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Abstract. The Random Walk Metropolis (RWM) algorithm is a Metropolis—Hastings Markov Chain Monte Carlo algorithm de-
signed to sample from a given target distribution 7V with Lebesgue density on RY . Like any other Metropolis—Hastings algorithm,
RWM constructs a Markov chain by randomly proposing a new position (the “proposal move”), which is then accepted or rejected
according to a rule which makes the chain reversible with respect to 2. When the dimension N is large, a key question is to
determine the optimal scaling with N of the proposal variance: if the proposal variance is too large, the algorithm will reject the
proposed moves too often; if it is too small, the algorithm will explore the state space too slowly. Determining the optimal scaling
of the proposal variance gives a measure of the cost of the algorithm as well. One approach to tackle this issue, which we adopt
here, is to derive diffusion limits for the algorithm. Such an approach has been proposed in the seminal papers (Ann. Appl. Probab.
7 (1) (1997) 110-120; J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 (1) (1998) 255-268). In particular, in (Ann. Appl. Probab. 7 (1)
(1997) 110-120) the authors derive a diffusion limit for the RWM algorithm under the two following assumptions: (i) the algorithm
is started in stationarity; (ii) the target measure 77V is in product form. The present paper considers the situation of practical interest
in which both assumptions (i) and (ii) are removed. That is (a) we study the case (which occurs in practice) in which the algorithm
is started out of stationarity and (b) we consider target measures which are in non-product form. Roughly speaking, we consider
target measures that admit a density with respect to Gaussian; such measures arise in Bayesian nonparametric statistics and in the
study of conditioned diffusions. We prove that, out of stationarity, the optimal scaling for the proposal variance is O (N -1y, as it
is in stationarity. In this optimal scaling, a diffusion limit is obtained and the cost of reaching and exploring the invariant measure
scales as O (N). Notice that the optimal scaling in and out of stationatity need not be the same in general, and indeed they differ
e.g. in the case of the MALA algorithm (Stoch. Partial Differ. Equ. Anal Comput. 6 (3) (2018) 446—499). More importantly, our
diffusion limit is given by a stochastic PDE, coupled to a scalar ordinary differential equation; such an ODE gives a measure of how
far from stationarity the process is and can therefore be taken as an indicator of convergence. In this sense, this paper contributes
understanding to the old-standing problem of monitoring convergence of MCMC algorithms.

Résumé. L’algorithme Random Walk Metropolis (RWM) est un algorithme de Markov Chain Monte Carlo de type Metropolis—
Hastings, congu pour échantillonner une variable aléatoire de loi cible N ayant une densité par rapport a la mesure de Lebesgue
sur RY . Comme tout algorithme de Metropolis—Hastings, RWM construit une chaine de Markov en proposant une nouvelle position
au hasard (le « pas proposé »), qui est ensuit accepté ou rejeté selon une regle choisie de sorte a rendre la chaine réversible par
rapport 2 7. Lorsque la dimension N est grande, une question cruciale est de déterminer 1’échelle optimale (dépendant de N)
de la variance du pas proposé : si cette variance est trop grande, 1’algorithme rejettera les pas proposés trop souvent ; si elle est
top petite, I’algorithme explorera I’espace d’états trop lentement. Déterminer 1’échelle optimale de la variance donne également
une mesure du cofit de I’algorithme. Notre approche a ce probléme est de déterminer des limites de diffusion pour I’algorithme.
Une telle approche a été proposée dans les travaux fondateurs (Ann. Appl. Probab. 7 (1) (1997) 110-120; J. R. Stat. Soc. Ser. B.
Stat. Methodol. 60 (1) (1998) 255-268); en particulier, dans (Ann. Appl. Probab. 7 (1) (1997) 110-120), les auteurs déterminent
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une limite de diffusion pour 1’algorithme RWM en supposant : (i) que 1’algorithme démarre de la mesure stationnaire ; (ii) que
la mesure cible 7% ait une forme produit. Le présent travail étudie la situation d’intérét pratique ou ces deux suppositions n’ont
pas lieu. Ainsi (a) nous étudions le cas (qui a lieu en pratique) ou 1’algorithme commence dans un état non-stationnaire, et (b)
nous considérons des mesures cibles qui n’ont ps une forme produit : en gros, les mesures que nous considérons ont une densité
par rapport a la mesure gaussienne, et qui interviennent en statistique bayesienne non-paramétrique et dans I’étude des diffusions
conditionnées. Nous montrons que, dans 1’état non-stationnaire, 1’échelle optimale de la variance du pas proposé est O (N -1,
¢’est-a-dire la méme que dans I’état stationnaire. A cette échelle optimale, nous obtenons une limite de diffusion et le coiit pour
atteindre et explorer la mesure invariante est d’ordre O (N). Notons que les échelles optimales dans les cas stationnaires et non-
stationnaires ne sont en générales pas les mémes, et different par exemple dans le cas de I’algorithme MALA (Stoch. Partial Differ.
Equ. Anal Comput. 6 (3) (2018) 446-499). De facon plus importante, notre limite de diffusion est donnée par une EDP stochastique
couplée a une équation différentielle ordinaire scalaire. Une telle équation donne une mesure de la distance du processus a 1I’état
stationnaire, et peut donc étre vue comme un indicateur de convergence. En ce sens, ce travail contribue a comprendre le probleme
ancien de controler la convergence des algorithmes MCMC.

MSC: Primary 60J22; secondary 60J20; 60H10

Keywords: Markov Chain Monte Carlo; Random Walk Metropolis algorithm; Diffusion limit; Optimal scaling

1. Introduction
1.1. Setting and main result

Metropolis—Hastings algorithms are popular MCMC methods used to sample from a given target measure 7% defined
via its density with respect to Lebesgue measure on R" (with an abuse of notation, we often denote both a measure
and its density with the same letter). The basic mechanism consists of employing a proposal transition density g (x, y)
in order to produce a reversible chain {xz};2, which has the target measure as invariant distribution [17]. At step k
of the chain, a proposal move yx is generated by using a proposal kernel g (x, y), i.e. yx+1 ~ q(xk, -). Then such a
move is accepted with probability o (xg, yk+1), where

T (y)q(y, x) }

alx,y) = min{l, g, y)

If the move is accepted then the chain is updated to the state xx41 := yk+1, otherwise xi1 := xr. When the proposal
kernel g (x, y) is symmetric in its variables, the expression for the acceptance probability simplifies to

alx,y) = min{l, @}
7 (x)

Random Walk Metropolis (RWM) belongs to the family of Metropolis—Hastings algorithms with symmetric proposal,
as the proposal move is generated according to a random walk. A key question for Metropolis—Hastings methods
in general, and for RWM in particular, is to determine the cost of the algorithm as a function of the dimension N.
The present paper aims at studying the cost of the RWM algorithm by the use of diffusion limits. Precisely, we
identify scalings of the proposal variance with resepct to the dimension N which lead to a diffiusion limit. Since the
inverse proposal variance has the interpretation as a time-step in a discretization of the limiting diffusion, this scaling
determines the number of steps required to reach and explore the desired target distribution. We study the situation of
practical interest where the algorithm is started out of stationarity and the target measure is in non-product form.

In what follows we first introduce the class of target measures that we will be considering and we then specify the
RWM algorithm for such a class of targets (more details on the algorithm and on the class of target measures can be
found in Section 2 and in Section 3, respectively). We then clarify the problem that is the subject of the paper, we
present our main result and, immediately after (see Remark 1.1), we explain the practical implications of such a result
in terms of cost of the algorithm (in this context, we will specify what we mean by “cost of the algorithm™).

The class of target measures that we consider are determined by approximations of a measure on an infinite di-
mensional Hilbert space. In particular, let = be a probability measure defined on an infinite dimensional separable
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Hilbert space (H, (-, -), || - ||) that is absolutely continuous with respect to a Gaussian measure 7y with mean zero and
covariance operator C:

d
T xexp(=W), 70 RN(0,0), (1.1)
dmg

where W : H — R is some real valued functional with domain A C H and no(?’jl) = 1. In Section 3, we will detail
our assumptions on W and give the precise definition of the space H and identify it with an appropriate Sobolev-like
subspace of H (denoted by H® in Section 3). The covariance operator C is a positive, self-adjoint, trace class operator
on H, with eigenbasis {)»?, @j}jen:

Copj=A3¢;. VjeN, (1.2)

where {¢;} jen is an orthonormal basis of #. We will analyse the RWM algorithm designed to sample from the finite
dimensional projections 7V of the measure (1.1) on the space

7—~£QXN = span{¢j}§-\’=1 (1.3)

spanned by the first N eigenvectors of the covariance operator. Notice that the space X" is isomorphic to R¥. To
clarify this further, we need to introduce some notation. Given a point x € #, x := PV (x) is the projection of x
onto the space XV; x**" will be the ith component of the vector x¥ € RV, i.e. x**N = (¢;, x"V).? Similar notation is
also used for y, & and other vectors; we do not give details. We will also denote WV (x) ;= W(PN(x)) and Cy will be,
effectively, an N x N diagonal matrix with ith diagonal component equal to Al.z. More formally,

UV :=woPV and Cy:=PNoCoPV. (1.4)
With this notation in place, our target measure is the measure 7V (on XV = R") defined as

dnV
N
dno

(@) =Mgne " O 7N~ N(©,Cy), (1.5)

where My~ is a normalization constant. Notice that the sequence of measures {77V} ycry approximates the measure 7
(in particular, the sequence {7V} nen converges to 7 in the Hellinger metric [16]).
Letting £ > 0 denote a positive parameter, consider the RWM algorithm with proposal

2¢2 N ) ..
y=x+,/701b/25N, N =3"eINg, NN, 1) iid. (1.6)
j=1

The current position x and the proposal y belong to H; however, because the noise is finite dimensional, effectively
only the first N components of x are modified when a proposal is accepted, namely the components belonging to XV .

Using the proposal (1.6), we construct the RWM-Markov chain {x;}; C H, through the “accept-reject” mechanism
described earlier. In computational practice one uses the projected chain x,ﬂv = PN (xx), which samples from the
measure 7, i.e. for any fixed N € N, the chain {x,ﬁv Jeen € XV can be used to sample from the measure 7 . However,
we often work in  rather than in X"V (and therefore consider the chain {x };cn rather than the chain {x,ﬁv }ken) because
in H the analysis is cleaner.

To explain the problem at hand consider for a moment, instead of the proposal (1.6), the following proposal:

y=x+ WCN/ gV, 1.7

2Notice that if xV =PV (x) and 1 <i < N then x>V = (¢;, xV) = (5, x).
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where B > 0 is a positive parameter to be chosen. As is well known, if 8 is too large, then the proposal vari-
ance (that is, informally, the size of the jumps of the chain) is too small and the algorithm will explore the state
space very slowly. On the other hand, if 8 is too small, then the proposal variance is too large and the algo-
rithm will tend to reject the proposed moves too frequently (and this is more and more the case as the dimension
N increases). We will show that the value of 8 that strikes the balance between these two opposing scenarios is
=1

We are now in a position to present our main result: let x™)(¢) be the continuous interpolant of the chain {x;},
namely

M @)= (Nt —k)xpp1 + (k+1— Nt)xg, t <1 <txyr, where ip =k/N. (1.8)

The main result of this paper is the diffusion limit for the RWM algorithm started out of stationarity. We infor-
mally state such a result below, with the functions Dy, I'; and A, defined immediately after the statement. The
rigorous statement of the result, with precise conditions, appears in Theorem 5.1 and Theorem 5.4. Below we de-
note by C([0, T]; 7-2) the space of H- valued continuous functions on [0, T], endowed with the uniform topol-

ogy.

Main result. Let {xi}ren be the Markov chain constructed using the RWM proposal (1.6) and starting from the
(deterministic) initial datum xo € H. Assume

1 X
Sp:= lim —Z' 0~ <o (1.9)

Then the continuous interpolant of the chain xi, i.e. the sequence of processes xMN (1) defined in (1.8), converges
weakly in C ([0, T]; H) (as N — 00) to the solution of the SDE

dx(t) =[—x(t) = CVW (x(0)) | De(S®)) dt + /T¢(S®)) dW (1), x(0) = xo, (1.10)
where S(t) : Ry — Ry :={s € R: s > 0} is a deterministic function which solves the ODE
dS(t)=A¢(S®))dt, S(0) = So, (1.11)

and W(t) is a H-valued C-Brownian motion.

If we denote by @ (x) the cdf of a standard Gaussian distribution, the functions Dy, I'y, Ap : Ry — R that appear
in the above statement are defined as follows: for x > 0 and £ > 0 a positive parameter, we define

Dy(x) :=262 fz(x—%(M), 1.12
¢ (x) e T (1.12)
V4
TCe(x):=D 2000 ——— ), 1.13
¢ (x) o (x) + ( m) (1.13)
Ae(x) =1 —2x)Dy(x) + %2@(_\/%) =-=2xDy(x) +T¢(x) (1.14)
and for x =0 and £ > 0 we set
Dy(0) = T (0) = Ag(0) = 262~ (1.15)

3The operator that here we denote generically by ¢, to avoid getting in too much notation at this stage, will be more clearly defined in Section 3
and there denoted by C;. More precisely, as we will explain, W (¢) is a Brownian motion with covariance Cg, see Section 3.
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Remark 1.1. We make several remarks concerning the main result.

e The effective time-step implied by the interpolation (1.8) is N~! so, in this sense, the main result indicates that,
started out of stationarity, the RWM algorithm will take O(N) steps to reach and explore target measures found
by approximating 77 in RY . In this respect, we say that the computational cost of the algorithm is of order N. To
put it differently, our result proves that the proposal variance which delivers a diffusion limit scales like N~ with
dimension N and that, therefore, the cost of the algorithm is of order N.

e Notice that equation (1.11) evolves independently of equation (1.10). Once the RWM chain {x;}; is introduced
(see (2.3) for a precise description of the chain) and an initial state xo € H is given such that S(0) is finite, the real
valued (double) sequence S ,iv ,

S AT
s :=NZ g (1.16)
i=1 1

iN 2
started at S} := % Zf\;l Lo

2 is well-defined. We can then consider the continuous interpolant SN (¢) of the

chain {S,iv } C R4, namely
SNty = (Nt =S, |+ (k+1—=N1SY, t <t <try1, where ty =k/N. (1.17)

In Theorem 5.1 we prove that S M (1) converges in probability in C ([0, T']; R) to the solution of (1.11) with initial
condition Sp ;= limy_s S(I)v . Once such a result is obtained, we can prove that xM (1) converges to x(¢). We want
to stress that the convergence of S M (t) to S(¢) can be obtained independently of the convergence of x")(z) to
x(t). Moreover, notice that S,iv is not a Markov Chain in general (unless e.g. ¥ = 0).

e Let S(r) : Ry — R, be the solution of the ODE (1.11). We will prove (see Theorem 4.2) that S(r) — 1 as t — oo.
With this in mind, notice that D;(1) = 2@2©(—£/\/§) =:hy and I'p(1) = 2D¢(1) = 2h,. Heuristically one can
then argue that the asymptotic behaviour of the law of x(¢), the solution of (1.10), is described by the law of the
following infinite dimensional SDE:

dz(t) = —h¢(z+ CV¥(2)) + v/2he dW. (1.18)

It was proved in [3,4] that (1.18) is ergodic with unique invariant measure given by our target measure (1.1). Our
deduction concerning computational cost is made on the assumption that the law of (1.10) does indeed tend to the
law of (1.18), although we will not prove this here as it would take us away from the main goal of the paper which
is to establish the diffusion limit of the RWM algorithm.

e There are two practical conclusions to be drawn from this work: (i) it is clear that the quantity S(¢) can be taken as
an indicator for convergence: if S(¢) is far away from attaining the value one, then the process is still far away from
stationarity; (ii) it is not unreasonable to tune to the optimal accept probability of 0.234 for the RWM algorithm
(discussed below), even when initialized out of stationarity and when applied to problems that are not of product
form: this follows from the fact that this paper, together with the other works cited in the literature review below,
demonstrates that the optimal acceptance probability is robust to working outside the product form, and that the
scaling of the proposal variance in and out of stationarity is identical with respect to dimension N, and hence that
as S(t) approaches 1 the optimal acceptance probability in stationarity will become the right choice. However, we
emphasize that for the specific problem considered here, namely target measures defined by density with respect to
Gaussian, the pCN variant of RWM (discussed below) is to be recommended because it has dimension independence
convergence properties.

1.2. Relation to the literature

As already explained, in this paper we consider target measures in non-product form, when the chain is started out of
stationarity. When the target measure is in product form, a diffusion limit for the resulting Markov chain was studied
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in the seminal paper [14], where it is assumed that
N .
p(e) =TTe V™, o = ("N, xNV) e R, (1.19)
i=1

and the potential V is such that the measure p is normalized. That work assumed that the chain is started in stationarity,
leading to the conclusion that, in stationarity, O(N) steps are required to explore the target distribution. In [2], the
same question was addressed in the case where p is the density of an isotropic Gaussian measure, when the chain is
started out of stationarity. Recently, the papers [6,7] made the significant extension of considering the product case
(1.19) for quite general potentials V, again out of stationarity. The work in [2,7] demonstrates that the same scaling
of the proposal variance is required both in and out of stationarity, in the product case, and that then O(N) steps are
required to explore the target distribution. Also recently, diffusion limits for RWM started in stationarity have also
been considered for measures in non-product form [9], using families of target measures found by approximating
(1.1), as we consider in this paper; once again, the conclusion is that O(N) steps are required to explore the target
distribution. In the present paper, we combine the settings of [9] and [7] and make a significant extension of the
analysis to consider measures in non-product form, when the chain is started out of stationarity, again showing that
O(N) steps are required to explore the target distribution.
In [14], the diffusion limit is for a single coordinate of the Markov chain and takes the form

dX (1) = —heV'(X (1)) dt +/2he d B(1), (1.20)

with X; € R and B(t) a one dimensional Brownian motion. Each coordinate of the Markov chain has the same weak
limit. Optimizing the time-constant &, of this diffusion process over £ leads to the celebrated optimal acceptance
probability of 0.234. In [6,7] a similar limit is obtained for each coordinate, but because the system is out of stationarity
the coordinates are coupled together, leading to a one dimensional nonlinear (in the sense of McKean) diffusion
process

dX (1) = —do(1)V' (X (1)) dt 4+ v/280(1) dB(0), (1.21)

with X; € R, B(#) denoting a one dimensional Brownian motion, and
1~
40 = GEV(XO)F BV (XO)). a0 = SF(EV(XO)F. 5[V (X))

The definition of the functions G; and Iy can be found in [7, (1.7) and (1.6)], respectively. While we don’t repeat
the full definition here, we point out the two main facts which are relevant in the present context: (i) in stationarity
de(t) = he and g¢(¢) = hy and so (1.21) is identical to (1.20), but out of stationarity the variation of these quantities
reflects what remains of the coupling between different coordinates in the limit of large N; (ii) regarding the functions
D¢ (x) and I'y(x) (defined in (1.12) and (1.13), respectively), notice that D, (x) = gm(x, 1), Te(x) = f‘eﬁ(x, 1).

In [9], because the target measure is no longer of product form, the continuous interpolant of the RWM chain x;
defined in (2.3) has diffusion limit given by the solution of the infinite dimensional SDE (1.18), when the chain is
started in stationarity. In contrast, in this paper where we study the same target measure as in [9], but started out of
stationarity, the limiting diffusion is (1.10), with S(¢) solving (1.11). The relationship between (1.20) and (1.21) is
entirely analogous to the relationship between (1.18) and (1.10). It is natural to ask, then, why do we not obtain an
infinite dimensional nonlinear (in the McKean sense) diffusion process as the limit in this paper? At a sufficiently
abstract level, we do in fact have an infinite dimensional nonlinear (in the McKean sense) diffusion process. However,
because of the specific problem structure we are working with, the relevant functionals of the law of the diffusion
process may be explicitly calculated in closed form. This is because they depend only on the underlying Gaussian
reference measure, and not on the change of measure from Gaussian. The reason for this is that the leading order
effect in the acceptance probability, which must be controlled by means of proposal variance that scales inversely
with dimension N, is a purely Gaussian phenomenon; it is this which governs the chain out of stationarity. Note that
if W = 0 then the target measure is Gaussian and a re-scaling of the coordinates renders the problem in the product
form considered in [7]. Indeed, in the case of Gaussian product measure, the limiting diffusion (1.21) simplifies in the
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sense that the the equations for dy(¢) and g¢(r) depend only on the process X through the quantity M (z) := E(X,)?
and it is explicitly noted in [7] that M (¢) solves precisely the ODE (1.11). It is also relevant to observe at this point

that the weak limit & N S (in C([0, T], R4)) has already been proven in [2] in the Gaussian case where all the
components x,i’N are identically distributed.

On a technical note, we observe that in [6,7] the symmetry of the target measure allows the authors to employ
propagation of chaos techniques so that these two papers have brought together two thus far distant worlds: MCMC
and probabilistic methods for nonlinear PDEs. In our case, due to the lack of symmetry in the proposal, the propagation
of chaos point of view cannot be used so we base our analysis on the more “hands on” approach used in [9]. As already
mentioned, the latter paper is devoted to the study of the diffusion limit for the same chain that we are analysing here
and in the same infinite dimensional context as well. The difference with our paper is that the chain in [9] is started in
stationarity. As a consequence, the quantity that here we call S(¢) is, in their case, equal to 1 for every ¢ > 0O; to better
phrase it, if we start the chain in stationarity, then

N  _iNp
1 X N
Sy =— E | §2| N> 1, almost surely, for all k > 0. (1.22)
i=1 i

Recalling that S(#) — 1 as t — oo, this is coherent with our results. Although the approach we use here is similar to
the one developed in [9], significant extensions of that work are required in order to handle the technical complications
introduced by the non stationarity of the chain. Throughout the paper we will flag up the main steps where our analysis
differs from that in [9] (see in particular Section 5.2, the comments at the end of Section 5.3, and Remark 8.7). Let us
just say for the moment that if we start the chain in stationarity then x,ﬂv ~ 7™ for all k > 0. Because ¥ is a change
of measure from a Gaussian measure, all the almost sure properties of the chain only need to be shown for x ~ .
In the non stationary case we cannot reduce the analysis to the Gaussian case and therefore some of the estimates
become more involved. The above discussion motivates our interest in the problem studied in this paper: on the one
hand we want to extend the analysis of [7] away from the non-practical i.i.d. product form for the target; on the other
hand we drop the assumption of stationarity in [9].

For completeness, we mention that the non stationary case has also been considered in [8,10,12] for the Metropolis-
adjusted Langevin algorithm, the pre-conditioned Crank-Nicolson (pCN) algorithm, and the Second Order Langevin-
Hamiltonian Monte Carlo (SOL-HMC) scheme, respectively. In the former case, the cost of the algorithm was found
to be O(N/ 2) out of stationarity contrasting with the well-known O(N 1/ 3) cost in stationarity [15]. In the latter two
cases, the algorithms are well-defined in the infinite dimensional limit and hence do not require a scaling of the time-
step which is inversely proportional to a power of the dimension. On a related note, we remark that when we want to
sample from measures of the form (1.1), RWM is not the optimal choice. Indeed both pCN and the SOL-HMC exactly
preserve the Gaussian measure 7y and hence, in the case W = 0, such algorithms are exact; it is for this reason that
they are well-defined in the infinite dimensional limit, and do not require a scaling of the time-step with dimension.
However, it is still of interest to study the behaviour of RWM on measures of the form (1.1) because they provide an
explicit class of non-product measures for which analysis is possible and for which the scaling of cost with dimention
is the same as in the product case, suggesting broader validity of the conclusions in the papers [2,6,7].

1.3. Outline of paper

The paper is organized as follows. In Section 2, we present in more detail the RWM algorithm. In Section 3, we
introduce the notation that we will use in the rest of the paper and the assumptions we make on the nonlinearity W
and on the covariance operator C. Section 4 contains the proof of existence and uniqueness for the limiting equations
(1.10) and (1.11). With these preliminaries in place, we give, in Section 5, the precise statement of the main results
of this paper, Theorem 5.1 and Theorem 5.4. In Section 5, we also provide heuristic arguments to explain how the
main results are obtained. Such arguments are then made rigorous in Section 7 and Section 8, which contain the
proof of Theorem 5.1 and Theorem 5.4, respectively. The continuous mapping argument on which these proofs rely
is presented in Section 6.
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2. The algorithm
Once the current state x of the chain is given, the proposed move (1.6) depends only on the noise £". For this reason,

in defining the acceptance probability for our algorithm, we use the notations o (xV, y™) or a(xV, ") exchangeably.
With this in mind, let us define the acceptance probability

a(xV,&V) =1 rexp(Q(x", V), .1
where
QN &) = S| 2N P - ey P+ w(e) - w(). )

Consider the Markov chain {x;}72, C H constructed as follows

1202 1,
Xk1 = Xk + Vk+1 WC}V/ gl (2.3)

where

D . . N
Vk+1 ~ Bernoulli(ag41) with agy1 = a(xk ,Elﬁ_l).

That is, given o4 1, the random variable yx41 is independent of any other source of noise and has Bernoulli law with
mean a(x,iv , é,ﬁr 1)- Therefore, (2.3) can be spelled out as follows: if the chain is currently in x, the proposal

[2€% 1)
Vi1 = Xk + WCN/ f}ﬁ.l

is accepted with probability oz and rejected with probability 1 — a4 1. In the above,

N
gN =) glNei whereg) | ~ 2N, 1 iid.,

and therefore o, Q and y; actually depend on N (we suppress the superscript N in the notation for convenience). In
a less compact notation, (2.3) and (2.2) can be rewritten as

242
N .
x11<+1 _xk Y+ Vel —Ai $k+1, fori=1,...,N o

Xk41 = Xk = X0 onH\XN

and

ka N2 |yk+1 ? N

Q= 0(xy . §041) = 22 22 _EZ 22 + W () - ¥ (). 23)
i=l i i=1 i

respectively. As we have already observed in the introduction, in computational practice the above algorithm is im-

plemented in RY. That is, for any N fixed, in order to sample from the measure 77 (defined in (1.5)), one considers

the projected chain {x} = PV (x¢)}xen-

“4Notice that also the state of the chain {xx}reny C H depends on N, as only the first N components are updated. However, this is not reflected in

the notation to avoid confusion between the finite-dimensional chain {x,iv } c XV and the infinite-dimensional chain {xp} CH.
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3. Preliminaries

In this section, we detail the notation and the assumptions (Section 3.1 and Section 3.2, respectively) that we will use
in the rest of the paper.

3.1. Notation

Let (H, (-,-), || - ||) denote an infinite dimensional separable Hilbert space with the canonical norm derived from the
inner-product. Let C be a positive, trace class operator on H and {¢;, A;} j>1 be the eigenfunctions and eigenvalues
of C respectively, so that (1.2) holds. We assume a normalization under which {¢;} ;> forms a complete orthonormal
basis in ‘H. Throughout the paper we will use the following notation:

e The letter N denotes exclusively the dimensionality of the space XV (defined in (1.3)) where the target measure
" is supported.

e As already stressed in the introduction, if x € #, then x" := P (x) is the projection of x on the space XV defined
in (1.3). For every x € H we have the representation x = Z/ xj¢j, where here x/ = (x, @), ie. x/ is the jth

component of x. x5V denotes the Jjth component of xN sothat x/ = x5V forl < Jj < N. Similar notation holds
for the proposal vector y and the noise vector & as well.

° x,iv denotes the kth step of projected chain {PN )X N where x;, has been defined in (2.3). Accordingly, x,i’N
is the ith component of the vector x,ﬁv e xV.

Using this notation, we define Sobolev-like spaces H', r € R, with the inner-products and norms defined by

0]

o
()= 3 2yl and =)0 2
Jj=1 j=1

(H", (-, -),) is a Hilbert space. Notice that {° = H. Furthermore H" C H C H~" for any r > 0. The Hilbert—Schmidt
norm || - ||¢ is defined as

oo
ez = o2 = Y0 a2 ) 3.1
j=I1

and it is the Cameron—Martin norm associated with the Gaussian measure N (0, C). Forr e R, let L, : H — H denote
the operator which is diagonal in the basis {¢;};>1 with diagonal entries ¥ ie.,

L.¢j=j"¢;, jeN,

1
sothat L7 ¢; = j"¢;. The operator L, lets us alternate between the Hilbert space A and the interpolation spaces "
via the identities:

1 1 1
3 3 32
(.3 =(L7x,L7y) and x|} =]L7 x|
Since ||k ¢l = ||L,_1/2¢k||r = ||¢k|l = 1, we deduce that {qgk := k™" ¢r}ik>1 forms an orthonormal basis for H".

For a positive, self-adjoint operator D : H — H, its trace in H is defined as

o0

Trace(D) := Z(qﬁj, Dgj),

j=1

where {¢;};>1 is any orthonormal basis of (#, (-, -)). Since Trace(D) does not depend on the orthonormal basis, the
operator D is said to be in the trace class in H if Trace(D) < oo for some, and hence any, orthonormal basis of H.
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If y ~ N(0,C), then y can be expressed as

o0
. D ..
y:ijpj¢j with p; ~N(0, 1) i.i.d, (3.2)
j=1
or as
> D
y=Y (%i")pjb; withp; ~N(0.1)iid. (3.3)

j=1

Using €2 to denote the probability space on which the sequence {p;};>1 is defined, the above sequence converges
in L2(Q;H") if 3 j )»? j* < o0o. Thus, in this case, we can alternatively view y as a zero-mean Gaussian random
variable on ‘H" with covariance operator

¢, =1, cL?.
Since Trace(C,) =) j A? j?", the summability condition 3 j A% j% < oo simply asks that C, is a trace class operator:
Trace(C,) < oo. Thus, in this paper, we alternate without further comment between Gaussian measures A (0, C) on H
and NV (0, C,) on H", whenever r is such that C, is in the trace class. Similarly, if C, is in the trace class, then

W)=Y rjwitp; =Y rjj wit)p;,

j=1 j=1

with {w;(#)} jen a collection of i.i.d. standard Brownian motions on R, can be equivalently understood as an H-valued
C-Brownian motion or as an H"-valued C,.-Brownian motion.
Throughout the paper, we use the following notation.

e Two sequences {&y},>0 and {8, }n>0 satisfy «,, < B, if there exists a constant K > 0 (independent of n), such that
a, < KB, for all n > 0. The notations «, =< B, means that o, < 8, and 8, < «,,.

e Two sequences of real functions {f,},>0 and {g,},>0 defined on the same set 2 satisfy f,, < g, if there exists a
constant K > 0 (independent of n) satisfying f, (w) < Kg,(w) for all n > 0 and all w € 2. The notations f, < g,
means that f,, < g, and g, < f,. Similarly, for two functions f(x) and g(x), we write f(x) < g(x) if there exists
a constant K > 0 (independent of x) such that f(x) < Kg(x) for all x where the two functions are defined.

e The notation E, [ f (x, §)] denotes expectation with variable x fixed, while the randomness present in & is averaged
out.

As customary, R :={s € R:s >0} and for all b € Ry we let [b] =n if n <b < n + 1 for some integer n. Finally,
for time dependent functions we will use both the notations S(¢) and S; interchangeably.

3.2. Assumptions

In this section, we describe the assumptions on the covariance operator C of the Gaussian measure 7( 2 N(0,C) and
the functional W. We fix a distinguished exponent s > 0 and assume that ¥ : H* — R and that Traceys (C;) < 0o. In
other words, the space H* is the one that we were denoting by 7L in the introduction. For each x € H* the derivative
VW(x) is an element of the dual (H*)* of H*, comprising the linear functionals on H*. However, we may identify
(H*)* =H ™ and view VW (x) as an element of 7{~* for each x € H®. With this identification, the following identity
holds

V¥ £ my = [VE®] -

Similarly, the second derivative %W (x) can be identified with an element of £L(#*, H~*). To avoid technicalities we
assume that W(x) is quadratically bounded, with first derivative linearly bounded at infinity and second derivative
globally bounded.
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Assumptions 3.1. The functional W and covariance operator C satisfy the following assumptions.

1. Decay of Eigenvalues )»3 of C: there exists a constant k > % such that
Ajx

2. Domain of W: there exists an exponent s € [0, k — 1/2) such that W is defined everywhere on #°.
3. Size of W: the functional W : H* — R satisfies the growth conditions

0<W(x) S+ |xl?
4. Derivatives of W: The derivatives of W satisfy
[Ve)|_, Slxllg viixly and Haz\y(x)HL(HS;H_j) <1, (3.4)
for some 1/2<¢ < 1.

Remark 3.2. Regarding the first of Assumptions 3.1, the condition x > % ensures that Traceys (Cs) < oo for any

0<s<k-— %; this implies that 7wo(H*) =1 for any 0 <s <« — % As for the first of the requirements in (3.4),
this is slightly less general than the corresponding condition imposed in [9] (there it is required that [|[VW (x)| —s <
1 + ||x|ls)- This is to avoid excessive technicalities (particularly in the proof of (8.10), which is the only place where
this simplification is actually used, see Remark B.1 and Remark 8.9 on this point).

Example 3.3. The functional ¥ (x) = %||x||§ is defined on H*® and its derivative at x € H® is given by VW (x) =
ijo jzsqubj € H™ with |[VW(x)||_s = |lx|ls. The second derivative 3?W (x) € L(H*, 1) is the linear operator
that maps u € H* to ijo 7% (u, ¢;)¢p; € H™: its norm satisfies ||82\IJ(x)||L(Hs’Hﬂ) =1 for any x € H".

The Assumptions 3.1 ensure that the functional W behaves well in a sense made precise in the following lemma.
We set

F(z) =—z—CVY¥(2). (3.5

Lemma 3.4. Let Assumptions 3.1 hold.
1. The function CVW (z) is globally Lipschitz on H* and hence the same holds for the function F(z):

|F@) ~ FO[, S e —ylls Yo,y e 1.
2. The second order remainder term in the Taylor expansion of V satisfies

(W) = W@) = (VU y—x)| Slly = xIf Vaye#’. (3.6)
Proof. See [9]. O

We would also like to recall that because of our assumptions on the covariance operator, for each p > 0 there exists
a constant ¢ = ¢(p) such that

E|cyeY|? <e, uniformly in N, 3.7)

if £V is the Gaussian random variable defined in (1.6). We will prove this inequality in Appendix A. For the moment
we just stress that ¢ > 0 is a constant independent of N but that does depend on p.
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4. Existence and uniqueness for the limiting SDE

We now prove existence and uniqueness of the solution of the equations (1.10) and (1.11). We do this by proving in
Theorems 4.2 and 4.3 that for any (6% w) eR x C([0, T1;R) and (Z°, p,n) € H* x C([0, T];:R) x C([0, T]; H*)
each one of the integral equations

t
S(1) =60+/ A(&))dv +w(r) 4.1
0
and
t
)=+ /0 F(z(0)) De(p(v)) dv + (1) 4.2)

has a unique solution (unique in C([0, T']; R) and C([0, T']; H*), respectively), where A, F, and Dy are as in (1.14),
(3.5), and (1.12). Here, and throughout the paper, C ([0, T]; R) (resp. C([0, T]; H*)) denotes the space of continuous
functions from [0, T'] to R (resp. H*). We denote the solutions of (4.1)—(4.2) as

G:=h(6%w), =7 p.n),
Furthermore, we argue that the maps
Ji: M1 x C([0, TI;R) x C([0, T]; H*) — C([0, T1; H® x R)
(2% p.n) — 2z 4.3)
and
T2 :Rx C([0, T];R) — C([0, T]; R)
(6% w) — & (4.4)

are continuous. Here, and throughout the paper, we are endowing the spaces C([0, T]; H*) and C ([0, T]; R}) with
the uniform topology. Existence of the solutions of (1.11) then follows since

S :=72(80,0), (4.5)

where 0 in the above denotes the zero function in C([0, T']; R), clearly satisfies (1.11). Uniqueness of solutions of
(1.11) follows from that of the solutions of (4.1). Now, note that Iy (defined in (1.13)) is a bounded and continuous
function (see Lemma 4.1 below) and S is a continuous function. Consequently, ¢ — /" (S(¢)) is a bounded continuous
function, and thus the integral

t
1(1) :=/0 VIe(S@)dw (v)

is well-defined, where W is the H*-valued Cs-Brownian motion in (1.10). Indeed, 7 is a continuous square-integrable
martingale and so takes values in C ([0, T']; H*), see [13]. Existence of the solutions of (1.10) is now immediate since

x = J1(x0, S, ),

clearly satisfies (1.10). Uniqueness of the solutions of (1.10) follows from that of the solutions of (4.2). In (1.12)-
(1.14), we defined the functions Dy, 'y, and A, only on the non-negative axis while in the above we are allowing their
arguments to be negative. We circumvent this technicality by setting

De(x) = Tp(x) = Ap(x) := De(0) = Tg(0) = Ap(0) =262, Vx <0.

These three functions satisfy certain regularity properties:
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Fig. 1. Plots of the function Ay (x) for £ =1 and £ = 2 (dashed line).

Lemma 4.1. The functions Dy(x), T'¢y(x) and /T ¢(x) are positive, globally Lipschitz continuous and bounded, with
bounded first derivative. Ay¢(x) is bounded above but not below; it has continuous first derivative and it is globally
Lipschitz. For any £ > 0, A¢(x) is strictly positive for x € [0, 1), strictly negative for x > 1 and A;(1) =0.

Proof of lemma 4.1. The proof of the above Lemma 4.1 follows from the same arguments used in [7, Proof of
Lemma 2]. We sketch the proof in Appendix A for completeness. A plot of the function Ay(x) for various values of
£ can be found in [2, page 258]. Figure 1 contains a plot of A;(x) for £ =1 and £ = 2. Plots of the functions Dy, I'y
and of the derivative of A, can be found in Appendix A. ]

That 7, is well-defined and continuous follows from the properties of A, in the above.

Theorem 4.2. For any (6% w) e R x C([0, T]; R), the integral equation (4.1) has a unique solution T~ (S0, w).
Furthermore, the map [J» is continuous. Lastly, S defined in (4.5), is such that

lim S(#) =1 4.6)
t—00

and
0 < min{Sp, 1} < S(t) < max{So, 1}. “@.7

Proof of Theorem 4.2. Since Ay is globally Lipschitz, global existence and uniqueness of solutions of (4.1) follows
from a routine application of the contraction mapping argument. To argue the continuity of the map />, let &4 and
&+ be the images through the map 7> of the pairs (&9, wy) and (G?, wy), respectively. Then

t
1&5(1) — &:(1)] < | &) — &Y +/0 |A¢(85(v)) — Ae(S(0)| dv + |wy (1) — wi (1))

t
S|e? -+ sup |w;(t)—wT(t)|+/ |6:(v) — &;5(v) | dv. 4.8)
te[0,T] 0
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Continuity in the appropriate spaces now follows by applying Gronwall’s Lemma.

The limit (4.6) and the bound (4.7) are consequences of the last statement of Lemma 4.1. Indeed, if we start with
an initial datum Sp € [0, 1) then S(¢) will increase towards 1. If So > 1, then S(¢) will decrease towards 1. (|

Theorem 4.3. For any (2°, p,n) € H* x C([0, T];:R) x C([0, T1; H*), the integral equation (4.2) has a unique
solution jz(GO, w). Furthermore, the map J| is continuous.

Proof of Theorem 4.3. The map 7 — Dy (p(¢)) is continuous as the composition of two continuous functions and so
is continuous itself. Thus, for any x Lx2eHSandr e [0, T]

[F (") Deo®) = F2)Delp@) |, = [Dep@) || F (') = FZ)]
< (swp [Dulp@)) ¥ ], < 5 2,
1€[0,7]
In other words, the function ® : H® x [0, T] — H°® defined by
O(x.1) = F(x) De(p(1))
is globally Lipschitz in x with Lipschitz constant that can be chosen independent of ¢. A standard application of the
contraction mapping theorem yields global existence and uniqueness of solutions of (4.2). To argue the continuity of

the map Ji, let z4 and z+ be the images through the map J; of the triplets (zg, pr, ny) and (z?, P+, N+), respectively.
Then

1
Jes — 0], < 12 =21, + [ 1FE0)Pelos) = Fles) Pelor) | v+ s =m0,
t
< 2= 21, + [0 =m0, + [ 1) 1 (e2) = Fles)] o

t
+ [ 1PE )P (p200) = Di(prw)
Since Dy is bounded and ® uniformly globally Lipschitz, the above implies that

a2 =240, S [ =2, + sup [z =mo)] +7( swp [z, )( sup |ox) = pr)])
te€[0,T] 1€[0,T] t€[0,T]

t
+/O |zz) — z+ ()|, dv.

Continuity of J7 then follows from Gronwall’s Lemma. (|

5. Statement of main theorems and heuristics of proofs

In this section, we give a precise statement of the main results of the paper, Theorem 5.1 and Theorem 5.4 below, and
outline the heuristic arguments which are at the basis of the proof of such results. The rigorous proofs of Theorem 5.1
and Theorem 5.4 are detailed in Section 7 and Section 8, respectively, and they consist in quantifying the formal
approximations presented in this section. The structure of such proofs relies on the continuous mapping argument
which is presented in Section 6.

While describing the main intuitive ideas of the proof, we will also try and emphasize the differences with the
analysis presented in [9] in the stationary case. Here and throughout the paper we will use a notation analogous to the
one used in [9].



RWM out of stationarity 1613
5.1. Statement of main results

Let us define the set 7—[% as follows:

<ool. .1)

Theorem 5.1. Let Assumption 3.1 hold and let xo € H},. Let {S,iv} C Ry be the double sequence defined in (1.16) and
started at S(/)V = % ZINII |x(l)’N |2/Aiz. Let SN)(t), defined in (1.17), be the continuous interpolant ofSliv. Then,as N —
00, SM (1) converges weakly in C ([0, T]; R) to the solution S(t) of the ODE (1.11) started at Sp := limy_, Sév.

We will prove Theorem 5.1 in Section 7. For the time being, let us make the following observations.

Remark 5.2. Notice that the weak limit S(¢) of the double sequence S ,iv is deterministic, i.e. S(¢) is just a real-valued
function; therefore the above theorem also implies convergence in probability in C ([0, T]; R) of S M (1) to S(1).

Let us now introduce the piecewise constant interpolant of the (double) sequence S,iv , i.e. the (sequence of) func-
tions S™)(¢) defined as follows:

SM@y=8N, forn <t <tpy1,tx =k/N. (5.2)
Lemma 5.3. Under the assumptions of Theorem 5.1, for every fixed t > 0,
s (t) > S(t) almost surely
and
s (t) —> s (t) almost surely.
Therefore,
s (t) > S(t) almost surely.
Proof of Lemma 5.3. The proof of this lemma can be found in Appendix B. O

Consider now the set H7, defined as the set of x € /| such that

e forall p>0,

N i2p
. . X
lim 1zskl-2| | < 00, (5.3)
N—oo 2p
i=1 i
e there exists some € > 0, such that
LGP
lim — >e>0. 5.4
N—oo N &= )2

Theorem 5.4. Let Assumption 3.1 hold and xo € H}\~. Then, as N — oo the continuous interpolant xM(1) of the
chain {xy}; C H* (defined in (1.8) and (2.4), respectively) and started at xq, converges weakly in C ([0, T]; H*) to the
solution x(t) of equation (1.10) started at xo. We recall that the time-dependent function S(t) appearing in (1.10) is
the solution of the ODE (1.11), started at Sy := limy_, s % ZZNZI |x6|2/kl?.
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We will prove Theorem 5.4 in Section 8. Note that in the above statement we are picking a deterministic initial
condition. However, it is worth noting that xo € H{~ almost surely if xo is drawn at random from the stationary
measure (1.1). We will make some remarks on condition (5.4) at the end of Section 5.2. As for condition (5.3), strictly
speaking this does not need to be satisfied for all p > 0; a finite, sufficiently large p would suffice. However, we
refrain from determining the optimal p, which would distract from the main goals of the paper, and we state the result
as it is, based on (5.3).

5.2. Formal analysis of the acceptance probability
Gaining an intuition about the behaviour of the acceptance probability «(x, &), defined in (2.1), is at the core of the
proof of the main result of this paper, Theorem 5.4. We present here a formal calculation that helps impart such
intuition. We stress again that the calculations of this section are purely formal and will be made rigorous from
Section 7 on. In this spirit, we will use the loose notation AN ~ B when, for N large, A" is “approximately equal”
to BV, and AN ~ BN when, for N large, AV is “approximately distributed” according to BV .
Let us recall the notation WV := W o PV (that is, ¥V (x) := W(P" (x))) and set
N =y P +0PVveN (), where VWY () = PN (VW (x)). (5.5)

With these definitions, we can further rewrite the expression (2.5) for Q(x,ﬁv , é,ﬁ DE

) 22 N i NgiN
Q(xk,5k+1)=— Z|Sk+] — WZ%""I’(X;V)_‘I’(Y?H)
i=1 !

Z|§k+1 ? —\/ <C;/1/2 e ) V() — e ()

202
||5k+1|| \/ <§k EN) () - \I/(yliv—&-l)_i_\/W<CIIV/2V\DN(XI?J)’$I?—]H>'

[22
P G Ee) = () = W) + | OV VR (). £8)

Therefore, setting

and

2
R(x. &) Z‘$k+l _\/ —(&, &N, (5.6)

we obtain

O(x, &N ) = R(x{Y £01) + Y (e, &) (5.7)

The notation for R and Q should include a superscript N; we drop it for simplicity. In [9, eqn. (2.32)], it is shown that

Cl2 12
PN e, 6] S %; (5.8)
and so
1
E[rY (ex, &) | S —- (5.9)

N
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The above (5.8)—(5.9) are true whether the chain is started in stationarity or not, as they are only a consequence of
the properties of W (see (3.6)) and of the noise &1, see (3.7). Using (5.9),

0 &) = R(x, &%,). (5.10)

Looking at the definition of R, equation (5.6), and observing that by the Law of Large Numbers

Z|gk+1} — 1, (5.11)

we deduce that R >~ G (see Lemma 8.1), where

202 202
G:=—¢>— Z; k+1’ so that, given x, G ~ N( 02, Z|§JN2> (5.12)

j=1

We will show

T Ay P LR
J— Js ~ L S——

This can be intuitively understood by observing that in (5.5) the “dominating contribution” comes from the first
addend. The above approximation is formalized by (B.2) and (7.3) and it implies G &~ Z; ;, where

[202 Y
Zopi=—02— Zx" /N so that, given x)Y, Z ~ N'(—€2,2628)). (5.13)

In conclusion, the formal analysis presented so far suggests that we may use the approximations
O(xN, &N ) = RN (=2, 2828N). (5.14)

In [9] it is proved that if we start from stationarity then the sequence S,iv converges (for fixed k, as N — oo) to 1
almost surely (see (1.22)). We will show that if we start the chain out of stationarity, i.e. xg is any point in H*, then
AR P
S,?’:NZ ’;2 — S(t), as N — oo, forty <t <tii1, (5.15)

where ty = k/N and S(¢) is the solution of the ODE (1.11). This is the main conceptual difference between our work
and [9], all the other differences are technical consequences of this fact.

Looking at (5.14)—(5.15), we can explain why we are assuming (5.4): roughly speaking, if the initial datum Sy is
strictly positive then the limit S(¢) is strictly positive for every ¢ > 0, so the Gaussian random variable on the RHS of
(5.14) always has a strictly positive variance. If instead Sy = 0, then at zero one would have Q¢ = Q (xo, &1) ~ —¢2 and
therefore the acceptance probability at the first step simply tends to e_@z; however, this would only be true at zero as,
even if So = 0, the solution of the ODE (1.11) becomes immediately strictly positive for # > 0 (see Theorem 4.2). To
avoid having to take into account also this further possibility (which does not add anything to the overall understanding
of the algorithm), and to streamline the analysis, we make the simplifying assumption (5.4).

The approximation (5.14) dictates the behaviour of the acceptance probability. With the present algorithm the
average acceptance probability does not tend to one (as N — oo, for #x <t < tx41). This is one of the disadvantages
of the method analysed in this paper instead of algorithms that are well-defined in infinite dimensions.
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5.3. Formal derivation of the drift coefficient of Equation (1.10)

Let us first clarify the use of the notation that we will make in the following. The definition of xx4; (2.3) contains
two sources of randomness: the Gaussian noise &1 and the Bernoulli random variable yy4.1. With this in mind, when
we write E;(-) we will mean expectation with respect to & 41 and yx+1, given xi. In some cases, when we want to

emphasize the fact that the expectation is taken with respect to &4 and yx+1, we will write explicitly Ei’y. In the

same way, if we want to stress that expectation is being taken with respect to &1, we write Ei According to (2.4),

the ith component of the approximate drift is given by

. . [0p2 .
NEk(xliivl —_— x]l(’N) = NEk <)/k+1 W)\qéiﬁ)

s i,N
— VINLES (rntl)

= VONCLES (150 0) = VINCLES[(1 A QR &)l N .

(5.16)

(We briefly explain at the end of Appendix A how the first equality in (5.16) is obtained.) For a reason that will be

clear in a few lines, we further split the RHS of (5.6) as follows*

N
02 . 202 . : 2 . 202 ... .
N N Jj.N |2 JoN o j,N N |12 N .i,N
R(x( . &%) = N 2 :|5k+1 VN 2 :gk iy — _N}Eli-i-l VN & E

J# J#i

, 2 . [202 .\
. N &N N |2 N &i,N
=R (xk ,§k+1) - ﬁ|$li+1 VN é‘,ﬁ sli+l'

Hence,

202

O, &%) = R (q, 6%1) —\| 56

Using (5.18), we then have

E§[(1 n Q)] ~ BE[(1 2 oM 0 S0 gl

We now use [9, eqn. (2.36)], which we recast here for the reader’s convenience.

Lemma 5.5. Let X be a real valued r.v., X ~ N(0, 1). Then for any a, b € R,

E[X(1 A e'XTP)] = ae“zz“’cb(—% - |a|>.
a

Proof. See [9, Lemma 2.4].

(5.17)

(5.18)

(5.19)

(5.20)

O

Now notice that, given x;, R’ is independent of E,i 41 as it only contains the random variables SIZ 4 fori #j.

Therefore, the expected value Ei can be calculated by first evaluating Eil and then Ei*, where the latter denotes

expectation with respect to £\&'. With this observation, we can use the above Lemma 5.5 with a = — %{,ﬁ’N and

4This splitting is standard in the analysis of high dimensional MCMC, see [9].
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b = R to further evaluate the RHS of (5.19); we get

Ei[(l /\eQ(xliv’glﬁl))gliﬁ] ~ E [ l/\eRl(xA £ D— Nz;k 5k+1)§liN]

520 2 2 i 202
(5.20) ,W \;k ‘EE R g ( |§kN|> (5.21)
\/ Is“
~ ‘/ Cl NES R 7_Rl )
2
15N
— INEE Rl _Ri )
2
V 215N
~ ‘/ INES K1 xi <o) (5.22)
i~ ,/ Rl{R<0}

Therefore, using the approximation (5.14) (and the notation (5.13)),

N £N . 202
B [(1 A e S)gl, ]~ R VB P 7, ). (5.23)

Now, a straightforward calculation shows that if X ~ A (i, o) then

E(6X1X<0) = eli-‘raz/zcl)(—E — o’>.

o

In particular, this means that if X ~ A/ (—€2,2024q), for some a > 0, then

> e1-2 1
E(eX1xo) =" ™ 1>©<%) 53 De(@. (5.24)

From (5.24), (5.23) and (5.13), we then get

i 202 1
E{[(1 A e E)glN] = — [ StV S5 De(sY)

1
= ; Dy(SN).
Combining the above with (5.16) gives
NE; (il —ag™) = =2 M De(87),

which is the desired drift, after observing that A; g“,f’N is the ith component of Czlv/ 2 ;“kN and

1/2
CN/ g“,fv =x,£V+CNV‘-IJN(xk).
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As already mentioned in the introduction, as a consequence of (1.22), if we started the chain in stationarity then the

approximate drift would not be time dependent and we would have
NE; (xf N = i) > =20V De(1),
which is the approximate drift of (1.18).

5.4. Formal derivation of the diffusion coefficient of Equation (1.10)

. . NN , 202 202
WEK(EY =)L = o) = NEEY (e Snsil) ) (e 282

= 2@2)”‘)\]]E§ (51£+1§15+1 (1 A eQ(Xk»§k+l)))’

where the last equality follows analogously to (5.16). We consider (5.6) as before, but this time we split

i 2 202 N
R, &) = RT (5, &%) — (|5k+1| +|515+A1’ )_\IW(QN@ﬁJﬁ 5k+1)

where
ij 2£ h,N
R (xk §k+1 Z|5k+1| - ZC ki
h;él Jj h;él j

As before, Q(x,iv, E,?il) ~ RiJ (x,iv, 5,?;1), so that

B (52160 (1 020 560)) ~ (s,iﬁsk+l(1 AR D)
= 5,,1@ (1 PG Ekm)
= 5,5 (1 A RV 8D,

With the same reasoning as in (5.14), we have

O(xY &N ) = R ~ N (—¢2,225)).

(5.25)

(5.26)

(Again, if we were to consider the stationary regime, then we would have Q(x,iv € /?-li-]) ~ N (—€2,24%).) Now a simple

calculation shows that if X ~ A (u, 02) then

E(l /\eX) = e’”'az/zcb(—ﬁ —O') + @(ﬁ)
o o

and in particular if X ~ N (—¢2, 2¢%a) for some a > 0,
1
X\ —

E(l Ne ) = ﬁrg(a)

Hence
£ RGN &N )\ 1 N

E; (1A e b)) o @F[(Sk )-

Putting together (5.25), (5.26) and (5.29) we get

NE (g —xp M) (ol = ) = riji T (SY).

(5.27)

(5.28)

(5.29)
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5.5. Formal derivation of Equation (1.11)

We now want to describe the heuristic derivation of the limit (5.15). Let us start with the drift:

|x |2 |xi,N|2
O A
202
:Ek|:)/k+l< Z|Sk+1| +2,/ Z s 5"“)} (5.30)
=E[(1 A eQO0540) (2R (x, & 1)) ] + ExY, (5.31)
where

[202
PN =2 W[yk+1((c,v)‘/2V\1ﬂV(x,fv),s,gYH)]. (5.32)

We will show (as a consequence of (7.13) and (7.3)) that 7V is negligible for large N. So, by (5.10) and (5.31),

NE(SY,, — SY) =B [(1 A eROEED) (2R (xN, €N )], (5.33)

Now observe that if X ~ N (i, 02) then,

E[—2x (1 A ¥)] 620162 eu+02/2q>(_ﬁ - o) (=2 - 20%) — z,m(ﬁ),
o o
so that, if X ~ N (—¢£2,2¢%a) for some a > 0, we have
E(=2X(1 A e¥)) = Ag(a). (5.34)
Therefore, by (5.14), (5.33) and the above, we conclude
NE(Sgpr — Si') = Ae(Sy)-

Showing that the diffusion coefficient for S,iv vanishes is a consequence of the calculation that we have just done,
indeed

N2 2

N v 1 |xk+1|2 |xli<7
NE(Sgyy =S¢ )" = ﬁEk Z T2 T2
i=1 i i

~ %Ek[(] A eR(X,iv,SngH))sz(xliv, E]?_/;,_l)]

2028V

1
SNE (R &0)] = Ek|ZZk| ~—

We will prove that S,iv ’s are uniformly bounded in N and k (in the sense of Lemma 7.4), hence (2@25‘,?’ )/N — 0.
5.6. Suboptimal scalings for the proposal variance

Consider the Random Walk algorithm with proposal (1.7), for 8 # 1. In this case the acceptance probability becomes

af (x,6) =1 Anexp 0P (x,8),
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where, with the same reasoning leading to (5.14),
0P (xx, 1) =: QF ~ Rl ~ N (—€2N'=F 202N 5)). (5.35)

Assuming that Sy is finite, one can show that § ,iv remains bounded (uniformly in k and N). Therefore, if we look at
the average acceptance probability, we have

_p2N3d=p)/2
E(l /\eQﬁ(xkaEkH)) (27 (D( N / )

J2esy

27 (1=8)/2 N
_i_ezzN“ﬂ(S,f’l)(D(E NUPR( —25; )>_
V208N

Therefore, if B > 1 the acceptance probability tends to one as N — oo, if 0 < B < 1 it tends to zero.

6. Continuous mapping argument

In this section, we explain the continuous mapping arguments that the proofs of Theorem 5.1 and Theorem 5.4 rely
on. The continuous mapping argument that we use here is analogous to the one used in [9,11]. The only difference is
that the drift and diffusion coefficient of (1.10) are time dependent.

Section 6.1 and Section 6.2 contain the outline of the mapping argument that we will use in the proof of Theo-
rem 5.1 and Theorem 5.4, respectively.

6.1. Continuous mapping argument for (1.11) (used in the proof of Theorem 5.1)
Consider the chain S,iv , defined in (1.16) and let S™)(¢) and SN (r) be the continuous and piecewise constant in-

terpolants of such a chain, respectively; we recall that SM (1) and SW) (1) have been defined in (1.17) and (5.2),
respectively. Decompose the chain § ,iv into its drift and martingale part:

1 1
N N N(_N 2N
Sk =S¢ + NAZ (xg) + —=M",

VN
where
AY () = NE[ Sy = S 6.1)
and
1
MmN = \/N[S,ﬁv+1 A NAQ’(S;V)}. (6.2)

We will show in Lemma 7.2 and Lemma 7.3 that Aév (x,iv ) converges to Ag(S (1)).> Now a straightforward calculation
(completely analogous to the one in [10, Appendix A]) shows that

t
S<N>(t)=s,ﬁv+/ AV EM @) dv+ VN — )M when i <1 < 41,

T

SWhile the approximate drift A?’ (xliv ) of the chain S ,f’ depends only on x ]i\/ , the limiting drift Ay depends only on S(7). This is consistent with the
fact that S, ]i\l depends only on x]iv : in the limit, the dependence of the drift on S liv appears explicitly.
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where i) the piecewise constant interpolant of the chain {xi }, is defined in (6.6) below. Therefore

k—1

t
1
SM @)= sy +/ AYENM@)dv+ —=Y MY+ VN — MY, foranyte[0,T].
0 VN =
Setting

1 k—1
wh (1) == NG ZM?’N + VNG —t)MPY when ity <t < g4 6.3)

N

we can rewrite the above as
SNy =8y + /Ot AY (FM () dv +w" (1)
=50+ fot Ae(S™ ) dv + 0N @), (6.4)
where, for all 7 € [0, T,
N (@) = /OI[AQI(XW)(U)) — Ag(SM W) ]dv+w" (1)
= /(;t[Aév()f(N)(v)) — Ae(S™M ()] dv + /Ot[Ag(S’(N)(v)) — Ag(SNM )] dv +w" @). (6.5)

Equation (6.4) shows that § M1y = Fo (SN, DY), where J is the map defined in (4.4). By the continuity of the map
T, if we show that WV converges weakly to zero in C([0, T]; R), then SM (1) converges weakly to the solution of
the ODE (1.11). The weak convergence of " to zero will be proved in Section 7.

Now, we outline the continuous mapping argument for the chain x,ﬁv and in doing so we shall fix some more
notation.

6.2. Continuous mapping argument for (1.10) (used in the proof of Theorem 5.4)

We now consider the chain that we are actually interested in, i.e. the chain {x;}; C H°, defined in (2.4). We act
analogously to what we have done for the chain § ,ﬁv . So we start by recalling the definition of the continuous interpolant
x™M) (1), equation (1.8), and we define the piecewise constant interpolant of the chain to be

M@y =x  forn <t <tig. (6.6)
We also recall the notation ® (x, S) for the drift of equation (1.10), i.e.
Ox,S) =Fx)Di(S), (x,8)eH xR, 6.7)

The drift-martingale decomposition of the chain x,ﬁv is as follows:

1 1
o=+ N@)N(x,f’) +—=MN, (6.8)

VN
where ©V (x) is

ON (xp) := NEg[xpy —x] (6.9)
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and
1
MmN = \/Nl:x,i\;l —xf - N®N(x,§’)] (6.10)

Notice that ®" (x) is just a function of x; we will show (see Lemma 8.3 and (6.13)) that the approximate drift ®% (x)
converges to ®(x, §), the drift of the SDE (1.10); that is, in the limit the dependence on S becomes explicit (this
should not surprise since, as already remarked, S,iv depends only on x,ﬁv ). Using again [10, Appendix A] we obtain

t
x(N)(t) :x,iv +/ ®N()E(N)(v)) dv + \/N(t — tk)M,i’N, when ty <1t < tgq1
Tk

and therefore, for all ¢ € [0, T'],
! 1,N LN
x(N)(t)zx(I)V—l—/ N (x™ () dv+—ZM +V Nt — 1M,
0
Setting
1 k—1
N 1,N 1,N
o)y =—Y MV VNC—MY, whent <t <y, (6.11)
VN ;O J ¢ "
we can rewrite the above as
t
x(N)(t):xéV—}-/ QN (x™M ) dv+n" (1)
0

t
=xp + fo O(xM ), ) dv+n" (@), (6.12)

where, for all 7 € [0, T},
N @) = /O t[@”( M) =™ ®), S)]dv+n"©)
= /Ot[@)N(x(N)(v)) —0(FM ), SN @))]dv
+/0t[®(x<N>(v), SM@)) —6(x™M (@), sMw)]dv
+/0t[ (M), SM ) — O (xM (v), S@))]dv +n™ (). (6.13)
If we can prove that 7 () converges weakly in C ([0, T']; H) to

n(o) :=f r12(s,) dw,, 6.14)
0

where W is a H*-valued Cz-Brownian motion, then (6.12) and the continuity of the map J; allow to conclude that
x@™ @) converges weakly in C ([0, T']; H®) to x(¢), solution of (1.10) (with W as in the above). Such an argument is
the backbone of the proof of Theorem 5.4. The proof of Theorem 5.4 can be found in Section 8.
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7. Proof of Theorem 5.1

Proof of Theorem 5.1. Recall the definition of the map 7> given in (4.4) and observe that thanks to (6.4),

SM@y = RSy oM ().
Therefore, proving the statement of Theorem 5.1 amounts to proving that @" (f) converges weakly to zero in
C([0, T]; R). This is a consequence of the decomposition (6.5) together with Lemma 7.1, Lemma 7.2 and Lemma 7.3

below. O

In the following, E,, denotes the expected value given xo € H{,, the initial value of the chain. We recall once again
that the initial value of the chain x,ﬁv determines the initial value of the chain S ,ﬁv .

Lemma 7.1. Under the assumptions of Theorem 5.1, the martingale difference array w™ (t) defined in (6.3) converges
weakly to zero in C ([0, T]; R).

Lemma 7.2. Under the assumptions of Theorem 5.1,
T G 2
EXO/ |AY (3™ ) = A(SNM ) |"dv — 0 as N — oo, (7.1)
0
Lemma 7.3. Under the assumptions of Theorem 5.1, for every fixed T > 0,
T p 2
EXO/ |Ac(S™M ) — A(SNM())["dv — 0 as N — oo. (7.2)
0

Before proving the above lemmata, we state Lemma 7.4, which we will repeatedly use throughout this section and
the next. The proof of Lemma 7.1 can be found in Section 7.2, the proof of Lemma 7.2 and Lemma 7.3 is the content
of Section 7.1.

Lemma 7.4. Let the assumptions of Theorem 5.1 hold. Then for every m > 0 there exists a constant ¢ = c(m) such

that
B |7 <. a3
Ey(5)" <@ (74
and
Exoeﬁ”;k]v I” < ¢ forallc>0. (7.5)

We recall that {,fv has been defined in (5.5). The constant ¢ = c(m) in the above bounds is independent of N € N and
of 0 <k <[TN]+ 1 (but it depends on m and T).

Proof. See Appendix B. (]

It is not trivial to prove Lemma 7.4 in the non-stationary regime that we are interested in. We make some more
detailed remarks on this point in Remark 8.7.

Lemma 7.5. Under the assumptions of Theorem 5.1,

S'(N)(t) — 8(t) in LP(Q), for every fixed t > 0 and any p > 0.
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Moreover,
T -
Exof 1SV - S@)|"dt — 0 as N — oo, forall p >0
0
and

T
EXO/ |SM(@t) - S@)|"dt — 0 as N — oo, forall p > 0.
0

Proof. Using Vitali’s convergence theorem, the first statement is a corollary of (7.4) and Lemma 5.3 (indeed SM 1) <
S ,iv +S ,ﬁv ', and the right hand side has bounded moments of any order, so the sequence SM)(t) is uniformly integrable).
As for the second statement, it can be obtained from the first by using again the bounded convergence theorem applied
to the (deterministic) sequence Ey, ISM () — S()|P. Indeed such a sequence tends to zero and is bounded by a
multiple of the function Ey, [ISM(#)|? 4 |S(2)|P], which is bounded again thanks to (7.4). The last statement is
obtained similarly and we don’t detail the argument. This concludes the proof of the lemma. (]

7.1. Analysis of the drift

Before starting the proof of Lemma 7.2 we observe that because Z;-V:] (E,f;:\]/)z has a Chi-squared distribution with N
degrees of freedom, the following bound holds:

N m

3 ml(m+N/2) "
E[Z@/ﬁﬁ)z} =2 T2 SN, (7.6)
Jj=1

by Stirling’s formula for the Gamma function T".
Proof of Lemma 7.2. Set
EY =AY (x{) — Ac(SY). (1.7)

Then, recalling that for any b € R} we set [b] =n if n <b < n + 1 for some integer n,

T [TN]
Bx [ 14Y(FP0) - A300) v =Bryy 3| 9
k=0
TN
+ (-5 Bl 79

From the above equality and observing that |T — %| < 1/N, it is clear that in order to show the limit (7.1) it is
sufficient to prove that

Ey|EN|?™=5°0,  uniformly over 0 <k < [NT].

To this end, we write Ay (S,iv) =Ei[(1 A ez‘f’k)(—ZZg’k)] (which follows from (5.13) and (5.34)) and use (5.31) and
(6.1), obtaining

EY =Ei[(1 neQ)(—2R)] — Ag(SY) + BN = EY, + EY, + Ei#", (7.10)
where
EY =B ((1Ae?) — (1 Ae"))(=2R)],

EYp =B [(1 Ae®)(—2R) — (1 Ae?4)(=2Zy )],
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and 7V is defined in (5.32). Observe that from (5.6) and (7.6) we have

2 llgY 177
Ex |R|P<1+7p, > 1, (7.11)
as, given xi, the sum Z - ;k E,i N'is a Gaussian random variable with mean zero and variance ||§N I%. From the
definition of ;‘k , equation (5.5), we have
||§ ||2 A Ly 2 Ly >
k N(.N N N(._N
Z ﬁ”CN V)T =8 + ey v et () |
By acting as in [9, page 915] we obtain
CPveN | < < 12
ley 2 Ve o < Dxlls v xS (7.12)
S+ lixll). (7.13)
hence
[ . 2 -1 7.14
NP N(k)+N_(+”xk“ ). pzL (7.14)
Combining (7.11) and (7.14) then gives
1
BRI S 14 ()" + 5 (14 [ p=1. (7.15)
Therefore, using (7.15) (with p = 1), (7.3) and (7.4), we obtain
2 2 Exllg 117 N Exo % 113
Ey |R|” = Ex,Ex|R| 51+T<1+Emsk T<oo (7.16)
Using the Lipschitzianity of the function 1 A e and (5.7), we have
2\1/2 1/2
|EN | SE|rVR| < (B e [P) 2 (B (R (7.17)
By (7.16) and (5.9) we then conclude
2 1 B
ExlEfe|” < ~3 B (s,ﬁv + ;{v L) — 0, (7.18)

thanks to Lemma 7.4. As for the term Eév «» We use the Lipschitzianity of the function (1 A ¢*)(—2x) to conclude

2
(B.<23) 1+ Exllxk 5

2
Exo‘Eé\,]k’ SEx kR — Zexl* < N

— 0. (7.19)

Finally, to estimate 7V (defined in (5.32)), we use the independence, given xi, of W(xy) from &4 1:

2)1)/2

[ |7 < (Eel )"

- 1
—Np/2<

N
Y ley vl el

Jj=1
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1 N p/2
— 1/2 J121<jsN |2
 orn (L e ow Pl
j=1

1
= W”c‘/sznp,

where in the above [Czlv/ 2V\Il]j denotes the jth component of Czlv/ V. Using (7.13) we have

pr2 _ L IRNT

~ AN |2
|]EkrN|P = (Ek|rN} ) — Np/2

forall p > 1.

Hence, (7.3) gives

Ex0|]Eka|p < Exo(Ek|fN|2)p/2 < # forall p > 1.

This concludes the proof.
Proof of Lemma 7.3. By the Lipschitzianity of A,
A3V @) = A (S ) S [3N ) = sM )|
The statement is now a consequence of (B.18).

7.2. Analysis of the noise

Proof of Lemma 7.1. By standard martingale estimates, all we need to prove is that

[TN]
> IE,(O|M]2.’N}2 —0 as N — oo.
=

1
N

From the definition of sz.’N, equation (6.2),

2,N
|M;

Ey, N

N N N NT|2
=Exo|5k+1 =8 - Ek[sk-i-l — S ]\
2
SEXO}SIQH - Sliv| :
With the same calculation as in (5.31),

N N Vik+1(—2R) 1 N
Sk+]_Sk ZT—FNV .

Therefore, using (7.16), (7.22) and y4+1 < 1,

N N2 1 , 1 1
Ex|Ste1 — S0 |° S mExo]Ek|R| + N3 S N
The above implies the bound
2,N 2
LA
° N TN

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)
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We can therefore conclude

1 (TN] 2 T
j=1

8. Proof of Theorem 5.4

Before starting the proof of Theorem 5.4, we state Lemma 8.1 below. We recall the definition of Wasserstein distance
between two random variables X and Y:

Wass(X,Y):= sup E(f(X)— f(Y)), 8.1)
feLip,

where Lip; denotes the class of Lipschitz functions with Lipschitz constant equal to one. Notice that from the defini-
tion,

Wass(X,Y) <E|X —Y]|. 8.2)
In the next Lemma (8.1) we refer to the Wasserstein distance relative to the marginal Ey.

Lemma 8.1. Let the assumptions of Theorem 5.1 hold. Recalling the definitions of R, R', G and Zyk, (5.6), (5.17),
(5.12) and (5.13) respectively, we have

L+ 1g "
Wass(R, R') <Ex|R — R'| < —=2K (8.3)
(R 7)< Ei|R - R s -2
1
Wass(R,G) <E(|R — G| < — 3.4
R/
and
Wass(G. Zex) < BilG — Zoy] Akl (8:5)
vN
Therefore,
L+ [kl
Wass(R, Zgx) SEk|R — Zpi| S ——F——. (8.6)
VN
Proof. See Appendix B. O

Proof of Theorem 5.4. If 7] is the map defined (4.3), then (6.12) means that

xM@y =7 (x AN ).

.. . d . ~ d
From the continuity of 7}, in order to prove that x¥)(r) — x(¢), we just need to prove that 7V () —> 5(t), where

n(t) is the stochastic integral defined in (6.14). The weak convergence ﬁN (1) i) n(t) follows from Lemma 8.2,
Lemma 8.3, Lemma 8.4, Lemma 8.5 and the decomposition (6.13). O

Lemma 8.2. Let the assumptions of Theorem 5.4 hold. Then the interpolated martingale difference array n™ ()
defined in (6.11) converges weakly in C([0, T']; H*) to the stochastic integral n(t), equation (6.14).
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Lemma 8.3. Let the assumptions of Theorem 5.4 hold. Then for every fixed T > 0,
T S 2
EXO/ oY EM ) —e(xEM @), SN )| dv— 0 as N — oo. (8.7)
0 :
Lemma 8.4. Let the assumptions of Theorem 5.4 hold. Then for any fixed T > 0
T s 2
Exof [0GE™ @), SN @) — 0 (=™ (@), SM )| dv—0 as N — cc. (8.8)
0
Lemma 8.5. Let the assumptions of Theorem 5.4 hold. Then for any fixed T > 0
r 2
Exof o™ @), SN @) —0(x™ ), S@)|dv—0 asN — oo.
0 :

We will prove Lemma 8.2 in Section 8.2 and Lemma 8.3, Lemma 8.4, Lemma 8.5 in Section 8.1.
8.1. Analysis of the drift
In what follows, we will need some preliminary estimates listed in Lemma 8.6 below.

Lemma 8.6. Under the assumptions of Theorem 5.4, the following holds:

(i) Let Y be a positive random variable such that E,|Y |9 < oo for all ¢ > 1 (should Y depend on k and N, all
the moments are assumed to be bounded independently of k and N). Then, uniformly over 0 <k <[TN]+ 1,

N
limsupE,, |:Y2i2‘v)\i2’§,§’N|p:| < o0, forall p=>0. (8.9)

N—o0 i=1

(ii) Moreover,

E 3 12532 1617 N2 Ups>2%-0 8.10
— Y By )i [ st 0 O Jorallpz >0, (8.10)

where we recall that the constant 1/2 < ¢ < 1 is the one appearing in Assumption 3.1.
>iii) Finally,

1 2 1 1
B < (1 |5 ) + . (8.11)
(1+|RIVN) TNSHYE T [y

Proof. See Appendix B. O

Remark 8.7 (On Lemma 8.6 and Lemma 7.4). The proofs of Lemma 8.6 and Lemma 7.4 bring up some of the main
differences between the stationary and the non-stationary case, so it is worth making some comments.

o If we start the chain in stationarity, i.e. xév ~ 7N where 7% has been defined in (1.5), then x,ﬁv ~ 7 for every

k > 0. As already observed in the introduction, 7N is absolutely continuous with respect to a Gaussian measure;
because all the almost sure properties are preserved under this change of measure, in the stationary regime most of
the estimates of interest need to be shown only for x ~ mg. If x ~ 7o then xN = ZIN=1 Ai,oi ¢i, where ,0" are i.i.d.
N (0, 1). Therefore, recalling (5.5) (see also (B.2)), one gets

[ LS R L B i (8.12)
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With this observation it is then clear that in stationarity the bounds (7.3) and (7.4) are trivially true, and (8.9)
follows easily from (8.12) and (7.3). For the same reason, in the stationary case the estimate (7.5) is a consequence
of Fernique’s Theorem, see [9, page 916]. With a similar reasoning and by (1.22) one can see that also (8.10) holds
in stationarity.

e In our case, i.e. out of stationarity, proving the bounds of Lemma 8.6 and Lemma 7.4 requires a bit of an argument.
In particular, the reason why the limit (8.10) holds can be understood at least heuristically observing that S,iv
converges to S(¢) (i.e. to a finite number, which is strictly positive under our assumptions and it converges to 1 if
we work in stationarity, see (1.22)). Combining this observation with (8.9) gives, heuristically, (8.10).

e On a minor note, we point out that the limit (8.10) might not hold for k£ = 0 if we were to allow So = 0. Indeed,
|2

suppose again for simplicity that ¥ = 0. If Sy = 0 and the sequence of partial sums Zi\; 1 is convergent then

the quantity on the LHS of (8.10) is in general only bounded.

Proof of Lemma 8.3. Set

er =0N(xY) -0, SY) = NE[x),, —x{] -0, sy). (8.13)
Then
T 2 2 11 2
EXO/O [oN ™M ) — 0 (xEN @), SN W) dv = Exy > oledl; (8.14)
k=0
TN
+ (7= B )Ealetral ®15)

If ef{’N is the ith component of e,iv , the sum on the RHS of (8.14) may be rewritten as

[TN] N
Z Z "I
k=0 i=1
The statement now follows from Lemma 8.8 below. |

Proof of Lemma 8.4. From (6.7) we have
10EM @), V@) — (M @), SV )| < |D(EY W) P FEN @) — Fx™ )|
+ | F ™) |2 De(3N) — De(sM)
<M @) 2|2
+(1+ x9SV @) - sM ), (8.16)

having used the boundedness and Lipschitzianity of Dy, the Lipschitzianity of F' (Lemma 3.4 and Lemma 4.1, respec-
tively) and the bound

|F@[2 <1+ 1202 (8.17)

The above bound is a consequence of Assumption 3.1 and

leve@ |2 =" 2|(ve@) | < |vee|’,
i=1
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Moreover, if #; < v < f34+1 then from the definition (1.8), we have

Eq [TV @) = xM )2 = By (Vv =B st — 0|2

24 1 2N 12 37
S yElev &l 5 & (8.18)
The statement of the lemma is a consequence of (8.16), (8.18), (7.3), (B.17) and (B.4). O

Proof of Lemma 8.5. Analogous to the proof of Lemma 8.4, so we only sketch it.
2 2 2
Ey 0™ @), sV 0) = 0™ @), SO S Ba [ F (™ @) [{[De(S™ ) = De(5@))[.
Now, the RHS goes to zero thanks to the Lipschitzianity of Dy, (8.17), Lemma 7.4 and Lemma 7.5. O

Lemma 8.8. Let the assumptions of Theorem 5.4 hold and recall that ef{’N is the ith component of e,iv , defined in
(8.13). Then,

L ) LAY .
Ex > e ] =By > Zi25|e;(’N| — 0 as N — oo.
k=0 k=0 i=1
Proof of Lemma 8.8. This proof is partly analogous to the proofs of [9, Lemma 5.5-Lemma 5.11]. The main differ-
ence is that here we deal with time dependent coefficients. The proof will only be detailed when it differs from [9];

where it does not we will provide fewer details.
From the definition of ®, equation (6.7), the ith component of ® calculated at (x,iv , S,iv ) is

O (2, SY) = —1i gl N De(SY) = 202050 VB4 7, , <0y, (8.19)
where the second equality is a consequence of (5.24) and (5.13). Therefore, the ith component of e,ﬂv is

e = VN B[ e )gi ] 6 (5. )

= VONCLE[(1 A e@)el N ]+ gtV De(SY).

Following the reasoning of Section 5.3, we decompose e;;’N as follows:

N = 2N€2)»,~Ei[(l AeR~ %gi%’:ﬁ)‘éiﬁ]]] -0 (xg, SY) + e'i”l,g + eg”l,g, where

el = VaNCLE (14 %) — (1 aeR))elN], (8.20)
SN = VaNCLE (1A eR) - (1 AR %li'”éﬁﬁ))gﬁﬁ]_ 821)

We now use equality (5.21), leading to:
_Ri

) . P
ep = —262)\,~§,i’N]Ei_ eR
202 i, N
v 15|

i N N\ , N . N | N
) —O'(x, Sy ) Feyy Hesy +eshs
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where

. . ‘ 2
i,N 2 i,N ﬁ‘gl,N‘Z gi R —Rl 20 N
= 202, I P O EeR e —
€3k iG (e JE; e N N o™
o

. i —R! —R!
— 2020 VES R [ep(%—,/ g |> <—>} (8.22)
NESTH VeI

Finally, by setting

i ; i —R! i
ey =200, VE | q><7_) — e 1pig) | (8.23)
202, .i,N
el
ey = =200 5 VB [ 1 i g — ¥ Nz<0)], (8.24)

and using (8.19), we obtain

5
i\N Y
e =Y el (8.25)
h=1
Now that we have the above decomposition, we need to find bounds on each of the e;l‘]Z s, h=1,...,5, which is what

we shall do next.
i,N i,N. i\N i\N . .

e ¢y and ey : The bounds on e} and ey, are straightforward:
i\N i

v €l k Nf and |62,k|§ﬁ’

The first estimate is a consequence of (5.6), (5.7), (5.9) and the Lipschitzianity of the function f(x) =1 A e*; for
the second we used definition (5.17).
° e3 v To study e3 & » We set

(8.26)

i.N._-i,N | ~i,N
ey =e3; te3y, (8.27)

_i,N 20 LN CiiN 2 g pi ( —R 202 i,N)

ey, = —=20")\; e N %k —1E, " | ——— — | — ,

3k i ( )E; 2 i N [
N 1Sk

~i,N 2 i,N E R! lN _Ri
& =200 E e [ ( ‘/ |; | _ )}
NS ,/%vﬁwg”ﬁ

To estimate Eg’IZ, we use the boundedness and Lipschitzianity of ® together with

T 2
E-eR < ewls'l? (8.28)

see [9, (5.20)]. We therefore obtain

N 2
SN < NG E 2y

. R (8.29)
Gl = VN
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The term ég’yjlg will be studied separately later.

. eft’],\!: We act as in the proof of [9, Lemma 5.7-Lemma 5.9] and obtain

1/4
LN < (BN IGYIP/N (4 i,N <E ;) . $30
b | S xiloe e (1+]5™) “U+ RIVN)? (8.30)

° eg’f,\(/ : Let g(x) := e*1jx<0); using the same argument as in [9, page 923], if X and Y are two random variables such
that one of them has a density with respect to the Lebesgue measure and such a density is bounded by M, then

|Eg(X) —Eg(Y)| < /M Wass(X,Y). (8.31)

Such a result is applicable to R’ and Zy k as Zy k is (conditionally) a Gaussian random variable with variance S,iv .

Therefore, using (8.3), (8.6) and (8.31) with M =1/,/27 S,iv, we have

]EieRl I{Ri<0} — ]Eez‘kal{zz’k<o}‘ < Wass(Ri, Zg)k)

1
(S
1 1 1/2 i
S gm0 )+ 1+ (6]

k

The above, together with (8.24), implies

v < Ml 12 »
51 % Tty (+ I 1)+ 11 (5.32)
k

From the bounds (8.26), (8.29), (8.30) and (8.32), we get

5 N Vi N
B Y Pl
h=1,h#3 i=1 i—1
N .2552 N i,N 4
SEXOZZ ;\j" +1EXOZ,-2XA[.2|§1§T|€%||¢,CNH2

1 N

2 .
+EXOeNI§]£V|2<Ekm) Z Y)\'2 ‘é. ‘2+|§/?N|4)

=1

N N N3
R L
0 1
i=1 VN N

N
1+ 1
25A2|{IN|2( llxklls)

i=1 \/— \/7

After simple manipulations and using Lemma 7.4 and Lemma 8.6, we have

1 [TN] 5 N ) N )
sud 3 5 S ) o
i=1

kO h=1,h=3 i=1

+E,

as N — oo.
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Remark 8.9. When we apply (8.10) of Lemma 8.6 to the above, we need to enforce the condition p > 2«/¢, under
which (8.10) holds. Rewriting such a condition as ¢ > 2«/ p and observing that this condition is always applied in the
above with p > 2 and @ < 1, we get the constraint ¢ > 1/2 appearing in Assumptions 3.1.

Returning to the proof, if we prove the limit,
TN] N
Z 2R wl—o
k=0 i=1

we are done. To study éé’],g, we use again (8.28) and the bound & < 1, obtaining

iN LN (IR ) g2
5| < il (e 1)e

Therefore, by the weighted Jensen’s inequality and (7.5),

N .
Ex y_i% (&% [ SEx [e#”‘kN'z Zizs,\%|¢,§~N|2(6%|¢k"N|2 _ 1)2}

i=1
N , 1/2
: (E 322N e - 1>4) '
i=1

Using the local Lipschitz property of the function e*, we have

N
. 2 iN2
B Y2l (R~ )*
i=1
al i N4, N2 4
O S S T B 5 LS | o TP
X0 P i |;k | ( ) {%|§k’N|2<]Og~/ﬁ}
2,2 AN CliNpE 4
s FULLY I - ;
HE""Z:l Mla e D155 prog vy
=

N
< oz VN, Z 2sk2|§k e +Ey i25k%|§]i,N|4(e
i=1 i=1

g ) 4
— 1) 1o v .
{5 5 I2=log VN}

We now use Markov Inequality, (8.9) and (7.5) to estimate the second addend, obtaining
N

B Y232 F T )¢
i=l

J 25,2 1%k |6 e ” N||2 12
<E, E iSA-—+<P{— Sk ZbgVN})
0i=1 l VN N

2
< Ly (et Py 09
VN

where we used Assumptions 3.1 to get the last line. This concludes the proof. ([
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8.2. Analysis of the noise

The proof of Lemma 8.2 is based on Lemma 8.10 below. In order to state such a lemma let us introduce the following
notation and definitions. Let ky : [0, T] — Z4 be a sequence of nondecreasing, right continuous functions indexed
by N, with kx(0) =0 and kx(T) > 1. Let H be any Hilbert space and {X;{V, f,ﬁv}oskSkN(T) be a H-valued martingale
difference array (MDA), i.e. a double sequence of random variables such that E[ X ,ZCV | F, ,fv_ 1=0,E[||X ]1{\/ 12| F ,ﬁv_ 11 <o0
almost surely and F¥— 1N < .7-',?’ . Consider the process X'V (¢) defined by

kn (@)
XN =" x),

k=1

if ky(t) > 1 and ky () > limy_, o4 ky(f — v) and by linear interpolation otherwise. With this set up we state the
following result.

Lemma 8.10. Let ¥ : H — H be a self-adjoint positive definite trace class operator on a separable Hilbert space
(H, |- 1). Suppose

(1) there exists a continuous and positive function f(t) defined on [0, T such that

kn(T) T
; N|2| N \ _ . e
Nh_r)noo kE:1 IE(HXk ” |]:k—1) —Trace(T)/O f(@&)dt in probability;

(i) if {¢;} is an orthonormal basis of H then

kn (T)
lim E((XY, ;) (X0, ¢i)|FY) =0 foralli# j;

N—o0
k=1

(iii) for every fixed € > 0,

kn (T)

lim 3 E(| X [*) 1y 2q FL) =0, in probability.

Then the sequence X N converges weakly in C ([0, T]; H®) to the stochastic integral fOT  f(@t)dW;, where W; is a
‘H-valued T-Brownian motion.

Proof. This lemma is in the same spirit as [9, Proposition 4.1 and Remark 4.2]. As observed in [1, Proof of Theo-
rem 5.1], the statement just needs to be proved for a finite dimensional Hilbert space, i.e. in finite dimensions. The
first two conditions are needed to ensure the weak convergence of the finite dimensional distributions of X N the last
condition guarantees tightness of the sequence, see [5, Theorem 3.2] and [9, Remark 4.2]. One may also consult the
more compact [10, Section 5.5]. O

Proof of Lemma 8.2. We apply Lemma 8.10 with ky(¢) = [tN], X,’cv = M;’N/\/N and ]-',iv the sigma-algebra
generated by {yh'\_'H, S}ﬁr 1» 0 < h <k} to study the sequence n™ (1), defined in (6.11), in the Hilbert space H*. We now
check that the three conditions of Lemma 8.10 hold in the present case.

(i) We need to show that

1 [TN]

T
o ,; B MY |2 — Trace(Cs)/O Te(S@)) du. (8.33)
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From the definition of M kl’N , equation (6.10), we have

2

L aap 2

PNZ = ey — o = B (e — ) (8.34)

hence

2

N

1 2 2
S BN E =By — [ — [ (s =2 |

202
= Bl 5[ — [l =), (8.35)

where the above equality holds thanks to (2.3). We will show that

[TN]
Eq > |Ee(xly —x) |2 —0 as N — 0. (8.36)
k=1

Assuming the above for the moment, let us focus on the first addend in (8.35):

202 202 & , :
—~ yenC gl = N DM ke

j=1

w02 X, JN 2
= 2 B (1A e g
j=1

22 5 e R (20N (2] 2 Pk
ZWZ)‘N Ec[(1Ae™)[g5 ]+T’
j=1
where
al j 2
al =200 W3R (1A e?) — (1aeR) LN (8.37)
j=1

We now use the same technique that we used for the drift coefficient (that is, we first take expectation with respect to
&' and then with respect to £ \ £'), obtaining

202 2 20, o NG
Bkl €l I = 53 1570 (1n ) + 57
j=1
N N N
2t 2 2smoé z Yk | Dk
=W LRI R
N N N
1 2.2 N al k a2k
= — A SF(S )+—’+—’ (8.38)
J k ’
N ot N N
having used (5.13) and (5.28) and having set
N
al =202 3 FFEL (1A eR) — (1 A e%er)). (8.39)

j=1
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Therefore

252 172 2.2 el aka “évk
ZEk\|yk+1c/sk+1l| = ZZ/\ ST(SN) Z(TJFT) (8.40)

k=0 kO]l k=0

If we prove that

| N LN
NExokz::O|af{k]—>O and N]EXO;)|a§Yk|—>0, (8.41)

then (8.33) follows from (8.35), (8.36), (8.40) and the above two limits. We therefore move on to proving the limits in
(8.41). Let us start from the latter:

N

Exolafl| £ Exy 302377 (B[ (1 4 €€) = (1A e®1)[")'
j=1

N
. 1/2
SEy Y 4252 (B0 — R;1?)Y
j=1
al 1/2
SEy Y 425% (B0 - RI?)Y (8.42)
j=1
al 1/2
+Eq Y 23% (ErlR - R[22, (8.43)
j=1

The addend (8.42) tends to zero as N — oo by using (5.9) and (5.7). For (8.43) instead we have, by (5.17),

N
(8.43) < Z AP Ey (BlR — R;1)

l 12PN
SZ ZAEXO( + N )

The first limit in (8.41) now follows from (8.9). The second limit in (8.41) can be shown analogously, using this time
the bounds (8.3) and (8.6).
Finally, to show (8.36), observe that from (8.13),

10N, SHIIZ  lleN |2
B (el =)} 5 — T

The desired result now follows from Lemma 8.8, (7.3) and the bound
0@, S|, <1+ lxlls

(which is a consequence of the definition (6.7) and (8.17)).
(i) Condition (ii) of Lemma 8.10 can be shown to hold with similar calculations, so we will not show the details.
(iii) It will suffice to show that

[TN]

.1 N2
Nh_r)noo NEXO 1;) Ek(”M/l N Hsl{nM,j'NH%xN}) =0.
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Using the Markov inequality,

4172 2 12

Ex (]| M N”3 () ||§>eN}) < (Ex “MI:NHJ) ! (P{||M£’N||s >eNY) !
1 N4
< Bl M

By (8.34), (2.3) and (3.7),

1

1 4 4
B PR NN [ -

s~ NZ]Ek ||yk+1cl/2$k+l Hs ~

Therefore

1 [TN] [TN]

B0 D B[ My Mot peen) S Exo Z E(] ) < nZh (8.44)
k=0

Appendix A

Proof of (3.7). We just need to prove it for p even. So let ¢ > 1; then, by the weighted Jensen’s inequality

00 9q 00
E”cl/ZsN”f‘] < E(ZIZY)LIZ‘%.Z,N‘2> S (Trace(cs))q_l Zl—QS)LiZ]E|Ei,N|2q < 00

i=1 i=1

Alternatively, one can observe that (3.7) is a consequence of Fernique’s theorem. (I
Before proving Lemma 4.1, we recall the following fact, which has already been pointed out in Section 1.2.

Remark A.1. Werecall thatfor X e Ry and b € R, Dy(X) = geﬁ(x, 1), where G, (X, b) is the drift function defined
in [7, (1.7)]. Analogously, our I'p(X) is I, pX, D, where I'y (X, b) is defined in [7, (1.6)].

Proof of Lemma 4.1. The boundedness of D, and I'y follows from Remark A.1 and [7, Lemma 2]. Lipschitzianity
follows simply observing that both functions have bounded derivative, indeed

d ) e 1\ e
—Dyx)=D(x) - ==+ 575 )¢ *
dx

T \J/x  2x3/2

*/3_ VX (A.1)
d ) 2
—Ty(x) =0“Dy(x) — e &,

dx X

Global Lipschitzianity of 4/I"y then follows after observing that Iy is bounded below away from zero (see (1.13)).
We now want to show that the derivative of A, (x) is bounded. From the definition of A, (equation (1.14)) we have

Oy Ag(x) = —2Dp(x) —2x9x Dy(x) + 95 T¢(x). (A.2)
We will prove that
hm I Ag(x) = (A.3)
x—>+

Because d, Ay is a continuous function on [0, +00), (A.3) implies the boundedness of 9, A¢(x). In order to prove
(A.3) we will prove that all the addends on the RHS of (A.2) tend to zero (see also Figure 2 below).



1638 J. Kuntz, M. Ottobre and A. M. Stuart

_U 8 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Fig. 2. Plots of the function dx Ay (x) for £ =1 and £ = 2 (dashed line).

o First of all, let us prove

hm Dy(x) = (A4)

x—>+

The above limit follows from the definition of D, (1.12) by simply applying de 1’Hopital’s rule:

@(f—(l_zx)) o 2(1-2x)? /4x ‘ ‘
Jm 6762@ o= my o 2e—C—1) (zﬁx3/2 + /_2x)
. —22/4)( 1 1 1 i
= dim e N (4x3/2 WS (A-5)

e From (A.1) and (A.4), also 9,"¢(x) — 0 as x — +o0.
e Now the second addend:

]iT —2x0yD¢(x) =0

X—=>+00
Indeed,
—2x3; Dy = —2xzzDe(x)+2£<f+ L) —0 /A
x 9
JT 2Jx
therefore
xd (L2 2x)) E
im — — lim —apt N2 T 5 Y o )4
xilToo 2x0y Dy = Xllr_poo 4¢ Ce—D) +2f\/‘e
q)(za—zx)) 42(1 2x)2/4X( ) 3
_ : _ 4 \/ﬂ 4«/5 . E_ _22/4)(
= I [ _gz —CG) }erllrfoozﬁﬁe

(A5) —02 /4x —0%/4x __
lim —2—\/_e —|—2 \/—e =
JT JT

X—>+00

Finally, the sign of A, (x) is studied in [2, page 258]. U
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We include here plots of the functions D, (x) and I';(x), Figure 3 and Figure 4 below.

Proof of first equality in (5.16). We want to prove

Ei” (Vi+18;

PN

+

) = (anr)2%).

0.7

35

25

1.5

0.5
0

10 20 30 40 50 60 70 80 90 100

2 4 6 8 10 12 14 16 18 20

Fig. 4. Plots of the function I'y(x) for £ = 1 and £ = 2 (dashed line).

1639
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Let fy,1.60., (¥, &) be the joint distribution (given xi) of yx41 and & 1. Then
E” (ven &) 2// VE Frtbin (V. 6)
= [ [ 1 ® vl

= [ € fus@arin© =B sl .

Appendix B

Before starting the proofs of the various lemmata, we derive equation (B.2) below, which will be repeatedly used
throughout this appendix. '
From (5.5) and recalling that [VWN (xx)] denotes the ith component of VUV (xp),

i,N
. X .
g = i— + 1 [V (0] (B.1)
l

Using the bound (7.12) we have

o
[ VO @] < Y[ Ve @o '[P S el + 12,

i=1
hence
[V o] | S IxI57 + 110
Therefore, for every p >0

i,N
|xk |

|§_i,N|P g
k )\‘lp

+ (Ixells” + llxx1F). (B.2)

Proof of Lemma 7.4. We will prove, in order, the bounds (7.4), (7.3) and (7.5).
e Proof of (7.4). We can act as in [12, Proof of Lemma 9] (in comparing our proof with [12, Proof of Lemma 9]
setd =N"lin[12]). Looking at [12, Proof of Lemma 9], all we need to show is

2 2 1 2
EXO(SI?IH) " _EXO(SI?I) " S N(l +]EX0(SIiV) m)'
A close inspection of the method of proof used in [12] reveals that showing the above boils down to proving the

following two bounds:

!
[E[s8 =Pl S 5 (1+ 5, p=1 (B.3)
and
!
(Ex |24 —Szﬁvlp)l/"ﬁﬁ(“rsiv)- (B.4)

Let us start with proving (B.3). To this end let us observe that by (7.7) and (6.1), one has

EN  Ay(SY
_k+ Z(k).

Ek[slﬁ-l_sliv]: N N

(B.5)
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Now notice that
s 2

||xk 12_ 1, VP s zlxk N N
_ Z Z 5 Z =5l (B.6)
i=1 =1

l

where in the last inequality we have used the fact that ), kl.ziZS is convergent and therefore k2~2x is bounded. To
bound the RHS of (B.5), we recall that from the proof of Lemma 7.2 one has EN = Ef\fk + E2 P Ei 7N (see (7.10)).
Acting like we did to obtain (7.17), one has

L ||2>1/2 B 1

|~f< N < ﬁ(sk +1). (B.7)

With steps analogous to those used to obtain (7.19), one also has

|EY

IEZkINf( + D < 1+ sY). (B.8)

Now (B.3) follows from (7.10), (B.5), (B.7), (B.8), (B.6), (7.21) and

Ag(a) S(1+a), a=0.
To prove (B.4) one can instead just use (7.23), (7.15) (together with y41 < 1) and calculations analogous to those
leading to (7.21). This concludes the proof of (7.4).

e Proof of (7.3). For this bound we will use the same strategy of proof that we used to show (7.4). So we only need
to prove

Bk (e — x|, S (1 + < 1,) (B.9)
and
(e[ = |1)7 < f(l + |- (B.10)

Let us start with (B.9):

202
(Bl — )], = 2 el 5 ),
2E 1/2
-z (zz [Ei wm) .
i=1

We therefore need to estimate |Ek(yk+1)»,-§,iivl)|2. In order to do so, we make the following preliminary observation:
from (5.7) and (5.17) we have

. 202
O (xk, Ers1) = R (v, Exg1) — |sk+1 =y G Y G ).
As we have already said, R’ contains only terms that do not depend on the noise E,i’JFNI, therefore we can write

[y [ = (B[ (1A @)l ]

= [E[((1 7€) = (1AM Dagi ]
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<27[Ex(|Q — R'[[& )

<32 Ek|§k+1|3+Ek|§k ||§k+1|2+Ek £V N2,
~ i N \/N k+1
Using (5.8) and the fact that {; depends only on xj, we have
N2
LNy (2 2f 1 |§k |
|]Ek(yk+1)"l%_k+1)| g )" (N2 +— N
(B.2) 1 i,N 2 241
D oL WP Ty B11)
N2 2N N

(B.9) is now a simple consequence of the above bound. For (B.10), instead, we just use yx+1 < 1 and
/r 31
N nli/p 1 1/2
el 10" 5 (el Panl?) T

e Proof of (7.5). By acting as we do to obtain (B.2) (with p = 2), it is clear that we only need to show
Exoecsl?] <oo and Exoe(ﬁ”x’?l”% <00, uniformlyover0 <k <[TN]+1, (B.12)

for all ¢ > 0. However, by (B.6), proving the second of the above bounds boils down to proving the first, which is
therefore the only one we need to concentrate on. Such a bound is a simple consequence of (7.3). Indeed, on inspection
of the proof of (7.3), one finds that the constants ¢ appearing on the RHS of (7.3) grows at most like ", where d > 0
is some positive constant independent of m, N and k. Therefore

S N 2m
Ee 141 = 37 o b 15" ea/v <
0 Nmm) ~

This concludes the proof of the lemma. |

Proof of Lemma 5.3. This proof is in 2 steps. The first step proves the first part of the statement, the second step
proves the second part.

e Step 1. For every fixed ¢ > 0 and for every € > 0,
o0 1 o
> B[N > €) <5 Z o (0 (t) <00, (B.13)
N=1 N=1

where WV has been defined in (6.5). Assuming for the moment that (B.13) holds, by the Borel-Cantelli Lemma
(B.13) implies that @™ (f) converges to zero almost surely. Because almost sure convergence is preserved under
continuous transformations, this means that SV () converges almost surely to S(¢). We only sketch the proof of
(B.13), as the calculations are completely analogous to those contained in the proof Theorem 5.1. From (6.5), we
have

t
o (Y @0))* 5/0 Er[AY EN ) = Ae(SN )]  dv

t
+/ B [Ac (3N ) = Ae (SN )] dv + By [w¥ )] (B.14)
0

The estimate of the first and third addend on the right hand side of the above is done by proceeding analogously to
what we have done for the proof of Lemma 7.2 and Lemma 7.1, respectively. The second addend can be studied
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with similar calculations (indeed, with calculations analogous to those in Step 2 of this proof). Therefore we only
show how to estimate the first addend, the others can be done with a similar procedure, and we leave it to the reader.
With the notation introduced in the proof of Lemma 7.2, we have

t _ 1 [TN]
B [ [AYGEV0) = 45O0)] do=Buyy 3|
k=0

and |EY|* SIEY N+ |EY | + [ExN|* (see (7.10)). Acting as we did to obtain (7.18) and (7.19), we find

1 1
EXO|EfYk“,§m and E,|EY,|' <

S (B.15)

Using (7.21), one finds that, overall,

t
Ex()/ [Aév(j(N)(v)) _AE(S(N)(U))]4dv§ iz’
0 N

and the sequence ay = N2 is summable. Similar estimates can be obtained for the addends in (B.14). This con-

cludes the proof of the almost sure convergence of " to zero.
e Step 2. For every € > 0,

oo oo
DR8N = sM )] > €) < 12 3 Eq |5V @) - sM 1) < 0. (B.16)
N=1 € N=1

Again, if we prove the above, by the B-C Lemma we have almost sure convergence of SM (1) to SM(¢) and, by
Step 1, to S(r). From the definitions of S")(¢) and S™)(¢), equation (1.17) and (5.2), respectively, for (k/N) <
t <(k+1)/N, we have

SM(6) — SNty = (Nt — k) (S — SF). (B.17)
so that
SV V) (|2 N e N vi2 720 1
x|S0 = SO =B | (N1 =0 (Sghy = )| = Exo| S8 = ST 5 43 (B.18)
O

This concludes the proof.
Proof of Lemma 8.1. Using (8.2), the bound (8.4) is a simple consequence of the definitions of R and G, indeed

IR—G| < li|gi|2_1
TN i=1

s

hence

EilR — G| < (B IR — G1?)'?
2\ 12

1 & SR
:(Var(NZ]Si}z)) S—N- (B.19)

N

1 & e
5 2lE -

i=1
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We observe now (although we will use this only later) that a similar explicit calculation also shows

1
Ek|R—G|4§m. (B.20)

Going back to the proof of the lemma, the bound (8.3) is a direct consequence of the definitions of R and R'. The
inequality (8.5) follows from (5.12), (5.13), (5.5) and the bound (7.13). Indeed,

202 ez N
G—Z(’kz i k+] k+1'

Therefore, by (5.5), given x; we have
G- ng’vN(O —||c‘/2va(x,§V)||2>. (B.21)

Using (7.13) one then has

L+ 11y
_ p< 7k 1S
Ei|G — Zeal? € — 0= (B.22)
hence (8.5) follows. Notice that from the above calculations we have
e B
_ p< LTk IS
EelR = Zexl? S — 5= pel2a) (B.23)
|
Proof of Lemma 8.6. We prove the three statements in the order in which they are presented.
e Proof of the bound (8.9). From (B.2),
N Ix N| N
Exozz'zuﬂ NPy <IEXOZ 2532 ’;p Y+ T 0By [(1+ e lf) Y], (B.24)
i=1 i=1 i i=1

The second addend is bounded thanks to the assumption on Y and (7.3). As for the first addend, (by the weighted
Jensen’s inequality) this is bounded (for any p > 0) as soon as we can prove that

p
i=1 i

N |xli,N|2p
u (p) =3 i A

has bounded first moment (for every p), i.e. we want to prove E, v,ﬁv (p) < ¢ where ¢ > 0 is a constant independent
of N and k € {0,1,...,[TN]} (but possibly dependent on p). Observe that if p = 1 then v,iv(l) = ||x,ﬁv||§, so the
statement is a consequence of (7.3). So we can restrict to p > 2. Denoting by d a generic constant (that does not
depend on N), the value of which will change from line to line, we write

N ZN i (N, |20 v\
Exovk+1(p) =E,, i S)L;p (xk‘ + N )Li)/k+]é;'k'+l)
i=1 ]

1

N A2 2p— 202 - 2p—m
gExou,fv(p)JrExodZizs i Z ( Wkimlé,i’ﬂ) :

i=1 i m=0
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If, in the above summation, the index m is smaller than 2p — 2,1i.e. 0 <m <2p — 2, then p —m/2 > 1 and we have
the estimate

2 M iNym 202 v\ 2 M N i,N |2p—m
Eyi®—=(x," ) E —Ai ’ <E, ;"L E . -
X0 )\‘1217( k ) k( N lyk+1€k+l) ~ X0 N )\‘:n k|yk+1§k+l
A2 Ny
SEy itk (B.25)
N AT
1 IxiN|2P
< ;2542 k
S AlIExO< o +1). (B.26)
If m =2p — 1 we instead use (B.11) and obtain
B 2 s P ket
X0 )Lizp\/ﬁ k l k+1
N 2 PN
g VP (||x£||s+|x,i | 1 )
~ x0 i )Lin—l /N /N )\i /N
2552 /1 N2
A (XTI 2p
SEx N ( eT + x5 ) (B.27)

1
To obtain the last inequality we used Young’s inequality with exponents 2p/(2p — 1) and 2p, as follows:

i,N2p—1 i,N 2
&.”xé\/” <! i
)Lgp—l K )\2[7

i i

N|2p
+ [ |5
From (B.26) and (B.27) (and using (7.3)) we then have

d d
Exyviy1(p) < (1 + N>Ex0v,’§ (P)+ -

Iterating the above [T N] times we get
v d\TN]
Exovk+1(p)§ <l+ﬁ) UO(P)+d<OO»

having denoted vo(p) :=) ;2

i12p
0 2 )\% ] . Notice that if xo € H}, then the series vo(p) is convergent for every

AP
p=>0.
e Proof of the bound (8.10). Set
~i N |x;i{N|
EN = T (B.28)
l




1646 J. Kuntz, M. Ottobre and A. M. Stuart

From (B.2) we then have

NN GNP
=Y i)
12: Z(NS,?J)O‘

i—1

<ii2s 2 15 Z 22 I+ 1Y 529
= <NSkN>“‘ P (NS |

For the first addend in (B.29) we have
N

N ~i,N 2 o
Z 2 |§k —F Z 2}5£,N}p—2a< |§k ~|- )
<NSN>a Y1

SEqvp (P —20)/2),

thanks to the obvious estimate (|§l N2 | /Zl 1 |§k |2) < 1. Using (B.6), one can easily see that also the expected
value of the second addend is bounded if ¢p > 2«, as

e 15 Il 2 -2
=B e 17 S Bl 7 <o

Therefore, E,, JkN < 00, uniformly over k and N. From the weighted Jensen inequality one can also see that
Ey, |JkN|‘1 < oo for all ¢ > 1. To conclude, for #; <t < ty4+1] we write
N N N
EvoJi' =B S Lisv s sy T Exo i Lisy <(sy/2))-

Now the first addend:

2,215 1P
B¢ sy s0/21 = Bxo jya Z M sy st 2w

N

1 25,2 i, Np (89)
S Gayya S L= 0
i=1

The above limit follows from the assumption Sy > € and (4.7) (which, combined, guarantee min{e, 1} < S(¢)). The
second addend:

E JNI Ni12\1/2 N S(t) 12
xodk sV <52y = (Exo [ ) (P (S8 = S®) < 5

1/2
s (e(Ist - s01-%7))

1 201/2
< g Eals) —s0P) "

The statement now follows from Lemma 7.5, (5.2), the assumption Sp > € and (4.7).
e Finally, we turn to the proof of (8.11).

1 1

— =t — (B.30)
1+ |R|IvVN 1+ |Zox VN
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where

1
Inl = - ‘
1+|RIVN  1+|Zex|V/N

_ VYNIRI = 1Zeill _ VNIR = Zy 4|
1+1ZexWN 7 14 1Zx VN

having used ||a| — |b|| < |a — b|. Consequently,

1 1/2
Eiln? < N(EiR-Z 41/2([@ —> (B.31)
kinl® < N(Exl exl?) k(1+|2£’k|\/ﬁ)4
(B.23) 1 1/2
N2
S (0 [ ||A¢)<Ek—(1+|zmﬁ)4> : (B.32)

Also, from (B.30),

1 1
<Een?

Bi——— <En*+E—— . B.33
“A+ RIVN)? A+ 1Zes VN (B39

Now notice that, given xi, Z; x is a Gaussian random variable with variance 2£2S,iv and mean —¢2. Therefore, for
every p > 1,

2\2 2¢N
oS 4

1 1 1
SR S—
A +1ZexVN)P - S (L xIWN)P [47 025N

</ 1 L
~ X
® (L+xlVN)? [gn

1 1 1 1
= —/ dy < .
VN Jr A+ 1yDHP /Sli\/ /NSI?I
The proof can now be concluded by combining (B.33), (B.32) and the above. (I

Remark B.1. Notice that the proof of (8.10) is the only place in which we actually use (3.4) instead of the slightly

more general assumption ||C 1290 x)| < IV ()] s < 1+ |jx]|ls. This was done to avoid technicalities and stream-
line the proof.
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