a function is given in
Section 3.5, where we study the inverse problem of determining the initial
condition for the heat equation, given noisy observation of the solution at
a positive time; in Lemma 3.9 we establish that Assumptions 2.6 hold in
this case. &

4.8. Well-posedness: finite data

For Bayesian inverse problems in which a finite number of observations are
made, the potential ® has the form

D(usy) = oy~ G}, (13)

where y € RY is the data, G : X — R? is the observation operator and | - |r
is a covariance weighted norm on R?. In this case it is natural to express
conditions on the potential ® in terms of G. Recall that this is undertaken
in Assumptions 2.7. By Lemma 2.8 we know that Assumptions 2.7 imply
Assumptions 2.6 for ® given by (4.3). The following corollary of Theorem 4.2
is hence automatic.

Corollary 4.4. Assume that ® : X x R? — R is given by (4.3) and let G
satisfy Assumptions 2.7. Assume also that pg is a Gaussian measure satis-
fying 110(X) = 1. Then the measure p¥ given by (4.1) is a well-defined prob-
ability measure and is Lipschitz in the data y, with respect to the Hellinger
distance: if p¥ and ,uy' are two measures corresponding to data y and 3/,
then there is C'= C(r) > 0 such that, for all y, v’ with max{|y|p, |¢/Ir} <,

daen(p?, 1¥) < Cly — '|p.

Consequently the expectation of any polynomially bounded function f :
X — F is continuous in y. In particular the mean and, in the case where
X is a Hilbert space, the covariance operator are continuous in y. &

Example 4.5. The first example of a problem with the structure of As-
sumptions 2.7 may be found in the discussion of finite-dimensional inverse
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problems in Section 2.2, and formula (2.8) in the case where p is a Gaussian
density; if, for example, G is differentiable and polynomially bounded, then
Assumptions 2.7 hold: see Example 2.2 for an explicit illustration. All the
examples in Section 3, with the exception of the heat equation example,
for which the data is infinite, and the oil reservoir problem, for which the
appropriate analysis and choice of X has not yet been carried out, fit the
framework of Corollary 4.4. <

4.4. Approzimation of measures in the Hellinger metric

To implement algorithms designed to sample the posterior measure pu¥ given
by (4.1), we need to make finite-dimensional approximations. We study this
issue here. Since the dependence on y is not relevant in this section, we study
measures [ given by

du 1

—(u) = s exp(—P(u 4.4

)= exp(-0(w), (44)

Z
where the normalization constant Z is given by
Z :/ exp(—®(w)) duo(u). (4.5)
X

We approximate p by approximating ®. In particular, we define u by

N
(jﬁm)(u) = ZLN eXp(—@N(u)), (4.6)
where
zN :/ exp(—@N(u)) dpo(uw). (4.7)
X

Our interest is in translating approximation results for ® (determined by
the forward problem) into approximation results for x (which describes the
inverse problem).

The following theorem proves such a result, bounding the Hellinger dis-
tance, and hence the total variation distance, between measures p and p?
in terms of the error in approximating ®.

Theorem 4.6. Assume that the measures p and p’V are both absolutely
continuous with respect to p, satisfying po(X) = 1, with Radon—Nikodym
derivatives given by (4.4) and (4.6) and that ® and &V satisfy Assump-
tions 2.6(i) and (ii) with constants uniform in N. Assume also that for any
€ > 0 there exists K = K(g) > 0 such that

() — ¥ (u)] < K exp(el|ull %) (N), (4.8)

where 1)(N) — 0 as N — oo. Then the measures p and p’¥ are close with
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respect to the Hellinger distance: there is a constant C, independent of N,
and such that

duen(p, 1) < Cp(N). (4.9)

Consequently the expectation under p and pV of any polynomially bounded
function f : X — F are O((N)) close. In particular, the mean and, in the
case where X is a Hilbert space, the covariance operator are O(y)(NN)) close.

Proof. Throughout the proof, all integrals are over X. The constant C'
changes from occurrence to occurrence. The normalization constants Z and
ZN satisfy lower bounds which are identical to that proved for Z in the
course of establishing Theorem 4.2.

From Assumption 2.6(i) and (4.8), using the fact that o is a Gaussian
probability measure so that the Fernique Theorem 6.9 applies,

1Z - ZN| < /M(N) exp (el|ullk — M) exp(ellull%) dpo(u)
< CY(N).

From the definition of Hellinger distance, we have

2dpen (1, p)* = /<Z‘1/26Xp<—;<1>(U)>

(M) exp<§<1>N<u>))2 dpio(u)
<I+1y,

where

_Q‘Z 1/2 _ 1/2‘2/exp dNO( )

Now, again using Assumption 2.6(i) and equation (4.8), together with the
Fernique Theorem,

g[l < /K2 exp(35||u||g( — M)¢(N)2d,u0(u)
< Cp(N).

A similar use of the Fernique Theorem and Assumption 2.6(i) shows that
the integral in Iy is finite. Thus, using the bounds on Z, ZV from below,

2712 — (ZN) 2P <oz v (2N) )|z - 2V
< CY(N)2.
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Combining gives the desired continuity result in the Hellinger metric.
Finally, all moments of u in X are finite under p and p”V because the

change of measure from Gaussian pg involves a term which may be controlled

by the Fernique Theorem. The desired results follow from Lemma 6.37. [

Example 4.7. Consider the inverse problem for the heat equation, from
Section 3.5, in the case where D = (0, 1). Approximate the Bayesian inverse
problem by use of a spectral approximation of the forward map e~ 47 :
H — H. Let PV denote the orthogonal projection in H onto the first N
eigenfunctions of A. Then, for any 7' > 0 and r > 0,

le= 4 — e~ PNl 3.3y = Olexp(—cN?)).
From (3.25) we have the Lipschitz property that
_1
| (u) — ()] < C([[ull + [loll + lyll) e 34 (u = v)].

If we define & (u) = ®(PNu), then the two preceding estimates combine
to give, for some C, ¢ > 0 and independent of (u,y),

[@(u) — @ (u)] < C([lull + [[y]]) ull exp(~eN?).

Thus (4.8) holds and Theorem 4.6 shows that the posterior measure is
perturbed by a quantity with order of magnitude O(exp(—cN?)) in the
Hellinger metric. <

Remark 4.8. Approximation may come from two sources: (i) from rep-
resenting the target function w in a finite-dimensional basis; and (ii) from
approximating the forward model, and hence the potential ¢, by a numer-
ical method such as a finite element or spectral method. In general these
two sources of approximation error are distinct and must be treated sepa-
rately. An important issue is to balance the two sources of error to optimize
workload. In the case where u is a subset of, or the entire, initial condition
for a dynamical system and G is defined through composition of some func-
tion with the solution operator, then (i) and (ii) will overlap if a spectral
approximation is employed for (ii), using the finite-dimensional basis from
(i). This is the situation in the preceding example. &

For Bayesian inverse problems with finite data, the potential ® has the
form given in (4.3), where y € RY is the data, G : X — RY is the observa-
tion operator and | - |r is a covariance weighted norm on RY. If GV is an
approximation to G and we define

1
| A Al (4.10)

then we may define an approximation " to u as in (4.6). The following
corollary relating p and p? is useful.
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Corollary 4.9. Assume that the measures p and p are both absolutely
continuous with respect to pg, with Radon-Nikodym derivatives given by
(4.4), (4.3) and (4.6), (4.10) respectively. Assume also that G is approx-
imated by a function GV with the property that, for any € > 0, there is
K' = K'(g) > 0 such that

1G(u) = G (w)| < K exp(e]|ull %) v (), (4.11)

where ¥(N) — 0 as N — oo. If G and GV satisfy Assumption 2.7(i)
uniformly in IV, then there is a constant C, independent of N, and such that

dyen(p, ) < CY(N). (4.12)

Consequently the expectation under p and p¥ of any polynomially bounded
function f : X — E is O(3(N)) close. In particular, the mean and, in the
case where X is a Hilbert space, the covariance operator are O(y(N)) close.

Proof. We simply show that the conditions of Theorem 4.6 hold. That
(i) and (ii) of Assumptions 2.6 hold follows as in the proof of Lemma 2.8.
Also (4.8) holds since (for some K : R™ — R™ defined in the course of the
following chain of inequalities)

() — ¥ (u)| < %\2?; —G(u) = GV (W)lr|G(u) — G (u)lr

< (lylr + exp(ellullk + M(e))) x K'(e) exp(eful)w (V)
< K (2¢) exp (2eul% ) v (N),
as required. Ul

A notable fact concerning Theorem 4.6 is that the rate of convergence
attained in the solution of the forward problem, encapsulated in approxi-
mation of the function ® by ®V, is transferred into the rate of convergence
of the related inverse problem for measure p given by (4.4) and its ap-
proximation by u”V. Key to achieving this transfer of rates of convergence
is the dependence of the constant in the forward error bound (4.8) on w.
In particular it is necessary that this constant is integrable by use of the
Fernique Theorem. In some applications it is not possible to obtain such
dependence. Then convergence results can sometimes still be obtained, but
at weaker rates. We state a theorem applicable in this situation.

Theorem 4.10. Assume that the measures p and pV are both absolutely
continuous with respect to pg, satisfying po(X) = 1, with Radon—Nikodym
derivatives given by (4.4) and (4.6), and that ® and ®* satisfy Assump-
tions 2.6(i) and (ii) with constants uniform in N. Assume also that for any
R > 0 there is a K = K(R) > 0 such that, for all v with ||u||x < R,

() — @ (u)| < Kp(N), (4.13)
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where ¢¥(N) — 0 as N — oco. Then the measures p and pV are close with
respect to the Hellinger distance:

den(p, 1) — 0 (4.14)

as N — oo. Consequently the expectation of any polynomially bounded
function f : X — E under u”V converges to the corresponding expectation
under p as N — oo. In particular, the mean and, in the case where X is a
Hilbert space, the covariance operator converge. O

4.5. Discussion and bibliography

The idea of placing a number of inverse problems within a common Bayesian
framework, and studying general properties in this abstract setting, is de-
veloped in Cotter et al. (2009). That paper contains Theorems 4.1 and 4.2
under Assumptions 2.6 in the case where (i) is satisfied trivially because ®
is bounded from below by a constant; note that this case occurs whenever
the data is finite-dimensional. Generalizing the theorems to allow for (i)
as stated here was undertaken in Hairer, Stuart and Voss (2010b), in the
context of signal processing for stochastic differential equations.

Theorem 4.2 is a form of well-posedness. Recall that, in the approxima-
tion of forward problems in differential equations, well-posedness and a local
approximation property form the key concepts that underpin the equiv-
alence theorems of Dahlquist (Hairer, Ngrsett and Wanner 1993, Hairer
and Wanner 1996), Lax (Richtmyer and Morton 1967) and Sanz-Serna and
Palencia (Sanz-Serna and Palencia 1985). It is also natural that the well-
posedness that we have exhibited for inverse problems should, when com-
bined with forward approximation, give rise to approximation results for
the inverse problem. This is the basic idea underlying Theorem 4.6. That
result, Corollary 4.9 and Theorem 4.10 are all stated and proved in Cotter
et al. (2010a).

The underlying well-posedness of properly formulated Bayesian inverse
problems has a variety of twists and turns which we do not elaborate fully
here. The interested reader should consult Dashti et al. (20100).

5. Algorithms
5.1. Overview

We have demonstrated that a wide range of inverse problems for functions
u given data y give rise to a posterior measure p¥ with the form (2.24).
This formula encapsulates neatly the ideal information that we have about
a function, formed from conjunction of model and data. Furthermore, for
many applications, the potential ® satisfies Assumptions 2.6. From this we
have shown in Section 4 that the formula (2.24) indeed leads to a well-defined
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posterior p¥ and that this measure enjoys nice robustness properties with
respect to changes in the data or approximation of the forward problem.
However, we have not yet addressed the issue of how to obtain information
from the formula (2.24) for the posterior measure. We devote this section
to an overview of the computational issues which arise in this context.

If the prior measure is Gaussian and the potential ®(-;y) is quadratic,
then the posterior is also Gaussian. This situation arises, for example, in the
inverse problem for the heat equation described in Section 3.5. The measure
w¥ is then characterized by a function (the mean) and an operator (the
covariance) and formulae can be obtained for these quantities by completing
the square using Theorem 6.20: see the developments for the heat equation,
or Example 6.23, for an illustration of this.

However, in general there is no explicit way of characterizing the mea-
sure Y as can be done in the Gaussian case. Thus approximations and
computational tools are required to extract information from the formula
(2.24). One approach to this problem is to employ sampling techniques
which (approximately) generate sample functions according to the prob-
ability distribution implied by (2.24). Among the most powerful generic
tools for sampling are the Markov chain Monte Carlo (MCMC) methods,
which we review in Section 5.2. However, whilst these methods can be very
effective when tuned carefully to the particular problem at hand, they are
undeniably costly and, for many applications, impracticable at current lev-
els of computer resources. For this reason we also devote two subsections to
variational and filtering methods, which are widely used in practice because
of their computational expedience. When viewed in terms of their relation
to (2.24) these methods constitute approximations. Furthermore, these ap-
proximations are, in many cases, not well understood. In the near future
we see the main role of MCMC methods as providing controlled approx-
imations to the true posterior measure ¥, against which variational and
filtering methodologies can be tested, on well-designed model problems. In
the longer term, as computational power and algorithmic innovation grows,
we also anticipate increasing use of MCMC methods in their own right to
approximate (2.24).

From a Bayesian perspective, the variational methods of Section 5.3 start
from the premise that variability in the posterior measure is small and that
most of the information resides in a single peak of the probability distribu-
tion, which can be found by optimization techniques. We view this problem
from the standpoint of optimal control, showing that a minimizer exists
whenever the common framework of Section 2.4 applies; we also review
algorithmic practice in the area. Section 5.4 describes the widely used fil-
tering methods which approximate the posterior measure arising in time-
dependent data assimilation problems by a sequence of probability measures
in time, updated sequentially. The importance of this class of algorithms
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stems from the fact that, in many applications, solutions are required on-
line, with updates required as more data is acquired; thus sequential updat-
ing of the posterior measure at the current time is natural. Furthermore,
sequential updates are computationally efficient as they reduce the dimen-
sionality of the desired posterior measure, breaking a correlated measure
at a sequence of times into a sequence of conditionally independent mea-
sures at each time, provided there is an underlying Markovian structure.
We conclude, in Section 5.5, with references to the literature concerning
algorithms.

When discussing MCMC methods and variational methods, the depen-
dence of the potential ® appearing in (2.24) will not be relevant and we will
consider the problem for the posterior measure written in the form

m(u) = %exp(—q)(u)), (5.1)

with normalization constant

Z = /Xexp(—cl)(u)) dpo(uw). (5.2)

We refer to u as the target distribution. For the study of both MCMC and
variational methods, we will also find it useful to define

1) = 5 lull3 + B(u). (5.3

This is, of course, a form of regularized least-squares functional as intro-
duced in Section 2.

5.2. Markov chain Monte Carlo

The basic idea of MCMC methods is simple: design a Markov chain with
the property that a single sequence of output from the chain {u,}° is
distributed according to p given by (5.1). This is a very broad algorithmic
prescription and allows for significant innovation in the design of methods
tuned to the particular structure of the desired target distribution. We will
focus on a particular class of MCMC methods known as Metropolis—Hastings
(MH) methods.

The key ingredient of these methods is a probability measure on X,
parametrized by u € X: a Markov transition kernel ¢(u, dv). This kernel is
used to propose moves from the current state of the Markov chain u,, to a
new point distributed as g(uy,-). This proposed point is then accepted or
rejected according to a criterion which uses the target distribution p. The
resulting Markov chain has the desired property of preserving the target
distribution. Key to the success of the method is the choice of q. We now
give details of how the method is constructed.
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Given ¢(u, -) and the target p we define a new measure on X x X defined by
v(du,dv) = q(u, dv)p(du).
We define the same measure, with the roles of u and v reversed, by
v (du, dv) = q(v, du)p(dv).

Provided that v T is absolutely continuous with respect to v, we may define
dv’
a(u,v) =ming 1, —(u,v) ¢.
(u.0) = mind 1. (0

Now define a random variable v(u, v), independent of the probability space
underlying the transition kernel ¢, with the property that

(5.4)

1 with probability a(u,v),
V(u,v) = .
0 otherwise.

We now create a random Markovian sequence {uy}>2 as follows. Given
a proposal v, ~ q(uy,-), we set

Un41 = 'Y(unp Un)vn + (1 - 7(”7% Un))un' (55)

If we choose the randomness in the proposal v, and the binary random
variable 7y (uy, v,) independently of each other for each n, and independently
of their values for different n, then this construction gives rise to a Markov
chain with the desired property.

Theorem 5.1. Under the given assumptions, the Markov chain defined
by (5.5) is invariant for p: if ug ~ p then u, ~ u for all n > 0. Furthermore,
if the resulting Markov chain is ergodic then, for any continuous bounded
function f: X — R, any M > 0, and for ug p-a.s.,

L
N;f(un+M)—>/)(f(u)u(du) as N — oo. (5.6)
&

In words, this theorem states that the empirical distribution of the Markov
chain converges weakly to that of the target measure pu. However, this nice
abstract development has not addressed the question of actually construct-
ing an MH method. If X = R"™ and the target measures have positive density
with respect to Lebesgue measure, then this is straightforward: any choice of
kernel ¢(u, dv) will suffice, provided it too has positive density with respect
to Lebesgue measure, for every u. It then follows that ¥ <« v. From this
wide range of admissible proposal distributions, the primary design choice is
to identify proposals which lead to low correlation in the resulting Markov
chain, as this increases efficiency.
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Example 5.2. A widely used proposal kernel is simply that of a random
walk; for example, if up = N(0,C) it is natural to propose

v =u+ V20¢, (5.7)

where £ ~ N(0,C). A straightforward calculation shows that
a(u,v) = min{1, exp(I(u) — I(v))}

where I is given by (5.3). Thus, if the proposed state corresponds to a
lower value of the regularized least-squares functional I, then the proposal
is automatically accepted; otherwise it will be accepted with a probability
depending on I(u) — I(v).

The parameter ¢ is a scalar which controls the size of the move. Large
values lead to proposals which are hence unlikely to be accepted, leading to
high correlation in the Markov chain. On the other hand small moves do
not move very far, again leading to high correlation in the Markov chain.
Identifying appropriate values of § between these extremes is key to making
effective algorithms. More complex proposals use additional information
about D® in an attempt to move into regions of high probability (low ®). &

In infinite dimensions things are not so straightforward: a random walk
will not typically deliver the required condition »" <« v. For example, if
po = N(0,C) and X is infinite-dimensional, then the proposal (5.7) will not
satisfy this constraint. However, a little thought shows that appropriate
modifications are possible.

Example 5.3. The random walk can be modified to obtain the desired
absolute continuity of vT with respect to v. The proposal

v = (1-20)"u+v26¢, (5.8)

where £ ~ N(0,C), will satisfy the desired condition for any 6 € R. The
acceptance probability is

a(u,v) = min{1, exp(®(u) — ®(v)) }.

Thus, if the proposed state corresponds to a lower value of ® than does the
current state, it will automatically be accepted.

The proposal in (5.8) should be viewed as an appropriate analogue of
the random walk proposal in infinite-dimensional problems. Intuition as to
why this proposal works in the infinite-dimensional setting can be obtained
by observing that, if u ~ N(0,C) and v is constructed using (5.8), then

~ N(0,C); thus the proposal preserves the underlying reference measure
(pI‘lOI‘ po. In contrast, the proposal (5.7) does not: if u ~ N(0,C) then

v~ /(14 20)N(0,C).
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Note that the choice § =1/2 in (5.8) yields an independence sampler where
proposals v are made from the prior measure pg, independently of the cur-
rent state of the Markov chain w. As in finite dimensions, improved proposals
can be found by including information about D® in the proposal. &

In computational practice, of course, we always implement a sampling
method in finite dimensions. The error incurred by doing so may be quanti-
fied by use of Theorem 4.6. It is natural to ask whether there is any value in
deriving MH methods on function space, especially since this appears harder
than doing so in finite dimensions. The answer, of course, is ‘yes’. Any MH
method in finite dimensions which does not correspond to a well-defined
limiting MH method in the function space (infinite-dimensional) limit will
degenerate as the dimension of the space increases. This effect can be quan-
tified and compared with what happens when proposals defined on function
space are used. In conclusion, then, the function space viewpoint on MCMC
methods is a useful one which leads to improved algorithms, and an under-
standing of the shortcomings of existing algorithms.

5.3. Variational methods

Variational methods attempt to answer the following question: ‘How do we
find the most likely function u under the posterior measure u given by (5.1)7’
To understand this consider first the case where X = R™ and po = N(0,C) is
a Gaussian prior. Then p has density with respect to Lebesgue measure and
the negative logarithm of this density is given by (5.3).3 Thus the Lebesgue
density of y is maximized by minimizing I over R™. Another way of looking
at this is as follows: if w is such a minimizer then the probability of a small
ball of radius € and centred at u will be maximized, asymptotically as € — 0,
by choosing u = .

If X is an infinite-dimensional Hilbert space then there is no Lebesgue
measure on X, and we cannot directly maximize the density. However, we
may again consider the probability of small balls at u € X, of radius e.
We may then ask how wu should be chosen to maximize the probability of
the ball, asymptotically as ¢ — 0. Again taking po = N(0,C) this question
leads to the conclusion that u should be chosen as a global minimizer of 1
given by (5.3) over the Cameron-Martin space F with inner product (-, )¢
and norm || - ||¢.

Recall that ® measures model/data mismatch, in the context of applica-
tions to inverse problems. In the case where y is finite-dimensional it has the
form (4.3). It is thus natural to minimize ® directly, as in (2.2). However,
when X is infinite-dimensional, this typically leads to minimizing sequences

3 Recall that for economy of notation we drop explicit reference to the y dependence of
® in this subsection, as it plays no role.
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which do not converge in any reasonable topology. The addition of the
quadratic penalization in E may be viewed as a Tikhonov regularization to
overcome this problem. Minimization of I is thus a regularized nonlinear
least-squares problem as in (2.3). Of course this optimization approach can
be written down directly, with no reference to probability. The beauty of
the Bayesian approach is that it provides a rational basis for the choice of
norms underlying the objective functional ®, as well as the choice of norm
in the regularization term proportional to ||ul|3. Furthermore, the Bayesian
viewpoint gives an interpretation of the resulting optimization problem as
a probability maximizer. And finally the framework of Section 2.4, which
leads to well-posed posterior measures, also leads directly to an existence
theory for probability maximizers. We now describe this theory.

Theorem 5.4. Let Assumptions 2.6(i) and (iii) hold, and assume that
to(X) = 1. Then there exists w € E such that

I(w) =1 :=inf{I(u):u € E}.

Furthermore, if {u, } is a minimizing sequence satisfying I (u,) — I(@), then
there is a subsequence {u,,} that converges strongly to @ in E.

Proof. First we show that I is weakly lower semicontinuous on F. Let
u, — u in . By the compact embedding of £ in X, which follows from
Theorem 6.11 since po(X) = 1, we deduce that u, — u, strongly in X.
By the Lipschitz continuity of ® in X (Assumption 2.6(iii)) we deduce that
®(uy,) — ®(u). Thus ® is weakly continuous on E. The functional J(u) :=
$l|lul|? is weakly lower semicontinuous on E. Hence I(u) = J(u) + ®(u) is
weakly lower semicontinuous on F.

Now we show that I is coercive on E. Again using the fact that E is
compactly embedded in X, we deduce that there is a K > 0 such that

lullf < Kllul2.
Hence, by Assumption 2.6(i), it follows that, for any ¢ > 0, there is an
M (e) € R such that

(5 - 72 Il + 312 < 1w

By choosing ¢ sufficiently small, we deduce that there is an M € R such
that, for all u € F,

1
ZIIU||<2:+M < I(w). (5.9)

This establishes coercivity.
Consider a minimizing sequence. For any § > 0 there is an N; = Ny(J):

M<T<I(uy) <T+6, Yn>= Ny
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Using (5.9) we deduce that the sequence {u, } is bounded in E and, since F is
a Hilbert space, there exists w € E such that (possibly along a subsequence)
up, — u in K. From the weak lower semicontinuity of I it follows that, for
any 0 > 0,

I<I@)<I+6.

Since § is arbitrary the first result follows.
Now consider the subsequence u, — @. Then there is an Ny = Na(d) > 0
such that, for n, £ > N,

1 1 1 1
i = el = Slunll? + 5 el = N5+ ) 2

— T(un) + I(ug) — 21(2(% + W)) — B (uy)
— D(ug) + 20 <;(un + W))
< 2T +5) — 2T — B(up) — D(ug) + 20 <;(un + W))

< 26 — B(un) — Blug) + 20 <;(un + W)).

But uy,,uy and %(un + ug) all converge strongly to @ in X. Thus, by conti-
nuity of ®, we deduce that, for all n, ¢ > N3(0),

1
ZHun — uz||(2; < 34.

Hence the sequence is Cauchy in E and converges strongly, and the proof
is complete. L]

Example 5.5. Recall the inverse problem for the diffusion coefficient of
the one-dimensional elliptic problem described in Section 3.3. The objective
is to find u(x) appearing in

i (eotuan ) <o
p(0)=p~ p(1)=p",
where p™ > p~. The observations are
ye =p(xk) +me, k=1,...,¢
written succinctly as
y=G(u)+mn,

where 7 € RY is distributed as A/(0,72I). The function G is Lipschitz in the
space of continuous functions X = C([0,1]) by Lemma 3.3.
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Recall that changing u by an arbitrary additive constant does not change
the solution of (3.5), and so we assume that u integrates to zero on (0,1).
We define

H = {u e L2((0.1)] /Olu(x) dz = 0}.

We take A = —d?/dz? with

D(A) = {u e H2.((0.1)) /01 w(w)dz = 0}.

Then A is positive definite self-adjoint, and we may define the prior Gaussian
measure 1o = N(0,.471) on H. By Lemma 6.25 we deduce that po(X) = 1.
The Cameron—Martin space

E=Im(A/?) = {u € H.,.((0, 1))‘ /01 u(z) dz = o}

is compactly embedded into C([0, 1]) by Theorem 2.10; this is also a conse-
quence of the general theory of Gaussian measures since (X ) = 1. By the
Lipschitz continuity of G in X and Theorem 5.4, we deduce that

1 2 1 2
1) = 5l + galy = G(w)

attains its infimum at w € E. O

In summary, the function space Bayesian viewpoint on inverse problems
is instructive in developing an understanding of variational methods. In
particular it implicitly guides choice of the regularization that will lead to
a well-posed minimization problem.

5.4. Filtering

There are two key ideas underlying filtering: the first is to build up knowl-
edge about the posterior sequentially, and hence perhaps more efficiently;
the second is to break up the unknown w and build up knowledge about
its constituent parts sequentially, hence reducing the computational dimen-
sion of each sampling problem. Thus the first idea relies on decomposing
the data sequentially, whilst the second relies on decomposing the unknown
sequentially.

The first basic idea is to build up information about u¥ sequentially as
the size of the data set increases. For simplicity assume that the data is
finite-dimensional and can be written as y = {yj}gzl. Assume also that
each data point y; is found from a mapping G; : X — R’ and subject to
independent Gaussian observational noises n; ~ N (0,T';) so that

y; = Gj(u) +n;. (5.10)
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Thus the data is in RY for ¢ = ¢J. The posterior measure has the form

dit ., >o<exp(—2\yj G, (u >r%j)- (5.11)

dpo

Now let u denote the posterior distribution given only the datay = {y; };'.:1
Then
1 2
(u >o<exp(—§j\yg G0, ). (5.12)

dpo

Furthermore, setting Mo = Lo, we have

dpis 1 9
au? (u) ocexp| =5 lyirr = Gin (Wl ). (5.13)

Compare formulae (5.11) and (5.13). When J is large, it is intuitive that
py,y is closer to pf than p¥ = pf is to po. This suggests that formula
(5.13) may be used as the basis for obtaining “gﬂ from p!, and thereby
to approach p¥ = pY by iterating this over ¢. In summary, the first key
idea enables us to build up our approximation to p¥ incrementally over an
ordered set of data.

The second key idea involves additional structure. Imagine that we have
y;j = y(t;) for some set of times

O0<thi<ta<--- <ty <o0.

Assume furthermore that u is also time-dependent and can be decomposed
as u = {u; }7_;, where u; = u(t;), and that (5.10) simplifies to

Jj=D
y;j = G;(u;) + nj. (5.14)
Then it is reasonable to seek to find the conditional measures
Vi (dus) := P(dui|{y;}5_1)- (5.15)

Notice that each of these measures lives on a smaller space than does p¥
and this dimension reduction is an important feature of the methodology.
Assuming that the sequence u = {u; }31:1 is governed by a Markovian evo-
lution, the measure (5.15) uniquely determines the measure

Vipapi(duign) = P(dui|{y;}j1)-
Incorporating the (i + 1)st data point, we find that

dvi 111 1

T ) oo (s — G (), ) (510
dviy1p1 2

Thus we have a way of building the measures given by (5.15) incrementally

in 3.
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Clearly, by definition, vy);.;(du;) agrees with the marginal distribution of
¥ (du) on the coordinate uy = u(t;); however, the distribution of v;.;(du;)
for i < J does not agree with the marginal distribution of p¥(du) on coordi-
nate u; = u(t;). Thus the algorithm is potentially very powerful at updating
the current state of the system given data up to that time; but it fails to
update previous states of the system, given data that subsequently becomes
available. We discuss the implications of this in Section 5.5.

5.5. Discussion and bibliography

We outline the methods described in this section, highlight some relevant
related literature, and discuss inter-relations between the methodologies. A
number of aspects concerning computational methods for inverse problems,
both classical and statistical, are reviewed in Vogel (2002). An important
conceptual algorithmic distinction to make in time-dependent data assim-
ilation problems is between forecasting methods, which are typically used
online to make predictions as data is acquired sequentially, and hindcast-
ing methods which are used offline to obtain improved understanding (this
is also called reanalysis) and, for example, may be used for the purposes
of parameter estimation to obtain improved models. MCMC methods are
natural for hindcasting and reanalysis; filtering is natural in the forecasting
context. Filtering methods update the estimate of the state based only on
data from the past, whereas the full posterior measure estimates the state
at any given time based on both past and future observations; methods
based on this full posterior measure are known as smoothing methods and
include MCMC methods based on the posterior and variational methods
which maximize the posterior probability.

The development of MCMC methods was initiated with the paper by
Metropolis, Rosenbluth, Teller and Teller (1953), in which a symmetric ran-
dom walk proposal was used to determine thermodynamic properties, such
as the equation of state, from a microscopic statistical model. Hastings
(1970) demonstrated that the idea could be generalized to quite general
families of proposals, providing the seed for the study of these methods
in the statistics community (Gelfand and Smith 1990, Smith and Roberts
1993, Bernardo and Smith 1994). The paper of Tierney (1998) provides the
infinite-dimensional framework for MH methods that we outline here; in
particular, Theorem 5.1 follows from the work in that paper. Ergodic theo-
rems, such as the convergence of time averages as in (5.6), can in many cases
be proved for much wider classes of functions than continuous bounded func-
tions. The general methodology is described in Meyn and Tweedie (1993)
and an application to MH methods is given in Roberts and Tweedie (1996).

The degeneration of many MH methods on state spaces of finite but
growing dimension is a well-known phenomenon to many practitioners. An
analysis and quantification of this effect was first undertaken in Roberts,
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Gelman and Gilks (1997), where random walk proposals were studied for
an i.i.d. target, and subsequently in Roberts and Rosenthal (1998, 2001),
Beskos and Stuart (2009) and Beskos, Roberts and Stuart (2009) for other
target distributions and proposals; see Beskos and Stuart (2010) for an
overview. The idea of using proposals designed to work in the infinite-
dimensional context to overcome this degeneration is developed in Stuart,
Voss and Wiberg (2004) and Beskos, Roberts, Stuart and Voss (2008) in the
context of sampling conditioned diffusions, and is described more generally
in Beskos and Stuart (2009), Beskos et al. (2009), Beskos and Stuart (2010)
and Cotter, Dashti, Robinson and Stuart (20100).

The use of MCMC methods for sampling the posterior distribution aris-
ing in the Bayesian approach to inverse problems is highlighted in Kaipio
and Somersalo (2000, 2005), Calvetti and Somersalo (2006) and Calvetti,
Kuceyeski and Somersalo (2008). When sampling complex high-dimensional
posterior distributions, such as those that arise from finite-dimensional ap-
proximation of measures p¢ given by (2.24), can be extremely computation-
ally challenging. It is, however, starting to become feasible; recent examples
of work in this direction include Calvetti and Somersalo (2006), Dostert
et al. (2006), Kaipio and Somersalo (2000), Heino, Tunyan, Calvetti and
Somersalo (2007) and Calvetti, Hakula, Pursiainen and Somersalo (2009).
In Cotter et al. (2010b) inverse problems such as those in Section 3.6 are
studied by means of the MH technology stemming from the proposal (5.8).
Examples of application of MCMC techniques to the statistical solution of
inverse problems arising in oceanography, hydrology and geophysics may be
found in Efendiev et al. (2009), Cui, Fox, Nicholls and O’Sullivan (2010),
McKeague, Nicholls, Speer and Herbei (2005), Herbei, McKeague and Speer
(2008), McLaughlin and Townley (1996), Michalak and Kitanidis (2003)
and Mosegaard and Tarantola (1995). The paper by Herbei and McKeague
(2009) studies the geometric ergodicity properties of the resulting Markov
chains, employing the framework developed in Meyn and Tweedie (1993).

The idea of using proposals more general than (5.7), and in particular pro-
posals that use derivative information concerning @, is studied in Roberts
and Tweedie (1996). A key concept here is the Langevin equation: a stochas-
tic differential equation for which p is an invariant measure. Discretizing this
equation, which involves the derivative of ®, is the basis for good propos-
als. This is related to the fact that, for small discretization parameter, the
proposals nearly inherit this invariance under . Applying this idea in the
infinite-dimensional context is described in Apte, Hairer, Stuart and Voss
(2007) and Beskos and Stuart (2009), based on the idea of Langevin equa-
tions in infinite dimensions (Hairer et al. 2005, Hairer et al. 2007, Hairer,
Stuart and Voss 2009).

Characterizing the centres of small balls with maximum probability has
been an object of interest in the theory of stochastic differential equations for
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some time. See Ikeda and Watanabe (1989) and Diirr and Bach (1978) for
the simplest setting, and Zeitouni and Dembo (1987) for a generalization to
signal processing problems. Our main Theorem 5.4 concerning the existence
of probability maximizers provides a nice link between Bayesian inverse
problems and optimal control. The key ingredients are continuity of the
forward mapping from the unknown function to the data, in the absence of
observational noise, in a space X, and choice of a prior measure which has
the properties that draws from it are almost surely in X: po(X) = 1; this
then guarantees that the Tikhonov regularization, which is in the Cameron—
Martin norm for the prior measure, is sufficient to prove existence of a
minimizer for the variational method.

The idea concluding the proof of the first part of Theorem 5.4 is standard
in the theory of calculus of variations: see Dacarogna (1989, Chapter 3,
Theorem 1.1). The strong convergence argument generalizes an argument
from Kinderlehrer and Stampacchia (1980, Theorem I1.2.1). The PhD thesis
of Nodet (2005) contains a specific instance of Theorem 5.4, for a model of
Lagrangian data assimilation in oceanography, and motivated the approach
that we take here; related work is undertaken in White (1993) for Burgers’
equation. An alternative approach to the existence of minimizers is to study
the Euler-Lagrange equations. The paper of Hagelberg et al. (1996) stud-
ies existence by this approach for a minimization problem closely related
to the MAP estimator. The paper studies the equations of fluid mechan-
ics, formulated in terms vorticity—streamfunction variables. Their approach
has the disadvantage of requiring a derivative to define the Euler-Lagrange
equations, a short time interval to obtain existence of a solution, and also
requires further second-derivative information to distinguish between min-
imizers and saddle points. However, it does form the basis of a numerical
approach to find the MAP estimator. For linear differential equations sub-
ject to Gaussian noise there is a beautiful explicit construction of the MAP
estimator, using the Euler-Lagrange equations, known as the representer
method. This method is described in Bennett (2002).

Variational methods in image processing are reviewed in Scherzer et al.
(2009) and the Bayesian approach to this field is exemplified by Calvetti
and Somersalo (20056, 2007a, 2008) and, implicitly, in Ellerbroek and Vo-
gel (2009). Variational methods are known in the atmospheric and oceano-
graphic literature as 4D VAR methods (Derber 1989, Courtier and Talagrand
1987, Talagrand and Courtier 1987, Courtier 1997) and, as we have shown,
they are linked to probability maximizers. In the presence of model error
the method is known as weak constraint 4DVAR (Zupanski 1997). There are
also variational methods for sequential problems which update the probabil-
ity maximizer at a sequence of times; this methodology is known as SDVAR
(Courtier et al. 1998) and is closely related to filtering. Indeed, although fil-
tering and variational methods may be viewed as competing methodologies,
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they are, in fact, not distinct methodologies, and hybrid methods are sought
which combine the advantages of both; see Kalnay, Li, Miyoshi, Yang and
Ballabrera-Poy (2007), for example.

Although we strongly advocate the function space viewpoint on varia-
tional methods, a great deal of work is carried out by first discretizing the
problem and then defining the variational problem. Some representative
papers which take this approach for large-scale applications arising in fluid
mechanics include Bennett and Miller (1990), Bennett and Chua (1994), Ek-
nes and Evensen (1997), Chua and Bennett (2001), Yu and O’Brien (1991),
Watkinson, Lawless, Nichols and Roulstone (2007), Gratton, Lawless and
Nichols (2007), Johnson, Hoskins, Nichols and Ballard (2006), Lawless and
Nichols (2006), Johnson, Hoskins and Nichols (2005), Lawless, Gratton and
Nichols (20055, 2005a), Stanton, Lawless, Nichols and Roulstone (2005)
and Wlasak and Nichols (1998). The paper of Griffith and Nichols (1998)
contains an overview of adjoint methods, used in the solution of data assim-
ilation problems with model error, primarily in the context of variational
methods. A discussion of variational methods for the Lorenz equations,
and references to the extensive literature in this area, may be found in
Evensen (2006).

The regularized nonlinear least-squares or Tikhonov approach to inverse
problems is widely studied, including in the infinite-dimensional setting of
Hilbert spaces — see the book by Engl et al. (1996) and the references
therein — and Banach spaces — see the papers by Kaltenbacher et al. (2009),
Neubauer (2009) and Hein (2009) and the references therein. Although we
have concentrated on Bayesian priors, and hence on regularization via ad-
dition of a quadratic penalization term, there is active research in the use
of different regularizations (Kaltenbacher et al. 2009, Neubauer 2009, Hein
2009, Lassas and Siltanen 2004). In particular, the use of total variation-
based regularization, and related wavelet-based regularizations, is central in
image processing (Rudin et al. 1992).

Solving the very high-dimensional optimization problems which arise from
discretizing the minimization problem (5.3) is extremely challenging and,
as with filtering methods, ideas from model reduction (Antoulas, Sore-
sen and Gugerrin 2001) are frequently used to obtain faster algorithms.
Some applications of model reduction techniques, mainly to data assimila-
tion problems arising in fluid mechanics, may be found in Lawless, Nichols,
Boess and Bunse-Gerstner (2008a, 2008b), Griffith and Nichols (1998, 2000),
Akella and Navon (2009), Fang et al. (2009a, 2009b) and the references
therein. Another approach to dealing with the high-dimensional problems
that arise in data assimilation is to use ideas from machine learning (Mitchell
et al. 1990) to try to find good quality low-dimensional approximations to
the posterior measure; see, for example, Shen et al. (2008b), Shen, Cornford,
Archambeau and Opper (2010), Vrettas, Cornford and Shen (2009), Shen,
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Archambeau, Cornford and Opper (2008a), Archambeau, Opper, Shen,
Cornford and Shawe-Taylor (2008) and Archambeau, Cornford, Opper and
Shawe-Taylor (2007).

There are some applications where the objective functional may not be
differentiable. This can arise for two primary reasons. Firstly the PDE
model itself may have discontinuous features arising from switches, or shock-
like solutions; and secondly the method of observing the PDE may have
switches at certain threshold values of the physical parameters. In this case
it is of interest to find computational algorithms to identify MAP estimators
which do not require derivatives of the objective functional; see Zupanski,
Navon and Zupanski (2008).

An overview of the algorithmic aspects of particle filtering, for non-
Gaussian problems, is contained in the edited volume by Doucet and Gordon
(2001) and a more mathematical treatment of the subject may be found in
Bain and Crisan (2009). An introduction to filtering in continuous time,
and a derivation of the Kalman—Bucy filter in particular, which exploits
the Gaussian structure of linear problems with additive Gaussian noise, is
undertaken in Oksendal (2003). It should be emphasized that these meth-
ods are all developed primarily in the context of low-dimensional problems.
In practice filtering in high-dimensional systems is extremely hard. This
is because the iterative formulae (5.13) and (5.16) do not express the den-
sity of the target measure with respect to an easily understood Gaussian
measure, as happens in (2.24). To overcome this issue, particle approxima-
tions of the reference measures are used, corresponding to approximation
by Dirac masses; thus the algorithms build up sequential approximations
based on Dirac masses. In high dimensions this can be extremely compu-
tationally demanding and various forms of approximation are employed to
deal with the curse of dimensionality. See Bengtsson, Bickel and Li (2008)
and Bickel, Li and Bengtsson (2008) for discussion of the fundamental diffi-
culties arising in high-dimensional filtering, and Snyder, Bengtsson, Bickel
and Anderson (2008) for a development of these ideas in the context of
applications. A review of some recent mathematical developments in the
subject of high-dimensional filtering, especially in the context of the mod-
elling or turbulent atmospheric flows, may be found in Majda, Harlim and
Gershgorin (2010). A review of filtering from the perspective of geophysical
applications, may be found in Van Leeuwen (2009). A widely used ap-
proach is that based on the ensemble Kalman filter (Burgers, Van Leeuwen
and Evensen 1998, Evensen and Van Leeuwen 2000, Evensen 2006), which
uses an ensemble of particles to propagate the dynamics, but incorporates
data using a Gaussian approximation which is hard to justify in general; see
also Berliner (2001) and Ott et al. (2004). Further approaches based on the
use of ensembles to approximate error covariance propagation may be found
in Chorin and Krause (2004) and Livings, Dance and Nichols (2008). The
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paper of Bengtsson, Snyder and Nychka (2003) describes a generalization
of the ensemble Kalman filter, based on mixtures of Gaussians, motivated
by the high-dimensional systems arising in fluid dynamics data assimila-
tion problems. The paper of Bennett and Budgell (1987) studies the use
of filtering techniques in high dimensions, motivated by oceanographic data
assimilation, and contains a study of the question of how to define families
of finite-dimensional filters which converge to a function-space-valued limit
as the finite-dimensional computation is refined; it is thus related to the
concept of discretization invariance referred to in Section 2.5. However, the
methodology for proving limiting behaviour in Bennett and Budgell (1987),
based on Fourier analysis, is useful only for linear Gaussian problems; in
contrast, the approach developed here, namely formulation of the inverse
problem on function space, gives rise to algorithms which are robust under
discretization even in the non-Gaussian case.

In Apte et al. (2007) and Apte, Jones and Stuart (2008a), studies of
the ideal solution obtained from applying MCMC methods to the posterior
(2.24) are compared with ensemble Kalman filter methods. The context is a
Lagrangian data assimilation problem driven by a low-dimensional trunca-
tion of the linearized shallow water equations (3.27) and the results demon-
strate pitfalls in the ensemble Kalman filter approach. An unambiguous
and mathematically well-defined definition of the ideal solution, as given by
(2.24), plays an important role in underpinning such computational studies.

A study of particle filters for Lagrangian data assimilation is under-
taken in Spiller, Budhiraja, Ide and Jones (2008), and another applica-
tion of filtering to oceanographic problems can be found in Brasseur et al.
(2005). Recent contributions to the study of filtering in the context of
the high-dimensional systems of interest in geophysical applications include
Bergemann and Reich (2010), Cui et al. (2010), Chorin and Krause (2004),
Chorin and Tu (2009, 2010), Majda and Grote (2007), Majda and Gersh-
gorin (2008), Majda and Harlim (2010) and Van Leeuwen (2001, 2003).
A comparison of various filtering methods, for the Kuramoto—Sivashinsky
equation, may be found in Jardak, Navon and Zupanski (2010). In the pa-
per of Pikkarainen (2006), filtering is studied in the case where the the state
space for the dynamical variable is infinite-dimensional, and modelled by an
SPDE. An attempt is made to keep track of the error made when approxi-
mating the infinite-dimensional system by a finite-dimensional one. In this
regard, a useful approximation is introduced in Huttunen and Pikkarainen
(2007), building on ideas in Kaipio and Somersalo (2007a). Parameter esti-
mation in the context of filtering can be problematic, and smoothing should
ideally be used when parameters are also to be estimated. However, there
is some activity to try and make parameter estimation feasible in online
scenarios; see Hurzeler and Kiinsch (2001) for a general discussion and
Vossepoel and Van Leeuwen (2007) for an application.
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We conclude this bibliography by highlighting an important question con-
fronting many applied disciplines for which data assimilation is important.
It is typically the case that models in fields such as climate prediction,
oceanography, oil reservoir simulation and weather prediction are not fully
resolved and various subgrid-scale models are used to compensate for this
fact. This then raises the question: ‘Should future increased computer re-
sources be invested in further model resolution, or in more detailed study of
uncertainty?’ In the language of this section a stark version of this question
is as follows: ‘Should we employ only variational methods which identify
probability maximizers, but do not quantify risk, investing future computer
power in resolving the function space limit more fully? Or should we use
MCMC methods, which quantify risk and uncertainty very precisely, but
whose implementation is very costly and will preclude further model reso-
lution?” This is a hard question. An excellent discussion in the context of
climate models may be found in Palmer et al. (2009).

6. Probability
6.1. Overview

This section contains an overview of the probabilistic ideas used throughout
the article. The presentation is necessarily terse and the reader is referred
to the bibliography subsection at the end for references to material contain-
ing the complete details. Section 6.2 describes a number of basic definitions
from the theory of probability that we will use throughout the article. In
Section 6.3 we introduce Gaussian measures on Banach spaces and describe
the central ideas of the Cameron—Martin space and the Fernique Theorem.
Section 6.4 describes some explicit calculations concerning Gaussian mea-
sures on Hilbert space. In particular, we discuss the Karhunen—Loéve expan-
sion and conditioned Gaussian measures. The Karhunen—-Loeve expansion
is a basic tool for constructing random draws from a Gaussian measure
on Hilbert space, and for analysing the regularity properties of such ran-
dom draws. Conditioned measures are key to the Bayesian approach to
inverse problems and the Gaussian setting provides useful examples which
help to build intuition. In Section 6.5 we introduce random fields and, in
the Gaussian case, show how these may be viewed as Gaussian measures
on vector fields. The key idea that we use from this subsection is to relate
the properties of the covariance operator to sample function regularity. In
Section 6.6 we describe Bayesian probability and a version of Bayes’ the-
orem appropriate for function space. This will underpin the approach to
inverse problems that we take in this article. We conclude, in Section 6.7,
with a discussion of metrics on probability measures, and describe proper-
ties of the Hellinger metric in particular. This will enable us to measure



INVERSE PROBLEMS 525

distance between pairs of probability measures, and is a key ingredient in
the definition of well-posed posterior measures described in this article.

In this section, and indeed throughout the article, we will use the following
notational conventions. The measure pg will denote a prior measure, and
7o its density with respect to Lebesgue measure when the state space is R"”.
Likewise the measure p¥ will denote a posterior measure, given data y, and
¥ its density with respect to Lebesgue measure when the state space is
R"™; occasionally we will drop the y dependence and write p and 7. Given
a density p(u,y) on a pair of jointly distributed random variables, we will
write p(uly) (resp. p(y|u)) for the density of the random variable u (resp. y),
given a single observation of y (resp. u). We also write p(u) for the marginal
density found by integrating out y, and similarly p(y) for the marginal
density found by integrating out u. We will use similar conventions for other
densities, and the densities arising from conditioning and marginalization.

6.2. Basic concepts

A measure (resp. probability) space is a triplet (Q, F, u), where € is the
sample space, F the o-algebra of events and p the measure (resp. probability
measure). In this article we will primarily be concerned with situations in
which  is a separable Banach space (X, ||-||x) and F is the Borel o-algebra
B(X) generated by the open sets, in the strong topology. We are interested
in Radon measures on X which are characterized by the property

1(A) = sup{pu(B) { B C A, Bcompact}, A€ B(X).

We use E and P to denote expectation and probability, respectively, and
E(:|-) and P(+]-) for conditional expectation and probability; on occasion we
will use the notation E* or P if we wish to indicate that the expectation (or
probability) in question is with respect to a particular measure p. We use
~ as shorthand for is distributed as; thus x ~ p means that x is drawn from
a probability measure . A real-valued measurable function on the measure
space (£, F, ) is one for which the pre-image of every Borel set in R is in
F (is p-measurable).

A function m € X is called the mean of y on Banach space X if, for all
€ X* where X* denotes the dual space of linear functionals on X,

E(m)z/}(f(m)u(dx).

If m = 0 the measure is called centred. In the Hilbert space setting we
have that, for z ~ p, m = Ex. A linear operator K : X* — X is called the
covariance operator if, for all k,¢ € X*,

k(K?) = /X k(z —m)l(x — m)u(dz).
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In the Hilbert space setting where X = X*, the covariance operator is
characterized by the identity

(k, Kl) = E(k, (x — m)){((x —m), {), (6.1)
for z ~ p and for all k,¢ € X. Thus
K=E(x—m)® (zr —m). (6.2)

If 4 and v are two measures on the same measure space, then p is abso-
lutely continuous with respect to v if v(A) = 0 implies p(A) = 0. This is
sometimes written p < v. The two measures are equivalent if p < v and
v < . If the measures are supported on disjoint sets then they are mutually
singular or singular.

A family of measures ,u(”) on Banach space X is said to converge weakly
to measure p on X if

)™ (dz) — T x
Afﬂu(d) Afﬁmd)

for all continuous bounded f : E — R. We write p( = p.4
The characteristic function of a probability distribution @ on a separable
Banach space X is, for £ € X*,

0u(l) = Eexp(il(x)).

Theorem 6.1. If ;4 and v are two Radon measures on a separable Banach
space X and if ¢, (¢) = ¢, (£) for all £ € X*, then p = v. <

The following Radon—Nikodym Theorem plays an important role in this
article.

Theorem 6.2. (Radon—Nikodym Theorem) Let x and v be two mea-
sures on the same measure space (2, F). If 4 < v and v is o-finite then there
exists v-measurable function f : Q — [0, co] such that, for all v-measurable
sets A € F,

mm—Aﬂmw@» o

The function f is known as the Radon—Nikodym derivative of p with
respect to v. The derivative is written as

du
3, (%) = f(@). (6.3)

We will sometimes simply refer to f = du/dv as the density of p with

4 This should not be confused with weak convergence of functions.
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respect to v. If u is also a probability measure then
1= @) = [ j@) o).

Thus, if v is a probability measure, E f(x) = 1.

We give an example which illustrates a key idea underlying the material
we develop in this section. We work in finite dimensions but highlight what
can be transferred to probability measures on a Banach space.

Example 6.3. For a probability measure p on R? which is absolutely
continuous with respect to Lebesgue measure A\, we use the shorthand p.d.f.
for the probability density function, or density, p defined so that

H(A) = /A plx) dz (6.4)

for A € F, where F is the sigma algebra generated by the open sets in R%.
Strictly speaking this is the p.d.f. with respect to Lebesque measure, as we
integrate the density against Lebesgue measure to find the probability of a
set A. Note that

du B
L (@) = pla)

It is also possible to find the density of y with respect to a Gaussian mea-
sure. To illustrate this, let uy = N(0,I) denote a standard unit Gaussian
in R%. Then

1
po(dz) = (27) "2 exp (—2 ]:U|2> dx.

Thus the density of p with respect to pg is

pale) = (2m) /2 exp<§|xrz)p<x>.
We then have the identities
#(A) = [ pe@uola) (6.5)
and
T (2) = pefo).

It turns out that, in the infinite-dimensional setting, the formulation (6.5)
generalizes much more readily than does (6.4). This is because infinite-
dimensional Gaussian measure is well-defined, and because many measures
have a density (Radon-Nikodym derivative) with respect to an infinite-
dimensional Gaussian measure. In contrast, infinite-dimensional Lebesgue
measure does not exist. <&
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We conclude this subsection with two definitions of operators, both im-
portant for definitions associated with Gaussian measures on Hilbert space.
Let {¢}32, denote an orthonormal basis for a separable Hilbert space H.
A linear operator A : H — H is trace-class or nuclear if

o
Tr(A) := ) (A¢y, ¢r) < oo. (6.6)
k=1
The sum is independent of the choice of basis. The operator A is Hilbert—
Schmidt if

> 1Ak < 0. (6.7)
k=1

If A is self-adjoint and we choose the {¢} to be the eigenfunctions of A,
then the sum in (6.6) is simply the sum of the eigenvalues of A. A weaker
condition is that the eigenvalues are square-summable, which is (6.7).

6.3. Gaussian measures

We will primarily employ Gaussian measures in the Hilbert space setting.
However, they can also be defined on Banach spaces and, on occasion, we
will employ this level of generality. Indeed, when studying Gaussian random
fields in Section 6.5, we will show that, for a Gaussian measure y on a Hilbert
space H, there is often a Banach space X which is continuously embedded
in H and has the property that u(X) = 1. We would then like to define
the measure 1 on the Banach space X. We thus develop Gaussian measure
theory on separable Banach spaces here.

Having defined Gaussian measure, we describe its characteristic func-
tion and we state the Fernique Theorem, which exploits tail properties of
Gaussian measure. We follow this with definition and discussion of the
Cameron—Martin space. We then describe the basic tools required to study
the absolute continuity of two Gaussian measures.

A measure p on (X,B(X)) is Gaussian if, for any ¢ € X*, l(x) ~
N (my, a?) for some my € R, 0y € R. Note that o, = 0 is allowed, so that the
induced measure on /(x) may be a Dirac mass at my. Note also that it is ex-
pected that m, = £(m), where m is the mean defined above, and o7 = ¢(K¢),
where K is the covariance operator. The mean m and covariance operator
K are indeed well-defined by this definition of covariance operator.

Theorem 6.4. A Gaussian measure on (X, B(X)) has a mean m and co-
variance operator K. Further, the characteristic function of the measure is

o(£) = exp <w(m) - ;z(m)> | o

Hence, by Theorem 6.1 we see that the mean and covariance completely
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characterize the Gaussian measure, and so we are justified in denoting it by
N (m, K). The following lemma demonstrates an important role for charac-
teristic functions in studying weak convergence.

Lemma 6.5. Consider a family of probability measures x(™. Assume
that, for all £ € X*,

e (®) = exp (itm*) = J(570)).

Then p(™ = N (m*, K). O

In the Hilbert space setting we refer to the inverse of the covariance op-
erator C as the precision operator and denote it by L. It is natural to ask
what conditions an operator must satisfy in order to be a covariance oper-
ator. Good intuition can be obtained by thinking of the precision operator
as a (possibly) fractional differential operator of sufficiently high order. To
pursue this issue a little further we confine ourselves to the Hilbert space
setting. The following theorem provides a precise answer to the question
concerning properties of the covariance operator.

Theorem 6.6. If NV (0,C) is a Gaussian measure on a Hilbert space H,
then C is a self-adjoint, positive semi-definite trace-class operator on H.
Furthermore, for any integer p, there is a constant C' = C,, > 0 such that,
for x ~ N(0,C),

E2]* < Cp(Tx(C))P.

Conversely, if m € H, and C is a self-adjoint, positive semi-definite, trace-
class linear operator on a Hilbert space H, then there is a Gaussian measure

p=N(m,C) on H. O
Example 6.7. Unit Brownian bridge on J = (0,1) may be viewed as
a Gaussian process on L?(J) with precision operator £ = —d?/dx? and
D(L) = H*(J)( H}(J). Thus the eigenvalues of C are 7 = (k*7%)~! and
are summable. <&

If 2 ~ N(0,C), then E|z|> = Tr(C). Combining this fact with the previ-
ous theorem we have the following generalization of the well-known property
concerning the moments of finite-dimensional Gaussian measures.

Corollary 6.8. If N(0,C) is a Gaussian measure on a Hilbert space H
then, for any positive integer p, there exists C, > 0 such that E|z||?" <
Cp(Ellz?)?. o

In fact, as in finite dimensions, the exponentials of certain quadratic func-
tionals are bounded for Gaussian measures. This is the Fernique Theorem,
which we state in the Banach space context.
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Theorem 6.9. (Fernique Theorem) If ;= AN(0, K) is a Gaussian mea-
sure on Banach space X, so that pu(X) = 1, then there exists o > 0 such
that

/ exp(a||:n|]§()u(d:1:) < 0. &
b's

We define the Cameron—Martin space E associated with a Gaussian mea-
sure i = N (0, K) on Banach space X to be the intersection of all linear
spaces of full measure under .

Lemma 6.10. Let E be the Cameron—Martin space of Gaussian measure
p = N(0,K) on Banach space X. In infinite dimensions it is necessarily
the case that pu(FE) = 0. Furthermore, E' can be endowed with a Hilbert
space structure. Indeed, for Gaussian measures N (0, C) on the Hilbert space
(H,(-,-)), the Cameron-Martin space is the Hilbert space E := Im(C'/?)
with inner product

<‘7 '>C = <Cil/2’7cil/2'>’ <&

Note that the covariance operator C of a Gaussian probability measure on
a Hilbert space H is necessarily compact because C is trace-class, so that the
eigenvalues of C1/2 decay at least algebraically. Thus the Cameron—Martin
space Im(C'/?) is compactly embedded in H. In fact we have the following
more general result.

Theorem 6.11. The Cameron—Martin space E associated with a Gaus-
sian measure p = N(0, K) on Banach space X is compactly embedded in
all separable Banach spaces X’ with full measure (u(X’) = 1) under u. <

Example 6.12. Consider a probability measure v on R? which is a prod-
uct measure of the form dp ® N (0, 1). Introduce coordinates (z1,x2) so that
the marginal on z7 is §p and the marginal on x5 is N'(0,1). The intersection
of all linear spaces with full measure is the subset of R? defined by the line

E ={(z1,22) € R?: 2 = 0}.

Note, furthermore, that this subset is characterized by the property that
the measures v(-) and v(a + -) are equivalent (as measures) if and only if
a € E. Thus, for this example, the Cameron—Martin space defines the space
of allowable shifts, under which equivalence of the measures holds. <o

We now generalize the last observation in the preceding example: we show
that the Cameron—-Martin space characterizes precisely those shifts in the
mean of a Gaussian measure which preserve equivalence.

5 In most developments of the subject this characterization is given after a more ab-
stract definition of the Cameron—Martin space. However, for our purposes this level of
abstraction is not needed.
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Theorem 6.13. Two Gaussian measures u; = N (m;,C;), i = 1,2, on a
Hilbert space H are either singular or equivalent. They are equivalent if
and only if the following three conditions hold:

(i) Im(¢,”*) = Im(¢y%) := E,
(ii) mip — mg € E,
(iii) the operator T' := (CI_I/ZC;H) (Cl_l/2C21/2)* — I is Hilbert—Schmidt
in E. &

In particular, choosing C; = Co we see that shifts in the mean give rise to
equivalent Gaussian measures if and only if the shifts lie in the Cameron—
Martin space E. It is of interest to characterize the Radon—Nikodym deriva-
tive arising from such shifts in the mean.

Theorem 6.14. Consider two measures p; = N(m;,C), i = 1,2, on
Hilbert space H, where C has eigenbasis {¢y, Ay} 52 ;. Denote the Cameron—
Martin space by E. If my — mo € E, then the Radon—Nikodym derivative
is given by
dm

1
4 (x) :exp((m1 — Mo, T — ma)c — §Hm1 —mgH%) &

Since m; —ma € Im(C'/?), the quadratic form ||my —mo||% is defined; the
random variable z — (mj —mg, z —mg)¢ is defined via a limiting procedure
as follows. By the the Karhunen-Loéve expansion (6.9) below, we have the
representation of z ~ N (0,C) as

z—mo =Y oy,
k=1

where w = {w}32, € Q is an i.i.d. sequence of NV(0,1) random variables.
Then (m1 — ma,x —ma)c is defined as the L?(£2; H) limit in n of the series

"1
——=(m1 — ma, gp)Wi.

In establishing the first of the conditions in Theorem 6.13, the following
lemma is often useful.

Lemma 6.15. For any two positive definite, self-adjoint, bounded lin-

ear operators C; on a Hilbert space H, ¢ = 1,2, the condition Im(Cll/z) C

Im(C%/ 2) holds if and only if there exists a constant K > 0 such that
(h,C1h) < K(h,Coh), YheH. &

Example 6.16. Consider two Gaussian measures p; on H = L2(J),J =
(0,1) both with precision operator £ = —d?/d2? and the domain of £ being
H}(J) N H?(J). (Informally —£ is the Laplacian on J with homogeneous
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Dirichlet boundary conditions.) The mean of p; is a function m € H and
the mean of jz is 0. Thus p3 ~ N (m,C) and s ~ N(0,C), where C = L1
Here C; = Co = C and T = 0, so that (i) and (iii) in Theorem 6.13 are
satisfied with F = Im (C'/2) = H}(J). It follows that the measures are
equivalent if and only if m € E. If this condition is satisfied then, from
Theorem 6.14, the Radon—Nikodym derivative between the two measures is
given by

d 1

T2 (a) = oxp g ~ 1l ). o

Example 6.17. Consider two mean zero Gaussian measures u; on ‘H =
L?(J), J = (0,1) with norm || - || and precision operators £1 = —d?/da? + I
and Lo = —d?/dz? respectively, both with domain H}(J) N H2(.J).

The operators L1, Lo share the same eigenfunctions,

¢ (x) = V2sin(krz),

and have eigenvalues

Me(1) = Me(2) + 1, M\(2) = k22,
respectively. Thus puy ~ N(0,C1) and pa ~ N(0,Cs) where, in the basis of
eigenfunctions, C; and Co are diagonal with eigenvalues

1 1
k2n2 417 k2x2’
respectively. We have, for hy = (h, ¢x),
w2 (hCih) _ Siens (L4 K2R

724+ 1 = (h,Coh) Sopez+ (km)=2h2 O

Thus, by Lemma 6.15, Theorem 6.13(i) is satisfied. Part (ii) holds trivially.
Notice that

T=c ey P -

is diagonalized in the same basis as the C;, and has eigenvalues

1
k2p2’
These are square-summable, and so part (iii) of Theorem 6.13 holds and the
two measures are absolutely continuous with respect to one another. O

A Hilbert space (X, (-,-)x) of functions f : D € R? — R is called a
reproducing kernel Hilbert space, RKHS for short, if pointwise evaluation is
a continuous linear functional in the Hilbert space. If f(y) = (f,ry)x, then
ry is called the representer of the RKHS.
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Example 6.18. Let J = (0,1). Note that H = L?(J;R) is not an RKHS.
Consider X = H'(J;R) equipped with the inner product

1
(a,b) = a(0)b(0) +/0 d (z)V (z) dz. (6.8)

If ry(z) = 1+ 2 Ay then f(y) = (f,ry). Notice that ry € X. Thus, by the
Cauchy—Schwarz inequality,

1f(y) =g <I(f —g,my)l
|

<
< f = glixllryllx,

demonstrating that pointwise evaluation is a continuous linear functional
on X. Notice, furthermore, that the expression f(y) = (f,ry) is an explicit
statement of the Riesz Representation Theorem. <o

In the literature there is often an overlap of terminology surrounding the
RKHS and the Cameron—Martin space. This is related to the fact that
the representer of an RKHS can often be viewed as the covariance function
(see Section 6.5 below) of a covariance operator associated to a Gaussian
measure on L%(D;R).

6.4. Explicit calculations with Gaussian measures

In this section we confine our attention to Gaussian measures on Hilbert
space. We provide a number of explicit formulae that are helpful throughout
the article, and which also help to build intuition about measures on infinite-
dimensional spaces.

We can construct random draws from a Gaussian measure on Hilbert
space ‘H as follows, using the Karhunen—Loéve expansion.

Theorem 6.19. Let C be a self-adjoint, positive semi-definite, nuclear
operator in a Hilbert space H and let m € H. Let {¢p, v}7>, be an
orthonormal set of eigenvectors/eigenvalues for C ordered so that

M= =

Take {£}72, to be an i.i.d. sequence with & ~ N(0,1). Then the random
variable x € ‘H given by the Karhunen—Loéve expansion

r=m+ Z VYL EkPr (6.9)
k=1
is distributed according to pu = N(m,C). <&

In applications the eigenvalues and eigenvectors of C will often be indexed
over a different countable set, say K. In this context certain calculations are
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cleaner if we write the Karhunen-Loeve expansion (6.9) in the form

z=m+ Y rbr- (6.10)

keK

Here the {&}rex are an ii.d. set of random variables all distributed as
N(0,1). Of course, the order of summation does, in general, matter; when-
ever we use (6.10), however, the ordering will not be material to the outcome
and will streamline the calculations to use (6.10).

The next theorem concerns conditioning of Gaussian measures.

Theorem 6.20. Let H = H; & Hz be a separable Hilbert space with
projectors I1;: H — H;. Let (x1,22) € Hi @ Ha be an H-valued Gaussian
random variable with mean m = (m1,m2) and positive definite covariance
operator C. Define

Cij = E(z; —m;) ® (z; —my).

Then the conditional distribution of x1 given x9 is Gaussian with mean

m' = my + C12Coy (T2 — m3) (6.11)

and covariance operator
C' = C11 — C12Cyy' Coy. (6.12)
o

To understand this theorem it is useful to consider the following finite-
dimensional result concerning block matrix inversion.

Lemma 6.21. Consider a positive definite matrix C' with the block form
Cu C
C = ( 11 12>‘
Cly Cx
Then Cy, is positive definite symmetric and the Schur complement S defined
by S =Cip — 01205210{2 is positive definite symmetric. Furthermore,

o1 S —S71C 0!
—Cyy C1y8™1 Oyl 4 Oy G187 10120y
Now let (z,y) be jointly Gaussian with distribution N'(m,C) and m =
(m7,m5)*. Then the conditional distribution of = given y is Gaussian with
mean m’ and covariance matrix C’ given by
m = mi + 01202_21(3/ — mg),

C' = Oy — C12C5,' Chy. <o
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Example 6.22. Consider a random variable u with Gaussian prior prob-
ability distribution N'(0, 1), and hence associated p.d.f.

ro(u) & exp(—;u2>.

Let y be the random variable y = u + &, where & ~ N(0,0?) is independent
of u. Then the likelihood of y given w has p.d.f. proportional to

1 2
€xp —ﬁ!y —ul”).

The joint probability of (u,y) thus has p.d.f. proportional to

1 1
exp (5ol —uf - J1uP)

Iy—UI2+1\UI2= o 11 ‘“_ . y‘2+c
2 202 o2 +1 v

Since

202

where ¢, is independent of u, we see that the uly is a Gaussian N (m,~?)
with
1 9 o?
e Y T e
This technique for deriving the mean and covariance of a Gaussian measure
is often termed completing the square; it may be rigorously justified by
Theorem 6.20 as follows. First we observe that m; = mo = 0, that C11 =

Cia = Co1 = 1 and that Coy = 1 + 0. The formulae (6.11) and (6.12) then
give identical results to those found by completing the square. &

We now study an infinite-dimensional version of the previous example.
Example 6.23. Consider a random variable v on a Hilbert space H dis-

tributed according to a measure pg ~ N(mg,Cp). We assume that mg €
Im(CS/ 2). Assume that y € R™ is also Gaussian and is given by

y = Au+n,

where A : X — R™ is linear and continuous on a Banach space X C H
with po(X) = 1. The adjoint of A, denoted A*, is hence the operator from
R™ — X* defined by the identity

(Au,v) = (A"0)(u),

which holds for all v € R™, u € X, and where A*v € X* is a linear functional
on X. We also assume that n ~ N(0,T") is independent of u and that
I is positive definite. Thus y|u is Gaussian with density proportional to
exp(—%\y — Aul}). We would like to characterize the Gaussian measure ;¥
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for uly. Let u¥ = N(m,C). To calculate C and m we first use the idea of
completing the square, simply computing formally as if the Hilbert space
for u were finite-dimensional and had a density with respect to Lebesgue
measure; we will then justify the resulting formulae after the fact by means
of Theorem 6.20. The formal Lebesgue density for u|y is proportional to

1 1
exp (3l — Aulf = Jlu = molf, ).

But 1 1 1
§|y — Aulf + 5”“ —mog, = 5”“ —mlE+ ey
with ¢, independent of u, and hence completing the square gives
Cl=aT'A4¢", (6.13a)
m = C(A* T 1y + Cy'my). (6.13b)

We now justify this informal calculation.

The pair (u,y) is jointly Gaussian with Eu = mgy and Ey = Amg. We
define @ = u — mg and § = y — Amy. Note that 7 = Au + n. The pair (u,y)
has covariance operator with components

C11 = Euu* = Gy,
Coo = Eyy* = ACA* + T,
Co = EW* = AC.
Thus, by Theorem 6.20, we deduce that the mean m and covariance operator
C for u conditional on y are given, respectively, by
m = mq + CoA* (I + ACoA*) "1 (y — Amyg) (6.14)
and
C =Cy— CoA*(T + ACoA*) L AC,. (6.15)

We now demonstrate that the formulae (6.14) and (6.15) agree with (6.13).
To check agreement with the formula for the inverse of C found by complet-
ing the square, we show that the product is indeed the identity. Note that

(Co — CoA* (T + ACoA*) "1 ACH) (Cyt + AT 1 A)
= (I — CoA* (T + ACoA™) LAY (I + CoA T A)
=T+ CoA TP A — CoA* (T + ACoA*) 1 (A + ACuA* T 1 A)
=T +CA T 'A—CuA' T 1A
=1

To check agreement with the two formulae for the mean, we proceed as
follows. We have

I~ — (I 4 ACoA*) TLACYA' T~ = (T + ACyA™) L. (6.16)
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The formula for the mean derived by completing the square gives
m=C((C' — A T ' A)ymo + AT 'y)
= mg + CA* T L (y — Amy).
To get agreement with the formula (6.14) it suffices to show that
CA'T ™1 = CoA*(T + ACoA™) L.
By (6.15) and (6.16),
CAT ™! =CoA* T — CuA* (I + ACoA*) L ACYA* T 1
= CoA* (I + ACoA™) ™",

and we are done. O

6.5. Gaussian random fields

Our aim in this subsection is to construct, and study the properties of,
Gaussian random functions. We first consider the basic construction of ran-
dom functions, then Gaussian random functions, following this by a study
of the regularity properties of Gaussian random functions.

Let (2, F,P) be a probability space and D C R% an open set. A random
field on D is a measurable mapping v : D x  — R™. Thus, for any x € D,
u(zx;-) is an R"-valued random variable; on the other hand, for any w € €,
u(;w) : D — R™ is a vector field. In the construction of random fields it is
commonplace to first construct the finite-dimensional distributions. These
are found by choosing any integer ¢ > 1, and any set of points {z;}{_; in
D, and then considering the random vector (u(z1;-)*, ..., u(zg;-)*)* € R™.
From the finite-dimensional distributions of this collection of random vectors
we would like to be able to make sense of the probability measure p on X,
a Banach space, via the formula

W(A) = Pu(w) € A), A e B(X), (6.17)

where w is taken from a common probability space on which the random
element v € X is defined. It is thus necessary to study the joint distribu-
tion of a set of ¢ R™-valued random variables, all on a common probability
space. Such R™-valued random variables are, of course, only defined up
to a set of zero measure. It is desirable that all such finite-dimensional
distributions are defined on a common subset ¢ C  with full measure,
so that u may be viewed as a function u : D x Q5 — R"”; such a choice of
random field is termed a modification. In future developments, statements
about almost sure (regularity) properties of a random field should be inter-
preted as statements concerning the existence of a modification possessing
the stated almost sure regularity property. We will often simply write u(z),
suppressing the explicit dependence on the probability space.
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A Gaussian random field is one where, for any integer ¢ > 1, and any set

of points {z;}7_; in D, the random vector (u(z1;-)* ,...,u(azq, )¥)* € R™
is a Gaussian random vector. The mean function of a Gaussian random
field is m(xz) = Eu(xz). The covariance function is c(z,y) = E(u(z) —

m(z))(u(y) — m(y))*. For Gaussian random fields this function, together
with the mean function, completely specify the joint probability distribu-
tion for (u(x1;-)*,...,u(ze)*)* € R™. Furthermore, if we view the Gaussian
random field as a Gaussian measure on L?(D;R"), then the covariance op-
erator can be constructed from the covariance function as follows. Without
loss of generality we consider the mean zero case; the more general case
follows by shift of origin. Since the field has mean zero we have, from (6.1),

<h1,Ch2> hl, U h2>
—IE/ / hi(x)* (u(z)u(y) ) ha(y) dy dx

- [ m(@*( /D (u(o)us)"halo) )
= [ 1t ([ ety )ao

and we deduce that
©0)(w) = | cla)oty)du. (6.18)

Thus the covariance operator of a Gaussian random field is an integral
operator with kernel given by the covariance function.

If we view the Gaussian random field as a measure on the space X =
C(D;R"™), then the covariance operator K : X* — X may also be written
as an integral operator as follows. For simplicity we consider the case n = 1.
We note that ¢ = £, € X* may be identified with a signed measure p on D.
Then similar arguments to those used in the Hilbert space case show that

(Kt)(x) = /D e, y)u(dy). (6.19)

This may be extended to the case of random fields taking values in R™.

A mean zero Gaussian random field is termed stationary if c(z,y) =
s(z — y) for some matrix-valued function s, so that shifting the field by
a fixed random vector does not change the statistics. It is isotropic if, in
addition, s(x — y) = (] — y|), for some matrix-valued function ¢.

An important general question concerning random fields is to find criteria
to establish their regularity, expressed in terms of the covariance function
or operator. An important tool in this context is the Kolmogorov Continu-
ity Theorem, which follows below. This theorem expresses sample function
regularity in terms of the covariance function of the random field. Another
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key tool in establishing regularity is the Karhunen—Loéve expansion (6.10),
which expresses a random draw from a Gaussian measure in terms of the
eigenfunctions and eigenvalues of the covariance operator and may be used
to express sample function regularity in terms of the decay of the eigenvalues
of the covariance operator. Both these approaches to sample function regu-
larity, one working from the covariance functions, and one from eigenvalues
of the covariance operator, are useful in practice when considering Bayesian
inverse problems for functions; this is because prior Gaussian measures may
be specified via either the covariance function or the covariance operator.

Theorem 6.24. (Kolmogorov Continuity Theorem) Consider an R"-
valued random field u on a bounded open set D C R%. Assume that there
are constants K,e > 0 and § > 1 such that

Elu(z) — u(y)’ < Kz —y|***.

Then wu is almost surely Holder-continuous on D with any exponent smaller
than min{1,¢/d}. %

In this article we mainly work with priors specified through the covari-
ance operator on a simple geometry, as this makes the exposition more
straightforward. Specifically, we consider covariance operators constructed
as fractional powers of operators A whose leading-order behaviour is like
that of the Laplacian on a rectangle. Precisely, we will assume that As-
sumptions 2.9 hold.

By using the Kolmogorov Continuity Theorem we can now prove the
following.

Lemma 6.25. Let A satisfy Assumptions 2.9(i)—(iv). Consider a Gaus-
sian measure u = N (0,C) with ¢ = A~ with a > d/2. Then u ~ p is
almost surely s-Holder-continuous for any exponent s < min{1, a — d/2}.

Proof. The Karhunen—Loeve expansion (6.10) shows that
=Y ——Gui(@).

2
fex M |a/

Thus, for any ¢ > 0 and for C a (possibly changing) constant independent
of t,xz and &,

Elu(z + h) — u(z Z ‘M\m T+ h) — ox(z)[?
keK
< 2
<CY 0 IkP“ min{|k[?|n|?, 1}
kek
<C L min{[B[2[h2, 1} dk

k1 162
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< c/ 202 B2 dk + C e[~ di
Ik <Ihl KAl

|h| =

o0
< sz/l pA-142(1-0) 4. 4 O " pd—1-20 3.

_ C(]h\Q Y(d+2(1-a)) | Ih|~ W(d— 2a))
Making the optimal choice ¢ = 1 gives
Elu(z + h) — u(z)|? < C|h|?* 4.
Thus, by Corollary 6.8 with H = R",
Elu(z) — u(y)[* < Cla — y|**=OP

for any p € N. Choosing the exponents § = 2p and € = (2a — d)p — 2d and
letting p — oo, we deduce from Theorem 6.24 that the function is s-Holder
with any exponent s as specified. UJ

Example 6.26. Assume that a Gaussian random field with measure i has
the property that, for X = C(D;R"), u(X) = 1. Then the Cameron-Martin
space for this measure, denoted by (F,(-,-)g), is compactly embedded in
X, by Theorem 6.11, and hence there is a constant C' > 0 such that

I llx <l e

Thus pointwise evaluation is a continuous linear functional on the Cameron—
Martin space so that this space may be viewed as an RKHS.

As an example consider the Gaussian measure N (0,3A47%) on H, with
A satisfying Assumptions 2.9(i)—(iv). Then p(X) = 1 for @ > d/2 by
Lemma 6.25. The Cameron—Martin space is just H®. This shows that the
space H® is compactly embedded in the space of continuous functions, for
a > d/2. (Of course, a related fact follows more directly from the Sobolev
Embedding Theorem, Theorem 2.10.) &

We now turn to Sobolev regularity, again using the Karhunen—Loéve ex-
pansion. Recall the Sobolev-like spaces (2.29) defining H* = D(A*/?).

Lemma 6.27. Consider a Gaussian measure u = N(0,.47%), where A
satisfies Assumptions 2.9(i)—(iii) and « > d/2. Then u ~ p is in H*® almost
surely for any s € [0, — d/2).

Proof. The Karhunen-Loeéve expansion (6.10) shows that
u=>" Vil
keK
with {&} an 1i.d. N(0,1)-sequence and v, = A, “. Thus
Ellullf =) Ak

keK
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If the sum is finite then E|jul|? < co and u € H* p-a.s. We have

S A= A

kekK keK

Since the eigenvalues )\ of A grow like |k|?, we deduce that this sum is
finite if and only if o > s 4 d/2, by comparison with an integral. Ul

It is interesting that the Holder and Sobolev exponents predicted by Lem-
mas 6.25 and Lemma 6.27 agree for d/2 < o < d/2+1. The proof of Holder
regularity uses Gaussianity in a fundamental way to obtain this property.
In particular, in the proof of Lemma 6.25, we use the fact that the second
moment of Gaussians can be used to bound arbitrarily high moments. Note
that using the Sobolev Embedding Theorem, together with Lemma 6.27, to
determine Holder properties does not, of course, give results which are as
sharp as those obtained from Lemma 6.25. For example, using Lemma 6.27
and Theorem 2.10 shows that choosing o > d ensures that u is almost surely
continuous. On the other hand Lemma 6.25 shows that choosing o = d en-
sures that u is almost surely Holder-continuous with any exponent less than
d/2; in particular, u is almost surely continuous.

Example 6.28. Consider the case d = 2,n = 1 and D = [0, 1]?. Define
the Gaussian random field through the measure pu = N (0, (—A)™%), where
A\ is the Laplacian with domain H}(D)N H?(D). Then Assumptions 2.9 are
satisfied by —A. By Lemma 6.27 it follows that choosing o > 1 suffices to
ensure that draws from p are almost surely in L?(D). Then, by Lemma 6.25,
it follows that, in fact, draws from g are almost surely in C'(D). %

In many applications in this article we will be interested in constructing a
probability measure p on a Hilbert space H which is absolutely continuous
with respect to a given reference Gaussian measure pg. We can then write,
via Theorem 6.2,

dp

dpo
The Theorem 6.14 provides an explicit example of this structure when p
and po are both Gaussian. For expression (6.20) to make sense we require
that the potential ® : H — R is pp-measurable. Implicit in the statement
of Theorem 6.14 is just such a measurability property of the logarithm of
the density between the two Gaussian measures. We return to the struc-
ture (6.20) again, in the case where u is not necessarily Gaussian, in the
next subsection.

(z) o< exp(—P(z)). (6.20)

6.6. Bayesian probability

Bayesian probability forms the underpinnings of the approach to inverse
problems taken in this article. In this subsection we first discuss the general
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concept of conditioned measures. We then turn to Bayesian probability
in the finite-dimensional case, and finally generalize Bayes’ theorem to the
function space setting. The following theorem is of central importance.

Theorem 6.29. Let u, v be probability measures on S x T, where (5, .A)
and (T, B) are measurable spaces. Let (z,y), with z € S and y € T, denote
an element of S x T. Assume that y < v and that g has Radon—-Nikodym
derivative ¢ with respect to v. Assume further that the conditional distri-
bution of x|y under v, denoted by v¥(dz), exists. Then the conditional
distribution of x|y under p, denoted p¥(dx), exists and p¥ < v¥. The
Radon—Nikodym derivative is given by

dp? Ao(z,y) if c(y) >0, and
e ( ) —_ C(y) d)(x y) 1 C(y) an (621)
dvy 1 else,
with c(y fS x,y)dv¥(z) for all y € T. <o

Given a probability triplet (2, F,P) and two sets A, B € F with P(A) >
0,P(B) > 0, we define the probabilities of A given B and B given A by

1

P(AIB) = P40 B).
P(B|A) — P(lA)]P’(A " B).
Combining gives Bayes’ formula:
P(AIB) = - (;)IP(B\A)IP’(A). (6.22)

If (u,y) € R x R? is a jointly distributed pair of random variables with
Lebesgue density p(u,y), then the infinitesimal version of the preceding
formula tells us that

p(uly) o< p(ylu)p(u), (6.23)
and where the normalization constant depends only on y. Thus
plylu)p(u)
pluly) = . 6.24
) = T lyTp(u) du 020

This gives an expression for the probability of a random variable u, given
a single observation of a random variable y, which requires knowledge of
only the prior (unconditioned) probability density p(u) and the conditional
probability density p(y|u) of y given u. Both these expressions are readily
available in many modelling scenarios, as we demonstrate in Section 3. This
observation is the starting point for the Bayesian approach to probability.
Furthermore, there is a wide range of sampling methods which are designed
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to sample probability measures known only up to a multiplicative constant
(see Section 5), and knowledge of the normalization constant is not required
in this context: the formula (6.23) may be used directly to implement these
algorithms. Recall that in the general Bayesian framework introduced in
Section 1 we refer to the observation y as data and to p(y|u) as the likelihood
of the data.

Example 6.30. Consider Example 6.22. The random variable (u,y) is
distributed according to a measure po(u,y), which has density with respect
to Lebesgue measure given by

1 1 1
mo(u,y) = %UGXP<—2U2 - @\Z/ - U’2>

By completing the square we showed that the posterior probability measure
for u given y is uo(u|y) with density
2)

1+ 02 o2 +1 1
WO(u’y) = 27T0'2 exXp\ — 20_2 U — 0_2 + 1y

This result also follows from (6.23), which shows that

m(u,y)
mo(uly) = ———5—.
( | ) fRd 7T(’LL, y) du
Now consider a random variable (u,y) distributed according to measure
w(u, y), which has density p(u,y) with respect to po(u,y). We assume that
p > 0 everywhere on R? x R¢. By Theorem 6.29 the random variable found
by conditioning u from p on y has density

B p(u,y)
Plly) = o (uly) du

with respect to m(u|y). <

The expression (6.23) may be rewritten to give an expression for the ratio
of the posterior and prior p.d.f.s:

p(uly)

p(u)
with constant of proportionality which depends only on y, and not on w.
Stated in this way, the formula has a natural generalization to infinite di-
mensions, as we now explain.

Let u be a random variable distributed according to measure pg on a
separable Banach space (X, || - ||). We assume that the data y € R™ is given
in terms of the observation operator G by the formula y = G(u)+n, wheren €
R™ is independent of u and has density p with respect to Lebesgue measure;

 p(ylu), (6.25)
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for simplicity we assume that the support of p is R™. Define ®(u;y) to be
any function which differs from —log(p(y — G(u))) by an additive function
of y only. Hence it follows that

p(y — G(u))
P(y)

with constant of proportionality independent of u. Use of Bayes’ rule in the
form (6.25) suggests that the probability measure for u given y, denoted
1Y (du), has Radon—Nikodym derivative with respect to pg given by

i
dpo

We refer to such an argument as informal application of Bayes’ rule. We
now justify the formula rigorously.

x exp(—®(u;y)),

(u) o< exp(—P(u;y)). (6.26)

Theorem 6.31. Assume that G : X — R™ is continuous, that p has
support equal to R™ and that po(X) = 1. Then ul|y is distributed according
to the measure p¥(du), which is absolutely continuous with respect to po(du)
and has Radon—Nikodym derivative given by (6.26).

Proof. Throughout the proof C(y) denotes a constant depending on y, but
not on u, and possibly changing between occurrences. Let Qo(dy) = p(y) dy
and Q(dy|u) = p(y — G(u)) dy. By construction,

dQ

10, W) = Cly) exp(~2(usy)).

with constant of proportionality independent of u. Now define

vo(dy, du) = Qo(dy) ® po(du),
v(dy, du) = Q(dy|u)uo(du).

Note that vy is a product measure under which v and y are independent
random variables. Since G : X — R™ is continuous we deduce that & :
X — R is continuous and hence, since po(X) = 1, gg-measurable. Thus v
is well-defined and is absolutely continuous with respect to vy with Radon—

Nikodym derivative
dv
QW) =CW) exp(—2(u;y));

again the constant of proportionality depends only on y. Note that

[ exp(=@un)uodu) = ) [ ply— Gum(dn >0
X X

since p > 0 everywhere on R™ and since G : X — R™ is continuous. By
Theorem 6.29 we have the desired result, since vy(duly) = po(du). O
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Remark 6.32. Finally we remark that, if 4¥ is absolutely continuous with
respect to g then any property which holds almost surely under ug will also
hold almost surely under p¥. The next example illustrates how useful this
fact is. &

Example 6.33. Let pg denote the Gaussian random field constructed in
Example 6.28, with a > 1 so that draws from pg are almost surely continu-
ous. Now imagine that we observe y, the L?(D)-norm of u drawn from puo,
subject to noise n:

y = l[ull® + .

We assume that 7 ~ N(0,~?%), independently of u. The L?(D)-norm is a
continuous function on X = C(D) and puo(X) = 1; hence evaluation of
the L?(D)-norm is po-measurable, and the measure pu¥(du) = P(duly) is
absolutely continuous with respect to pg, with Radon-Nikodym derivative
given by

dp 1

P 0) ox exp(—gralu— ul??).

Note that the probability measure p¥ is not Gaussian. Nonetheless, any
function drawn from ¥ is almost surely in C(D). &

6.7. Metrics on measures

In Section 4 it will be important to estimate the distance between two prob-
ability measures and thus we will be interested in metrics which measure
distance between probability measures.

In this section we introduce two useful metrics on measures: the total
variation distance and the Hellinger distance. We discuss the relationships
between the metrics and indicate how they may be used to estimate differ-
ences between expectations of random variables under two different mea-
sures.

Assume that we have two probability measures p and 4/, both absolutely
continuous with respect to the same reference measure v. The following
definitions give two concepts of distance between p and .

Definition 6.34. The total variation distance between p and p' is

1 f|dp
drv(p, 1) = /M—M

- . &
> [l ~ | ¥

In particular, if g’ is absolutely continuous with respect to u, then

1 Ay
dry (p, pt') = 2/ 1- P ldu, (6.27)

dp
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Definition 6.35. The Hellinger distance between p and y is

dyen(p, p') = \/(é /<\/§Z - @) 2dV>- <&

In particular, if p’ is absolutely continuous with respect to u, then

auatist) = [ (L[ B ) w). o

The total variation distance as defined is invariant under the choice of
v in that it is unchanged if a different reference measure, with respect to
which p and p/ are absolutely continuous, is used. Furthermore, it follows
from the definition that

0 < dpv(p,p') <1

The Hellinger distance is also unchanged if a different reference measure,
with respect to which p and p’ are absolutely continuous, is used. Further-
more, it follows from the definition that

0 < dyen(p, p') < 1.
The Hellinger and total variation distances are related as follows:

Lemma 6.36. Assume that two probability measures 4 and p’ are both
absolutely continuous with respect to a measure v. Then

1
—drv (i, 1) < duen(p, 1) < dov (p, 1) &

V2
The Hellinger distance is particularly useful for estimating the difference

between expectation values of functions of random variables under different
measures. This idea is encapsulated in the following lemma.

Lemma 6.37. Assume that two probability measures p and g’ on a Ba-
nach space (X, || - ||x) are both absolutely continuous with respect to a
measure v. Assume also that f: X — E, where (F, || -||) is a Banach space,
has second moments with respect to both u and p’. Then

’ / 1/2
X —B* £ < 2(BH(| £ + B £11%) " dien (2, 1)

Furthermore, if (E, (-,-), | - ||) is a Hilbert space and f : X — E has fourth
moments, then

B f @ f =B f @ fIl <2(B*IFI1* + BX 1Y) P dwen (s ). ©

Remark 6.38. Note, in particular, that choosing X = FE, and with f
chosen to be the identity mapping, we deduce that the differences in mean
and covariance operators under two measures are bounded above by the
Hellinger distance between the two measures. <

1/2
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6.8. Discussion and bibliography

For a general classical introduction to probability theory see Breiman (1992),
and for a modern treatment of the subject see Grimmett and Stirzaker
(2001). For a concise, modern (and more advanced) treatment of the subject
see Williams (1991). The text by Chorin and Hald (2006) provides an
overview of tools from probability and stochastic processes aimed at applied
mathematicians.

The discussion of Gaussian measures in a Hilbert space, and proofs of
Lemma 6.15 and Theorems 6.6, 6.2, 6.13 and 6.14 may be found in Da Prato
and Zabczyk (1992). Theorem 6.14 is also proved in Bogachev (1998). The
lecture notes by Hairer (2009) are also a good source, and contain a proof
of Theorem 6.1 as well as the Fernique Theorem. Bogachev (1998), Hairer
(2009) and Lifshits (1995) all discuss Gaussian measures in the Banach space
setting. In particular, Theorem 6.4 is proved in Lifshits (1995), and Hairer
(2009) has a nice exposition of the Fernique Theorem.

The Karhunen—Loéve expansion is described in Loeve (1977, 1978) and a
modern treatment of Gaussian random fields is contained in Adler (1990).
Recent work exploiting the Karhunen—Loeéve expansion to approximate so-
lutions of differential equations with random coefficients may be found in
Schwab and Todor (2006) and Todor and Schwab (2007).

Theorem 6.29 is proved in Dudley (2002, Section 10.2). For a general
discussion of Bayes’ rule in finite dimensions see, for example, Bickel and
Doksum (2001). The approach to Bayes’ rule in infinite dimensions that we
adopt in Theorem 6.31 was used to study a specific problem arising in signal
processing in Hairer et al. (2007). The topic of metrics on probability mea-
sures, and further references to the literature, may be found in Gibbs and
Su (2002). Note that the choice of normalization constants in the definitions
of the total variation and Hellinger metrics differs in the literature.
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