
Statistics and Computing manuscript No.
(will be inserted by the editor)

Strong convergence rates of probabilistic integrators for
ordinary differential equations

Han Cheng Lie · A. M. Stuart · T. J. Sullivan

Received: September 28, 2018 / Accepted: December 28, 2018 / Handling Editor: C. J. Oates

This is a post-peer-review, pre-copyedit version of an article published in Statistics and Computing (2019). The final authen-
ticated version is available online at: https://doi.org/10.1007/s11222-019-09898-6.

Abstract Probabilistic integration of a continuous dy-

namical system is a way of systematically introducing

discretisation error, at scales no larger than errors intro-

duced by standard numerical discretisation, in order to

enable thorough exploration of possible responses of the

system to inputs. It is thus a potentially useful approach

in a number of applications such as forward uncertainty

quantification, inverse problems, and data assimilation.

We extend the convergence analysis of probabilistic in-

tegrators for deterministic ordinary differential equa-

tions, as proposed by Conrad et al. (Stat. Comput.,
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2017), to establish mean-square convergence in the uni-

form norm on discrete- or continuous-time solutions un-

der relaxed regularity assumptions on the driving vector

fields and their induced flows. Specifically, we show that

randomised high-order integrators for globally Lipschitz

flows and randomised Euler integrators for dissipative

vector fields with polynomially-bounded local Lipschitz

constants all have the same mean-square convergence

rate as their deterministic counterparts, provided that

the variance of the integration noise is not of higher

order than the corresponding deterministic integrator.

These and similar results are proven for probabilistic

integrators where the random perturbations may be

state-dependent, non-Gaussian, or non-centred random

variables.
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differential equations · convergence rates · uncertainty

quantification
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1 Introduction

This article concerns the analysis of probabilistic nu-

merical integrators for deterministic initial value prob-

lems of the form

d

dt
u(t) = f(u(t)), for 0 ≤ t ≤ T , (1.1)

u(0) = u0 ∈ Rd
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where T > 0. Let Φt : Rd → Rd denote the flow induced

by (1.1), so that

Φt(u0) = u0 +

∫ t

0

f(Φs(u0)) ds (1.2)

for all (t, u0) ∈ [0, T ] × Rd. Given an integration time

step τ > 0 such that K := T/τ ∈ N and the corre-

sponding time mesh

tk := kτ for k ∈ [K] := {0, 1, . . . ,K}, (1.3)

a deterministic one-step numerical method for the so-

lution of (1.1) is a numerical flow map Ψτ : Rd → Rd
that generates approximations ũk ≈ uk := u(tk) by the

recursion ũk := Ψτ (ũk−1); note that uk = Φτ (uk−1).

A key property of the numerical method is its global

order of convergence, i.e. the largest q ≥ 0 such that,

for some constant C = C(T ), independent of τ ,

max
k∈[K]

‖uk − ũk‖ ≤ Cτ q. (1.4)

As a modelling choice, epistemic stochasticity can be

introduced into the numerical solution of (1.1) on the

basis that, while the exact solution satisfies

uk+1 = Φτ (uk) = uk +

∫ tk+1

tk

f(u(s)) ds (1.5)

for all k ∈ [K−1], the only information available about

the values of the solution off the time mesh comes from

the numerical solution on the mesh, and so the in-

tegrand f(u(s)) is not exactly accessible. This uncer-

tainty is relevant in the setting where, given a large-

scale mathematical model, it may be more statistically

informative to spend computational resources on solv-

ing a differential equation-based model many times on

a coarser grid than on solving the same model a few

times on a finer grid. This is often the case in forward

uncertainty quantification (Smith 2014; Sullivan 2015),

inverse problems (Kaipio and Somersalo 2005; Stuart

2010), and data assimilation (Law et al. 2015; Reich and

Cotter 2015); the area of multi-level Monte Carlo meth-

ods makes particular use of this kind of cost-accuracy

tradeoff (Giles 2015). Furthermore, in many such set-

tings, the quantity of interest is often not the solution

of a differential equation-based model, but a functional

thereof. In all cases, estimates of the off-mesh uncer-

tainty due to the numerical method can and should be

fed forward to estimate the uncertainty in the quantity

of interest.

This article is motivated by the work of Conrad

et al. (2017), in which one seeks to model the off-mesh

uncertainty by considering probabilistic solvers. For the

same mesh given in (1.3), the probabilistic solver of

Conrad et al. (2017) involves producing a sequence of

random variables (Uk)k∈[K] according to

Uk+1 := Ψτ (Uk) + ξk(τ), U0 = u0, (1.6)

where Ψτ is the map associated to the deterministic

numerical method, and each ξk(τ) is an i.i.d. copy of

a random variable ξ0(τ) :=
∫ τ
0
χ0(s) ds, where χ0 is

a stochastic process over the time interval [0, τ ] that

models the off-mesh behaviour of the unknown function

f(u(s)) in (1.5). We refer the reader to Conrad et al.

(2017, Figure 2) for a pictorial representation of (1.6).

The process χ0 is introduced so that one can probe

the uncertainty induced by the mesh (tk)k∈[K] and the

underlying solver, and thus explore possible responses

of the system to inputs. Comparing (1.5) and (1.6), it

follows that the random variable ξk(τ) is a statistical

model for the approximation error Φτ (uk)− Ψτ (uk).

We emphasise that the additive, state-independent

noise model appearing in (1.6) should be interpreted as

providing a prior on the local truncation error (Hairer

et al. 2009). A frequent criticism levelled at the field of

probabilistic numerical integration is that the statisti-

cal properties of the noise ξk that have been imposed in

existing published works do not reflect known prior in-

formation about local truncation error. Here we address

this issue by considerably weakening the assumptions

made on the ξk. However we anticipate future work in

this direction, especially when specific structure on the

vector field f is used to further inform the prior. Note

also that, in the presence of large amounts of data, we

expect posterior contraction and forgetting of the prior;

see, e.g., Knapik et al. (2011). Posterior contraction for

(1.6) was demonstrated numerically on a number of ex-

amples by Conrad et al. (2017).
In the spirit of (1.4), the main convergence result

(Conrad et al. 2017, Theorem 2.2) yields that, if the

vector field f in (1.1) is globally Lipschitz, if the deter-

ministic numerical method has uniform local truncation

of order q + 1, and if χ0 is a centred Gaussian process

such that the second moment of ξ0(τ) decays as τ2p+1

for some p ≥ 1, then

max
k∈[K]

E
[
‖uk − Uk‖2

]
≤ Cτ2min{p,q}. (1.7)

This shows that the convergence rate of the probabilis-

tic solver (1.6) is determined by the convergence of the

‘worst-case error’ of the deterministic method Ψτ , and

the convergence of the ‘statistical error’ ξ0, as described

by the parameters q and p respectively. Choosing ξ0
with p = q introduces the maximum amount of solu-

tion uncertainty consistent with preserving the order of

accuracy of the original deterministic integrator.

It is important to stress that, despite the apparent

similarities between (1.6) and Euler–Maruyama schemes
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for stochastic differential equations (SDEs) driven by

Brownian motion, the analysis of the latter does not

directly apply to probabilistic solvers, even though we

will borrow some techniques from that field. This is be-

cause the variance of ξ0(τ) for probabilistic solvers of

the form (1.6) is assumed to decay to zero strictly faster

than τ , whereas, for SDEs driven by Brownian motion,

the variance is proportional to τ . A key aspect of this

work is to determine how to scale the noise so that

the rate of convergence of the underlying determinis-

tic numerical integrator is not affected, yet uncertainty

arising from numerical approximation is accounted for.

1.1 Contribution and outline of the paper

The purpose of this paper is to make significant exten-

sions of the convergence analysis of Conrad et al. (2017)

for (1.1). We accomplish this by obtaining stronger er-

ror estimates (and hence stronger convergence results)

under assumptions on both the underlying differential

equation and on the noise model for probabilistic nu-

merical integration that are weaker than their counter-

parts in Conrad et al. (2017). The convergence results

of this paper are of the form

E
[

max
k∈[K]

‖uk − Uk‖n
]
≤ Cτn·min{p−c,q}, (1.8)

where n ∈ N, q is the order of the numerical method

Ψτ , p is an exponent of decay in the moments of the

random variables (ξk(τ))k∈[K], and c ≥ 0 is a penalty

term in the convergence rate that depends solely on the

random variables (ξk(τ))k∈[K]. Note that, when c = 0

and n = 2, the convergence rate of nmin{p − c, q} on

the right-hand side of (1.8) agrees with that of (1.7)

shown by Conrad et al. (2017), so that the right-hand

sides of (1.7) and (1.8) differ only in the constant pref-

actor C. However, because the time supremum is in-

side the expectation, (1.8) implies (1.7). Furthermore,

by Markov’s inequality, (1.8) yields an estimate of the

frequentist coverage of the true solution u by the ran-

domised solutions U :

P
[

max
k∈[K]

‖uk − Uk‖ ≤ r
]
≥ 1− Cτnmin{p−c,q}r−n;

such estimates are useful in the context of forward un-

certainty quantification and inverse problems (Lie et al.

2018).

We emphasize that, in addition to strengthening the

form of the convergence results so that the supremum

is inside the expectation, we also prove the results in

this paper under weaker assumptions on the vector field

f , and under weaker assumptions on the noise ξk, than

those employed by Conrad et al. (2017). Specifically we

do not assume that f and its derivatives are globally

bounded, and we do not assume that the random vari-

ables are Gaussian; furthermore in results generalizing

(1.8) we relax the assumption that the random vari-

ables are centred, paving the way for future analyses

which incorporate specific known structure and bias in

the truncation error.

Error estimates like (1.8) show that the randomised

numerical solution has convergence properties that are

asymptotically no worse than the deterministic numer-

ical solution. This can be interpreted as saying that

the trajectories obtained from the randomised numer-

ical integrator are all equally valid approximations to

the solution of the original system, modulo the uncer-

tainty induced by solving in discrete time. This can be

useful for many purposes, for example in studying lim-

its on predictability in chaotic systems, as shown for

the Lorenz-63 system by Conrad et al. (2017).

After introducing some notation and auxiliary re-

sults in Section 2, the rest of the paper is organised as

follows. In Section 3, Theorem 3.4 yields (1.8) for nu-

merical methods of arbitrary order, for vector fields f

whose induced flow maps Φτ are globally Lipschitz —

including one-sided Lipschitz vector fields — and for

collections (ξk(τ))k∈[K] of random variables that are in-

dependent and centred, but not necessarily Gaussian.

Conrad et al. (2017) assumed the vector field f to be

globally Lipschitz, and the random variables (ξk(τ))k∈[K]

were assumed to be i.i.d. centred Gaussian random vari-

ables. In Theorem 3.5, we prove a result similar to (1.8)

in which we relax the assumption that the (ξk(τ))k∈[K]

are independent and that they are centred; the price

we pay for these weaker constraints on the noise is a

stronger decay assumption, with respect to the time-

step, on the second moments of the (ξk(τ))k∈[K]. We

use this assumption in order to introduce the maxi-

mal noise that is consistent with retaining the rate of

convergence of the underlying deterministic numerical

integrator.

In Section 4, we further weaken the conditions on

the vector field f , by considering locally Lipschitz vec-

tor fields that satisfy a polynomial growth condition.

In Theorem 4.2, we show that, under the assumption

that the (ξk(τ))k∈[K] are almost surely bounded, we

can again obtain (1.8). In Theorem 4.5, we remove the

almost-sure boundedness condition, but add the assump-

tion that the vector field f satisfies a generalised dissi-

pativity condition.

In Section 5 we discuss a continuous-time analogue

of (1.6), and show how convergence results of the form

(1.8) can be obtained. We also show that there exists

a nonempty set of random variables (or more gener-
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ally, stochastic processes) that satisfy the regularity as-

sumptions on the random variables (ξk(τ))k∈[K] used

throughout this paper.

Proofs of the results may be found in Appendix A.

1.2 Review of probabilistic numerical methods

Continuous relationships such as ODEs and PDEs are

commonplace as forward models in uncertainty quan-

tification problems, or as Bayesian likelihoods in mod-

ern statistical inverse problems (Kaipio and Somersalo

2005; Stuart 2010), and in particular in data assimila-

tion algorithms with critical everyday applications such

as numerical weather prediction (Law et al. 2015; Re-

ich and Cotter 2015). The use of a discretised solver for

such forward models is usually unavoidable in practice,

but introduces an additional source of uncertainty both

into forward propagation of uncertainty and into subse-

quent inferences. While the solution to the ODE/PDE

may not be random in the frequentist sense, it is nonethe-

less only imperfectly known through the discretised nu-

merical solution. Probability in the subjective or Bayesian

sense is one appropriate means of representing this epis-

temic uncertainty, particularly if the ODE/PDE solu-

tion forms part of the forward model in a Bayesian in-

verse problem. Failure to properly account for discreti-

sation errors and uncertainties can lead to biased, in-

consistent, and over-confident inferences (Conrad et al.

2017).

Probabilistic numerical solutions of problems such

as the solution of ODEs have a long history. Modern

foundations for this field were laid by the work of Diaco-
nis (1988), O’Hagan (1992), and Skilling (1992) under

the term of “Bayesian numerical analysis”. More re-

cently, such ideas have received renewed attention un-

der the term “probabilistic numerics” (Hennig et al.

2015; Cockayne et al. SIAM Rev., to appear): the dis-

cussion of probabilistic numerical methods for ordinary

differential equations given by Schober et al. (2014);

Conrad et al. (2017); Chkrebtii et al. (2016), and Tey-

mur et al. (2018) is particularly relevant here. Also of

interest in the field of probabilistic numerics, but not

directly relevant to the present work, are probabilistic

numerical methods for linear algebra (Hennig 2015),

optimisation (Gonzalez et al. 2016), partial differential

equations (Cockayne et al. 2017; Owhadi 2015, 2017;

Wang et al. 2018), and quadrature (Briol et al. 2015).

In particular, Cockayne et al. (SIAM Rev., to appear)

sets out some axiomatic foundations for probabilistic

numerical methods broadly conceived, and in particu-

lar what it means for a probabilistic numerical method

to be “Bayesian”.

Randomised solutions of ODEs have also been stud-

ied in the context of stochastic or rough differential

equations. In the case of non-autonomous ODEs driven

by Carathéodory vector fields — i.e. vector fields that

are locally integrable in time and continuous in the state

space — it has been observed that randomised Euler

and Runge–Kutta methods outperform their determin-

istic counterparts: see e.g. Stengle (1990); Jentzen and

Neuenkirch (2009), and Kruse and Wu (2017) and the

references therein.

We note that analysing the convergence properties

of numerical solutions to (1.1) in terms of the approx-

imation error for the solution, as in (1.7) and (1.8),

is very much in the spirit of classical numerical anal-

ysis. For uncertainty quantification of the discretised

solution of (1.1) as a stand-alone forward problem, this

viewpoint is often sufficient. However, for applications

to inverse problems and data assimilation, in which

the numerical solution of the (1.1) is used to (approxi-

mately) evaluate the data misfit or likelhood, an alter-

native paradigm is to directly examine the impact of

discretisation upon the quality of later inferences us-

ing e.g. Bayes factors (Capistrán et al. 2016; Christen

2017). There is also the well-established literature of

information-based complexity and average-case analy-

sis, with its greater emphasis on algorithmic aspects

such as computational cost and optimal accuracy for

given classes of information (Novak 1988; Ritter 2000;

Traub and Woźniakowsi 1980; Traub et al. 1983).

2 Setup and notation

Let (Ω,F ,P) be a probability space sufficiently rich to

serve as a common domain of definition for all the ran-

dom variables and processes under consideration, and

let E denote expectation with respect to P. The space

of sth-power integrable random variables over (Ω,F ,P)

will be denoted LsP. The scalars C, C ′, etc. denote non-

negative constants whose value may change from oc-

curence to occurence, but are independent of the time

step τ > 0. Lip(Φ) denotes the best Lipschitz constant

of Φ : Rd → Rd:

Lip(Φ) := min{L ≥ 0 | ‖Φ(x)− Φ(y)‖ ≤ L‖x− y‖}

for all x, y ∈ Rd. We let N denote the natural numbers

beginning with 1, and N0 := N ∪ {0}. We shall some-

times abuse notation and write [K] := {0, 1, . . . ,K −
1} or [K] := {1, 2, . . . ,K}, and we shall write uk :=

u(tk) ≡ Φτ (uk−1) for the value of the exact solution to

(1.1) at time tk. We denote the minimum of a pair of

real numbers a and b by a ∧ b = min{a, b}.
It will be assumed throughout that T > 0 is a fixed,

deterministic time, and that f in (1.1) is sufficiently
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smooth such that (1.1) has a unique solution for every

initial condition u0. The flow map Φt associated to (1.1)

is defined in (1.2), and the output of a one-step deter-

ministic numerical integration method for a given x and

time step τ will be given by Ψτ (x). This setting encom-

passes many of the time-stepping methods in common

use, such as Runge–Kutta methods of all orders.

The analysis of this paper will make repeated use of

several useful inequalities, which are collected here for

reference. First, recall Young’s inequality: for any δ > 0

and any pair of Hölder conjugate exponents r, r∗ > 1,

ab ≤ δ

r
ar +

1

r∗δr∗/r
br
∗
, for all a, b ≥ 0. (2.1)

Combining that inequality for r = r∗ = 2 with the

Cauchy–Schwarz inequality in Rd yields

‖x− y‖2 ≤ (1 + δ)‖x‖2 + (1 + δ−1)‖y‖2, (2.2)

which will often be used either with δ = 1 or δ = τ .

The following discrete-time version of Grönwall’s in-

equality (Holte 2009) will also be useful:

Theorem 2.1 Let (xk)k∈N0
, (αk)k∈N0

, and (βk)k∈N0

be non-negative sequences. If, for all k ∈ N0,

xk ≤ αk +
∑

0≤j<k

βjxj and αk ≤ A,

then xk ≤ A exp
(∑

0≤j<k βj

)
for all k ∈ N0.

For completeness, we state the following lemma.

Lemma 2.1 Let x, y ≥ 0, n ∈ N, and δ > 0. Then

(x+ y)n ≤ xn(1 + δ2n−1) + yn(1 + (2/δ)n−1). (2.3)

We shall also use the following inequality, which is

valid for arbitrary N ∈ N and m ≥ 1: for all {sj}j∈[N ] ∈
RN ,∣∣∣∣∣∣
N∑
j=1

sj

∣∣∣∣∣∣
m

≤ Nm−1
N∑
j=1

|sj |m. (2.4)

This follows from∣∣∣∣∣∣
N∑
j=1

sj

∣∣∣∣∣∣
m

≤ Nm

 1

N

N∑
j=1

|sj |

m

≤ Nm

 1

N

N∑
j=1

|sj |m


= Nm−1
N∑
j=1

|sj |m,

where we used Jensen’s inequality in the second in-

equality.

3 High-order integration of Lipschitz flows

The purpose of this section is to establish, given the ini-

tial value problem (1.1), the strong convergence result

(1.8) for probabilistic solvers of the form (1.6), under

the following assumptions.

Assumption 3.1 The vector field f admits 0 < τ∗ ≤ 1

and CΦ ≥ 1, such that for 0 < τ < τ∗, the flow map

Φτ defined by (1.2) is globally Lipschitz with Lipschitz

constant Lip(Φτ ) ≤ 1 + CΦτ .

As is well known, Assumption 3.1 holds if the gener-

ating vector field f is itself globally Lipschitz. However,

Assumption 3.1 holds if, for instance, f merely satisfies

the one-sided Lipschitz inequality

〈f(x)− f(y), x− y〉 ≤ µ‖x− y‖2, for all x, y ∈ Rd,

for some constant µ ∈ R; in this case, a calculation

of d
dt‖u(t) − v(t)‖2 for trajectories u and v starting at

initial conditions u0, v0 ∈ Rd and an application of the

differential version of Grönwall’s inequality shows that

‖u(t) − v(t)‖ ≤ exp(µ|t|)‖u0 − v0‖, so that Lip(Φt) ≤
1 + 2|µ||t| for small |t|.

Assumption 3.2 The numerical method Ψτ has uni-

form local truncation error of order q + 1: for some

constant CΨ ≥ 1 that does not depend on τ ,

sup
u∈Rd

‖Ψτ (u)− Φτ (u)‖ ≤ CΨτ q+1.

Assumption 3.2 holds, in particular, for single- and

multi-step methods derived from a q-times continuously

differentiable vector field f with bounded qth deriva-

tives (Hairer et al. 2009, Section III.2). Imposing global

bounds on the derivatives of f , and therefore on those

of Φτ , forces us to consider a smaller class of flow maps

Φτ than the class of flow maps that satisfy Assump-

tion 3.1. We may alleviate this problem by weakening

Assumption 3.2 to a bound of the form

‖Φτ (u)− Ψτ (u)‖ ≤ C ′(u)τ q+1, (3.1)

with the consequence that the dependence of C ′(u) on

u must be specified; this dependence will vary according

to the chosen numerical method Ψτ . Moreover, when-

ever we apply (3.1) in place of Assumption 3.2 with a

random variable Uk in place of a deterministic uk — as

we do below, e.g. in deriving (A.2) — we will need to

ensure that E[C ′(Uk)] is finite, and of the correct order

in τ if necessary. In Section 4, we consider the implicit

Euler method for a class of locally Lipschitz flow maps

Φτ , obtain an expression for C ′(Uk), and with this ex-

pression obtain a bound of the form

E
[
‖Φτ (Uk)− Ψτ (Uk)‖n

]
≤ Cτn(q+1)
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where Uk denotes the output of the randomised nu-

merical integrator according to (1.6), n ∈ N, and C > 0

does not depend on τ or on k; see Proposition 4.2. Note

that there is no supremum inside the expectation in the

inequality above. However, in this section, we shall ap-

ply Assumption 3.2 instead of (3.1), in order to avoid

lengthy analyses that are specific to the choice of nu-

merical method. We make no assumptions about how

the integrator Ψτ has been derived and treat it as a

‘black box’ satisfying Assumption 3.2.

Assumption 3.3 The random variables (ξk(τ))k∈N ad-

mit parameters p ≥ 1, R ∈ N ∪ {+∞}, and Cξ,R ≥ 1,

independent of k and τ , such that for all 1 ≤ r ≤ R

and all k ∈ N,

E
[
‖ξk(τ)‖r

]
≤
(
Cξ,Rτ

p+1/2
)r
.

Note that we do not assume that the (ξk(τ))k∈[K]

are identically distributed nor that they are centred.

However we will impose these two additional assump-

tions in Theorem 3.4. The parameter p determines the

decay rate of the rth moments of the (ξk(τ))k∈[K], for

1 ≤ r ≤ R, while R determines the highest order mo-

ment for which the same decay behaviour holds.

Since Assumption 3.3 does not assume that the ξk
are identically distributed or mutually independent, it

can hold for the following variant of (1.6):

Uk+1 := Ψτ (Uk) + ξk(τ, Uk), for all k ∈ [K].

In this setting, we interpret Assumption 3.3 as the con-

dition that the dependence of the moments of ξk on

the state Uk, can be uniformly controlled by the con-

stant Cξ,R. We leave a more extensive investigation of

state-dependent noise models for future work.

It follows from (2.4) and Assumption 3.3 that, for

v, w ∈ N,

E

T/τ∑
i=1

‖ξi(τ)‖w
v ≤ (TCwξ,Rτw(p+1/2)−1

)v
. (3.2)

This is because

E

T/τ∑
i=1

‖ξi(τ)‖w
v ≤ (T

τ

)v−1 T/τ∑
i=1

(
Cξ,Rτ

p+1/2
)wv

≤
(
T

τ

)v (
Cξ,Rτ

p+1/2
)wv

=
(
TCwξ,Rτ

w(p+1/2)−1
)v
,

where we used (2.4) and Assumption 3.3 for the first

and second inequality respectively.

As noted in the introduction, the focus of this paper

is on the convergence rate of the error ek := uk−Uk and

not on, say, the covariance operator of ek, though that

information is also important in applications. Note that

if ξk(τ) in Assumption 3.3 does not belong to L2
P, then

ξk(τ) does not admit a covariance operator. Accord-

ingly, Assumption 3.3 and similar assumptions later in

the paper are only upper bounds, and we do not actu-

ally work with the covariance operator of ξk. The pre-

cise construction of stochastic models for discretisation

and truncation error is an interesting topic in its own

right at the interface of numerical analysis and proba-

bility, upon which this paper only starts to touch; we

anticipate that there will be further research concerning

this question.

Given ek = uk − Uk, it follows from (1.5) and (1.6)

that

ek+1 =
(
Φτ (uk)−Φτ (Uk)

)
−
(
Ψτ (Uk)−Φτ (Uk)

)
−ξk(τ).

(3.3)

We shall use the decomposition (3.3) throughout this

article.

The next result is stronger than Conrad et al. (2017,

Theorem 2.2), as the discrete time supremum is inside

the expectation, and as it does not require the vector

field f to be globally Lipschitz nor ξ to be Gaussian:

Theorem 3.4 Suppose Assumptions 3.1 and 3.2 hold,

and fix u0 = U0. Furthermore, if it holds that X ∈
L2
P =⇒ Ψτ (X) ∈ L2

P, and if the (ξk(τ))k∈[K] have zero

mean, are mutually independent, and satisfy Assump-

tion 3.3 for R = 2 and p ≥ 1, then there exists C > 0

that does not depend on τ such that

E
[

max
k∈[K]

‖ek‖2
]
≤ Cτ2p∧2q. (3.4)

In contrast to Theorem 3.4, which required that the

(ξk(τ))k∈[K] be independent and centred in order to

construct a martingale, we make no independence or

centredness assumptions on the (ξk(τ))k∈[K] for the rest

of this article. The following result should be compared

to Theorem 3.4 by considering the case R = n = 2.

Then for the randomised method to have the same order

as the deterministic method on which it is based, we

need that p ≥ q + 1
2 . In other words, if we remove the

assumptions on the (ξk(τ))k∈[K] of independence and

centredness, then we require that the second moments

of the (ξk(τ))k∈[K] decay to zero with time-step τ at a

faster rate than in Theorem 3.4, since the lower bound

q + 1
2 on p implied by Theorem 3.5 is larger than the

lower bound q on p implied by Theorem 3.4.

Theorem 3.5 Let n ∈ N. Suppose that Assumptions

3.1, 3.2, and 3.3 hold with τ∗ ≤ 1, q ≥ 1, p ≥ 1, and
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R, and that u0 = U0. Then, there exists a C > 0 that

does not depend on τ such that for 0 < τ < τ∗,

E
[

max
`∈[K]

‖e`‖n
]
≤ Cτn(q∧(p−1/2)). (3.5)

where

C := 2T max{(4CΨ )n, (2Cξ,R)n} exp (TCΦ(n, τ∗))

(3.6)

and CΦ(n, τ∗) is defined according to (A.5).

We shall show that if we strengthen Assumption

3.3 by allowing for arbitrarily large R ∈ N, then the

moment generating function of max`∈[K] ‖e`‖n is finite

on R.

Corollary 3.1 Fix n ∈ N. Suppose that Assumptions

3.1 and 3.2 hold, and that Assumption 3.3 holds with

R = +∞ and p ≥ 1/2. Then, for all 0 < τ < τ∗ and

all ρ ∈ R,

E
[
exp

(
ρ max
`∈[K]

‖e`‖n
)]

<∞. (3.7)

Hence, by Markov’s inequality, the distribution of

max`∈[K] ‖e`‖n concentrates exponentially about its

mean.

We close this section by noting that, while we have

made no attempt to find the optimal constants in The-

orem 3.4 and Theorem 3.5, the convergence orders in

these results cannot be improved at the present level of

generality. This is because the convergence order of the

randomised solution cannot exceed that of the under-

lying deterministic solver, unless the random variables

ξk(τ) used to model the error Φτ (uk)− Ψτ (uk) at each

time step tk are chosen to achieve this effect. We leave

the construction of such randomised solvers for future

work.

4 Integration for locally Lipschitz vector fields

This section considers the numerical integration of vec-

tor fields f that satisfy the following polynomial growth

condition.

Assumption 4.1 The vector field f is continuously

differentiable, and both f and the associated map Φτ

defined by (1.2) admit 0 < τ∗ ≤ 1, CΦ ≥ 1, and s ≥ 1,

such that the following inequalities hold for all a, b ∈ Rd
and all 0 < τ < τ∗:

‖f(a)− f(b)‖ ≤ CΦ(1 + ‖a‖s + ‖b‖s)‖a− b‖ (4.1a)

‖Φτ (a)− Φτ (b)‖ ≤ (1 + τCΦ (1 + ‖a‖s + ‖b‖s)) ‖a− b‖.
(4.1b)

The inequality (4.1a) implies

‖f(a)‖ ≤ ‖f(a)− f(0)‖+ ‖f(0)‖
≤ CΦ(1 + ‖a‖s)‖a‖+ ‖f(0)‖. (4.2)

By Taylor’s theorem, the remainder term Rτ (a) in the

first-order Taylor expansion (A.11) of Φτ (a) is given by

the derivatives of f , evaluated at some a ∈ Rd for some

0 ≤ t ≤ τ . The condition (4.1b) means that for some

τ∗ > 0 that is sufficiently small, the norm of the dif-

ference between two remainder terms can be controlled.

The growth condition (4.1a) is not new; see for example

Higham et al. (2002, Assumption 4.1).

The following result is analogous to Theorem 3.5.

It states that we can replace Assumption 3.1 with As-

sumption 4.1 and obtain the same result as Theorem

3.5, provided that the (ξk(τ))k∈[K] are P-a.s. bounded.

Theorem 4.2 Suppose that Assumptions 4.1, 3.2, and

3.3 hold for p and R as in Theorem 3.5. Suppose that

u0 = U0. If the (ξk(τ))k∈[K] are P-a.s. uniformly bounded

over all k by a positive scalar that is O(τ), then the con-

clusions of Theorem 3.5 hold.

It is of theoretical interest to determine whether

there exists a deterministic numerical method Ψ such

that the randomised version given by (1.6) has the same

order even when each ξk(τ) is not P-a.s. bounded. In

the remainder of this section, we shall show that for

the implicit Euler method Ψτ : Rd → Rd defined by

Ψτ (a) := a+ τf(Ψτ (a)), (4.3)

the randomised version given by (1.6) has order 1, under

the following dissipativity assumption.

Assumption 4.3 The function f admits parameters

α ≥ 0 and β ∈ R such that

〈f(v), v〉 ≤ α+ β‖v‖2 for all v ∈ Rd. (4.4)

Assumption 4.3 is more general than the usual dissi-

pativity property found in Humphries and Stuart (1994,

Equation (1.2)) because β may assume positive values.

The sign of β in (4.4) plays an important role in the

behaviour of the solution u of (1.1), as well as in nu-

merical methods for solving for u. For example, if β is

positive, then the problem (1.1) may be stiff. In this

paper, we study only the rate of convergence, and leave

the issue of stiffness for future work. In particular, al-

lowing for positive β poses no problem for establishing

moment bounds, as we show in Lemma 4.1.

Recent studies in numerical methods for stochastic

differential equations consider constraints on the drift

that feature the same right-hand side as (4.4), e.g. Fang
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and Giles (2016) and Mao and Szpruch (2013). We reit-

erate, however, that the analysis of numerical methods

for stochastic differential equations cannot be applied

to probabilistic solvers of the form (1.6), because of the

different behaviour in the additive noise (see e.g. As-

sumption 3.3).

Assumption 4.4 Let τ∗ ≤ 1 be as in Assumption 4.1

and β ∈ R be as in Assumption 4.3. Then there exists

some 0 < τ ′ ≤ min{τ∗, (2|β|)−1} such that there exists

a solution Ψτ (a) to the implicit equation (4.3) for every

0 ≤ τ ≤ τ ′, such that the solution Ψτ (a) varies contin-

uously as a function of τ in the interval 0 ≤ τ ≤ τ ′,

and such that Ψτ |τ=0 (a) = a.

Note that Assumption 4.4 is weaker than assuming

unique solvability of (4.3) for every a ∈ Rd over a suf-

ficiently small time interval.

Unless otherwise specified, we shall assume hereafter

that 0 < τ < τ ′.

4.1 Moment bounds for implicit Euler

Lemma 4.1 Suppose that Assumptions 4.1, 4.3, and

4.4 hold, and let n ∈ N be arbitrary. Given a fixed,

deterministic U0, the following holds uniformly in ω ∈
Ω:

max
i∈[T/τ ]

‖Ui‖2n ≤ (2C2)n

1 + τ−n

T/τ∑
i=1

‖ξi(τ)‖2
n  ,

(4.5)

for C2 given in (A.10) below.

Note that Lemma 4.1 is the only statement for which

we directly use Assumption 4.3. The following results

depend on Assumption 4.3 only insofar as they depend

on the conclusions of Lemma 4.1.

Proposition 4.1 Suppose that Assumptions 4.1, 4.4,

and 4.3 hold, and let n ∈ N be arbitrary. If Assumption

3.3 holds for some R ≥ 2n and some p ≥ 1, then

E
[

max
i∈[K]

‖Ui‖2n
]
≤ (2C2)n

(
1 +

(
TC2

ξ,Rτ
2p−1)n) , (4.6)

for C2 defined in (A.10), and Cξ,R in Assumption 3.3.

Proof The statement follows directly from the conclu-

sion (4.5) of Lemma 4.1 and (3.2) with w = 2 and

v = n.

Corollary 4.1 Suppose that Assumptions 4.1, 4.4, 4.3,

and 3.3 hold with R = +∞ and p ≥ 1/2. Then

E
[
exp

(
ρ max
i∈[K]

‖Ui‖2
)]

<∞, for all ρ ∈ R.

Proof The result follows from Proposition 4.1, the se-

ries expansion of the exponential, and the dominated

convergence theorem.

Lemma 4.1 shows that whenever Assumption 4.3

holds, then regardless of the growth behaviour of f ,

the randomised implicit Euler method has the property

that if X ∈ LRP for some R ∈ N, then Ψτ (X) ∈ LRP as

well; cf. the hypothesis on Ψτ in Theorem 3.4.

4.2 Convergence in discrete time for implicit Euler

Proposition 4.2 Let n ∈ N, and suppose that As-

sumptions 4.1 and 3.3 hold for some R ≥ 2n(2s + 1)

and some p ≥ 1. Then there exists a scalar CΨ > 0

that does not depend on τ or k ∈ [K], such that for all

k ∈ [K],

E
[
‖Ψτ (Uk)− Φτ (Uk)‖2n

]
≤ CΨτ4n (4.7)

with CΨ as in (A.16).

Proposition 4.2 shows that when f satisfies the poly-

nomial growth condition and Ψ is the implicit Euler

method, then the local truncation error at step k of

the randomised numerical integrator satisfies a bound

analogous to that in Assumption 3.2, provided that the

random variables (ξk(τ))k∈[K] are sufficiently regular.

Theorem 4.5 Let n ∈ N, and let Ψτ be given by (4.3).

Suppose that Assumptions 4.1, 4.3, and 4.4 hold, with

parameters s ≥ 1 and τ ′ > 0. Suppose that Assumption

3.3 holds with R ≥ 2n(2s + 1) and p ≥ 3
2 . Then there

exists some C > 0 that does not depend on τ such that

for 0 < τ < τ ′,

E
[

max
`∈[K]

‖e`‖2n
]
≤ Cτ2n.

Note that the condition p ≥ 3
2 is the same condition

p ≥ q+ 1
2 on p in Theorem 3.5, since the implicit Euler

method has order q = 1.

4.3 Alternative decomposition of the error

The decomposition (3.3) of the error ek+1 was used to

derive the convergence results above. One might con-

sider instead using the decomposition

ek+1 = (Φτ (uk)−Ψτ (uk)) + (Ψτ (uk)−Ψτ (Uk))− ξk(τ)

with the goal of using some stability properties of the

implicit Euler method. However, this approach leads to

a convergence result that is weaker, either because it

requires exponential integrability of ‖Uk‖, or because
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the convergence is uniform only on a proper subset Ωτ
of the event space Ω. Recall that we do not assume any

of the ξk(τ) to be a.s. bounded.

By (2.2) and the fact that implicit Euler has order

one (i.e. Assumption 3.2)

‖ek+1‖2 ≤ (‖Φτ (uk)− Ψτ (uk)‖

+ ‖Ψτ (uk)− Ψτ (Uk)− ξk(τ)‖)2

≤ (1 + τ−1)‖Φτ (uk)− Ψτ (uk)‖2

+ (1 + τ)‖Ψτ (uk)− Ψτ (Uk)− ξk(τ)‖2

≤ (1 + τ−1)(Cτ2)2 (4.8)

+ (1 + τ)‖Ψτ (uk)− Ψτ (Uk)− ξk(τ)‖2,

where one can show, using the proof of Proposition 4.2,

that C > 0 in (4.8) depends on ‖uk‖s but not on τ . By

(2.2) we obtain

‖Ψτ (uk)− Ψτ (Uk)− ξk(τ)‖2

≤ (1 + τ)‖Ψτ (uk)− Ψτ (Uk)‖2 + (1 + τ−1)‖ξk(τ)‖2.

Substituting the result above into (4.8), and assuming

that τ < 1, we obtain

‖ek+1‖2 ≤Cτ3 + (1 + τ)2‖Ψτ (uk)− Ψτ (Uk)‖2 (4.9)

+ 4τ−1‖ξk(τ)‖2.

The definition (4.3) of the implicit Euler method and

(2.2) yield

‖Ψτ (uk)− Ψτ (Uk)‖2

= ‖uk − Uk + τf(Ψτ (uk))− τf(Ψτ (Uk))‖2

≤ (1 + τ)‖uk − Uk‖2

+ (1 + τ−1)τ2‖f(Ψτ (uk))− f(Ψτ (Uk))‖2

≤ (1 + τ)‖ek‖2 + (1 + τ)τD2‖Ψτ (uk)− Ψτ (Uk)‖2×

[1 + ‖Ψτ (uk)‖s + ‖Ψτ (Uk)‖s]2 ,

by Assumption 4.1. Rearranging the above yields

(1 + τ)‖ek‖2 ≥‖Ψτ (uk)− Ψτ (Uk)‖2(1− (1 + τ)τD2M̂)

where M̂ := [1 + ‖Ψτ (uk)‖s + ‖Ψτ (Uk)‖s]2 is a random

variable. Analogously, define the random variable M by

M :=

[
1 + max

k∈[K]
‖Ψτ (uk)‖s + max

k∈[K]
‖Ψτ (Uk)‖s

]2
.

Suppose that u0 = U0 are fixed, and define

Ωτ :=
{
ω ∈ Ω

∣∣ 1− (1 + τ)τD2M(ω) > 0
}
. (4.10)

Since it is not the case that all of the random variables

(ξk(τ))k∈[K] are a.s.-bounded, it follows that Ωτ is a

proper subset of Ω, for every τ > 0. In what follows,

we assume that Ωτ is nonempty, and that ω ∈ Ωτ ;

we suppress the ω–dependence of all random variables.

Define C̃ > 0 by

(
1− (1 + τ)τD2M

)−1
=

∞∑
n=0

[
(1 + τ)τD2M

]n
=: 1 + C̃τ, (4.11)

Using (4.11), we have

‖Ψτ (uk)− Ψτ (Uk)‖2 ≤ (1 + τ)(1 + C̃τ)‖ek‖2,

and substituting the above into (4.9) yields

‖ek+1‖2 ≤ Cτ3+(1+τ)3(1+C̃τ)‖ek‖2+4τ−1‖ξk(τ)‖2.

Proceeding as in the proof of Theorem 4.5, we use a

telescoping sum, Grönwall’s theorem, and Assumption

3.3 with p ≥ q + 1/2 to obtain

E
[
1Ωτ max

k∈[K]
‖ek‖2

]
≤ E [1Ωτ exp (Tκ)]Cτ2, (4.12)

where κ depends on τ according to

κ(τ) := τ−1
[
(1 + τ)3(1 + C̃τ)− 1

]
= C̃τ3 + (3C̃ + 1)τ2 + 3(C̃ + 1)τ + (3 + C̃).

For any τ > 0, it follows from the definition of κ, and

considering the zeroth order term 3 + C̃ above that

κ(τ) > 3 + (1 + τ)D2M.

From (4.10), it follows that, for all ω ∈ Ωτ , we have

(1 + τ)D2M < τ−1.

where the right-hand side increases to infinity as τ de-

creases to zero. Thus, it need not be true that the quan-

tity E[1Ωτ exp(Tκ)] is finite. One way to ensure that

E[1Ωτ exp(Tκ)] is finite for 0 < τ < τ ′ would be to

require that E[exp(Tκ)] is finite on the same range.

By the inequality for κ above, a necessary condition

for E[exp(Tκ)] to be finite is exponential integrabil-

ity of maxk∈[K] ‖Ψτ (Uk)‖2s. In many cases, a necessary

condition for this would be exponential integrability of

maxk∈[K] ‖Uk‖2s. By Corollary 4.1, in order to guar-

antee exponential integrability of maxk∈[K] ‖Uk‖2s, we

would need to impose much stronger regularity condi-

tions on the (ξk(τ))k∈[K] than those in Theorem 4.5.

Finally, we also remark that if the (ξk)k∈[K] are not P-

a.s. uniformly bounded, then for any τ > 0, (4.12) is a

weaker convergence result than Theorem 4.5, since in

this case for any τ > 0 Ωτ will be a proper subset of Ω.
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5 Additional results

5.1 Convergence for continuous-time interpolant

Recall (1.6) defines the discrete-time process (Uk)k∈[K];

in many applications, it is often useful to have a nu-

merical method that provides continuous output, e.g.

an inverse problem or data assimilation that requires

comparison between the numerical solution and an ob-

servation that is not on the time grid (tk)k∈[K] defined

in (1.3). Given this time grid (tk)k∈[K], we may define

a continuous-time process U by

U(t) := Ψ t−tk(Uk) + ξk(t− tk) for t ∈ [tk, tk+1).

For the above definition to work, we assume that each

ξk is a stochastic process defined on the time inter-

val [0, τ ]. In addition, to ensure that the process U

has P-almost surely continuous paths, we require that

P(ξk(0) = 0) = 1. The corresponding notion of the error

at time 0 ≤ t ≤ T is given by e(t) := u(t)−U(t), where

u(t) = Φt(u0). We emphasise that the continuous-time

process (U(t))0≤t≤T described above will in general dif-

fer from the continuous-time process obtained by linear

interpolation of (Uk)k∈[K].

We now demonstrate how one can obtain a con-

vergence result for the continuous-time process from a

discrete-time convergence result by strengthening the

assumption on the noise, using Theorem 3.5 as an exam-

ple. Consider the following version of Assumption 3.3:

Assumption 5.1 Fix τ > 0. The collection (ξk)k∈N
of stochastic processes ξk : Ω × [0, τ ] → Rd satisfies

P(ξk(0) = 0) = 1 and admits p ≥ 1, R ∈ N∪{+∞} and

some Cξ,R ≥ 1 that do not depend on k ∈ N or τ , such
that for all 1 ≤ r ≤ R and for all k ∈ N,

E
[

sup
0<t≤τ

‖ξk(t)‖r
]
≤
(
Cξ,Rτ

p+1/2
)r
.

Recall that we do not assume that the ξk are inde-

pendent, identically distributed, or centred.

Theorem 5.2 Let n ∈ N, and suppose that Assump-

tions 3.1, 3.2, and 5.1 hold with parameters τ∗, CΦ,

CΨ , q, Cξ,R, p, and R. Then for all 0 < τ < τ∗,

E
[

sup
0≤t≤T

‖e(t)‖n
]

≤ 3n−1
(
(1 + CΦτ

∗)
n
C + CnΨ (τ∗)n + TCnξ,R

)
× (5.1)

τn(q∧(p−1/2)),

where C is defined in (3.6).

The next result follows from Theorem 5.2 in the

same way that Corollary 3.1 follows from Theorem 3.5.

Corollary 5.1 Fix n ∈ N. Suppose that Assumptions

3.1 and 3.2 hold, and that Assumption 5.1 holds with

R = +∞ and p ≥ 1/2. Then, for all 0 < τ < τ∗,

E
[
exp

(
ρ sup
0≤t≤T

‖e(t)‖n
)]

<∞, for all ρ ∈ R. (5.2)

Proof The proof follows by the series representation of

the exponential and the dominated convergence theo-

rem; see the proof of Corollary 3.1.

5.2 Existence of processes that satisfy the

(p,R)-regularity condition

The lemma below shows that there exist random vari-

ables that are not P-a.s. bounded, and that satisfy As-

sumption 3.3 and, more generally, Assumption 5.1 for

R = +∞.

Lemma 5.1 Let τ > 0 and p ≥ 1 be arbitrary, and let

(Bt)0≤t≤τ be Rd-valued Brownian motion. Then

ξ0(t) := τp−1
∫ t

0

Bs ds

satisfies

E
[
sup
t≤τ
‖ξ0(t)‖r

]
≤ 4τ r(p+1/2) for all r ∈ N. (5.3)

Note that variants of the integrated Brownian mo-

tion process have been used for modelling local trunca-

tion error in other works (Schober et al. 2014; Conrad

et al. 2017). However, the point of Lemma 5.1 is not

to suggest that the local truncation error behaves as
an integrated Brownian motion, nor even that the in-

tegrated Brownian motion process is a suitable model

for the local truncation error. The point of Lemma 5.1

is simply to show that there exist processes that sat-

isfy Assumption 5.1 with R = +∞. The construction

of models that better reflect known properties of the

truncation error, for specific classes of vector fields f ,

is an interesting task that we leave for future work.
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A Proofs

Proof (Proof of Lemma 2.1) The assertion (2.3) holds imme-
diately for n = 1, so let n ∈ N \ {1}, and recall the binomial
formula: for x, y ∈ R and n ∈ N \ {1},

(x+ y)n =
n∑
k=0

(n
k

)
xkyn−k = xn + yn +

n−1∑
k=1

(n
k

)
xkyn−k.

Fix δ > 0. By (2.1), for any 1 ≤ k ≤ n− 1,

xkyn−k ≤ δ
k

n
xn +

1

δk/(n−k)
n− k
n

yn

≤ δ
k

n
xn +

1

δn−1

n− k
n

yn,

where the second inequality follows from − k
n−k ≥ −(n− 1).

Therefore,

(x+ y)n ≤xn
(

1 + δ

n−1∑
k=1

(n
k

) k
n

)
(A.1)

+ yn

(
1 +

1

δn−1

n−1∑
k=1

(n
k

)n− k
n

)
,

and the proof is complete upon observing that

n−1∑
k=1

(n
k

) k
n

=

n−1∑
k=1

(n− 1

k − 1

)
=

n−1∑
j=0

(n− 1

j

)
−
(n− 1

n− 1

)
= (1 + 1)n−1 − 1 ≤ 2n−1

and bounding the other binomial sum in a similar way. ut

Proof (Proof of Theorem 3.4) By (3.3),

‖ek+1‖2 =
∥∥(Φτ (uk)− Φτ (Uk)

)
−
(
Ψτ (Uk)− Φτ (Uk)

)∥∥2
+ ‖ξk(τ)‖2 + 2〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉.

By (2.2) with δ = τ , by Assumption 3.1 and Assumption 3.2,
and using that τ < τ∗ ≤ 1,

‖Φτ (uk)− Ψτ (Uk)‖2

=
∥∥(Φτ (uk)− Φτ (Uk)

)
−
(
Ψτ (Uk)− Φτ (Uk)

)∥∥2
≤ (1 + τ)‖Φτ (uk)− Φτ (Uk)‖2

+ (1 + τ−1)‖Ψτ (Uk)− Φτ (Uk)‖2

≤ (1 + τ)(1 + CΦτ)2‖ek‖2 + 2C2
Ψ τ

1+2q. (A.2)

Observe that [(1 + τ)(1 + CΦτ)2 − 1]τ−1 equals a quadratic
polynomial in τ with coefficients a0, a1, and a2. Calculating
these coefficients and defining

C1 = C1(CΦ, τ
∗) := 1+2CΦ+CΦ(2+CΦ)τ∗+C2

Φ(τ∗)2 (A.3)

then yields that [(1 + τ)(1 + CΦτ)2 − 1]τ−1 ≤ C1 for all
0 < τ < τ∗.

Combining the preceding estimates yields

‖ek+1‖2 − ‖ek‖2 ≤C1τ‖ek‖2 + 2C2
Ψ τ

1+2q + ‖ξk(τ)‖2 (A.4)

+ 2〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉.

Using (A.4) in the telescoping sum

‖ek‖2 − ‖e0‖2 =

k−1∑
j=0

(
‖ej+1‖2 − ‖ej‖2

)
,

the fact that e0 = u0 − U0 = 0 and K = T/τ , we obtain

‖ek‖2 ≤
k−1∑
j=0

[
C1τ‖ej‖2 + CΨ τ

1+2q + ‖ξj(τ)‖2

+ 2 〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉
]

≤ C1τ

k−1∑
j=0

‖ej‖2 +

K−1∑
j=0

(
2C2
Ψ τ

1+2q + ‖ξj(τ)‖2
)

+ 2

∥∥∥∥∥∥
k−1∑
j=0

〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉

∥∥∥∥∥∥
≤ C1τ

k−1∑
j=0

‖ej‖2 + 2TC2
Ψ τ

2q +

K−1∑
j=0

‖ξj(τ)‖2

+ 2

∥∥∥∥∥∥
k−1∑
j=0

〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉

∥∥∥∥∥∥ .
It follows from the last inequality that

max
`≤k
‖e`‖2 ≤ C1τ

k−1∑
j=0

‖ej‖2 + 2TC2
Ψ τ

2q +

K−1∑
j=0

‖ξj(τ)‖2

+ 2 max
`≤k

∥∥∥∥∥∥
`−1∑
j=0

〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉

∥∥∥∥∥∥ .
Now replace ‖ej‖2 on the right-hand side with max`≤j ‖e`‖2
and take expectations of both sides of the inequality. Since
Assumption 3.3 holds with R = 2,

E

K−1∑
j=0

‖ξj(τ)‖2
 ≤ T

τ
(Cξ,Rτ

p+1/2)2 = TC2
ξ,Rτ

2p.

http://papers.nips.cc/paper/7955-implicit-probabilistic-integrators-for-odes
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Next, define for every k ∈ [K] the σ-algebra Fj generated by
ξ0(τ), . . . , ξj(τ) Then the sequence (Fj)j∈[K] forms a filtra-
tion. Define (Mk)k∈[K] by

Mk :=

k∑
j=0

〈Φτ (uj)− Ψτ (Uj), ξj(τ)〉 .

We want to show that this process is a martingale with re-
spect to (Fj)j∈[K]. By (1.6), Uj is measurable with respect
to Fj−1, so Mk is measurable with respect to Fk. Hence
(Mk)k∈[K] is adapted with respect to (Fk)k∈[K]. Observe
that

E [‖Mk‖] ≤
k∑
j=0

E [‖〈Φτ (uj)− Ψτ (Uj), ξj(τ)〉‖]

≤
k∑
j=0

(
E
[
‖Φτ (uj)− Ψτ (Uj)‖2

]
+ E

[
‖ξj(τ)‖2

])
≤ 2

k∑
j=0

(
‖Φτ (uj)‖2 + E

[
‖Ψτ (Uj)‖2 + ‖ξj(τ)‖2

])
.

Using the assumption that X ∈ L2
P =⇒ Ψτ (X) ∈ L2

P , (1.6),
Assumption 3.3, and the fact that U0 = u0 is fixed, it follows
that Uj and Ψτ (Uj) belong to L2

P ; thus Mk belongs to L1
P for

every k ∈ [K]. We now use the assumption that E[ξj(τ)] = 0
for every j ∈ [K], and that the (ξk(τ))k∈[K] are mutually
independent, in order to establish the martingale property:

E [Mk −Mk−1|Fk−1]

= E [〈Φτ (uk)− Ψτ (Uk), ξk(τ)〉|Fk−1] ,

and the right-hand side vanishes since Uk is measurable with
respect to Fk−1 as noted earlier. Since (Mk)k∈[K] is a mar-
tingale, we may apply the Burkholder–Davis–Gundy inequal-
ity (Peškir 1996, Equation (2.2)). Letting [Y ]` denote the
quadratic variation up to time ` of a process Yk, we have

E

max
k≤`

∥∥∥∥∥∥
k−1∑
j=0

〈Φτ (uj)− Ψτ (Uj), ξj(τ)〉

∥∥∥∥∥∥


≤ 3E
[
[〈Φτ (u•)− Ψτ (U•), ξ•(τ)〉]1/2`−1

]
≤ 3E [ab]

where we define b :=
√∑`−1

j=1 ‖ξj(τ)− ξj−1(τ)‖2 and a :=√
maxj≤` ‖Φτ (uj)− Ψτ (Uj)‖2. Using (2.1) with the same a

and b, r = r∗ = 2, and δ = [6(1+τ)(1+CΦτ)2]−1, and using
(A.2), it follows that

3E

[(
max
j≤`
‖Φτ (uj)− Ψτ (Uj)‖

)√√√√`−1∑
j=1

‖ξj(τ)− ξj−1(τ)‖2
]

≤
1

4

(
E
[
max
j≤`
‖ej‖2

]
+ 2C2

Ψ τ
1+2q

)

+ 9(1 + τ∗)(1 + CΦτ
∗)2

`−1∑
j=1

E
[
‖ξj(τ)− ξj−1(τ)‖2

]
≤

1

4

(
E
[
max
j≤`
‖ej‖2

]
+ 2C2

Ψ τ
1+2q

)

+ 18(1 + τ∗)(1 + CΦτ
∗)2

`−1∑
j=1

E
[
‖ξj(τ)‖2

]

where we applied (2.2) with δ = 1, r = r∗ = 2, a = ξj(τ) and
b = ξj−1(τ) to obtain the last inequality. Thus by Assump-
tion 3.3 and by using `− 1 ≤ K = T/τ ,

2E

max
k≤`

∥∥∥∥∥∥
`−1∑
j=0

〈Φτ (uj)− Ψτ (Uj), ξj(τ)〉

∥∥∥∥∥∥


≤
1

2

(
E
[
max
k≤`
‖ek‖2

]
+ 2C2

Ψ τ
1+2q

)

+ 36(1 + τ∗)(1 + CΦτ
∗)2

`−1∑
j=0

E
[
‖ξj(τ)‖2

]
≤

1

2

(
E
[
max
k≤`
‖ek‖2

]
+ 2C2

Ψ τ
1+2q

)
+ 36(1 + τ∗)(1 + CΦτ

∗)2Tτ−1
(
Cξ,Rτ

p+1/2
)2

Combining the preceding estimates, we obtain

E
[
max
`≤k
‖e`‖2

]

≤ τC1

k−1∑
j=0

E
[
max
`≤j
‖e`‖2

]
+ 2TC2

Ψ τ
2q + TC2

ξ,Rτ
2p

+
1

2

(
E
[
max
k≤`
‖ek‖2

]
+ 2C2

Ψ τ
1+2q

)
+ 36(1 + τ∗)(1 + CΦτ

∗)2Tτ−1
(
Cξ,Rτ

p+1/2
)2
,

and by rearranging terms and using that τ < τ∗ ≤ 1, we
obtain

E
[
max
`≤k
‖e`‖2

]

≤ 2τC1

k−1∑
j=0

E
[
max
`≤j
‖e`‖2

]
+ 4(1 + T )C2

Ψ τ
2q

+ 2TC2
ξ,R(1 + 36(1 + τ∗)(1 + CΦτ

∗)2)τ2p.

By the discrete Grönwall inequality (Theorem 2.1) with xk :=
E[max`≤k ‖e`‖2] and constant αk and βj = 2τC1, and by
using that K = T/τ , we obtain

E
[

max
`∈[K]

‖e`‖2
]

≤ exp(2TC1)
[
4(1 + T )C2

Ψ τ
2q

+2TC2
ξ,R(1 + 36(1 + τ∗)(1 + CΦτ

∗)2)τ2p
]
.

This establishes (3.4). ut

Proof (Proof of Theorem 3.5) Let 0 ≤ k ≤ K − 1 and n ∈ N.
By applying the triangle inequality, (2.3), Assumptions 3.1
and 3.2, and by using that 1 + τ2n−1 ≤ 1 + 2n−1 (since
τ ≤ 1),

‖ek+1‖n

≤ (‖Φτ (uk)− Ψτ (Uk)‖+ ‖ξk(τ)‖)n

≤ (1 + τ2n−1)‖Φτ (uk)− Ψτ (Uk)‖n

+ (1 + (2/τ)n−1)‖ξk(τ)‖n

≤ (1 + τ2n−1)
(
(1 + τ2n−1)‖Φτ (uk)− Φτ (Uk)‖n

+ (1 + (2/τ)n−1)‖Φτ (Uk)− Ψτ (Uk)‖n
)

+ (1 + (2/τ)n−1)‖ξk(τ)‖n

≤ (1 + τ2n−1)2(1 + τCΦ)n‖ek‖n

+
(
1 + (2/τ)n−1

) (
(1 + 2n−1)CnΨ τ

n(q+1) + ‖ξk(τ)‖n
)
.
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Observe that, since 2n−1 and CΦ are nonnegative, and since
0 < τ < τ∗,

CΦ(n, τ) :=
[
(1 + τ2n−1)2(1 + τCΦ)n − 1

]
τ−1. (A.5)

Note that CΦ(n, τ) ≤ CΦ(n, τ∗).
Since n ≥ 1 implies that 1 + (2/τ)n−1 ≤ 2nτ1−n, we

have

‖ek+1‖n − ‖ek‖n

≤ CΦ(m, τ∗)τ‖ek‖m + τ1−n(1 + 2n−1)2CnΨ τ
n(q+1)

+ τ1−n(1 + 2n−1)‖ξk(τ)‖n

≤ CΦ(m, τ∗)τ‖ek‖n + τ1−n(4CΨ τ
q+1)n

+ τ1−n(2‖ξk(τ)‖)n.

Decomposing ‖ek+1‖n − ‖e0‖n as a telescoping sum, using
that e0 = u0 − U0 = 0, using the nonnegativity of the sum-
mands on the right-hand side of the last inequality, and using
the relation ‖e`‖n ≤ maxj≤` ‖ej‖n, we obtain

max
`≤k+1

‖e`‖n ≤

(
τ1−n

K−1∑
k=0

(
(4CΨ τ

q+1)n + (2‖ξk(τ)‖)n
))

+ CΦ(n, τ∗)τ
k∑
`=0

max
j≤`
‖ej‖n.

Using that K = Tτ and Grönwall’s inequality (Theorem 2.1),

max
`∈[K]

‖e`‖n

≤ (4CΨ τ
q)nT exp (TCΦ(n, τ∗)) (A.6)

+

(
τ1−n2n

K−1∑
k=0

‖ξk(τ)‖n
)

exp (TCΦ(n, τ∗)) .

Taking expectations, using (3.2) with w = n and v = 1, and
using that K = T/τ yields

E
[

max
`∈[K]

‖e`‖n
]
≤ (4CΨ τ

q)nT exp (TCΦ(n, τ∗))

+ 2nTCnξ,Rτ
n(p−1/2) exp (TCΦ(n, τ∗)) .

Rearranging the above produces the desired inequality. ut

Proof (Proof of Corollary 3.1) Let m ∈ N be arbitrary. Using
(A.6), and applying (2.4) twice, we obtain

max
`∈[K]

‖e`‖nm ≤ 2m−1e(TCΦ(n,τ
∗))m

[
((4CΨ τ

q)nT )m

+ (τ1−n2n)m

(
K−1∑
k=0

‖ξk(τ)‖n
)m]

.

Taking expectations and using (3.2) with w = n and v = m,
we obtain

E
[

max
`∈[K]

‖e`‖nm
]

≤ 2m−1 exp(TCΦ(n, τ∗))m (((4CΨ τ
q)nT )m

+
(
τ1−n2n

)m (
TCnξ,Rτ

n(p+1/2)−1
)m)

.

The conclusion follows by the series expansion of the expo-
nential and the dominated convergence theorem. ut

Proof (Proof of Theorem 4.2) Recall that the solution map
Φτ of the initial value problem (1.1) satisfies

Φτ (a) := a+

∫ τ

0

f(Φt(a)) dt.

For any τ > 0 and a, b ∈ Rd, Assumption 4.1 and the integral
Grönwall–Bellman inequality yield

‖Φτ (a)− Φτ (b)‖

=

∥∥∥∥a− b+

∫ τ

0

f(Φt(a))− f(Φt(b)) dt

∥∥∥∥
≤ ‖a− b‖

+D

∫ τ

0

(1 + ‖Φt(a)‖s + ‖Φt(b)‖s)‖Φt(a)− Φt(b)‖ dt

≤ ‖a− b‖ exp

(
D

∫ τ

0

(1 + ‖Φt(a)‖s + ‖Φt(b)‖s) dt

)
.

Given the boundedness hypothesis on the (ξk(τ))k∈[K], we
may define a finite constant C > 0 that does not depend on
τ or k, such that

‖Φτ (uk)− Φτ (Uk)‖ ≤ ‖ek‖ exp (Dτ(1 + 2C))

≤ ‖ek‖(1 + C′τ).

The rest of the proof follows in a similar manner to that of
Theorem 3.5. ut

Proof (Proof of Lemma 4.1) In what follows, we shall omit
the dependence of all random variables on ω, with the under-
standing that ω is arbitrary. Let n ∈ [K], where K = T/τ ∈
N. From (1.6) we have, by (2.1),

‖Un+1‖2 ≤ (1 + τ) ‖Ψτ (Un)‖2 + (1 + τ−1)‖ξn(τ)‖2. (A.7)

Taking the inner product of (4.3) with Ψτ (Un), we obtain by
(4.4)

‖Ψτ (Un)‖2

= 〈Ψτ (Un), Un〉+ τ〈f(Ψτ (Un)), Ψτ (Un)〉

≤
1

2

(
‖Ψτ (Un)‖2 + ‖Un‖2

)
+ τ

(
α+ β ‖Ψτ (Un)‖2

)
= ‖Ψτ (Un)‖2

(
1

2
+ βτ

)
+

1

2
‖Un‖2 + ατ.

Thus,

‖Ψτ (Un)‖2 ≤
1

1− 2βτ

(
‖Un‖2 + 2ατ

)
≤

1

1− 2|β|τ
(
‖Un‖2 + 2ατ

)
, (A.8)

where we used the inequality 1 − 2|β|τ ≤ 1 + 2βτ for the
second inequality. Then (A.7) and (A.8) yield

‖Un‖2 ≤
1 + τ

1− 2|β|τ
(
‖Un−1‖2 + 2ατ

)
+

1 + τ

τ
‖ξn−1(τ)‖2.

(A.9)

Let c1(τ) := 1+2|β|
1−2|β|τ and c2(τ) := 2α

1−2|β|τ . By (A.9), it

follows that

‖Un‖2 − ‖Un−1‖2

≤ τc1(τ)‖Un−1‖2 + (1 + τ)
(
τc2(τ) + τ−1‖ξn−1(τ)‖2

)
.
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Using the telescoping sum

‖Un‖2 = ‖U0‖2 +

n∑
i=1

(
‖Ui‖2 − ‖Ui−1‖2

)
it follows that

‖Un‖2 ≤ ‖U0‖2+

n∑
i=1

[
τc1(τ)‖Ui−1‖2+

(1 + τ)
(
τc2(τ) + τ−1‖ξi−1(τ)‖2

)]
.

Since n ≤ K := T/τ , and since the right-hand side of the
inequality above is nonnegative,

‖Un‖2 ≤‖U0‖2 + (1 + τ)

Tc2(τ) + τ−1

T/τ∑
i=1

‖ξi−1(τ)‖2


+ τc1(τ)

n−1∑
i=0

‖Ui‖2.

Applying the Grönwall inequality (Theorem 2.1), yields, for
all n ∈ [K],

max
i∈[K]

‖Ui‖2

≤

‖U0‖2 + (1 + τ)

Tc2 +
1

τ

T/τ∑
i=1

‖ξi−1(τ)‖2
 exp (Tc1)

≤ (1 + τ)

‖U0‖2 + Tc2 +
1

τ

T/τ∑
i=1

‖ξi−1(τ)‖2
 exp (Tc1)

≤ C2

1 + τ−1

T/τ∑
i=1

‖ξi−1(τ)‖2
 ,

where we define, for τ ′ as in Assumption 4.4, the scalar

C2 = (1 + τ ′) max
{

1, ‖U0‖2 + Tc2(τ ′)
}

exp (Tc1(τ ′)) .

(A.10)

This yields (4.5) for n = 1. By applying (2.4), we obtain (4.5)
for arbitrary n ∈ N. ut

Proof (Proof of Proposition 4.2) Recall that in Assumption
4.1, we assume f ∈ C1(Rd;Rd). Therefore, Taylor’s theorem
applied to the function t 7→ Φt(a) yields

Φτ (a) = a+ τf(a) + τRτ (a), (A.11)

where Rτ (a)→ 0 as τ → 0. Then, by (4.1a), (4.3), and (2.4),

‖Ψτ (Uk)− Φτ (Uk)‖2n

≤ 22n−1τ2n
(
‖f(Ψτ (Uk))− f(Uk)‖2n + ‖Rτ (Uk)‖2n

)
.

(A.12)

By (4.1a), (4.3), (4.2), and (2.4) with the fact that CΦ ≥ 1
in Assumption 4.1, we obtain

‖f(Uk)− f(Ψτ (Uk))‖2n

≤ C2n
Φ (1 + ‖Uk‖s + ‖Ψτ (Uk)‖s)2n ‖Uk − Ψτ (Uk)‖2n

= C2n
Φ (1 + ‖Uk‖s + ‖Ψτ (Uk)‖s)2n ‖τf(Ψτ (Uk))‖2n

≤ τ2nC2n
Φ (1 + ‖Uk‖s + ‖Ψτ (Uk)‖s)2n×

(CΦ (1 + ‖Ψτ (Uk)‖s) ‖Ψτ (Uk)‖+ ‖f(0)‖)2n

≤ τ2n32(2n−1)C4n
Φ

(
1 + ‖Uk‖2ns + ‖Ψτ (Uk)‖2ns

)
×(

‖Ψτ (Uk)‖2n + ‖Ψτ (Uk)‖2n(s+1) + ‖f(0)‖2n
)
.

From (A.8) and (2.4), it holds that for any n and r such that
nr ≥ 1,

‖Ψτ (Uk)‖2nr ≤
2nr−1

(1− 2|β|τ)nr

(
‖Uk‖2nr + (2ατ)nr

)
≤

2nr−1

(1− 2|β|τ ′)nr
(
‖Uk‖2nr + (2ατ ′)nr

)
,

for τ ′ in Assumption 4.4. Applying the second inequality for
the appropriate values of r and computing exponents yields
that, for the polynomials π1, π2 and π defined on R by

π1(x) :=

(
1 + xns +

2ns−1

(1− 2|β|τ ′)ns
(xns + (2ατ ′)ns)

)
π2(x) :=

2n(s+1)−1

(1− 2|β|τ ′)n(s+1)
×(

xn + (2ατ ′)n + xn(s+1) + (2ατ ′)n(s+1) + ‖f(0)‖2n
)

and π(x) := π1(x)π2(x), it follows from Lemma 4.1 that

‖f(Uk)− f(Ψτ (Uk))‖2n

≤ τ2n32(2n−1)C4n
Φ π

(
‖Uk‖2

)
≤ τ2n32(2n−1)C4n

Φ π

(
max
i∈[K]

‖Ui‖2
)
.

Taking expectations, applying Proposition 4.1, and using that
τ < τ ′ to bound the right-hand side of the inequality (4.6) in
Proposition 4.1, we may define some C3 = C3(α, β, CΦ, τ ′, n)
that does not depend on k or τ , such that

E
[
‖f(Uk)− f(Ψτ (Uk))‖2n

]
≤ τ2n32(2n−1)C4n

Φ E
[
π

(
max
i∈[K]

‖Ui‖2
)]

=: τ2nC3. (A.13)

By Proposition 4.1, the finiteness of C3 follows from the hy-
pothesis R ≥ 2n(2s+ 1) and the observation that π1(x2) and
π2(x2) have degree ns and n(s+ 1) in x2, respectively.

Now it remains to show that ‖Rτ (Uk)‖2n ∈ L1
P . From

(4.1a), (4.1b), and (A.11), we obtain

τ‖Rτ (a)−Rτ (b)‖
= ‖Φτ (a)− a− τf(a)− Φτ (b)− b− τf(b)‖
≤ ‖Φτ (a)− Φτ (b)‖+ ‖a− b‖+ τ‖f(a)− f(b)‖
= 2 (1 + τCΦ (1 + ‖a‖s + ‖b‖s) ‖a− b‖) (A.14)

By the triangle inequality and (A.14),

τ‖Rτ (Uk)‖
≤ τ (‖Rτ (0)‖+ 2 (1 + τCΦ(1 + ‖Uk‖s)‖Uk‖))
≤ τ

(
‖Rτ (0)‖+ 2

(
1 + τCΦ(‖Uk‖+ ‖Uk‖s+1)

))
≤ τ

(
‖Rτ (0)‖+ 2

+2CΦ

(
max
k∈[K]

‖Uk‖+ max
k∈[K]

‖Uk‖s+1

))
.

Then by applying (2.4) and Proposition 4.1 with the hypoth-
esis that R ≥ 2n(2s + 1) ≥ 2n(s + 1), and using the bound
τ < τ ′, it follows that we may define a positive scalar C4 that
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does not depend on k or τ , such that

E
[
τ2n‖Rτ (Uk)‖2n

]
≤ τ2nE

[(
‖Rτ (0)‖+ 2+

2CΦ

(
max
k∈[K]

‖Uk‖+ max
k∈[K]

‖Uk‖s+1

))2n]
=: τ2nC4. (A.15)

Therefore, with C3 and C4 as in (A.13) and (A.15) above,
(A.12) yields

E
[
‖Ψτ (Uk)− Φτ (Uk)‖2n

]
≤ 22n−1τ4n (C3 + C4)

=: CΨ τ
4n (A.16)

as desired. ut

The proof below makes clear that we make absolutely no
effort to find optimal constants.

Proof (Proof of Theorem 4.5) Let n ∈ N. By (2.3)

‖ek+1‖2n

≤ (1 + τ22n−1)
[
(1 + τ22n−1)‖Φτ (uk)− Φτ (Uk)‖2n

+(1 + (2/τ)2n−1)‖Φτ (Uk)− Ψτ (Uk)‖2n
]

+ (1 + (2/τ)2n−1‖ξk(τ)‖2n.

Since τ ≤ 1 and n ≥ 1, it holds that 1 + τ1−2n22n−1 ≤
τ1−2n(1 + 22n−1) and 1 + τ22n−1 ≤ 1 + 22n−1. Using these
inequalities, (2.3), and (4.1b) in the preceding inequality, we
obtain

‖ek+1‖2n

≤ (1 + τ22n−1)2 (1 + τCΦ(1 + ‖uk‖s + ‖Uk‖s))2n ‖ek‖2n

+ (1 + 22n−1)2τ1−2n×(
‖Φτ (Uk)− Ψτ (Uk)‖2n + ‖ξk(τ)‖2n

)
.

Using (2.3) again, we obtain

(1 + τCΦ(1 + ‖uk‖s + ‖Uk‖s))2n ‖ek‖2n

≤
[(

1 + τCΦ

(
1 + max

`∈[K]
‖u`‖s

))
‖ek‖+

τCΦ max
`∈[K]

‖U`‖s‖ek‖
]2n

≤ (1 + τ22n−1)

(
1 + τCΦ

(
1 + max

`∈[K]
‖u`‖s

))2n

‖ek‖2n

+ (1 + τ1−2n22n−1)(τCΦ)2n max
`∈[K]

‖U`‖2ns‖ek‖2n

so that by defining

C5 = C5(n, s, CΦ, u) := max{22n−1, CΦ(1 + ‖u‖s∞)}

we have

(1 + τCΦ(1 + ‖uk‖s + ‖Uk‖s))2n ‖ek‖2n

≤ (1 + τC5)2n+1 ‖ek‖2n

+ τ1−2n(1 + 22n−1)

(
τCΦ max

`∈[K]
‖U`‖s‖ek‖

)2n

and, therefore,

‖ek+1‖2n − ‖ek‖2n

≤
[
(1 + τC5)2n+1 − 1

]
τ−1τ‖ek‖2n

+ τ1−2n(1 + 22n−1)

(
τCΦ max

`∈[K]
‖U`‖s‖ek‖

)2n

+ (1 + 22n−1)2τ1−2n×(
‖Φτ (Uk)− Ψτ (Uk)‖2n + ‖ξk(τ)‖2n

)
.

By nonnegativity of C5, it follows that [(1+τC5)2n+1−1]τ−1

is a polynomial of degree 2n in τ with positive coefficients. In
particular, if we recall the definition of C5 and define C6 by

C6(CΦ, n, s, (ut)0≤t≤T , τ
′)

:=
[(

1 + τ ′max{22n−1, CΦ(1 + ‖u‖s∞}
)2n+1 − 1

]
(τ ′)−1,

(A.17)

then C6 does not depend on τ , [(1 + τC5)2n+1− 1]τ−1 ≤ C6

for all 0 < τ < τ ′, and

‖ek+1‖2n − ‖ek‖2n

≤ C6τ‖ek‖2n

+ τ1−2n(1 + 22n−1)

(
τCΦ max

`∈[K]
‖U`‖s‖ek‖

)2n

+ (1 + 22n−1)2τ1−2n×(
‖Φτ (Uk)− Ψτ (Uk)‖2n + ‖ξk(τ)‖2n

)
.

By the telescoping sum associated to ‖ek+1‖2n−‖ek‖2n, the
fact that e0 = 0, the bound 1 + 22n−1 ≤ 22n, the nonneg-
ativity of the terms on the right-hand side of the inequality
above, and the bound ‖ej‖ ≤ max`≤j ‖e`‖, we obtain

max
`≤k+1

‖e`‖2n

≤ τ1−2n24n
K∑
`=1

((
τCΦ max

j∈[K]
‖Uj‖s‖e`‖

)2n

+

‖Φτ (U`)− Ψτ (U`)‖2n + ‖ξ`(τ)‖2n
)

+ C6τ
k∑
`=1

max
j≤`
‖ej‖2n.

By Lemma 4.1,(
τCΦ max

j∈[K]
‖Uj‖s‖e`‖

)2n

≤ C2n
Φ (2C1)sn×τ2n‖e`‖2n + τn(2−s)

T/τ∑
i=1

‖ξi(τ)‖2
ns ‖e`‖2n


which implies that

max
`≤k+1

‖e`‖2n

≤ τ1−ns2n(4+s)C2n
Φ Cns1

K∑
`=1

T/τ∑
i=1

‖ξi(τ)‖2
ns ‖e`‖2n

+ τ1−2n24n
K∑
`=1

(
‖Φτ (U`)− Ψτ (U`)‖2n + ‖ξ`(τ)‖2n

)
+
(
C6τ + τ2n2n(4+s)C2n

Φ Cns1

) k∑
`=1

max
j≤`
‖ej‖2n.
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Define

C7 = C7(n, s, CΦ, C1) := 2n(4+s)C2n
Φ Cns1 . (A.18)

Since CΦ, C1 ≥ 1, it follows that 24n ≤ C7 ,and by Grönwall’s
inequality (Theorem 2.1) we obtain

max
`∈[K]

‖e`‖2n

≤ exp
(
T (C6 + τ2n−1C7)

)
C7×τ1−ns K∑

`=1

T/τ∑
i=1

‖ξi(τ)‖2
ns ‖e`‖2n

+ τ1−2n
K∑
`=1

(
‖Φτ (U`)− Ψτ (U`)‖2n + ‖ξ`(τ)‖2n

))
.

Taking expectations completes the proof, provided that we
can ensure each sum is of the right order in τ . By Propo-
sition 4.2 with the hypothesis that R ≥ 2n(2s + 1), and by
Assumption 3.3,

τ1−2n
K∑
`=1

E
[
‖Φτ (U`)− Ψτ (U`)‖2n + ‖ξ`(τ)‖2n

]
≤ T

(
CΨ τ

2n +
(
Cξ,Rτ

p−1/2
)2n)

. (A.19)

Thus we need p − 1/2 ≥ 1 to hold. Next, using the bound
‖e`‖ ≤ maxj∈[K] ‖ej‖, Young’s inequality (2.1) with a =

(
∑K
i=1 ‖ξi(τ)‖2)ns, b = ‖e`‖2n, and some δ > 0 and conju-

gate exponent pair (r, r∗) ∈ (1,∞)2 to be determined later,
we obtain with (3.2) that

E

T/τ∑
i=1

‖ξi(τ)‖2
ns ‖e`‖2n


≤
δ

r
E

T/τ∑
i=1

‖ξi(τ)‖2
nrs+

1

δr∗/rr∗
E
[

max
`∈[K]

‖e`‖2nr
∗
]

≤
δ

r

(
TC2

ξ,Rτ
2p
)nrs

+
1

δr∗/rr∗
E
[

max
`∈[K]

‖e`‖2nr
∗
]
.

Since R ≥ 2n(2s+1), the maximal value of r compatible with
integrability of (

∑K
i=1 ‖ξi(τ)‖2)nrs is r = 2 + s−1. Since we

are not interested in optimal estimates, we shall set r = r∗ =
2 and δ = τ−n(2+s). We thus obtain

τ1−ns
K∑
`=1

E

T/τ∑
i=1

‖ξi(τ)‖2
ns ‖e`‖2n


≤
T

2
τ−ns

(
(TC2

ξ,R)nrsτ−n(2+s)+2p(2ns)

+τn(2+s)E
[

max
`∈[K]

‖e`‖4n
])

.

For the exponent of τ of the first term in the parentheses,
we want to ensure that −n(2 + s) + 2p(2ns) − ns ≥ 2n, or
equivalently that p ≥ 1

s
+ 1

2
. Comparing this condition with

the condition p− 1
2
≥ 1 that arose from (A.19), and recalling

that s ≥ 1, we observe that if p ≥ 3
2

, then the preceding

estimates yield

E
[

max
`∈[K]

‖e`‖2n
]

≤ exp
(
T (C6 + τ2n−1C7)

) C7T

2
×((

TC2
ξ,R

)2ns
+ E

[
max
`∈[K]

‖e`‖4n
])

τ2n.

It remains to bound E[max`∈[K] ‖e`‖4n] by a constant that
does not depend on τ . By (2.4), Proposition 4.1, and the
assumption that τ < τ ′ for τ ′ in Assumption 4.4, we obtain

E
[

max
`∈[K]

‖e`‖4n
]

≤ 24n

(
max
k∈[K]

‖uk‖4n + E
[

max
k∈[K]

‖Uk‖4n
])

≤ 24n
(
‖u‖4n∞ + (2C2)2n

(
1 + TC2

ξ,Rτ
2p−1

)2n)
≤ 24n

(
‖u‖4n∞ + (2C2)2n

(
1 + TC2

ξ,R(τ ′)2p−1
)2n)

=: C8,

(A.20)

where C8 = C8(C2, Cξ,R, n, p, τ ′, T, (ut)0≤t≤T ) > 0 does
not depend on τ . Note that in applying Proposition 4.1, we
have used that s ≥ 1 for the exponent s in Assumption 4.1,
since this implies that 2n(2s+ 1) ≥ 4n. ut

Proof (Proof of Theorem 5.2) Let k ∈ [K] and tk < t ≤ tk+1.
Then

e(t) = Φt−tk (uk)− Ψt−tk (Uk)− ξk(t− tk)

= Φt−tk (uk)− Φt−tk (Uk) + Φt−tk (Uk)

− Ψt−tk (Uk)− ξk(t− tk),

and given that Assumption 3.1 implies that Φt
′

is Lipschitz
on Rd for every t′ ≥ 0,

‖e(t)‖n ≤ 3n−1 ((1 + CΦ(t− tk))n‖ek‖n

+
(
CΨ (t− tk)q+1

)n
+ ‖ξk(t− tk)‖n

)
by applying (2.4). Since t − tk ≤ τ , it follows from the in-
equality above that

E
[

sup
0≤t≤T

‖e(t)‖n
]

= E
[

max
k∈[K]

sup
tk<t≤tk+1

‖e(t)‖n
]

≤ 3n−1

(
(1 + CΦτ)nE

[
max
k∈[K]

‖ek‖n
]

+
(
CΨ τ

q+1
)n

+E

[
max

0≤k≤K−1
sup

tk<t≤tk+1

‖ξk(t− tk)‖n
])

.

By Assumption 5.1,

E

[
max

0≤k≤K−1
sup

tk<t≤tk+1

‖ξk(t− tk)‖n
]

≤
K−1∑
k=0

E

[
sup

tk<t≤tk+1

‖ξk(t− tk)‖n
]

≤
T

τ

(
Cξ,Rτ

p+1/2
)n

= TCnξ,Rτ
n(p+1/2)−1

≤ TCnξ,Rτn(p−1/2).

Note that Assumption 5.1 is stronger than Assumption 3.3.
Therefore we may apply Theorem 3.5 to obtain (5.1). ut
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Proof (Proof of Lemma 5.1) If r = 0, then the desired state-
ment follows immediately. Therefore, let p, r ≥ 1. Let ξ0 be
the integrated P-Brownian motion process scaled by τp−1, so
that

‖ξ0(t)‖r = τr(p−1)tr
∥∥∥∥1

t

∫ t

0

Bs ds

∥∥∥∥r
≤ τr(p−1)tr

(
1

t

∫ t

0

‖Bs‖r ds

)
= τr(p−1)tr−1

∫ t

0

‖Bs‖r ds,

where we applied Jensen’s inequality to the uniform proba-
bility measure on [0, t]. It follows that

E
[

sup
t≤τ
‖ξ0(t)‖r

]
≤ τr(p−1)E

[
sup
t≤τ

tr−1

∫ t

0

‖Bs‖r ds

]
≤ τr(p−1)τr−1E

[
sup
t≤τ

∫ t

0

‖Bs‖r ds

]
≤ τrp−1

∫ τ

0

E
[

sup
0≤t≤τ

‖Bt‖r
]

ds

= τrpE
[

sup
0≤t≤τ

‖Bt‖r
]
.

Above, we used the Fubini–Tonelli theorem to interchange
expectation and integration with respect to s, and the fact
that E

[
supt≤τ ‖Bt‖r

]
is constant with respect to the variable

of integration s. For r = 1, the Burkholder–Davis–Gundy
martingale inequality (Peškir 1996, Equation (2.2)) yields

E

[
sup

0≤t≤τ
‖Bt‖r

]
≤

4− r
2− r

τr/2,

with (4−r)/(2−r) = 3 for r = 1. For r > 1, Doob’s inequality
(Peškir 1996, Equation (2.1)) yields

E

[
sup

0≤t≤τ
‖Bt‖r

]
≤
(

r

r − 1

)r
τr/2.

Since r 7→ [r/(r−1)]r is continuously differentiable and mono-
tonically decreasing on 2 < r < ∞, the desired conclusion
follows. ut
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