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THE DYNAMICS OF THE THETA METHOD*
A. M. STUART! AND A. T. PEPLOW'#

Abstract. The dynamics of the theta method for arbitrary systems of nonlinear ordinary dif-
ferential equations are analysed. Two scalar examples are presented to demonstrate the importance
of spurious solutions in determining the dynamics of discretisations. A general system of differential
equations is then considered. It is shown that the choice § = % does not generate spurious solutions

of period 2 in the timestep n. Using bifurcation theory, it is shown that for 6 # % the theta method
does generate spurious solutions of period 2. The existence and form of spurious solutions are exam-
ined in the limit At — 0. The existence of spurious steady solutions in a predictor-corrector method
is proved to be equivalent to the existence of spurious period 2 solutions in the Euler method. The
theory is applied to several examples from nonlinear parabolic equations. Numerical continuation is
used to trace out the spurious solutions as At is varied. Timestepping experiments are presented
to demonstrate the effect of the spurious solutions on the dynamics and some complementary the-
oretical results are proved. In particular, the linear stability restriction At/Axz? < % for the Euler
method applied to the heat equation is generalised to cope with a nonlinear problem. This naturally
introduces a restriction on At in terms of the initial data; this restriction is necessary to avoid the
effect of spurious periodic solutions.

Key words. dynamics of numerical methods, asymptotic instabilities, dissipative problems,
timestep as bifurcation parameter
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1. Introduction. In this paper we study the relationship between the asymp-
totic behaviour of a numerical simulation and that of the true solution itself, for fized
values of the mesh-spacing. Our viewpoint here is to consider the numerical method
as a dynamical system and to analyse its possible asymptotic states. Our aim is to
determine methods for which spurious asymptotic states are not introduced by the
discretisation, either for all values of the timestep, or for all values of the timestep
sufficiently small.

We study one-step methods for systems of nonlinear ordinary differential equa-
tions (ODEs). Such systems may be of interest in their own right or may arise from
spatial discretisations of partial differential equations (PDEs). Many of the features
we describe are qualitatively robust to spatial mesh refinement and this justifies study-
ing the problem in isolation from the effect of spatial derivatives—essentially a method
of lines approach. In fact, many of the results in this paper can be generalised from
an ODE in R" to an ODE in a Banach space.

We study the following ODE: find u(t) € R™ satisfying

(1.1) u = G(u), u(0) = ug.

The regularity of G(u) will be specified when required. The theta method consists of
finding a sequence U,, € R™ satisfying

(1.2) Upnt1 — Up = At[(1 - 0)G(U,) + 0G(Up+1)],
for 6 € [0,1].
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We also consider the following splitting of G :
(1.3) G(u) = Au + H(u),

where both A and H map R™ into itself. A is assumed to be a matrix, whilst H is
a nonlinear function. This splitting enables us to consider the semi-implicit method
which is popular in the solution of many dissipative PDEs: find U,, € ™ satisfying

(1.4) Uni1 — Un = At[AU 1 + H(U,))-

Note that U, approximates u(nAt). Under fairly mild assumptions, both the
schemes (1.2) and (1.4) yield convergent solutions on compact time intervals. The
main result of this paper is proved in Lemmas 3.1, 3.2, and 3.3. It is given in the
following theorem.

MAIN THEOREM. If = 1, then the numerical method (1.2) cannot have period
2 solutions in n. The method (1.4) and the method (1.2) with 6 # } can have period
2 solutions in n.

Such period 2 solutions are spurious and generated by discretisation. They are
important because their presence can cause the dynamics of the discretisation to differ
substantially from the dynamics of the underlying differential equation. This happens
in the following two different ways:

(i) If the period 2 solutions are unstable (that is, repel data in their vicinity),
then such solutions and their stable manifolds often delineate classes of initial data
for which the correct asymptotic behaviour is reproduced by the numerical method
and classes of initial data which lead to blow-up of the scheme or nonexistence of
numerical solutions. (See Example 2.1 and Theorem 4.2.)

(ii) If the period 2 solutions are stable (that is, attract data in their vicinity),
then U,, may converge to a period 2 solution as n — oo. All initial data lying within
the domain of attraction of this period 2 solution will then yield spurious results. (See
Example 2.2.)

In §2 we describe two simple examples which illustrate the importance of spurious
periodic solutions in determining the dynamics of discretisations. These examples
indicate why the nonexistence of period 2 solutions for the trapezoidal rule gives it
an advantage over other methods. Section 3 contains the proof of the main theorem
in the general case. In addition, we state and prove a theorem about the behaviour
of spurious solutions as At — 0. Specifically we prove that for C! nonlinearities G(u)
spurious solutions approach infinity in norm as At — 0 (if they exist for arbitrarily
small At). This is essentially a consequence of the convergence of the schemes. We
also show that the existence of period 2 solutions for the Euler method is equivalent
to the existence of spurious steady solutions for a predictor-corrector method and
hence the theory of spurious periodic solutions has far-reaching consequences. The
results from §3 are illustrated further in §4 by means of several examples arising from
discretisations of parabolic PDEs; numerical continuation is used to trace out the
spurious solutions as At is varied, and timestepping experiments are presented which
illustrate the effect of the spurious solutions. Complementary analysis of the specific
problems is also presented. In particular, Theorem 4.2 provides a generalisation of
the classical stability restriction for the numerical solution of the linear heat equation
to a nonlinear problem. As would be expected, this nonlinear restriction involves
dependence upon initial data, reflecting the existence of spurious solutions. Section 5
contains the conclusions.



THE DYNAMICS OF THE THETA METHOD 1353

The first reference to the relevance of period 2 solutions in generating spurious
dynamics is by Newell [13]. This important work has not received the attention it
deserves in the numerical analysis community, mainly because it is couched in the
language of fluid mechanics. Many of the ideas in this and other papers are present in
embryonic form in [13]; in particular, Newell recognized the importance of the linear
stability limit in predicting the existence of spurious period 2 solutions. Newell’s
work on dissipative problems dealt mainly with a cubic viscous Burgers’ equation and
touched on the issue of implicit methods. Subsequently, further studies of period 2
solutions were undertaken by Mitchell and his co-workers ([6], [10], [11], [17], [19]), and
the role of the linear stability limit in predicting their existence was firmly established.
Mitchell’s work has concentrated on explicit methods with quadratic nonlinearities
(in particular, Fisher’s equation) and the existence of stable period 2 solutions for At
above the linear stability limit. Following the work of Newell and of Mitchell, a general
result establishing the existence of spurious periodic solutions in the neighbourhood of
the linear stability limit was proved for explicit discretisations of arbitrary reaction-
diffusion-convection equations [22]. That work showed that spurious solutions can
exist below the linear stability limit and in some circumstances for At arbitrarily
small. This paper extends the work in [22] to more general numerical methods and to
more general differential equations; we also include new results about the qualitative
behaviour of the spurious solutions and several numerical examples which illustrate the
application of the theory to PDEs. A unified treatment of spurious steady and periodic
solutions in Runge-Kutta methods, linear multistep methods, and predictor-corrector
methods is contained in [14]. The main result in this paper disproves a conjecture
made by one of the present authors in [21], namely, that the Crank—Nicolson method
for nonlinear parabolic equations can have period 2 solutions which bifurcate from
At = oo.

In general, dynamically varying timesteps should be used in time-dependent sim-
ulations of nonlinear problems, whenever feasible. Here we are concerned entirely
with fixed timestepping strategies. There are two main reasons why we believe that
the study of fixed timestepping strategies is important. First, time-like iterations are
often used to solve steady problems (or to find other asymptotic states) and in such
a context it is the asymptotic properties of the scheme that are of most importance;
transient behaviour is irrelevant. Hence fixed timesteps are frequently used, the aim
being to choose a timestepping algorithm which maximises the domain of attraction
of the target solution; an important step in this direction is to avoid the existence
of spurious solutions. Second, it is our belief that a thorough understanding of the
problems associated with the fixed timestep strategy is necessary in order to develop
simple variable-step strategies for large-scale PDEs; it seems likely that the emphasis
in designing timestepping strategies will shift from schemes designed purely to control
local error to schemes designed to reproduce the long-time dynamics of differential
equations as closely as possible. Clearly these two approaches are intimately related,
but further work is required on the subject. We claim that, for both fixed and vari-
able timestepping strategies, bifurcation theory is an excellent tool for studying the
dynamics of discretisations since it enables the study of changes in the topology of a
dynamical system as a parameter (some measure of the timestep) is varied.

An alternative, and very powerful, algebraic approach to the study of spurious
solutions is introduced in (8], where spurious steady solutions are considered. This
approach can be generalised to cope with period 2 solutions; see [14]. The dynamics
of variable timestepping algorithms are analysed in [5]
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2. Motivation for the methods and results. In this section we present two
examples which illustrate the effect of spurious period 2 solutions on the dynamics of
discretisations. Another example illustrating the effect of unstable spurious solutions
may be found in the paper of Brezzi, Ushiki, and Fujii [1]; and the effect of stable
spurious solutions is discussed in the paper of Sleeman et al. [19].

Ezample 2.1. Unstable spurious solutions. This example illustrates the effect of
unstable spurious solutions. Consider the ODE

(2.1) ug = —ud.

It is clear that u(t) — 0 as t — 0, for any initial data. Consider now the forward
Euler discretisation of (2.1)

(2.2) Unt1 = Uy — AtUS.

It is straightforward to verify that (2.2) has a period 2 solution of the form U, =
(=1)"U., where U, = /2/At. The following result is proved in [23].

Result. The following three possibilities hold for (2.2):

(i) If |Uo| < |Ug|, then |U™| — 0 as n — oo.

(i) If |Uo| = U, then U, = U..

(iii) If |U,| > Ue, then |U™| — oo as n — oo.

Notice the important role of the unstable spurious period 2 solution: data lying
below it has the correct asymptotic behaviour and data lying above it diverges to infin-
ity. Thus the spurious solution divides the phase space into regions where correct and
incorrect asymptotic behaviour are generated by the numerical method. Of course, this
result is particularly simple since we are in one dimension, but similar results can be
proved in higher dimensions (see Theorem 4.2.) Consequently we claim that unstable
spurious solutions play a very important role in the dynamics of discretisations.

Ezample 2.2. Stable spurious solutions. This example illustrates the effect of
stable spurious solutions. Consider the scalar ODE

(2.3) ug = ud.
The dynamics of this equation are very simple. The solution is

o
O et

All initial data other than u(0) = 0 diverge to infinity monotonically in finite time
1/2u(0)2. The situation is summarised in Fig. 1; the variation with At is trivial
for the differential equation and is included for the purpose of comparison with the
discretisation.

Consider now the backward Euler discretisation of (2.3):

(2.4) Unt1=Un + AtU2 ;.

As for the differential equation, there is an unstable steady solution U,, = 0. It is a
conseqeunce of [24, Thm. 2.3] that there is no strictly positive or strictly negative
sequence satisfying (2.4) for all n > 0. Thus the numerical solution cannot diverge
to infinity monotonically as the true solution does. What happens is that inital data
other than Uy = 0 evolves towards a stable period 2 solution as n increases. It is
straightforward to show that (2.4) has a period 2 solution of the form U,, = (-1)"U,,
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F1G. 1. The dynamics of (2.3). Arrows indicate the evolution of |u(t)| with time.

with U, as defined in the previous example. This solution is stable with a local
contraction rate of % over two timesteps. As in Example 2.1, the spurious solution
exists for arbitrarily small At and moves off to infinity as At — 0; see Theorem 3.4.

We solve (2.4) numerically using Newton iteration at each step, with an initial
guess provided by the forward Euler method. Iteration is performed until convergence,
for each value of n. All nonzero initial data evolves to the stable period 2 solution as
n increases. Thus the dynamics of the numerical solution can be summarised as in
Fig. 2, which should be compared with Fig. 1.

Figure 3 shows the solution of (2.4) with Uy = 1 and At = 0.0001. The evolution
towards the stable period 2 solution is clear.

Thus the spurious solution attracts all nonzero initial data. The correct asymp-
totics are not reproduced for any nonzero initial data. Consequently we claim that
stable spurious solutions play a very important role in the dynamics of discretisations.

3. The Main Theorem and related results. In this section we prove the
Main Theorem stated in §1. The proof is broken into three lemmas (Lemmas 3.1-3.3)
concerned with the trapezoidal rule, the theta method for 6 # %, and the semi-
implicit method. We also prove Theorem 3.4 concerning the behaviour of spurious
solutions as At — 0; we show that spurious solutions must tend to infinity in norm as
At — 0 (if they exist) and derive a condition under which spurious solutions do not
exist for At arbitrarily small. In addition, we prove Theorem 3.5, which yields the
same conclusion as Lemma 3.2, namely, the existence of spurious solutions, but with
different assumptions. Finally, in Theorem 3.6, we prove that the existence of spurious
period 2 solutions for § = 0 is equivalent to the existence of spurious steady solutions
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FIG. 2. The dynamics of (2.4). Arrows indicate the evolution of |Uyn| with n.
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Fic. 3. Solution of (2.4). Ug = 1, At = 0.01.
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for a predictor-corrector method. Extensions and alternative proofs of Theorems 3.4
and 3.6 can be found in [9].
Period 2 solutions of (1.2) are pairs (U, V) € R™ x ™ with U # V, satisfying

(3.1) V —-U = At[(1-0)G(U) +6G(V)],
(3.2) U-V=At[(1-0)G(V)+06GU)|.
Period 2 solutions of (1.4) are pairs (U,V) € R™ x R™ with U # V, satisfying
(3.3) V —U = At[AV + H(U)],
(3.4) U -V = At[AU + H(V)).

LEMMA 3.1. For § = 1, (1.2) cannot have period 2 solutions.
Proof. When 0 = 1, (3.1) and (3.2) give

2(V -U) = At[G(U) + G(V)],

2U - V) = At[G(V) + G(U)).

Subtracting, we obtain U = V and so period 2 solutions cannot exist. O
Assumptions on G(u) for Lemmas 3.2 and 3.3.
(i) G(0) =0.

(ii) G(u) € C*(R™,R™) for u near 0.

(iii) Let dG(0) denote the Jacobian of G at u = 0. Then we assume that dG(0)
has a real, nonzero, simple eigenvalue 7. The corresponding eigenvector is y.
(This is required only for Lemma 3.2.)

(iv) Let dH(0) denote the Jacobian of H(u) at u = 0. Then we assume that A —
dH (0) has a real, nonzero, simple eigenvalue v. The corresponding eigenvector
is w. (This is required only for Lemma 3.3.)

(v) The matrix dG(0) is nonsingular.

We now discuss the necessity of the assumptions for the proof of the lemmas.
Our method of proof is to consider the bifurcation of spurious period 2 solutions from
steady solutions. Steady solutions u satisfy G(u) = 0 and without loss of generality
we may assume that © = 0. Thus Assumption (i) is necessary for our method of proof.
(However, it is possible for spurious period 2 solutions to exist which do not bifurcate
from a steady solution at any finite value of At, as Examples 2.1 and 2.2 show.)
Assumption (ii) is required so that we may employ standard bifurcation theory as
in [3]. The existence of a real nonzero eigenvalue in Assumption (iii) (respectively,
Assumption (iv)) for Lemma 3.2 (respectively, Lemma 3.3) is necessary. That the
eigenvalue be simple is not strictly necessary, but simplifies the analysis. (Note that
by a different method of proof we are able to relax the condition on the existence of
a real eigenvalue, provided that G(u) has two zeros; see Theorem 3.5.) Assumption
(v) precludes the bifurcation of steady solutions in the differential equation itself.
This could be allowed for in the analysis, but would complicate it unnecessarily; the
simultaneous bifurcation of steady and periodic solutions is analysed in [21].

Lemmas 3.2 and 3.3 are proved by application of standard “bifurcation from a
simple eigenvalue” arguments; see [3, Chap. 5] or [7]. Here At plays the role of
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bifurcation parameter. Note that the lemmas provide information about the structure
of the period 2 solutions near to the bifurcation point. This is required to initiate
numerical continuation procedures which trace out the spurious solutions; see §5.

LEMMA 3.2. Period 2 solutions of (1.2) bifurcate from the trivial solution (U,V) =
(0,0) at At = 2/(26 — 1)n. Furthermore, the branches of nontrivial solutions satisfy,
forp K1,

U=-V=py+0(uP),

2
At = @9=1n +O(lp)-

Proof. Consider (3.1) and (3.2). Clearly these are satisfied by (U, V) = (0,0) for
all At. Straightforward application of [3, Thm. 5.3, Chap. 5] shows that bifurcation
occurs at simple eigenvalues At of the following problem:

B — a = At[(1 - 8)dGa + 804G,

a— (= At[(1 - 0)dGB + 0dGa).

Throughout this proof dG is evaluated at v = 0. Adding the two equations shows that
dG(a+ B) = 0. Since dG is invertible, we obtain & = —3. Thus the equations reduce
to

[2 — At(20 — 1)dG]B = 0.

By assumption, dG has a real, nonzero, simple eigenvalue 1 and so we deduce that
the linearised system is singular at

2
At = —.
(260 - 1)n
A little calculation shows that this eigenvalue is simple (in the sense defined in [3,
Chap. 5]) and the conclusions of the lemma follow in a straightforward way. 0

LEMMA 3.3. Period 2 solutions of (1.4) bifurcate from the trivial solution (U, V) =
(0,0) at At = % Furthermore, the branches of nontrivial solutions satsify, for p < 1,

U=-V=yw+0(ul?),
2
At = 5 + O(|ul)-

Proof. The proof is very similar to Lemma 3.2 and is omitted. O

An important question for the numerical analyst is to determine to where the
branches of solutions (U(u), V (1), At(r)) go to in function and parameter space. In
particular, it is important to know whether the branches extend to arbitrarily small
values of At. This depends on the global structure of the nonlinear terms and no
general answer is possible. It is, however, an important area for future research.

We now prove a result about the behaviour of spurious periodic solutions as
At — 0. Roughly, Theorem 3.4 states that if spurious solutions exist for arbitrarily
small At then they must move off to infinity in norm—essentially a consequence of
the convergence of the scheme.

THEOREM 3.4 Consider genuine period 2 solutions (U,V') of (1.2) and of (1.4)
with U # V. Assume that G(U) € C*(R™,R™). The following results hold:



THE DYNAMICS OF THE THETA METHOD 1359

(1) If a pair (U,V) can be found for arbitrarily small At, then ||U||cc and ||V |oo
— 00 as At — 0.

(ii) Furthermore, if G(U) = BU + J(U), where B is an invertible matriz and
J(U) is uniformly bounded for all U, then period 2 solutions cannot exist for
arbitrarily small At.

Note on Theorem 3.4. The assumption that G(u) is a C' function is strictly
necessary. See [9, Ex. 4.8] for an illustration of this fact. It is shown that, for
G(u) = —/(u),u > 0 and G(u) = /(Ju),u < O the Euler method has period 2
solutions of the form U,, = (—1)"At2/4.

Proof. We restrict our proofs to the theta method (3.1), (3.2) since the proofs for
the semi-implicit method (3.3), (3.4) are slight modifications. Consider (1.2). Period
2 solutions satisfy (3.1), (3.2). Adding these equations shows that for At # 0,

GU)+G(V) =0.

Using this result in (3.1), (3.2), we obtain

(3.5) V —U = At(1 —20)G(U)
and
(3.6) U -V =At1-20)G(V).

Subtracting (3.6) from (3.5) and using the Mean Value Theorem gives
1
3.7) [21 + At(1—26) / dG(tU + (1 — t)V)dt] V-U)=0.
0

We first prove part (i) of Theorem 3.4. We assume that U remains bounded in
norm as At — 0 and we obtain a contadiction. From (3.5) we deduce that V remains
bounded. Thus the linear operator in (3.7) is invertible for all At sufficiently small
and U = V. Hence period 2 solutions do not exist for all At sufficiently small. This is
the required contradiction which establishes that U becomes unbounded. Similarly,
it may be shown that V becomes unbounded.

We now prove Theorem 3.4(ii)). We assume that a pair (U,V) with U # V can
be found for At arbitrarily small and we obtain a contradiction. Period 2 solutions
satisfy (3.5). Using (3.5) to eliminate V, and using G(U) = BU + J(U), we obtain

BU + J(U) + BJU + AtBU + AtJ(U)] + J(V) = 0.
Here At = (1 — 26) At. Rearranging gives
(2B + AtB)U = —J(U) — J(V) — AtBJ(U).

From the boundedness of J and the invertibility of B we deduce that U remains
bounded as At — 0. By (3.5) so too does V. Hence, by (3.7), U = V for all At
sufficiently small so that period 2 solutions cannot exist. o

We now prove another theorem on the existence of spurious periodic solutions in
the # method. Lemma 3.2 proves the existence of spurious periodic solutions which
bifurcate from a steady solution by means of a simple symmetry-breaking bifurcation.
However, to prove Lemma 3.2 it is necessary to assume that the Jacobian dG(0) is
invertible and that dG(0) has a real, nonzero eigenvalue. We now prove the existence
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of spurious period 2 solutions assuming the existence of two steady solutions but under
the weaker assumption that the Jacobian is invertible at both steady solutions; we do
not need to assume the existence of a real eigenvalue. The result holds for At > 1
but may be useful as a starting point for numerical continuation to small values of
At.

THEOREM 3.5. Let § # % Assume that there exist Uy, Vo with Uy # Vo satisfying
G(Uo) = G(Vo) = 0 and that dG(Uy) and dG(Vp) are invertible. Then for |At|
sufficiently large, there exist spurious period 2 solutions of the discretisation (1.2).

Proof. Period 2 solutions of (1.2) are pairs (U, V) satisfying (3.1) and (3.2). For
At = oo these equations have the solution U = Uy and V' = V. We now prove that
these solutions can be uniquely extended to solutions for |At| sufficiently large. By
the Implicit Function Theorem, this can be done provided that the following problem
for (o, 3) has the unique solution (0,0):

(1 — 6)dG(Up)ax + 0dG(Vp)B = 0,

(1 = 6)dG(Vo)B + 0dG(Up)ax = 0.

If @ = 0 or 1 we deduce that @ = 8 = 0 automatically. If # # 0,1 then simple
manipulations show that o = § = 0 provided that 0 # % 0

The final theorem in this section relates the existence of spurious periodic solutions
in the Euler method to the existence of spurious steady solutions in the following
predictor-corrector method for (1.1):
(3.8) Ub ., =Un+ AtG(Uy),

n

(3.9) Unir = Un + S [G(U241) + G (U]

THEOREM 3.6. Consider the predictor-corrector method (3.8), (3.9). This method
has a spurious steady solution satisfying Un41 = U, whenever the theta method with
0 = 0 has a spurious period 2 solution.

Proof. Steady solutions of (3.8), (3.9) satisfy

(3.10) V =U+ AtGU),

(3.11) 0=GU)+G(V).
Using (3.11) in (3.10) we obtain
(3.12) U=V+AtG(V).

Equations (3.10) and (3.12) are identical to (3.1) and (3.2) with § = 0. Hence the
result follows. O

4. Application to nonlinear parabolic equations. Here we apply the results
in §4 to nonlinear parabolic equations of the form

(4.1) Ut = Ugg + AU+ h(u, ug)
with boundary conditions

(4.2) u(0,t) = u(1,¢) =0
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and some initial conditions. For simplicity we shall assume that h(0,0) = 0 and that
h(a,b) is superlinear in its arguments a and b. These assumptions are not necessary
(see [22]) but simplify the analysis considerably; we seek period 2 solutions bifurcating
from zero and our assumptions ensure that the linear eigenvalue problem governing
bifurcation is symmetric and explicitly solvable.

We discretise (4.1), (4.2) in space using a centred approximation to the second
derivative and a consistent approximation to the nonlinear term (which may or may
not involve upwinding). We obtain the system of J — 1 nonlinear ODEs

du;  8%u;
(43) th— = wa; + )\’U,j +g(uj_1,uj,uj+1),
for j=1,---,J — 1. Here JAz = 1,82u; = uj41 — 2u; + uj_1, and
(4.4) up = uy = 0.

From our assumptions on h(a, b) we deduce that g(0,0,0) = 0 and that g is superlinear
in its three arguments. (Note that g may depend upon Az but that we supress this
for notational convenience.)

We can apply Lemma 3.2 directly to (4.3), (4.4). Welet U = [U1,Us,---,U;_1]7
and V = [V1,Va,---,V;_1]T. At zero, the Jacobian of the right-hand side is a sym-
metric, tridiagonal matrix with J — 1 distinct eigenvalues n*) and corresponding
eigenvectors y(*) [4]. These are

4 sin?(km/2J)
Az? ’

with corresponding eigenvectors given componentwise by

(4.5) n® =\

(4.6) Yy = sin(knj/J).

The index k = 1,---,J — 1. For yj(-k) the subscript j denotes the jth component of

the vector y(*). By Lemma 3.2 we can find J — 1 branches of period 2 solutions when
applying the # method to (4.2) and locally these satisfy

4.7) Ui = =V, = w{® +0(|u?)),

2
(4'8) Atk = (20 — 1)77(") + O(lﬂl)
Note that the smallest of the positive values of At is the asymptotic stability limit
for the numerical method linearised about zero.

The local results (4.7) and (4.8) provide the starting points for a numerical contin-
uation procedure which traces out spurious period 2 solutions in the theta method as
At is varied. We now describe several examples corresponding to different choices of
nonlinearity h(a,b). Throughout the following, we use the nonlinear solver PITCON
[16] to follow the solution branches of the nonlinear equations governing existence of
period 2 solutions. Note that the bifurcation of period 2 solutions is necessarily of
pitchfork type [7], [22] and so there are two branches emanating from each bifurcation
point. It is possible to move from one branch to the other by interchanging the roles
of U and V. For this reason the two branches are indistinguishable in the figures.

Ezample 4.1. Consider the equation

(4'9) Ut = Uggy — u3
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F1G. 4. l; norm of spurious periodic solutions versus 1/At for equations (4.10) and (4.11).

together with boundary conditions (4.2). A Liapunov functional approach shows that
all solutions converge to zero as t — co. We discretise the equation using explicit Euler
timestepping (6=0) and we take g(a,b,c) = —b>. We obtain, for j =1,---,J — 1,

(4.10) u;”'l =uj + r6ﬁu;-‘ — At(u})?,

boundary conditions
(4.11) uy =u =0,

and some initial condition on u). Here r = At/Az?.

We seek period 2 solutions satisfying the Zs symmetry U = —V and find that
they satisfy

(4'12) A.’EZ—U] +E—07 J—la"',J—l
together with
(4‘13) UO = UJ = 0'

Using the estimate (4.7), (4.8) we can follow the branches of spurious periodic solutions
satisfying (4.12), (4.13). Figure 4 shows a plot of these branches in the case At =
0.1; thus J = 10 and there are nine branches. Note that the branches exist for At
arbitrarily small. This is proved in [22], where it is shown that the solution branches
approach infinity at a rate proportional to 1/1/At. This scaling follows from a balance
between U ]3 and 2U;/At. The fact that they approach infinity is a consequence of
Theorem 3.4(i).
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Recall that the solution of the differential equation tends to zero as t tends to
infinity. The following theorem gives conditions for the Euler approximation to behave
similarly. The theorem reflects the effect of the spurious periodic solutions in that
At must be restricted in terms of the reciprocal of the square of the magnitude of
the initial data; this is precisely the scaling of the spurious solutions with At. The
theorem shows that the phase space can be divided into regions where correct and
incorrect asymptotic behaviour is observed.

THEOREM 4.2. Consider the solution of (4.10), (4.11). Let

= 0
Umax = 021;2(‘] |u3|
Then we find the following:
@ If
Az?

< e
Ats 2 + 3(AzUmax)?

Then u?? — 0 as n — oo for all initial data (correct asymptotics).
(it) If J =0 (mod 3), then there exists initial data such that if

2Az?

At > 3+ (AZUmax)?

then [u}| — 0o as n — oo (spurious asymptotics).
Proof. (i) Define

n n : n
= max u; Umin = MIN_ U, .
max ) min 0<j<J J

Note that u?,,, > 0 and u?;, < 0 by virtue of (4.11). The proof proceeds by induction.
Assume that

Ax?
. <
(414 SRR
2
(4.15) A Az

t< ———.
~ 2+ 3(Azul;,)?
This holds for n = 0 by assumption. Rearranging (4.10), we obtain, forj =1,---,J—1
u;.""l =ruj_;+[1-2r— At(u}’)z]u? +rujy .

Using the monotonicity of (1 — 2r)u — Atu3 implied by (4.14), (4.15), we deduce that

(4.16) uft <1 — At(upan)*|ufpax-
Similarly,
(417) u_;'H-l > [1 - At(u?nin)2]u&in'

This shows that, if ut! (respectively, u”}!) is nonzero and attained in the interior
(j # 0,J), then it strictly decreases (respectively, increases) over one step. If u™}}

(respectively, u™t1) is attained at the boundary (j = 0 or j = J), then ultl =0
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(respectively, u™ ! = 0.) Thus equations (4.14) and (4.15) hold for n+1. By induction

min
we deduce that uj — 0 as n — oo.
(ii) For this part we assume that J = 0 (mod 3). With this assumption it may
be shown by substitution that

(4.18) uj = A"sin(275/3)
is an exact solution of (4.10), (4.11) provided that A™ satisfies the recursion
(4.19) A™ =1 - 3r — 3A(A™)?)A™.

This exact nonlinear solution satisfies the recursion because of the property of aliasing:

to establish (4.19) we use sin®z = 3 sinz — 1 sin3z. For ¢ = 27j/3, sin3z = 0 and

hence (4.19) follows. If
(4.20) 1-3r— %At(A”)Z < -1,

it is clear that |[A"*!| > |A"| and hence, by induction, that [A"| — oo as n — oo.

Hence u] — oo as n — oo provided that

‘s 8Azx?
121 3(AzA0)

However, umax = A°sin(2mr/3). Thus (4.21) gives

‘s 2Az?
3+ (Azumax)?

(4.21) A

A

as required. 0

We now describe some timestepping experiments which illustrate Theorem 4.2.
We solve the recursion (4.10), (4.11) with 1/A¢ = 300.557 and with J = 10. We use
initial data of the form

0 — .
u; = aUj,

where Uj is the spurious periodic solution lying on the uppermost branch in Figure 4
at ﬁ = 300.557. Figures 5 and 6 show plots of the I norm of u},

versus n for two different values of a. In Fig. 5 we take a = 1. The true solution is
pure period 2 in n. However, rounding errors excite an instability and the solution
diverges to infinity (spurious asymptotics.) This occurs in a very small number of
steps; the lo norm is approximately constant for eight steps (since we start on the
period 2 solution which has the symmetry U; = —V;) and in the last two steps the
instability rapidly takes over and the solution diverges to infinity. In Fig. 6 we take
a = 0.99. Here the solution lies just beneath the spurious periodic solution and it is
attracted to zero (correct asymptotics).
Ezample 4.3. In this example we study the Ginzburg-Landau equation

Ut = Ugg + )‘(u - u3)>
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together with boundary conditions (4.2). The dynamics of this problem are very well
understood: the solution converges to zero for A sufficiently small and to the unique
positive or negative solution for larger values of A for almost all initial data. See [2].

We discretise the equation using explicit Euler timestepping (6 = 0) and seek pe-
riod 2 solutions satisfying the Z; symmetry U = —V. We obtain the defining problem

82U,
Az?

together with boundary conditions (4.13). This problem is related to (4.12), (4.13)
by a simple group of continuous transformations: we let v = 2/At; then (4.22), (4.13)
can be transformed into (4.12), (4.13) by

2+ M\U; - U3)+-2——U-—~0 j=0,-+,J -1,

(4.22)

(4.23) U; — A73U;
and
(4.24) y—=y—=A

Thus we expect the spurious periodic solutions of the Ginzburg-Landau equation to
be of the same form as the solutions of Example 4.1 but scaled and shifted. The
bifurcation points are shifted to the left (in 1/At) and the branches are scaled down.
This can be seen in Fig. 7, which should be compared with Fig. 4. The spurious
periodic solutions affect the dynamics of the Euler method in a similar way to Example
4.1; it is necessary to restrict At in terms of the magnitude of the initial data to obtain
satisfactory results.
Ezxample 4.4. Consider the equation

ud

(4.25) Ut = Uae =~ T g a0

together with boundary conditions (4.2). When discretised in space alone, the system
of nonlinear ODEs satisfies the criteria of Theorem 3.4(ii). Consequently we expect
that branches of spurious periodic solutions cannot extend back to arbitrarily small
At.

We discretise the equation using explicit Euler timestepping (§ = 0) and seek
period 2 solutions satisfying the Zs symmetry U = —V. We obtain the problem

82U; U3 +2U
Az? 1+6U4 At

(4.26) =0, j=1,---,J-1,

together with boundary conditions (4.13). The numerical solution of this problem is
shown in Fig. 8. Notice that the branches of spurious periodic solutions are bounded
uniformly from At = 0. This is in accordance with Theorem 3.4(ii).

Notice also that the branches of solutions in Fig. 8 emanating from ||U| = 0,
At = Aty are asymptotic to the same value Aty at ||U| = oo. This results from
the fact that the nonlinear source term is asymptotically negligible for ||U]| < 1 and
for |U|| > 1. This form of bifurcation from infinity can be established rigorously by
applying the Asymptotic Bifurcation Theorem of Krasnosel’skii quoted in [25].

Example 4.5. Consider the viscous Burgers’ equation

(4.27) Up = Ugg + Uy,
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F1G. 9. l2 norm of spurious periodic solutions versus 1/At for the upwind scheme (4.27).

together with boundary conditions (4.2). A Liapunov functional approach shows that
all solutions converge to zero as t — oo. We consider two different schemes for the
solution of (4.27), (4.2). Both involve Euler timestepping but in one we use an upwind
scheme and in the other a centred scheme.

Consider first the upwind scheme for which we take

2 — b2

20z

g(a,b,c) = for j=1,---,J 1.

Numerical continuation was implemented to follow the nontrivial branches away from
the bifurcation points given by (4.7), (4.8). Figure 9 shows a plot of these branches
in the case Az = 0.1. Most of the branches are irrelevant since they exist only above
the linear stability limit (1/At = 200).

The branch emanating from the eighth bifurcation point (from left to right in
1/At) enters into the region of linearised stability for the scheme. This branch is shown
in Fig. 10. Note that the branch seems to terminate at 1/At =~ 360, contradicting the
Rabinowitz global bifuration theory [15]. What actually happens is that the solutions
U and V satisfy U = V at this point and beyond this the roles of U and V interchange
and the solution follows a symmetric transformation of the original branch back to the
bifurcation point; in (U, V, At) space it is actually a loop and there is no contradiction.
This branch is of particular interest. At the point where U = V, we have obtained
a steady solution of the discretisation of Burgers’ equation. This steady solution is
spurious and caused by spatial discretisation (in contrast to the spurious periodic
solutions which are caused by temporal discretisation). The existence of spurious
steady solutions for Burgers’ equation (with nonhomogeneous boundary conditions)
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is discussed in [20], for the driven cavity problem in [18], and for nonlinear elliptic
problems in [12].
We now discretise Burgers’ equation by centred differencing. Thus we take

c? —a?

4Azx
The spurious periodic solutions are shown in Fig. 11. The linear theory determining
the bifurcation points is identical to that for the upwind scheme. Note, however, that
the behaviour of the solution branches is entirely different far from the bifurcation
points. This illustrates an important point: the interaction between spatial and
temporal discretisation is crucial in the design of schemes which minimise the effect
of spurious solutions.
Ezxample 4.6. Consider the equation

(4.28) 9(a,b,c) =

forj=1,---,J—1.

together with boundary conditions (4.2). We discretise the equation using backward
Euler timestepping (# = 1) and seek period 2 solutions. The points at which spurious
period 2 solutions bifurcate from the trivial solution are given by (4.8), which reduces
to

2Az?
4sin’(kw/2J) — AAz?
We choose A sufficiently large that A¢; > 0. Figure 12 shows the spurious periodic

solution emanating from At;. Note that it can be found for all At sufficiently small
and moves off to infinity in norm as predicted by Theorem 3.4(i).

(4.30) Aty = for i=1,---,J -1
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5. Conclusions. In this paper we have investigated the dynamics of numerical
methods for nonlinear differential equations. We have shown, by means of illustrative
examples, that spurious periodic solutions can seriously degrade the performance of
the numerical methods (§2). Consequently, it is important to design schemes which
minimise the effect of spurious solutions. We have shown that the trapezoidal rule
never possesses spurious solutions of period 2 in n; on the other hand, the theta
method with 6 # % does possess spurious solutions of period 2 in n. (This and other
related results are in §3.) We have applied our theory to a number of specific examples
arising from discretisation of semilinear parabolic equations (§4). In a specific case,
we have generalised the asymptotic stability criterion At/Ax? < % for the Euler
discretisation of the heat equation to a nonlinear problem (Theorem 4.2). This result
reflects the dependence upon initial conditions required in the nonlinear case; the
precise form of the restriction for the nonlinear problem is intimately related to the
existence of spurious periodic solutions in the discretisation.
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