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DIFFUSIVE OPTICAL TOMOGRAPHY IN THE BAYESIAN
FRAMEWORK\ast 

KIT NEWTON\dagger , QIN LI\dagger , AND ANDREW M. STUART\ddagger 

Abstract. Many naturally occurring models in the sciences are well approximated by simplified
models using multiscale techniques. In such settings it is natural to ask about the relationship
between inverse problems defined by the original problem and by the multiscale approximation.
We develop an approach to this problem and exemplify it in the context of optical tomographic
imaging. Optical tomographic imaging is a technique for inferring the properties of biological tissue
via measurements of the incoming and outgoing light intensity; it may be used as a medical imaging
methodology. Mathematically, light propagation is modeled by the radiative transfer equation (RTE),
and optical tomography amounts to reconstructing the scattering and the absorption coefficients in
the RTE from boundary measurements. We study this problem in the Bayesian framework, focussing
on the strong scattering regime. In this regime the forward RTE is close to the diffusion equation
(DE). We study the RTE in the asymptotic regime where the forward problem approaches the DE
and prove convergence of the inverse RTE to the inverse DE in both nonlinear and linear settings.
Convergence is proved by studying the distance between the two posterior distributions using the
Hellinger metric and using the Kullback--Leibler divergence.
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1. Introduction.

1.1. Background. Optical imaging is one of many medical imaging techniques
that uses light to probe tissue structure [29, 3]. Near infrared light is sent into bi-
ological tissue, and the outgoing photon current at the surface of the tissue is then
measured. Using these measurements, it is possible to infer properties of the tissue.
While traditional imaging methods such as X-ray imaging provide good reconstruc-
tions of the tissue's properties, they are typically more expensive and more invasive
than optical imaging. Optical imaging can be used for brain, breast, and joint imag-
ing, as well as monitoring blood oxygenation [19, 20, 27].

To study optical imaging mathematically, one may use the radiative transfer
equation (RTE). The forward RTE describes the dynamics of photons in materials
with given optical properties. We denote the distribution of particles at location x with
velocity v by f(x, v), where x \in \Omega \subset \BbbR d, d = 2, 3, and v \in \BbbS d - 1, the unit sphere in \BbbR d.
The model enforces particle motion with constant unit speed, and the velocity affects
the problem only through the direction of travel of the particle. The optical properties
are characterized by two parameters---the scattering coefficient and the absorption
coefficient. The scattering coefficient, denoted by k(x, v, v\prime ), is determined by the
probability of a photon, currently moving in direction v at position x, scattering off a
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particle in the material and changing direction to v\prime . The total absorption coefficient,
denoted by \alpha (x, v), accounts for photons' absorbtion into the material where they are
lost. With this notation established, the RTE is, in its most general form,

(1.1) v \cdot \nabla f(x, v) =

\int 
\BbbS d - 1

k(x, v, v\prime )f(x, v\prime )dv\prime  - \alpha (x, v)f(x, v).

Here the gradient operation is with respect to x, as are related contractions of the
gradient to a divergence. The forward problem is to determine the particle distribution
function f , given the optical properties of the medium as characterized by k and
\alpha . Optical imaging amounts to solving a related inverse problem: the map from
incoming data (light intensity injected into the tissue) to the measured outgoing data
(light intensity collected outside the tissue) is termed the albedo operator, and the
absorption and scattering coefficients in RTE are reconstructed from knowledge of
the albedo operator. There are a number of theoretical results concerning the inverse
RTE, primarily focussed on the setting in which the entire albedo map is known: it
was shown in [11] that the medium is uniquely recoverable in dimension d = 3, and
then in [33] that the reconstruction is Lipschitz stable. For further literature surveys,
see the reviews in [4, 5].

Another model for photon dynamics is the diffusion equation (DE). The diffusion
equation typically governs lower-energy photons than the RTE, leading to a larger
scattering effect and less absorption. Let \rho (x) denote the light intensity at location x
where, as before, x \in \Omega \subset \BbbR d, and let a(x) denote the diffusion coefficient. Then the
DE is

 - \nabla \cdot (a(x)\nabla \rho (x)) = 0.

In this setup, the map from the Dirichlet data (light intensity injected into the tissue)
to the Neumann data (light propagating out) is termed the Dirichlet-to-Neumann
(DtN) map and is used to reconstruct the diffusion coefficient a(x). Using the DtN
map to reconstruct the medium for the elliptic equation is the famous Calder\'on prob-
lem, which has been widely studied from a theoretical perspective. Two foundational
papers are [32], where the uniqueness was shown, and [1], in which logarithmic sta-
bility of the inversion was demonstrated. The review [8] contains further citations to
literature in this area.

It is natural to examine the relation between the two forward models and to under-
stand, from both a physical as well as a mathematical perspective, why they give dis-
tinct stability performances in the inverse problem. When a(x) and (k(x, v, v\prime ), \alpha (x, v))
satisfy certain relations, the two forward models are asymptotically ``close"" when the
laser beam is composed of low-energy photons. In the forward setting, physically,
high-energy photons experience little scattering before leaving the domain, while, in
comparison, low-energy photons are scattered frequently by the tissue before being
released and measured at the boundary. As a consequence, high-energy photons pres-
ent a crisp resolution, and the images from low-energy photons are rather blurred.
Mathematically, the RTE is taken as the correct forward model, and we can use the
Knudsen number to present the number of times that an average photon scatters. In
the low-energy regime, the number of times the photon scatters increases, the Knud-
sen number shrinks to zero, and the RTE converges to the DE in the forward setting.
Correspondingly, the inverse RTE is expected to converge to the inverse DE, mean-
ing the information carried in the albedo operator is almost the same as that in the
DtN map, and the reconstruction should also converge. This has been numerically
observed in [2, 17, 10] and proved rigorously in [21].
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The literature referred to thus far focusses on settings in which the entire albedo
or DtN map is known, and this leads to a deep mathematical theory. However, it is
arguably far from the practical setting in which partial and noisy information about
these mappings is all that is available. The Bayesian formulation of the inverse prob-
lem is useful in this setting as it allows for incorporation of prior information, partial
observation, and noise level in a natural fashion. The practicality of this approach
was demonstrated in the monograph [18], and recent work has led to a mathemati-
cal framework [22, 23, 31] suitable for well-posedness analyses [15] and computations
which blend state-of-the-art computational PDEs and computational statistical ap-
proaches [9, 13]. In the Bayesian approach to the solution of the inverse problem, all
quantities are viewed as random variables, and the solution is the probability distri-
bution of the unknown quantity conditioned on the data [15]. Bayes's theorem allows
determination of this conditional distribution (the posterior) from the prior distribu-
tion on the unknown and from the likelihood, the distribution of the data conditioned
on fixing the unknown. Our work is focussed on understanding the relationship be-
tween the two inverse problems in this Bayesian setting.

1.2. Our contribution. The goal of this paper is to connect the two inverse
problems in optical imaging, and specifically to prove convergence of the inverse RTE
to the inverse DE in the Bayesian framework. Multiscale techniques provide the
desired estimates on the forward problem, and we show how these may be transferred
to the Bayesian inverse problems. To this end we make the following contributions:

\bullet we provide multiscale-based error estimates which relate the solution of the
forward problems for the RTE and DE; see Theorem 2.2, for which we provide
a formal asymptotic justification in the main body of the paper and a rigorous
proof in the appendix;

\bullet we compare the two posterior distributions for the RTE and DE, measur-
ing distance between them in the Kullback--Leibler (KL) divergence and the
Hellinger distance in the optically thick regime (zero limit of the Knudsen
number) when the scattering coefficient is large; see Theorems 3.2 and 3.3;

\bullet we extend the convergence result linking posterior distributions to a setting
in which the albedo operator's dependence on the medium is approximated
by linearization; see Theorem 4.3 and Corollary 4.2.

The approach we adopt will apply to other Bayesian inverse problems whose
forward models are linked through multiscale analyses. The paper is organized as
follows. In section 2 we provide the mathematical setting for our work, including
discussion of the Bayesian formulation of inverse problems and the diffusion limit of
the radiative transfer equation. In section 3 we estimate the distance between the
Bayesian solution of the RTE and DE inverse problems, and in section 4 we address
the same question in the linearized setting. We conclude in section 5.

2. The setting. In this section we establish the mathematical framework within
which all our results are derived. In subsection 2.1 we describe Bayesian inverse prob-
lems in general. We then discuss the setting of linear inverse problems with Gaussian
priors and Gaussian additive noise, in which the posterior is also Gaussian; and we
discuss linearization of the forward operator to obtain an approximate Gaussian pos-
terior. Subsection 2.2 describes the forward problems from the RTE and for the DE,
providing error estimates linking their solutions in the small Knudsen number regime.
In subsection 2.3 we formulate the Bayesian inverse problem for the RTE and DE.
Subsection 2.4 is denoted to linearization of the forward operator for the RTE and DE
and hence forms the basis for defining an approximate Gaussian posterior distribution
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for their respective inverse problems.

2.1. Bayesian inversion. Consider the inverse problem of finding \sigma from y,
where

(2.1) y = \scrG (\sigma ) + \eta ,

\scrG is a known forward map that takes parameter to the data space, and \eta is noise
pollution. In the Bayesian formulation of inversion y, \sigma , and \eta are viewed as random
variables, linked by (2.1), and it is assumed that the prior distribution on \sigma , denoted
by \mu 0, and the distribution of the noise \eta , denoted by \mu error, are known. The objective
is to find the conditional distribution on \sigma given y (denoted \sigma | y.) In this paper we
will assume that \eta is independent of \sigma a priori and denote the distribution of y given
\sigma , which is then a translation by \scrG (\sigma ) of \mu error(\eta ), by \mu \sigma (y). We will concentrate on
the commonly occurring case in which \eta is in a function space and the data y is finite
dimensional; then \mu error(\eta ) may be identified with its Lebesgue density, while \mu 0 and
\mu y are measures on a separable Banach space.

If we denote by \mu y the posterior distribution on \sigma given observation y, then
Bayes's theorem gives

(2.2) \mu y(d\sigma ) = 1
Z\mu \sigma (y)\mu 0(d\sigma ),

where

Z =

\int 
X

\mu \sigma (y)d\mu 0(d\sigma )

and X is a subset of a separable Banach space which contains the support of \mu 0; then
Z normalizes \mu y to a probability density. If we make the additional assumption that
both \mu 0 and \mu error(\eta ) are Gaussian and finite dimensional so that \mu 0 = \scrN (m0, \scrC prior)
and \mu error(\eta ) = N(0, \scrC prior), then we may write a formula for the Lebesgue density of
the posterior:
(2.3)

\mu y(\sigma ) = 1
Z exp

\Bigl( 
 - (\sigma  - m0)

\top \scrC  - 1
prior (\sigma  - m0) - (y  - \scrG (\sigma ))\top \scrC  - 1

error (y  - \scrG (\sigma ))
\Bigr) 
.

We note that analogous formulae are also available in the infinite dimensional case;
see [31, 15] and the references therein.

In optical tomography, one has two fundamental models for describing light prop-
agation: the radiative transfer equation (RTE) and the diffusion equation (DE). We
will denote the solution of the respective inverse problems by \mu y

DE(\sigma ) and \mu y
RTE(\sigma ).

This paper is primarily concerned with showing that these two distributions are close
in the small Knudsen number regime and quantifying the difference. There are multi-
ple ways to quantify the distance between two probability distributions \mu and \mu \prime . We
will use the KL divergence and the Hellinger distance. If \mu has density with respect
to \mu \prime and \mu has support in X defined as above, then the KL divergence is given by

dKL(\mu , \mu 
\prime ) =

\int 
X

log
d\mu 

d\mu \prime (\sigma )d\mu (d\sigma );

if \mu and \mu \prime have density with respect to common reference measure \lambda , with support
in X defined as above, then the Hellinger distance is given by

dHell(\mu , \mu 
\prime )2 =

1

2

\int 
X

\Biggl( \sqrt{} 
d\mu 

d\lambda 
 - 
\sqrt{} 

d\mu \prime 

d\lambda 

\Biggr) 2

d\lambda .
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These formulae have interpretations in the infinite dimensional setting; see the ap-
pendix of [15]. The KL divergence has an information theoretic interpretation which
makes it attractive. However, the Hellinger metric is particularly useful because, for
square integrable test functions, it translates directly into bounds of differences of
expectations of test functions; see Lemma 7.14 in [15]. The square root of the KL
divergence bounds the Hellinger metric, but often sharper bounds on differences of
expectations of test functions are obtained by studying the Hellinger distance directly.
KL divergence was used to quantify the error incurred when approximating posterior
distributions in [26] in finite dimensions, and the Hellinger metric was used in [12] in
the infinite dimensional setting required in this paper.

In some contexts the unknown \sigma is naturally a positive random variable, and so
we seek instead u where \sigma = exp(u). If we define \scrF = \scrG \circ exp(\cdot ), then the inverse
problem (2.1) becomes

(2.4) y = \scrF (u) + \eta .

Often we have an approximate solution u0 to (2.4), and it is natural to seek a solution
which deviates slightly from this. In this situation we write u = u0 + v and linearize
(2.4) to obtain

y \approx \scrF (u0) +D\scrF (u0)v + \eta .

This suggests studying the linear inverse problem

(2.5) z = Gv + \eta ,

where z = y  - \scrF (u0) and G = D\scrF (u0). If we put Gaussian prior \scrN (mprior, \scrC prior) on
v, then the posterior on v| z is also Gaussian \scrN (mpost, \scrC post) determined by
(2.6)
\scrC  - 1
post = \scrC  - 1

prior +GT\scrC  - 1
errorG , and mpost = mprior + \scrC postGT\scrC  - 1

error (z  - Gmprior) .

These formulae can also be interpreted in the infinite dimensional setting; see [24] and
further citations in [31, 15, 28].

When Bayesian inversion is based on a nonlinear forward model, characterization
of the resulting non-Gaussian posterior distribution can be quite complicated, requir-
ing Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) techniques
[30]. One possible approach to dealing with this is to perform the linearization de-
scribed above and work with Gaussian priors and posterior distributions, leading to
closed form solutions. These can be augmented with constraints by means of rejection
sampling based on independent sampling from the Gaussian posterior.

2.2. Diffusion limit of the RTE. We consider the RTE (1.1) in the setting
where the the absorption coefficient \alpha and the scattering coefficient k(x, v, v\prime ) are set
to

\alpha (x, v) = k(x, v, v\prime ) = \epsilon  - 1\sigma (x),

where \epsilon is the Knudsen number. The thickness of the material physically corresponds
to the number of times a photon scatters between being injected in a medium and
escaping. The physical quantity is termed the Knudsen number, which stands for
the ratio of the mean free path and the domain length. The mean free path is the
average distance a particle travels before being scattered. When the Knudsen number
is small, photons, on average, scatter many times before they are emitted, and the
material is thus regarded as optically thick.
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In (1.1) dv denotes the normalized unit measure, meaning

\langle 1\rangle v =

\int 
\BbbS d - 1

1dv = 1 ,

where we have used the notation \langle \cdot \rangle v to denote normalized integration over v. Thus
(1.1) may be written as

v \cdot \nabla f =
1

\epsilon 
\sigma \scrL f,

where the collision operator is

(2.7) \scrL f =

\int 
\BbbS d - 1

f(x, v\prime )dv\prime  - f = \langle f\rangle v  - f .

To ensure a unique solution we impose an incoming boundary condition, the
analogue of a Dirichlet boundary condition for equations lacking velocity dependence.
To this end we define

\Gamma \pm = \{ (x, v) : x \in \partial \Omega ,\pm v \cdot nx > 0\} ,

which denotes the collection of coordinates on the boundary x \in \partial \Omega on which the
velocity v points into/out of the domain, respectively, where \pm v \cdot nx > 0. Here nx is
the normal vector at point x pointing out of \Omega . The incoming boundary condition is
imposed on \Gamma  - . We also define, for any fixed y \in \partial \Omega ,

\Gamma \pm (y) = \{ (x, v) : x = y,\pm v \cdot ny > 0\} ,

and we set
\Gamma = \Gamma + \cup \Gamma  - and \Gamma (y) = \Gamma +(y) \cup \Gamma  - (y) .

For a unique solution to (1.1), boundary conditions must be imposed on \Gamma  - as follows:

f | \Gamma  - = \phi (x, v) .

Combining the foregoing considerations we obtain

(2.8)

\Biggl\{ 
v \cdot \nabla f = 1

\epsilon \sigma \scrL f , (x, v) \in \Omega \times \BbbS d - 1,

f | \Gamma  - = \phi (x, v),

with \scrL as defined in (2.7). The domain \Omega has a smooth C1 boundary \partial \Omega . In the
small \epsilon regime, it was conjectured in [7] and then proved in [6] that the equation is
asymptotically close to the following diffusion equation:

(2.9)

\Biggl\{ 
 - \nabla \cdot 

\bigl( 
1
\sigma \nabla \rho 

\bigr) 
= 0, x \in \Omega \subset \BbbR d,

\rho 
\bigm| \bigm| 
\partial \Omega 

= \xi (x).

We make this convergence explicit under the following assumptions.

Assumption 2.1. The functions \sigma , \phi , and \xi characterizing the medium and the
boundary conditions are smooth functions, bounded in the following sense:

\bullet the admissible medium is bounded, meaning there is a constant C1 so that

max\{ \| \sigma \| L\infty (\Omega ) , \| \sigma  - 1\| L\infty (\Omega ) , \| \nabla 
\bigl( 
\sigma  - 1

\bigr) 
\| L\infty (\Omega )\} < C1 ;
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\bullet and the boundary conditions are smooth and bounded, meaning

max\{ \| \xi \| L\infty (\partial \Omega ) , \| \phi \| L\infty (\Gamma )\} < C1 .

We also term the set of admissible media

(2.10) \scrA = \{ \sigma \in C3(\Omega ) : max\{ \| \sigma \| L\infty (\Omega ) , \| \sigma  - 1\| L\infty (\Omega ) , \| \nabla 
\bigl( 
\sigma  - 1

\bigr) 
\| L\infty (\Omega )\} < C1\} .

Here C3 is the collection of third-order differentiable functions.

With this assumption, we first have the uniform boundedness of the Neumann
data over \scrA .

Proposition 2.1 (see [16]). Suppose \rho solves (2.9) with medium \sigma and the
smooth boundary condition \xi satisfying Assumption 2.1; then there is a constant C
that only depends on C1 and \Omega , so that

(2.11) sup
\sigma \in \scrA 

\bigm\| \bigm\| \bigm\| \bigm\| 1\sigma \partial n\rho 
\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

< C .

Note that we assume only that the medium is smooth enough so the Neumann
data is bounded. The regularity of the medium could certainly be relaxed, but we do
not pursue that direction in this paper. The key point here is to have the uniform
bound over the set \scrA .

Theorem 2.2. Suppose f(x, v) satisfies (2.8) with smooth boundary conditions
and \rho (x) solves (2.9). Then, as \epsilon \rightarrow 0, f(x, v) \rightarrow \rho (x), assuming suitable compatibility
relationships between the boundary data \phi and \xi of the two equations. In particular,
with compatible boundary conditions at different orders, one approximates f through
different forms:

\bullet if \phi (x, v) = \xi (x),
\| f  - \rho \| L\infty (\Omega \times \BbbS d - 1) < C\scrA \epsilon ;

\bullet if \phi (x, v) = \xi (x) - \epsilon 1
\sigma (x)v(x) \cdot \nabla \xi (x),\bigm\| \bigm\| \bigm\| \bigm\| f  - \rho +

\epsilon 

\sigma 
v \cdot \nabla \rho 

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (\Omega \times \BbbS d - 1)

< C\scrA \epsilon 
2 .

Here the constant C\scrA depends on C1, the upper bound in Assumption 2.1 for the
admissible set.

We leave the rigorous proof to the appendix and present here the formal pertur-
bation expansion derivation; the latter is useful in building intuition.

Sketch proof: Perturbation expansion. We will use the standard asymptotic ex-
pansion technique in \epsilon away from the boundary. Set

fin = f0 + \epsilon f1 + \epsilon 2f2 + \cdot \cdot \cdot .

Plugging the expansion into (2.8), we obtain

v \cdot \nabla f0 + \epsilon v \cdot \nabla f1 + \epsilon 2v \cdot \nabla f2 + \cdot \cdot \cdot =
1

\epsilon 
\sigma \scrL [f0 + \epsilon f1 + \epsilon 2f2 + \cdot \cdot \cdot ].

Multiplying by \epsilon and equating in powers of \epsilon gives

\epsilon 0 : \scrL [f0] = 0 ,

\epsilon 1 : v \cdot \nabla f0 = \sigma \scrL [f1] ,
\epsilon 2 : v \cdot \nabla f1 = \sigma \scrL [f2] .
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The zeroth order expansion indicates that f0 is in the null space of \scrL . From (2.7)
we deduce that f0 must be velocity independent, and thus we write f0(x, v) = \rho (x).
With this expression, considering the equation at \scrO (\epsilon ), we have

f1 = \scrL  - 1

\biggl[ 
1

\sigma 
v \cdot \nabla \rho 

\biggr] 
\Rightarrow f1 =  - 1

\sigma 
v \cdot \nabla \rho .

Here we have used the fact that \scrL is one-to-one on the domain (Null\scrL )\bot and that
v \cdot \nabla \rho \bot (Null\scrL )\bot , since v integrates to zero on the unit sphere. To close the system
we consider the equation at \scrO (\epsilon 2), substituting f0 = \rho and f1 =  - 1

\sigma v \cdot \nabla \rho to obtain

 - v \cdot \nabla 
\biggl( 
1

\sigma 
v \cdot \nabla \rho 

\biggr) 
= \sigma \scrL [f2].

Integrating the equation on both sides with respect to v and taking into account the
fact that

\int 
\BbbS d - 1 \scrL [f2]dv = 0, we have, using the summation convention,

0 =  - 
\int 
\BbbS d - 1

v \cdot \nabla 
\biggl( 
1

\sigma 
v \cdot \nabla \rho 

\biggr) 
dv =  - 

\int 
\BbbS d - 1

vivj\partial i

\biggl( 
1

\sigma 
\partial j\rho 

\biggr) 
dv =  - Cd\partial i

\biggl( 
1

\sigma 
\partial i\rho 

\biggr) 
=  - Cd\nabla \cdot 

\biggl( 
1

\sigma 
\nabla \rho 

\biggr) 
,

implying that

 - \nabla \cdot 
\biggl( 
1

\sigma 
\nabla \rho 

\biggr) 
= 0 .

Here we have used that

(2.12)

\int 
\BbbS d - 1

vivjdv = Cd\delta ij , Cd :=

\int 
\BbbS d - 1

v2i dv.

Note that Cd depends on dimension. For example, in \BbbS 2, Cd = 1/3. Thus, we have
shown that the radiative transfer equation in the diffusion limit becomes the diffusion
equation, which concludes the sketch proof of the theorem.

Remark 2.2. In the preceding formal derivation we have ignored boundary condi-
tions. In practice, unless these are chosen carefully, there will be a mismatch between
the DE and the small \epsilon solution of the RTE near the boundary. The boundary
conditions stated in the theorem give different levels of consistency between the two
equations and hence lead to differing error estimates. See the proof in the appendix for
details. When the boundary conditions are incompatible, the analysis is considerably
more subtle; see [7, 34, 25] for details.

2.3. Inverse problems for the RTE and DE. We now define Bayesian inverse
problems for the RTE and DE, relating to partial and noisy observations of the albedo
and DtN operators, respectively. The first ingredient is the definition of the forward
map \scrG , which we now do for the RTE and DE. We conclude this subsection with a
discussion of the prior distribution, which we choose in common between the RTE
and DE settings.

In optical tomography, high-energy light with a known intensity is injected into
the material, and detectors are placed on the tissue boundary to collect the light
current emitted. For the RTE, the albedo operator is defined by \scrH RTE, which is a
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\sigma -dependent linear transformation of boundary data \phi into the measurement space,
defined by

(2.13) \scrH RTE(\sigma )\phi = hRTE ,

where

(2.14) hRTE(x) =  - 1

Cd\epsilon 

\int 
\Gamma (x)

v \cdot nf(x, v)dv ,

and f satisfies (2.8). It is important to note that, while \scrH RTE is linear in its action
on \phi , it depends nonlinearly on the unknown medium \sigma . The inverse problem of
reconstructing \sigma from measurements of hRTE is thus a nonlinear inverse problem.

In practice, finitely many smooth incoming data \phi k are injected and finitely many
measurements are made at the boundary for each \phi k; we assume that these measure-
ments may be expressed as linear functionals lj of hRTE. We thus define the forward
map to be inverted by

(2.15) \scrG RTE(\sigma )j,k = lj(\scrH RTE(\sigma )\phi k),

where (j, k) \in \{ 1, . . . , J\} \otimes \{ 1, . . . ,K\} . We assume additive Gaussian noise \eta to obtain
the compact representation of the inverse problem

(2.16) \sansy = \scrG RTE(\sigma ) + \eta ,

where \eta \in \BbbR JK is drawn from a Gaussian distribution which we assume to have the
form

(2.17) \eta \sim \scrN (0, \gamma 2\BbbI ) ,

meaning

(2.18) \sansy 
\bigm| \bigm| \sigma \sim \scrN (\scrG RTE(\sigma ), \gamma 2\BbbI ) .

For the DE model the situation is analogous. The map that takes the Dirichlet
data to the Neumann outflow is termed the DtN map and is defined by

(2.19) \scrH DE(\sigma )\phi = hDE ,

where

(2.20) hDE(x) =
1

\sigma 

\partial \rho 

\partial n
(x)

and \rho satisfies (2.9). In practice, finitely many incoming data \xi k are injected and
finitely many linear functionals lj of hDE are measured, noisily, leading to an inverse
problem of the form

(2.21) \sansy = \scrG DE(\sigma ) + \eta ,

where \eta \in \BbbR JK denotes observational noise and where the forward map is defined by

(2.22) \scrG DE(\sigma )j,k = lj(\scrH DE(\sigma )\phi k),
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where (j, k) \in \{ 1, . . . , J\} \otimes \{ 1, . . . ,K\} . For simplicity we assume the same noise model
(2.17) for \eta .

Together with (2.17) and the assumption that \eta and \sigma are a priori independent,
(2.16) and (2.21) define the likelihood that the Bayesian formulation of the inverse
problem determines \sigma from \sansy from RTE and DE, respectively. We now define the prior
on \sigma , which we will choose in common between the two inverse problems. To this
end recall the set (2.10) and define the prior distribution \mu 0(d\sigma ) to be a probability
measure supported on \scrA .

Assumption 2.3. The prior measure \mu 0 is supported on an infinite dimensional
separable Banach space, and the support is contained in the admissible set \scrA given by
(2.10): \int 

\scrA 
1d\mu 0(\sigma ) = 1 .

In our case \scrA is a subset of C3. If we further relax the regularity assumptions,
to let \scrA be a subset of W 1,\infty , for example, then W 1,\infty is not separable. But it is
possible to construct useful measures with support in W 1,\infty which are separable, for
example through the closure of sets of random series expansions; see [15] for a related
example in L\infty .

Bayes's theorem (2.2) for both models is then given by

(2.23) \mu \sansy 
RTE(d\sigma ) =

1

ZRTE
\mu \sigma 
RTE(\sansy )\mu 0(d\sigma ) , and \mu \sansy 

DE(\sigma ) =
1

ZDE
\mu \sigma 
DE(\sansy )\mu 0(d\sigma ) ,

where
(2.24)

\mu \sigma 
RTE(\sansy ) = exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG RTE(\sigma )\| 22

\biggr) 
, and \mu \sigma 

DE(\sansy ) = exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG DE(\sigma )\| 22

\biggr) 
.

The functions \scrG RTE and \scrG DE are here both viewed as mappings from \scrA into \BbbR JK .
The normalization factors are given by

(2.25) ZRTE =

\int 
\scrA 
\mu \sigma 
RTE(\sansy )d\mu 0(\sigma ) , and ZDE =

\int 
\scrA 
\mu \sigma 
DE(\sansy )d\mu 0(\sigma ) .

Note also that the likelihoods \mu \sigma 
RTE(\sansy ) and \mu \sigma 

DE(\sansy ) are, for fixed \sigma , proportional
to densities on \BbbR JK ; hence we write them as functions of y. On the other hand,
\mu \sansy 
RTE(d\sigma ), \mu \sansy 

DE(d\sigma ), and \mu 0(d\sigma ) are measures with support in \scrA , a subset of an
infinite dimensional separable Banach space.

Theorem 2.2 shows that given compatible \phi and \xi , hRTE and hDE are close when
the Knudsen number \epsilon is small, so that \scrG RTE and \scrG DE are close for every fixed \sigma 
when \epsilon is small. In section 3 we use these facts to demonstrate the convergence of
\mu \sigma 
RTE to \mu \sigma 

DE as \epsilon \rightarrow 0.

2.4. Linearized albedo operator and DtN map. We derive linearized ver-
sions of the albedo operator and the DtN map by assuming that the unknown medium
\sigma is close to a known background \sigma 0. In order to enforce positivity, we assume \sigma = eu,
define u0 so that \sigma 0 = eu0 , and find equations satisfied by the perturbation w = u - u0.
The corresponding inverse problem amounts to reconstructing w using the measure-
ments and some known information computed using the background medium \sigma 0. We
express the admissible set \scrA given in (2.10) on the log-scale and write

(2.26) \scrA u = \{ u \in C3(\Omega ) : max\{ \| eu\| L\infty (\Omega ) , \| e - u\| L\infty (\Omega ) , \| \nabla 
\bigl( 
e - u

\bigr) 
\| L\infty (\Omega )\} < C1\} .
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This implies

(2.27) sup
u\in \scrA u

\| u\| L\infty (\Omega ) < C2 := logC1 .

To start, we recall (2.8),

(2.28)

\Biggl\{ 
v \cdot \nabla f = 1

\epsilon e
u\scrL f,

f
\bigm| \bigm| 
\Gamma  - 

= \phi (x, v).

We assume that there is a background scattering coefficient u0 \in \scrA u and that w(x) \in 
C3(\Omega ) is a small fluctuation of u around the background u0: w = u - u0. Then

(2.29) \| w(x)\| L\infty (\Omega ) = \| u(x) - u0(x)\| L\infty (\Omega ) \ll \| u\| L\infty (\Omega ) .

We define a new function flin which solves the RTE with the background scattering
coefficient and the same boundary condition,

(2.30)

\Biggl\{ 
v \cdot \nabla flin = 1

\epsilon e
u0\scrL flin,

flin
\bigm| \bigm| 
\Gamma  - 

= \phi (x, v).

The difference between f and flin, termed \sansf = f  - flin, then satisfies, neglecting terms
of \scrO (w2), the following error equation:

(2.31)

\Biggl\{ 
v \cdot \nabla \sansf = 1

\epsilon e
u0\scrL \sansf + 1

\epsilon e
u0w\scrL flin,

\sansf 
\bigm| \bigm| 
\Gamma  - 

= 0.

To extract boundary data from (2.31), we define the adjoint equation, with a
delta function on the boundary,

(2.32)

\Biggl\{ 
 - v \cdot \nabla g = 1

\epsilon e
u0\scrL g,

g
\bigm| \bigm| 
\Gamma +

= \delta y(x).

Here we have used the fact that \scrL is self-adjoint, and for the adjoint equation, the
incoming boundary condition should be imposed on \Gamma +. We have also imposed a
delta function concentrated at y \in \partial \Omega . Multiplying (2.31) by g and (2.32) by \sansf and
subtracting the two obtained equations, integrated over x and v, we obtain, upon
using Green's identity,\int 

\Gamma +(y)\cup \Gamma  - (y)

(v \cdot n) \sansf gdxdv =
1

\epsilon 

\int 
\Omega 

eu0w

\int 
\BbbS d - 1

g\scrL flindvdx .

Noting that \sansf | \Gamma  - = 0 and g| \Gamma +
= \delta y, we may further simplify the left-hand side,

obtaining

(2.33)

\int 
\Gamma +(y)

v \cdot ny\sansf (y, v)dv =
1

\epsilon 

\int 
\Omega 

eu0(x)w(x)

\int 
\BbbS d - 1

g(x, v)\scrL flin(x, v)dvdx.

As in the nonlinear case, we have finitely many measurements and experiments
conducted. In the K experiments, we use incoming data \phi k, and for each experiment
we measure data using the measurement-operator lj :

(2.34) \{ \phi 1 , . . . , \phi K\} , \{ l1 , . . . , lJ\} .
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Letting gj denote the solution to (2.32) with \delta xj
(x) on the boundary, and letting fk

and flin,k denote the solutions to (2.28) and (2.30) with \phi k as boundary data, we
define

(2.35) \gamma RTE
jk (x) =  - eu0

Cd\epsilon 2

\int 
\BbbS d - 1

gj(x, v)\scrL flin,k(x, v)dv

and

(2.36) GRTE
jk (w) := \langle \gamma RTE

jk (x) , w\rangle x ,

with \langle \cdot , \cdot \rangle x denoting the inner-product defined by integration over \Omega in the x variable
alone. We note that, by (2.33),

(2.37) GRTE
jk (w) \approx \scrG RTE

jk (log(u)) - \scrG RTE
jk (log(u0)) ,

because

\scrG RTE
jk (log(u)) - \scrG RTE

jk (log(u0)) = lj(\scrH RTE(log(u))(\phi k)) - lj(\scrH RTE(log(u0))(\phi k))

=  - 1

Cd\epsilon 

\int 
\Gamma +(xj)

v \cdot nxj
fk(xj , v)dv

+
1

Cd\epsilon 

\int 
\Gamma +(xj)

v \cdot nxjflin,k(xj , v)dv

\approx  - 1

Cd\epsilon 

\int 
\Gamma +(xj)

v \cdot nxj
\sansf k(xj , v)dv

= GRTE
jk (w).

Here \sansf k = fk  - flin,k.
Deriving the linearized DtN map for the diffusion equation is similar. For ease

of notation we start with the form of the diffusion equation as in (2.9), where the
scattering coefficient is shown in the denominator. For positivity, we use \sigma = eu, and
\sigma 0 = eu0 as before. We now derive an equation for \tau = \rho  - \rho lin, first noting that\Biggl\{ 

 - \nabla \cdot 
\bigl( 

1
eu\nabla \rho 

\bigr) 
=  - \nabla \cdot 

\bigl( 
1

eu0ew\nabla (\rho lin + \tau )
\bigr) 
= 0,

\rho 
\bigm| \bigm| 
\partial \Omega 

= \xi (x),

where \rho lin solves

(2.38)

\Biggl\{ 
 - \nabla \cdot 

\bigl( 
1

eu0
\nabla \rho lin

\bigr) 
= 0,

\rho lin
\bigm| \bigm| 
\partial \Omega 

= \xi (x).

Subtracting the two equations and neglecting higher order terms, we have

(2.39)

\Biggl\{ 
 - \nabla \cdot 

\bigl( 
1

eu0
\nabla \tau 
\bigr) 
=  - \nabla \cdot 

\bigl( 
w
eu0

\nabla \rho lin
\bigr) 
,

\tau 
\bigm| \bigm| 
\partial \Omega 

= 0,

with w = u - u0 as in the RTE case.
We also define \rho g which solves the adjoint equation:

(2.40)

\Biggl\{ 
 - \nabla \cdot 

\bigl( 
1

eu0
\nabla \rho g

\bigr) 
= 0,

\rho g
\bigm| \bigm| 
\partial \Omega 

= \delta y.
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Multiplying (2.39) by \rho g and (2.40) by \tau and integrating over \Omega , we obtain\int 
\Omega 

w

eu0
\nabla \rho lin \cdot \nabla \rho gdx =  - 

\int 
\partial \Omega 

w

eu0

\partial \rho lin
\partial n

\rho gdx+

\int 
\partial \Omega 

1

eu0

\partial \tau 

\partial n
\rho gdx(2.41)

=  - w(y)

eu0(y)

\partial \rho lin(y)

\partial ny
+

1

eu0(y)

\partial \tau (y)

\partial ny
.

Similarly to the nonlinear case, we conduct finitely many experiments and make
finitely many measurements as in (2.34). Define

(2.42) \gamma DE
jk (x) =

1

eu0
\nabla \rho lin,k \cdot \nabla \rho g,j ,

where \rho g,j satisfies (2.40) with \delta yj
as the boundary condition and \rho lin,k satisfies (2.38)

with \xi k with as the boundary condition. Using the approximation that \tau satisfies
(2.39), we write (2.41) as

(2.43) \langle \gamma DE
jk (x) , w\rangle x = \scrG DE

jk (log(u)) - \scrG DE
jk (log(u0)) = GDE

jk (w) ,

where again GDE
jk is the linearized approximation and we have used the estimate

\scrG DE
jk (log(u)) - \scrG DE

jk (log(u0)) =
1

eu
\partial \rho k
\partial n

(xj) - 
1

eu0

\partial \rho lin,k
\partial n

(xj)

=
1

eweu0

\partial (\tau k + \rho lin,k)

\partial n
(xj) - 

1

eu0

\partial \rho lin,k
\partial n

(xj)

\approx 1

eu0

\partial \tau k
\partial n

(xj) - 
w

eu0

\partial \rho lin,k
\partial n

(xj) .

Here \tau k = \rho k  - \rho lin,k. This defines the (linear) action of GDE
jk on w. Notice that the

linearized albedo operator (2.36) and the linearized DtN map (2.43) have the same
format: they are both Fredholm first type integrals, determined by the \gamma RTE

jk and \gamma DE
jk

respectively defined in (2.35) and (2.42). To show the convergence of the two problems
amounts to showing, in the small \epsilon regime, the convergence of the two forward maps
\gamma RTE
jk \sim \gamma DE

jk for all j and k, and the convergence of the data GRTE
jk (w) to GDE

jk (w) for
reasonably small w.

3. Nonlinear inverse problems. In this section we analyze the distance be-
tween the posterior distributions of the nonlinear inverse problems defined by the RTE
and DE, namely \mu \sansy 

RTE(\sigma ) and \mu \sansy 
DE(\sigma ), respectively. We consider the setting in which

the Knudsen number \epsilon is small. We show that the two distributions converge in the
KL divergence and the Hellinger distance as \epsilon \rightarrow 0. The three subsections concern,
in turn, the following convergence results as \epsilon \rightarrow 0:

1. convergence of the forward map \scrG RTE(\sigma ) to \scrG DE(\sigma ) for a fixed list of (\phi k, lj);
2. convergence of the KL divergence between \mu \sansy 

RTE(\sigma ) and \mu \sansy 
DE(\sigma ) to zero;

3. convergence of the Hellinger metric \mu \sansy 
RTE(\sigma ) and \mu \sansy 

DE(\sigma ) to zero.
Before these three pieces of analysis, recall that the forward measurement oper-

ators for the RTE and DE are defined in (2.15) and (2.22), respectively, and that
Bayes's theorem (2.2) delivers the formulae for the posterior distributions in (2.23)--
(2.25).

3.1. Convergence of the forward map. For simplicity we assume that lj is
the linear functional that takes, corresponding to evaluation at point xj \in \partial \Omega ,

(3.1) lj(f) = f(xj) , where xj \in \partial \Omega .
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Other linear functionals can be handled with similar analysis. Then

(3.2) \scrG RTE
jk (\sigma ) = lj(\scrH RTE(\sigma )\phi k) =  - 1

Cd\epsilon 

\int 
\Gamma (xj)

(v \cdot n)f(xj , v)dv ,

and

(3.3) \scrG DE
jk (\sigma ) = lj(\scrH DE(\sigma )\xi k) =

1

\sigma (xj)

\partial \rho 

\partial nxj

(xj) ,

where f and \rho are the solutions to the RTE and the DE with \phi k and \xi k as incoming
conditions, respectively.

We now have the following proposition.

Proposition 3.1. Assume that \phi k(x, v) = \xi (x) - \epsilon 1
\sigma (x)v(x)\cdot \nabla \xi k(x). Then, under

Assumption 2.1, the forward maps \scrG RTE and \scrG DE satisfy

(3.4) sup
\sigma \in \scrA 

\| \scrG RTE(\sigma ) - \scrG DE(\sigma )\| \infty \leq C\scrA 

Cd
\epsilon .

Furthermore, there is a constant C that only depends on C1 and \Omega so that

(3.5) max
\Bigl\{ 
sup
\sigma \in \scrA 

\| \scrG RTE(\sigma )\| \infty , sup
\sigma \in \scrA 

\| \scrG DE(\sigma )\| \infty 
\Bigr\} 
\leq C .

Proof. To show the first item it is enough to prove that, for every j and k,

| \scrG RTE
jk (\sigma ) - \scrG DE

jk (\sigma )| \leq C\scrA 

Cd
\epsilon .

Note that, for any y, \BbbS d - 1\setminus \Gamma (y) is the set on which (v \cdot n) = 0. Hence, employing
(2.12), (3.2), and (3.3) and defining

r = f  - \rho +
\epsilon 

\sigma 
v \cdot \nabla \rho ,

we then have

| \scrG RTE
jk (\sigma ) - \scrG DE

jk (\sigma )| =

\bigm| \bigm| \bigm| \bigm| \bigm| 1\sigma \partial \rho 

\partial n
(xj) +

1

Cd\epsilon 

\int 
\Gamma (xj)

v \cdot nfdv

\bigm| \bigm| \bigm| \bigm| \bigm| (3.6)

=

\bigm| \bigm| \bigm| \bigm| 1\sigma \partial \rho 

\partial n
(xj) +

1

Cd\epsilon 

\int 
\BbbS d - 1

(v \cdot n)
\biggl( 
\rho  - \epsilon 

\sigma 
v \cdot \nabla \rho + r

\biggr) 
dv

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| 1\sigma \partial \rho 

\partial n
(xj) +

\int 
\BbbS d - 1

1

Cd

\biggl[ 
 - 1

\sigma 
(v \cdot n)(v \cdot \nabla \rho ) +

r

\epsilon 

\biggr] 
dv

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| 1\sigma \partial \rho 

\partial n
(xj) - 

1

\sigma 

\partial \rho 

\partial n
(xj)

\bigm| \bigm| \bigm| \bigm| + C\scrA 

Cd
\epsilon =

C\scrA 

Cd
\epsilon .

Here we used Theorem 2.2, which states

\| r\| L\infty (\Omega \times \BbbS d - 1) =
\bigm\| \bigm\| \bigm\| f  - 

\Bigl( 
\rho  - \epsilon 

\sigma 
v \cdot \nabla \rho 

\Bigr) \bigm\| \bigm\| \bigm\| 
L\infty (\Omega \times \BbbS d - 1)

\leq C\scrA \epsilon 
2 ,

which concludes the proof of (3.4). Inequality (3.5) is a direct consequence of Propo-
sition 2.1 and combining the conclusion of Proposition 2.1 with (3.4).
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3.2. Convergence in Kullback--Leibler divergence. We use the convergence
of the forward map to show the convergence in the posterior distribution using the
KL divergence.

Theorem 3.2. Let the assumptions of Proposition 3.1, together with Assumption
2.3, hold. Then

dKL(\mu 
\sansy 
RTE, \mu 

\sansy 
DE) \leq \scrO (\epsilon ) .

Proof. We first note that, over the set \scrA which contains the support of the com-
mon prior measure \mu 0, the likelihoods \mu \sigma 

RTE(\sansy ) and \mu \sigma 
DE(\sansy ) are bounded uniformly

from above and below. Hence the measures \mu \sansy 
RTE and \mu \sansy 

DE are mutually absolutely
continuous and have densities with respect to one another. In particular, we may
define

(3.7) dKL(\mu 
\sansy 
RTE, \mu 

\sansy 
DE) =

\int 
\scrA 

\biggl( 
log

d\mu \sansy 
RTE

d\mu \sansy 
DE

(\sigma )

\biggr) 
d\mu \sansy 

DE(\sigma ) ,

where \sigma \in \scrA . Clearly \mu \sansy 
DE has no \epsilon dependence, and so it suffices to show that

log
d\mu \sansy 

RTE

d\mu \sansy 
DE

is \scrO (\epsilon ), uniformly on \scrA . Using (2.23)--(2.25), we find

log
d\mu \sansy 

RTE

d\mu \sansy 
DE

(\sigma ) = log

\biggl( 
\mu 0(\sigma )\mu 

\sigma 
RTE(\sansy )

ZRTE

ZDE

\mu 0(\sigma )\mu \sigma 
DE(\sansy )

\biggr) 
= log

ZDE

ZRTE
+ log

\mu \sigma 
RTE(\sansy )

\mu \sigma 
DE(\sansy )

.

We will show that both terms are \scrO (\epsilon ). Recalling (2.24), we see that

\bigm| \bigm| \mu \sigma 
RTE(\sansy ) - \mu \sigma 

DE(\sansy )| =

\bigm| \bigm| \bigm| \bigm| \bigm| exp
\biggl( 
 - \| \sansy  - \scrG RTE(\sigma )\| 2

2\gamma 2

\biggr) 
 - exp

\biggl( 
 - \| \sansy  - \scrG DE(\sigma )\| 2

2\gamma 2

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c
\bigm| \bigm| \bigm| \| \sansy  - \scrG RTE(\sigma )\| 2  - \| \sansy  - \scrG DE(\sigma )\| 2

\bigm| \bigm| \bigm| ,
where c < \infty is the Lipschitz constant for exp( - | x| /2\gamma 2). Now note that

\| \sansy  - \scrG RTE(\sigma )\| 2 - \| \sansy  - \scrG DE(\sigma )\| 2 =  - 
\bigl( 
2\sansy  - \scrG RTE(\sigma ) - \scrG DE(\sigma )

\bigr) \top \bigl( \scrG RTE(\sigma ) - \scrG DE(\sigma )
\bigr) 
,

and, according to Proposition 3.1,

(3.8) sup
\sigma \in \scrA 

\| c
\bigl( 
2\sansy  - \scrG RTE(\sigma ) - \scrG DE(\sigma )

\bigr) 
\| \infty < \infty ,

we deduce that
sup
\sigma \in \scrA 

\bigm| \bigm| \mu \sigma 
RTE(\sansy ) - \mu \sigma 

DE(\sansy )
\bigm| \bigm| = \scrO (\epsilon ) .

Using the definition of the normalization factor and noting that
\int 
d\mu 0(\scrA ) = 1, we

also have \bigm| \bigm| ZRTE  - ZDE
\bigm| \bigm| \leq \int 

\scrA 

\bigm| \bigm| \mu \sigma 
RTE(\sansy ) - \mu \sigma 

DE(\sansy )
\bigm| \bigm| d\mu 0(\sigma ) = \scrO (\epsilon ) .

Noting that ZDE and \mu \sigma 
DE(\sansy ) are bounded from below uniformly with respect to

\sigma \in \scrA , we deduce from the two preceding displays that

sup
\sigma \in \scrA 

\bigm| \bigm| \bigm| \bigm| log ZDE

ZRTE
+ log

\mu \sigma 
RTE(\sansy )

\mu \sigma 
DE(\sansy )

\bigm| \bigm| \bigm| \bigm| = \scrO (\epsilon ) ,

which completes the proof.
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3.3. Convergence in Hellinger metric. Convergence in the Hellinger metric
has a proof very similar to that used in KL divergence.

Theorem 3.3. Let the assumptions of Proposition 3.1, together with Assumption
2.3, hold. Then

dHell(\mu 
\sansy 
RTE, \mu 

\sansy 
DE) \leq \scrO (\epsilon ) .

Proof. We first recall the definition of the Hellinger distance between two distri-
butions in section 2.1, using \lambda = \mu 0 as the reference measure:

dHell(\mu 
\sansy 
RTE, \mu 

\sansy 
DE)

2 =
1

2

\int 
\scrA 

\left(  \sqrt{} d\mu \sansy 
RTE

d\mu 0
(\sigma ) - 

\sqrt{} 
d\mu \sansy 

DE

d\mu 0
(\sigma )

\right)  2

\mu 0(d\sigma ) .

Following [31], we obtain

dHell(\mu 
\sansy 
RTE, \mu 

\sansy 
DE)

2

(3.9)

=
1

2

\int 
\scrA 

\biggl[ 
1\surd 

ZRTE
exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG RTE(\sigma )\| 22

\biggr) 
 - 1\surd 

ZDE
exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG DE(\sigma )\| 22

\biggr) \biggr] 2

d\mu 0

\leq I1 + I2 ,

where

I1 =
1

ZRTE

\int 
\scrA 

\biggl[ 
exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG RTE(\sigma )\| 2

\biggr) 
 - exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG DE(\sigma )\| 2

\biggr) \biggr] 2
d\mu 0(\sigma ) ,

and

I2 =
\bigm| \bigm| \bigm| (ZRTE) - 1/2  - (ZDE) - 1/2

\bigm| \bigm| \bigm| 2
2

\int 
\scrA 
exp

\biggl( 
 - 1

2\gamma 2
\| \sansy  - \scrG DE(\sigma )\| 22

\biggr) 
d\mu 0(\sigma ) .

With the same argument, we have

I1 \leq c

ZRTE

\int 
\scrA 
\| \scrG RTE  - \scrG DE\| 22 \| \scrG RTE + \scrG DE  - 2\sansy \| 22 d\mu 0 = \scrO (\epsilon 2) ,(3.10)

where we have used
\| \scrG RTE  - \scrG DE\| \infty < C\scrA \epsilon /Cd,

and the Lipschitz argument as in (3.8). To deal with I2, we notice that
(3.11)

I2 \leq max
\bigl\{ 
(ZRTE) - 3, (ZDE) - 3

\bigr\} \bigm| \bigm| ZRTE  - ZDE
\bigm| \bigm| 2 \int 

\scrA 
exp

\biggl( 
 - 1

2
\| \sansy  - \scrG DE(\sigma )\| 22

\biggr) 
d\mu 0(\sigma ) ,

using the fact that

| (ZRTE) - 1/2  - (ZDE) - 1/2| 2 \leq max\{ (ZRTE) - 3, (ZDE) - 3\} | ZRTE  - ZDE| 2.

According to the definition of ZRTE,DE, we have

| ZRTE  - ZDE| \leq 
\int 
\scrA 

\bigm| \bigm| \bigm| \bigm| exp\biggl(  - 1

\gamma 2
\| \sansy  - \scrG (\sigma )RTE\| 22

\biggr) 
 - exp

\biggl( 
 - 1

\gamma 2
\| \sansy  - \scrG (\sigma )DE\| 22

\biggr) \bigm| \bigm| \bigm| \bigm| d\mu 0(\sigma )

\leq c

\int 
\scrA 

\bigm| \bigm| \bigm| \| \sansy  - \scrG RTE(\sigma )\| 22  - \| \sansy  - \scrG DE(\sigma )\| 22
\bigm| \bigm| \bigm| d\mu 0(\sigma )

\leq c

\int 
\scrA 
\| \scrG RTE  - \scrG DE\| 2\| \scrG RTE + \scrG DE  - 2\sansy \| 2d\mu 0(\sigma )

= C\scrA \epsilon /Cd ,
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where we used (3.8). Plugging these back into (3.11), we have

I2 = \scrO (\epsilon 2).

Together with the boundedness of I1 and the inequality (3.9), we conclude

dHell(\mu 
\sansy 
RTE, \mu 

\sansy 
DE) = \scrO (\epsilon ) .

4. Linearized inverse problems. In this section we study approximations of
the two Bayesian inverse problems in the linearized setting. We show asymptotic
closeness of the posterior distributions in the small Knudsen number regime \epsilon \ll 
1. Equations (2.35)--(2.37) and (2.43) give rise to the following approximate inverse
problems:

(4.1) \sansy RTE
lin = GRTE(w) + \eta and \sansy DE

lin = GDE(w) + \eta ,

where
\sansy RTE
lin = \sansy  - \scrG RTE(log(u0)) and \sansy DE

lin = \sansy  - \scrG DE(log(u0))

is a vector of length JK and can be regarded as the linearized data. It can be obtained
by subtracting \sansy , the collected measurements with \{ \phi k, k = 1, . . . ,K\} being the input
data and \{ lj , j = 1, . . . , J\} being the pointwise evaluation operator, as defined in (3.1),
and \scrG RTE,DE(log(u0)), the background data that is precomputed using (2.30) or (2.38)
with the same input and measurement operator, and the background medium u0.

Assuming \eta \sim \scrN (0, \gamma 2\BbbI ) as always, now we have the likelihood functions

\nu wRTE(\sansy 
RTE) = exp

\biggl( 
 - 1

2\gamma 2
\| \sansy RTE

lin  - GRTE(w)\| 22
\biggr) 

and

\nu wDE(\sansy 
DE) = exp

\biggl( 
 - 1

2\gamma 2
\| \sansy DE

lin  - GDE(w)\| 22
\biggr) 

.

The two models use the same prior distribution function \nu 0(w), satisfying\int 
\scrC 3(\Omega )

1d\nu 0 = 1 .

The posterior distributions are then
(4.2)

\nu \sansy RTE(dw) =
1

ZRTE
\nu wRTE(\sansy 

RTE)\nu 0(dw) and \nu \sansy DE(w) =
1

ZDE
\nu wDE(\sansy 

DE)\nu 0(dw) ,

where ZRTE and ZDE are the normalization factors.

4.1. Convergence of linearized forward map. We first show the convergence
of the interpreters \gamma RTE,DE, which will allow us to show the convergence of the two
forward maps.

Proposition 4.1. Assume u0 \in \scrA u; then for \epsilon sufficiently small, \gamma RTE \rightarrow \gamma DE.
More specifically, for every j and k,

(4.3) \| \gamma RTE
jk  - \gamma DE

jk \| L\infty (\Omega ) \leq C\epsilon 2 .

Here the constant C only depends on C\scrA and C1.
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Proof. Recall the definition of \gamma jk in (2.35),

\gamma RTE
jk (x) =  - eu0

Cd\epsilon 2

\int 
\BbbS d - 1

gj(x, v)\scrL flin,k(x, v)dv ,

where gj and flin,k solve (2.32) and (2.30) with \delta yj and \phi k as boundary conditions.
We further recall Theorem 2.2, so that we have

\| gj  - \rho gj  - \epsilon e - u0v \cdot \nabla \rho gj\| L\infty (\Omega \times \BbbS d - 1) < C\scrA \epsilon 
2 , and

\| flin,k  - \rho fk + \epsilon e - u0v \cdot \nabla \rho fk\| L\infty (\Omega \times \BbbS d - 1) < C\scrA \epsilon 
2 ,

where \rho g,j and \rho lin,k solve
 - \nabla \cdot (e - u0\nabla \rho ) = 0 ,

with boundary condition \delta yj
and \xi k, respectively. Recalling \scrL \rho = 0 for all \rho , and that\int 

\BbbS d - 1 vdv = 0, then we have

\| \gamma RTE
jk (x) - \gamma DE

jk (x)\| L\infty (\Omega ) = \| \gamma RTE
jk (x) - e - u0\nabla \rho g,j \cdot \nabla \rho lin,k\| L\infty (\Omega ) = \scrO (\epsilon 2) .

We conclude the proof since this holds for every j and k.

We emphasize that \gamma RTE is uniquely determined by g and flin which solve (2.32)
and (2.30), and that the two equations depend merely on u0. So the convergence
holds true as long as u0 \in \scrA u, and there is no requirement on w.

Corollary 4.2. For any fixed u0 \in \scrA u, assume w \in C3, and if \epsilon is significantly
small, then GRTE \rightarrow GDE. More specifically,

(4.4) \| GRTE  - GDE\| \infty \leq C\epsilon 2\| w\| L2(\Omega ) ,

where GRTE,DE are two vectors of length JK, and C only depends on C\scrA , J , and K.

Proof. According to the definition of GRTE,DE,

GRTE
jk  - GDE

jk = \langle \gamma RTE
jk  - \gamma DE

jk , w\rangle \leq \| \gamma RTE
jk  - \gamma DE

jk \| L2(\Omega )\| w\| L2(\Omega ) .

We conclude using the result from Proposition 4.1, and that \| \gamma RTE
jk  - \gamma DE

jk \| L2(\Omega ) \lesssim 
\| \gamma RTE

jk  - \gamma DE
jk \| L\infty (\Omega ) for

\| GRTE  - GDE\| 2 =

\sqrt{} \sum 
jk

| GRTE
jk  - GDE

jk | 2 \leq 
\surd 
JKC\epsilon 2\| w\| L2(\Omega ) .

4.2. Convergence in Hellinger metric. The proof of the following result is a
straightforward extension of Theorem 3.3, and hence we only sketch it.

Theorem 4.3. Consider the linearized setting with u0 \in \scrA u and assume that \nu 0
is a centered Gaussian measure supported on the space C3(\Omega ). Then the Hellinger
distance between the posterior distribution \nu \sansy RTE and \nu \sansy DE is bounded by \scrO (\epsilon ):

dHell(\nu 
\sansy 
RTE, \nu 

\sansy 
DE) \leq \scrO (\epsilon 2) .

Sketch proof. The primary difference between this theorem and Theorem 3.3 is
that the data \sansy is subtracted by \scrG RTE(log(u0)) and \scrG DE(log(u0)), and that the linear
operator can be made explicit: GRTE,DE = \langle \gamma RTE,DE, w\rangle . As a result, the estimates
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for I1 and I2 change accordingly. The proof is rather similar to that for Theorem 3.3,
so we omit the details and only estimate I1 here:

I1 \leq c

ZRTE

\int 
C3(\Omega )

\| GRTE(w) - GDE(w)\| 22 \| GRTE(w) +GDE(w) - \sansy DE
lin  - \sansy RTE

lin \| 22 d\nu 0(dw)

\leq C\epsilon 4
\int 
C3(\Omega )

\| w\| 2L2(\Omega )

\bigl( 
1 + \| w\| 2L2(\Omega )

\bigr) 
d\nu 0 .

For the second inequality to hold true, we first use the conclusion from Corollary 4.2,
and to bound the second term, we simply use

GRTE(w) \leq \langle \gamma DE , w\rangle + C\epsilon 2\| w\| L2(\Omega ) , \scrG RTE(log(u0)) \leq \scrG DE(log(u0)) + C\epsilon 

to obtain

\| GRTE(w) +GDE(w) - \sansy DE
lin  - \sansy RTE

lin \| 2 \leq \| 2\langle \gamma DE , w\rangle  - 2\scrG DE(log(u0)) - 2\sansy \| 2
+ C\epsilon 2\| w\| L2(\Omega ) + C\epsilon 

\leq 2\| \scrG DE(log(u0)) + \sansy \| 2 + 2\| \langle \gamma DE , w\rangle \| 2
+ C\epsilon 2\| w\| L2(\Omega ) + C\epsilon 

\leq C + C\| w\| L2(\Omega ) .

Application of the Fernique theorem [14] shows that we have
\int 
C3 \| w\| pL2(\Omega )d\nu 0

bounded by a constant (independent of \epsilon ) for any p and that

I1 \leq C\epsilon 4 .

The estimate for I2 is very similar, and therefore

dHell(\nu 
\sansy 
RTE, \nu 

\sansy 
DE)

2 \leq I1 + I2 = \scrO (\epsilon 4) ,

which leads to the conclusion of Theorem 4.3.

Comparing the preceding theorem with Theorem 3.3, a very interesting phenom-
enon we immediately see is that the convergence in the linearized setting has a higher
rate. This higher rate is a direct consequence of the convergence in \gamma , in which the
\scrO (\epsilon ) cancels due to the symmetry between the forward model and the adjoint.

4.3. Implications for posterior convergence. In the linear setup, if the prior
distribution and the likelihood functions are both Gaussian functions, the posterior
distribution is also Gaussian and is thus completely determined by its mean and
covariance, or the leading two moments. In our case, u0 \in \scrA u, and w \in C3, and the
prior is supported in C3(\Omega ) for w. Thus distances between the posterior distributions
computed using the RTE and DE can be estimated from distances between means
and covariances. To this end, consider the following lemma.

Lemma 4.4 (Lemma 7.14 from [15]). Let \nu and \nu \prime be two probability measures
on a separable Banach space X. Assume also that f : X \rightarrow E, where (E, \| \cdot \| ) is a
separable Banach space, is measurable and has second moments with respect to both
\nu and \nu \prime . Then

\| \BbbE \nu f  - \BbbE \nu \prime 
f\| \leq 2

\Bigl( 
\BbbE \nu \| f\| 2 + \BbbE \nu \prime 

\| f\| 2
\Bigr) 1

2

dHell(\nu , \nu 
\prime ).
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Furthermore, if E is a separable Hilbert space and f : X \rightarrow E also has fourth moments,
then

\| \BbbE \nu (f \otimes f) - \BbbE \nu \prime 
(f \otimes f)\| \leq 2

\Bigl( 
\BbbE \nu \| f\| 4 + \BbbE \nu \prime 

\| f\| 4
\Bigr) 1

2

dHell(\nu , \nu 
\prime ),

where the operator norm on E is employed.

When applied in our case, we obtain the following corollary.

Corollary 4.5. Let mRTE,DE
post and \scrC RTE,DE

post denote the mean function and the
covariance operator computed from the posterior distribution of the radiative transfer
and diffusion model in the linearized setting. Then

\| mRTE
post  - mDE

post\| \leq \scrO (\epsilon 2) , \| \scrC RTE
post  - \scrC DE

post\| \leq \scrO (\epsilon 2) .

Here the norm for the mean is the standard norm on C3(\Omega ) and the norm for the
covariance is the operator norm on H3(\Omega ).

Proof. Let f , as in the statement of Lemma 4.4, be the identity map, and let the
spaces X and E be C3(\Omega ) equipped with L2 norm; then f(w) = w. Let \nu and \nu \prime be
the posterior distributions \nu \sansy RTE and \nu \sansy DE, respectively. Then

\| mRTE
post  - mDE

post\| L2(\Omega ) = \| \BbbE \nu \sansy 
RTEw  - \BbbE \nu \sansy 

DEw\| L2(\Omega )

\leq 2
\Bigl( 
\BbbE \nu \sansy 

RTE\| w\| 2L2(\Omega ) + \BbbE \nu \sansy 
DE\| w\| 2L2(\Omega )

\Bigr) 1
2

dHell(\nu 
\sansy 
RTE, \nu 

\sansy 
DE) .

Since

\BbbE \nu \sansy 
RTE\| f\| 2L2(\Omega ) =

\int 
C3(\Omega )

\| w\| 2L2(\Omega )d\nu 
\sansy 
RTE \lesssim 

\int 
C3(\Omega )

\| w\| 2L2(\Omega )d\nu 0 < C

and

\BbbE \nu \sansy 
DE\| f\| 2 =

\int 
\scrA 
\| w\| 2L2(\Omega )d\nu 

\sansy 
DE \lesssim 

\int 
C3(\Omega )

\| w\| 2L2(\Omega )d\nu 0 < C ,

where we have again used
\int 
\scrC 3(\Omega )

\| w\| 2L2(\Omega )d\nu 
\sansy 
RTE < C using the Fernique theorem, and

d\nu \sansy RTE,DE \lesssim d\nu 0 [15], we achieve the convergence of the mean function by applying
Theorem 4.3. The same analysis is applied to analyze the covariance.

5. Conclusion. In this paper, we study the inverse problem of diffuse optical to-
mography to reconstruct the scattering coefficient. Partial and noisy data is assumed,
and hence a Bayesian formulation of inversion is natural. Two forward models are
described---one employing the radiative transfer equation and the other employing
the diffusion equation. Multiscale analysis demonstrates that solutions of the two
forward models are close in the optically thick (small Knudsen number) regime, and
this allows us to quantify the convergence of the two Bayesian inverse problems. In
particular, we show that \mu \sansy 

RTE and \mu \sansy 
DE, the two posterior distribution functions, are

\scrO (\epsilon ) away from each other, in both the KL divergence sense and the Hellinger sense,
for both nonlinear and linear cases. Forward solution of the diffusion equation is com-
putationally less burdensome than the radiative transfer equation, and the theory
justifies using it within Bayesian inversion algorithms where multiple forward model
evaluations are required. We have employed a setting in which compatible boundary
conditions are used for the two forward models. It would also be of interest to study
extensions of this. However, the primary stumbling block here is the analysis of the
forward problem itself. The approach developed in this paper will apply to other
Bayesian inverse problems whose forward problems are close, and can be used to jus-
tify inversion algorithms which employ an averaged or (as in this case) homogenized
approximate forward model in order to speed up computation.
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6. Appendix. We give the rigorous proof here for Theorem 2.2. The two state-
ments are proved in the same way, and so for generality we will only prove the second
one; the proof for the first statement, or even for higher order expansions, is an easy
extension.

Proof. We repeat the RTE with a specially designed boundary condition,\Biggl\{ 
v \cdot \nabla f = \sigma 

\epsilon \scrL f,
f | \Gamma  - = \xi (x) - \epsilon 

\sigma v \cdot \nabla \rho (x),

where \rho satisfies

\nabla \cdot (\sigma  - 1\nabla \rho ) = 0, x \in \Omega , with \rho | \partial \Omega = \xi (x) .

Now we decompose the solution to the RTE as

f = f0 + \epsilon f1 + \epsilon 2f2 + fr ,

where f0 = \rho , f1 =  - 1
\sigma v \cdot \nabla \rho , and f2 = 1

\sigma \scrL 
 - 1
\bigl[ 
(v \cdot \nabla ) 1\sigma (v \cdot \nabla )\rho 

\bigr] 
. Note that for the

definition of f2 to hold true, it is necessary that

(v \cdot \nabla )
1

\sigma 
(v \cdot \nabla )\rho \in Range\scrL ,

which in turn requires\biggl\langle 
(v \cdot \nabla )

1

\sigma 
(v \cdot \nabla )\rho 

\biggr\rangle 
v

= Cd\nabla \cdot 
\biggl( 
1

\sigma 
\nabla \rho 

\biggr) 
= 0 .

Since \rho is 1
\sigma -harmonic with smooth boundary condition \| \xi \| L\infty (\partial \Omega ) < C1, then by

the maximum principle [16],

\| \rho \| L\infty (\Omega ) < C1 , and \| \partial i\rho \| L\infty (\Omega ) < C2, and \| \partial ij\rho \| L\infty (\Omega ) < C3 .

Then since \scrL  - 1 is a bounded operator on Null\scrL \bot , we know that both f1 and f2 are
bounded, meaning there is a constant C4 that depends on C1, C2, and C3:

\| f1\| \infty = \| \sigma  - 1v \cdot \nabla \rho \| L\infty (\Omega ) = \| \sigma  - 1\| L\infty (\Omega )\| \partial i\rho \| L\infty (\Omega ) < C4 ,

and

\| f2\| \infty = \| \sigma  - 1\scrL  - 1
\bigl[ 
(v \cdot \nabla )\sigma  - 1(v \cdot \nabla )\rho 

\bigr] 
\| L\infty (\Omega ) \leq \| \sigma  - 1(v \cdot \nabla )\sigma  - 1(v \cdot \nabla )\rho \| L\infty (\Omega ) < C4 ,

where we used the boundedness of \| \sigma  - 1\| L\infty (\Omega ) < C1, \| \nabla 
\bigl( 
1
\sigma 

\bigr) 
\| L\infty (\Omega ) < C1, and the

boundedness of the harmonic function and its derivatives.
Plugging it back into the equation, we have

v \cdot \nabla 
\biggl( 
\rho  - \epsilon 

1

\sigma 
v \cdot \nabla \rho + \epsilon 2f2 + fr

\biggr) 
=

\sigma 

\epsilon 
\scrL 
\biggl( 
\rho  - \epsilon 

1

\sigma 
v \cdot \nabla \rho +

\epsilon 2

\sigma 
\scrL  - 1

\biggl[ 
(v \cdot \nabla )

1

\sigma 
(v \cdot \nabla )\rho 

\biggr] 
+ fr

\biggr) 
.

Since \rho is a constant in v, and is thus in Null\scrL , then \scrL \rho = 0. Using the definition
of \scrL , we also have \scrL (v \cdot \nabla \rho ) =  - v \cdot \nabla \rho . Now we cancel the terms and obtain the
following equation for fr:

v \cdot \nabla fr =
\sigma 

\epsilon 
\scrL fr  - \epsilon 2v \cdot \nabla f2 .
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It is immediate that fr satisfies the RTE and is equipped with a source term of \scrO (\epsilon 2).
The boundary condition for fr is of the same order,

fr| \Gamma  - =  - \epsilon 2f2| \Gamma  - .

By the maximum principle, the solution is bounded in L\infty by the boundary condition
and the source term, so we have

\| fr\| L\infty (\Omega ) \leq C5\| \epsilon 2v \cdot \nabla f2\| L\infty (\Omega ) + \| \epsilon 2f2\| L\infty (\Gamma ) = \scrO (\epsilon 2) ,

where C5 \leq eC1l and l is the longest radius of the domain. This leads to the fact that

\| f  - \rho + \epsilon v \cdot \nabla \rho \| L\infty (\Omega ) = \| \epsilon 2f2 + fr\| L\infty (\Omega )\scrO (\epsilon 2) .

We note again that the constant merely depends on the boundedness of C1, the upper
bound of the infinite norm of 1

\sigma , its derivative, and \xi .
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