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Green’s Functions by Monte Carlo

David White and Andrew Stuart

Abstract We describe a new numerical technique to estimate Green’s functions of
elliptic differential operators on bounded open sets. The algorithm utilizes SPDE
based function space sampling techniques in conjunction with Metropolis-Hastings
MCMC. The key idea is that neither the proposal nor the acceptance probability
require the evaluation of a Dirac measure. The method allows Green’s functions to
be estimated via ergodic averaging. Numerical examples in both 1D and 2D, with
second and fourth order elliptic PDE’s, are presented to validate this methodology.

1 Introduction

Green’s functions play a central role in many areas of mathematics and statistics:
they provide fundamental solutions used as the basic building block to construct
solutions of inhomogeneous PDEs; they act as the representers for reproducing ker-
nel Hilbert spaces; and the covariance function of a Gaussian random field may be
viewed as the Green’s function for the precision operator.

This article describes a new numerical technique to estimate Green’s func-
tions of elliptic differential operators on bounded open sets. The algorithm utilizes
SPDE based function space sampling techniques [3] in conjunction with Metropolis-
Hastings MCMC [7]. The key idea is that neither the proposal nor the acceptance
probability require the evaluation of a Dirac measure. The method estimates Green’s
functions via an ergodic average of sampled functions. The basic framework is that
probability measures defined on a Hilbert space [4] are sampled using techniques
designed specifically for this infinite dimensional setting.
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In Section 2 it is shown that a Gaussian measure on function space can be con-
structed with mean corresponding to the desired Green’s function. The algorithm
samples functions from this measure and the sample mean provides a good estimate
of the Green’s function of interest.

This idea is validated numerically by examples with known analytic solutions in
Section 3. Green’s functions of second and fourth order elliptic operators in both 1D

~and 2D are presented in this section.

The concept presented here is independent of the particular methodology used for
sampling function space. Section 4 considers an alternative proposal for a function
space MCMC sampling method and demonstrates the algorithm in this context via
one of the numerical examples shown in Section 3.

2 Function Space Sampling and Algorithm Description

Sampling from a measure on function space is central to this algorithm. It is shown
below that if the measure and function space sampling algorithm are constructed
appropriately, then the ergodic average of suitably sampled functions converges to
a Green’s function of choice.

We begin by defining a probability measure 7 on a Hilbert space H with inner
product (-, -). The measure 7 is constructed so that its mean is the desired Green’s
function on a bounded open set D C R". Throughout this article the measure, 77, has
a Radon-Nikodym derivative with respect to a Gaussian measure mo:

dm
= o exp(—0 (x)). (1)
0

We chose a mean zero Gaussian reference measure g = N (0,C) where C is a
trace class, self adjoint, positive definite operator on H so that o (H) = 1. For equa-
tion (1) we require that'® : H — R is mp-measurable and integrable. The definition
of 1o may be combined with equation (1) to write the following informal expression
for the target density as:

7 (dx) o exp (—@(x)—%(x,C‘lx))dx. ) 2)

This expression has no rigorous status because there is no infinite dimensional
equivalent of Lebesgue measure. However it conveys intuition about the measure
which may be useful to the reader.

The algorithmic ideas presented in this paper apply to sampling general measures
7 of the form given by equation (1), in the case where g is Gaussian [3]. However
we now look at a particular choice of @ arising in the application to the construction
of Green’s functions.

In order to obtain the Green’s function of some elliptic differential operator £
incorporating the boundary conditions through its domain, the covariance operator
of the reference Gaussian measure is selected to be C = —£~!. The function Hilbert
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space H = L?(D) and O is chosen to be @ (x) = (x, 8;). Here §; is the Dirac delta
function centered at s € D.

By completing the square in equation (2) we deduce that = ~ N (%, C) where
x = —Cé8; or

»CxA == (Ss. (3)

Then 7 is absolutely continuous with respect to 7wy whenever x € Im (C%) by the
Feldman-Hajek Theorem [4].
The measure 7 is invariant for the SPDE:

dx dw
el e —. 4
dt 7 s+\/_dt @)

Lemma 2.2 in [5] shows that this equation is well defined and ergodic.

Since equation (4) is invariant with respect to the target measure, r, the Green’s
function of interest may be obtained by time marching the SPDE and averaging the
sampled functions to estimate x. In practice, this requires direct evaluation of Dirac
delta functions, which introduces further complications.

This difficulty may be circumvented as follows. Instead of equation (4) consider:

dx dw
dt_ﬁx—i— 2dt' 5)
Lemma 2.2 in [5] shows that equation (5) is mg invariant rather than 7 invariant.
However equation (5) does not involve a Dirac delta function. If we use proposals
based on discretising equation (5) then the Metropolis-Hastings accept/reject mech-
anism may be used to create a 7 invariant Markov chain.

Discretising the SPDE (5) using Crank-Nicolson gives equation:

y—x Lx+Ly 2

= = s N 6
At 2 8 AtS ©)

where & represents a spatial white noise which is independent of the current state x.

Re-arranging we obtain the proposal y given a current function x:

(L—MLYyy=2+[L)x+VEME. - (7

The acceptance probability for the proposal y given x is « (x, y) where:

a(x,y) =exp(OAR(x,y)), ‘ (8a)
R(x,y) =0 x)=O(y)=x(s)—y(s). (8b)

Notice that the acceptance probability only requires computation of the differ-
ence between the current and proposed functions at a single point. This is compu-
tationally inexpensive to evaluate and at no point in the algorithm do we need to
evaluate a delta function.
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This completes our explanation concerning the construction of the measure and
the sampling algorithm. A more detailed explanation of function space sampling
algorithms can be found in [3], for non-Gaussian measures, using SPDE which are
invariant for & given by (1) see [5] and [6].

3 Examples and Numerics

This section numerically validates the above algorithm via three examples. The ex-
amples have known analytic solutions derived by techniques described in [1], [2]
and [8].

Throughout this section we use the standard notation for Sobolev spaces H®
of functions with s square integrable derivatives, possibly incorporating periodic
(H3..) or Dirichlet (H{) boundary conditions.

per

Example 1. As a first example, we consider the elliptic differential operator £ = %
with Dirichlet boundary conditions:
d2
L=——o0n (0,1 9a
—— on (0,1) (9a)
with D (L) = {x € Hy (0, )N H?*(0, 1)}, (9b)

It may be shown theoretically that the Green’s function for L is:

Gt ) = s(u—1) Vs<u (10)
us—1) Vs>u. .

Figure 1 shows a numerical estimate of the Green’s function (with s = 0.3) using

10* burn in steps and 10° actual steps of the MCMC method described in this artiele.

A spatial discretisation of Au = 10~ and time step of Az = 1 were used here to

generate these estimates. The initial function and the last sampled function are also

displayed to demonstrate the stochastic origins of the estimate. The estimate appears

to be approximately piecewise linear with a minimum at u = 0.3. These observed
features are in agreement with the theory.

Example 2. The first example is generalised by introducing a second term into the
differential operator. Equations (11a) and (11b) show the operator, interval and
boundary conditions.

d? 5
E:m—k on (0, 1) (11a)

D (L) = {x € Hy (0, )N H?*(0, 1)} (11b)

It may be shown theoretically that the Green’s function for L is:
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The algorithm was tested using this problem with Au = 1073, At = 10~2 with a
10% burn in period. The initial condition function was chosen to be identically zero
across [0, 1].

Figure 2 shows both (a) the numerical estimates of the Green’s functions and (b)
the L2 normed error of these estimates for k = 10. (a) shows the Green’s function
estimate for 10° iterations and 108 iterations. The former has visible deviations from
the correct solution and the latter is visually identical to the true solution. (b) shows
the normed error of the algorithm’s estimates for 10°, 106, 107 and 108 samples. It
is evident from these plots that the algorithm’s output does converge to the correct
solution.

Example 3. We now consider a two-dimensional Green’s function, arising from the
biharmonic operator. The objective here is to test the algorithm on a higher dimen-
sional problem. Define £ by:

" R :
L=—-AN"=— W+W on k=041 %0, 10), (13a)
1 2

/xdu:O}. (13b)
E

per

D(L) = {x e HY (E)

The constraint shown in (13b) is required to uniquely define the Green’s function.
Without this, any constant may be added to a Green’s function of £ to obtain another
valid Green’s function.

Equation (14) shows the Green’s function of this problem, calculated using
Fourier series expansions:
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Fig. 2 Green’s Function of £ = 45 — 100 with s = 0.8.

1 exp (27rip(€u|—s|)> exp (2niq(€u2—52))
1 2
G (g, s) = A

~— L 4 2 2 2
1642147 (r)eK (%‘2‘4‘3—)
1

2
2

(14)

Here K = Z2\ {(0, 0)}.

An FFT based approach was used to calculate proposals on [0, i using (7) and
the accept/reject step was based on the function value at s = (% %) The discretisa-
tions and time steps used were Au| = Auy = ﬁ, At = 1 with 3.2 x 10 MCMC
steps preceded by 10° burn in steps. The initial function was chosen to be identically
zeroon D.

Figure 3 shows (a) the resulting Green’s function estimate and (b) the error es-
timate. It is clear from these plots that the algorithm functions correctly for this
problem.
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Fig. 3 Green’s Function of £ = —A? with s = (0.5, 0.5).

4 Other Related Proposals

A requirement of the algorithm presented in this paper is the invariance of the mea-
sure 7 to the SPDE stated in equation (4). However, this SPDE is not the only SPDE
with this property. An alternative SPDE is (see [6], equation (2.14) and Theorem
3.6): ‘ 5

dx dw
— = b6 +v2C—.
di )C+C s+ Cdt (15)

As above, C is the covariance operator and §; is the Dirac delta measure with centre
ats.

The general definition of the square root of the self-adjoint operator C is, of
course, through diagonalization in an orthonormal basis, as for matrices. Note how-
ever that if £ is spatial white noise then ~/C& is simply a draw from the measure 7o;
this may sometimes be achieved without constructing +/C explicitly, for example if
C is the covariance operator of Brownian bridge.
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Similarly the following SPDE is mr invariant:

dx dw
e IR O 7 kil 16
Pl dt (16)

Similarly to the development in Section 2, this equation may be discretised and
used to generate proposals for a Metropolis-Hastings Markov chain. The Crank-
Nicolson discretisation gives:

y—x 4y - J2C
= - pos 17
At = g Atg e
which re-arranges into:
2= 43 V/8AtC
= £. (18)

=274t 2xar

The re-arrangement has a special form, the proposal, y, is a linear combination
of the current solution x and ~/C& where & is spatial white noise independent of x.
In particular, JCE may be drawn directly from (. Also notice that:

2— At\? 8 At
i =1 (19)
2+ At 2+ Ar)

This ensures that y is drawn from a measure which is absolutely continuous with
respect to the Gaussian reference measure mg. The acceptance probability for this
proposal is again that shown in equations (8a) and (8b), (Theorem 4.1 in [3]).

In one dimension, for the operator £ given in Examples 1 and 2, \/(_35 is Brow-
nian bridge measure and draws from it can be made from linear combinations_of
Brownian motion.

The algorithm was tested using this problem with Au = 1073, Ar = 0.5 with a
10% burn in period. The initial €ondition function was chosen to be identically zéro
across [0, 1].

Figure 4 (a) shows estimates of the Green’s function problem described in Ex-
ample 2 and (b) shows the corresponding error norms produced using this alternate
proposal. It is clear from these plots that the algorithm converges for this new pro-
posal. This result is particularly interesting in view of the fact that the basic building
block is simulation of Brownian motions (and hence Brownian bridges) and no in-

: 1 5 ; .
version of £ or £2 was required to generate this estimate.

5 Conclusions and Further Work

In this article we have introduced a new Metropolis-Hastings based approach to cal-
culating Green’s functions of elliptic operators on bounded open sets. It was shown
that if the target measure is constructed on a function space in a particular way, the
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Fig. 4 Green’s Function of £ = :—uzz — 100 with s = 0.8 using the alternate SPDE proposal of
Section 4.

ergodic average of the sampled functions converges to the Green’s function of an
elliptic differential operator.

The method was validated via three numerical examples, for which the Green’s
function was known analytically.

In addition to the work presented in this article, it has been observed that this
algorithm is trivially parallelisable. Existing direct PDE based methods for calculat-
ing Green’s functions are serial by necessity. So this potential for parallelism places
a considerable advantage over existing methods. This work is on going and more
details will appear in [9].
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