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Abstract. Ensemble Kalman methods constitute an increasingly important
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applied when computer code is available for the underlying state-space dynamics
(for state estimation) or for the parameter-to-observable map (for parameter
estimation). There are many applications in which it is desirable to enforce
prior information in the form of equality or inequality constraints on the state or
parameter. This paper establishes a general framework for doing so, describing
a widely applicable methodology, a theory which justifies the methodology, and
a set of numerical experiments exemplifying it.
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1. Introduction

1.1. Overview

Kalman filter based methods have been enormously successful in both state and
parameter estimation problems. However, a major disadvantage of such methods is
that they do not naturally take constraints into account. The ability to constrain a
system often has a number of advantages that can play an important role in state
and parameter estimation: they can be used to enforce physicality of modeled
systems (non-negativity of physical quantities, for example); relatedly they can
be used to ensure that computational models are employed only within state and
parameter regimes where the model is well-posed; and finally the application of
constraints may provide robustness to outlier data. Resulting improvements in
algorithmic efficiency and performance, by means of enforcing constraints, has
been demonstrated in the recent literature in a diverse set of fields, including
process control [1], biomechanics [2], cell energy metabolism [3], medical imaging
[4], engine health estimation [5], weather forecasting [6], chemical engineering [7],
and hydrology [8].

In the probabilistic view of filtering methods, constraints may be introduced
by moving beyond the Gaussian assumptions that underpin Kalman methods and
imposing constraints through the prior distributions on states and/or parameters.
This, however, can create significant computational burden as the resulting
distributions cannot be represented in closed form, through a finite number of
parameters, in the way that Gaussian distributions can be. In this paper, we
circumvent this issue by taking the viewpoint that ensemble Kalman methods
constitute a form of derivative-free optimization methodology, eschewing the
probabilistic interpretation. The ensemble is used to calculate surrogates for
derivatives. With this optimization perspective, constraints may be included in a
natural way. Standard ensemble Kalman methods employ a quadratic optimization
problem encapsulating relative strengths of belief in the predictions of the model
and the data; these optimization problems have explicit analytic solutions. To
impose constraints the optimization problem is solved only within the constraint
set; when the constraints form a non-empty closed convex set, this constrained
optimization problem has a unique solution.

In this introductory section, we give a literature review describing existing
work in this setting, we describe the contributions in this paper, and we outline
notation used throughout.
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1.2. Literature Review

Overviews of state estimation using Kalman based methods may be found in
[9, 10, 11, 12]. The focus of this article is on ensemble based Kalman methods,
introduced by Evensen in [13] and further developed in [14, 9]. The extension of
the ensemble Kalman methodology to parameter estimation and inverse problems
is overviewed in [15], especially for oil reservoir applications, and in an application-
neutral formulation in [16]. Equipping Kalman-based methods with constraints
can be desirable for a variety of inter-linked reasons described in the previous
subsection: to enforce known physical boundaries in order to improve estimation
accuracy; to operationalize filtering of a model which is ill-posed in subsets of
its state or parameter space; and to provide robustness to noisy data and outlier
events.

In extending the Kalman filter to non-Gaussian settings, a number of methods
may be considered. Particle filters provide the natural methodology if propagation
of probability distributions is required for state [17] or parameter [18] estimation.
In the optimization setting, there are three primary methodologies: the extended
Kalman filter, the unscented Kalman filter and the ensemble Kalman filter.
The extended Kalman filter is based on linearization of the nonlinear system
and therefore needs the computation of derivatives for propagation of the state
covariance; this makes them unattractive in high dimensional problems. Unscented
and ensemble Kalman filters, on the other hand, can be considered as particle-
based methods which are derivative-free. In the unscented Kalman filter, the
particles (sigma points) are chosen deterministically and are propagated through
the nonlinear system to approximate the covariance, which is then corrected using
the Kalman gain to compute the new sigma points. In the ensemble Kalman
filter, the particles (ensemble members) are chosen randomly from the initial
ensemble and are propagated through the dynamical system and corrected using
the Kalman gain without needing to maintain the covariance.

In [19], and more recently in [20], overviews of different ways to impose
constraints in linear and nonlinear state estimation are presented. To ensure that
the estimates satisfy the constraints, moving horizon based estimators that solve
a constrained optimization problem have been proposed [21, 22]. The paper [23]
proposed a recursive nonlinear dynamic data reconciliation (RNDDR) approach
based on extended Kalman filtering to ensure that state and parameter estimates
satisfy the imposed bounds and constraints. The updated state estimates in this
method are obtained by solving an optimization problem instead of using the
Kalman gain. The resulting covariance calculations are, however, still similar to
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the Kalman filter: that is, unconstrained propagation and correction involving
the Kalman gain, which can affect the accuracy of the estimates. To eliminate
this deficiency, [24] proposed a Kullback-Leibler based method to update states
and error covariances by solving a convex optimization problem involving conic
constraints.

On the other hand, the paper [25] combined the concept of the unscented
transformation [26] with the RNDDR formulation. In the prediction step, they
propose step sizes to scale sigma points asymmetrically to better approximate the
covariance information in the presence of lower and upper bounds. Then, for the
update of each sigma point, they solve a constrained optimization problem. One
disadvantage of this procedure is that the chosen step sizes for scaling the sigma
points can only ensure the bound constraints. The paper [1] also tested various
algorithms based on constrained optimization, projection [27] and truncation
[5] to enforce bound constraints on unscented Kalman filtering. The paper [28]
developed a class of estimators named constrained unscented recursive estimators
to address the limitations of the unscented RNDDR method using optimization-
based projection algorithms for obtaining sigma points in the presence of convex,
non-convex and bound constraints.

As mentioned earlier, since the corrected covariance is used to compute
the sigma points, unscented formulations always require enforcing constraints
in both propagation and correction/update steps. In contrast, ensemble-based
methods only require constraints to be enforced in the update step. In this context,
the paper [8] tested projection and accept/reject methods to constrain ensemble
members in a post-processing step, after application of the unconstrained ensemble
Kalman filter. In the former, they project the updated ensemble members to the
feasible space if they violate the constraints and in the latter they enforce the
updated ensemble members to obey the constraints by resampling the dynamic
and/or data model errors. On the other hand, [29, 30] proposed updating the
state estimates in ensemble Kalman filtering by solving a constrained optimization
problem while truncating the Gaussian distribution of the initial ensemble. The
paper [6] demonstrated how to enforce a physics-based conservation law on an
ensemble Kalman filtering based state estimation problem by formulating the filter
update as a set of quadratic programming problems arising from a linear data
acquisition model subject to linear constraints. Here we develop this body of work
on constraining ensemble Kalman techniques, providing a unifying framework
with an underpinning theoretical basis.
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1.3. Our Contribution

The preceding literature review demonstrates that the imposition of constraints
on state and parameter estimation procedures is highly desirable. It also indicates
that ensemble Kalman methods offer the most natural context in which to attempt
to do this, as extended Kalman methods do not scale well to high dimensional state
or parameter space, whilst the unscented filter does not lend itself as naturally to
the incorporation of constraints.

In this paper we build on the application-specific papers [8, 6] which
demonstrate how to impose some specific constraints on ensemble based parameter
and state estimation problems respectively. We formulate a very general
methodology which is application-neutral and widely applicable, thereby making
the ideas in [8, 6] accessible to a wide community of researchers working in inverse
problems and state estimation. We also describe a straightforward mathematical
analysis which demonstrates that the resulting algorithms are well-defined since
they involve the solution of quadratic minimization problems subject to convex
constraints at each step of the algorithm; these optimization problems have a
unique solution. And finally we showcase the methodology on two applications,
one from biomedicine and one from seismology.

Section 2 outlines the ensemble Kalman (EnKF) methodology for state
estimation, with and without constraints. In section 3 the same program is carried
out for ensemble Kalman inversion (EKI). Section 4 describes the numerical
experiments which illustrate the foregoing ideas.

1.4. Notation

Throughout the paper we use N to denote the positive integers {1, 2, 3, · · · } and
Z+ to denote the non-negative integers N ∪ {0} = {0, 1, 2, 3, · · · }. The matrix
𝐼𝑀 denotes the identity on R𝑀 . We use | · | to denote the Euclidean norm, and
the corresponding inner-product is denoted ⟨·, ·⟩. A symmetric, square matrix 𝐴

is positive definite (resp. positive semi-definite) if the quadratic form ⟨𝑢, 𝐴𝑢⟩ is
positive (resp. non-negative) for all 𝑢 ̸= 0. By | · |𝐵 we denote the weighted norm
defined by |𝑣|2𝐵 = 𝑣*𝐵−1𝑣 for any positive-definite 𝐵. The corresponding weighted
Euclidean inner-product is given by ⟨·, ·⟩𝐵 := ⟨·, 𝐵−1·⟩. We use ⊗ to denote the
outer product between two vectors: (𝑎⊗ 𝑏)𝑐 = ⟨𝑏, 𝑐⟩𝑎.
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2. Ensemble Kalman State Estimation

2.1. Filtering Problem

Consider the discrete-time dynamical system with noisy state transitions and
noisy observations in the form:

Dynamics Model: 𝑣𝑗+1 = Ψ(𝑣𝑗) + 𝜉𝑗, 𝑗 ∈ Z+

Data Model: 𝑦𝑗+1 = 𝐻𝑣𝑗+1 + 𝜂𝑗+1, 𝑗 ∈ Z+

Probabilistic Structure: 𝑣0 ∼ 𝑁(𝑚0, 𝐶0), 𝜉𝑗 ∼ 𝑁(0, Σ), 𝜂𝑗 ∼ 𝑁(0, Γ)
Probabilistic Structure: 𝑣0 ⊥ {𝜉𝑗} ⊥ {𝜂𝑗} independent

We assume that ℋ1,ℋ2 are separable Hilbert spaces. Then 𝑣𝑗 ∈ ℋ1, and
Ψ : ℋ1 ↦→ ℋ1 is the state-transition operator. The operator 𝐻 : ℋ1 ↦→ ℋ2

is the linear observation operator and 𝑦𝑗 ∈ ℋ2. The covariance operators 𝐶0, Σ are
assumed trace-class on ℋ1, and Γ on ℋ2 which ensures that the initial condition
𝑣1 and the noises 𝜉𝑗 and 𝜂𝑗 live in ℋ1,ℋ1 and ℋ2 (respectively) with probability
one. The objective of filtering is to estimate the state 𝑣𝑗 of the dynamical systems
at time 𝑗, given the data {𝑦ℓ}𝑗

ℓ=1. Throughout this paper we derive our theoretical
results in the setting where ℋ1 and ℋ2 are finite dimensional; however the update
formulae we derive are well-defined in the general Hilbert space setting and this
fact is important because it means that the methods derived have a robustness to
mesh refinement and similar procedures arising when the problem of interest is
specified via a partial differential equation, or other infinite dimensional problem.

Remark 2.1. We restrict attention to linear observation operators 𝐻 because this
leads to solvable quadratic optimization problems within the context of Kalman-
based methods. In principle, a non-linear observation operator could be used, but
the optimization problems defining the algorithms arising in this paper might not
have a unique solution in this setting.

2.2. Ensemble Kalman Filter

The ensemble Kalman filter is a particle-based sequential optimization approach
to the state estimation problem. The particles are denoted by {𝑣(𝑛)

𝑗 }𝑁
𝑛=1 and

represent a collection of 𝑁 candidate state estimates at time 𝑗. The method
proceeds as follows. The state of all the particles at time 𝑗 + 1 are predicted
using the dynamics model to give {̂︀𝑣(𝑛)

𝑗+1}𝑁
𝑛=1. The resulting empirical covariance

of the particles is then used to define the objective function 𝐼filter,𝑗,𝑛(𝑣), which
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encapsulates the model-data compromise. This is minimized in order to obtain
the updates {𝑣(𝑛)

𝑗+1}𝑁
𝑛=1.

The prediction step is

̂︀𝑣(𝑛)
𝑗+1 = Ψ(𝑣(𝑛)

𝑗 ) + 𝜉
(𝑛)
𝑗 , 𝑛 = 1, ..., 𝑁 (1a)

̂︁𝑚𝑗+1 = 1
𝑁

𝑁∑︁
𝑛=1

̂︀𝑣(𝑛)
𝑗+1 (1b)

̂︀𝐶𝑗+1 = 1
𝑁

𝑁∑︁
𝑛=1

(︁̂︀𝑣(𝑛)
𝑗+1 −̂︁𝑚𝑗+1

)︁(︁̂︀𝑣(𝑛)
𝑗+1 −̂︁𝑚𝑗+1

)︁𝑇
. (1c)

Here we have 𝜉
(𝑛)
𝑗 ∼ 𝑁(0, Σ) i.i.d.. Because the empirical covariance contains only

𝑁 − 1 independent pieces of information, (1c) is sometimes scaled by 𝑁 − 1 and
not 𝑁 ; making this change would lead to no changes in the statements and proofs
of all the theorems, and would only affect the definition of covariance within the
algorithms.

Let ℛ( ̂︀𝐶𝑗+1) denote the range of ̂︀𝐶𝑗+1. The update step is then

𝑣
(𝑛)
𝑗+1 = argmin

𝑣
𝐼filter,j,n(𝑣) (2)

where

𝐼filter,𝑗,𝑛(𝑣) :=

⎧⎨⎩
1
2 | 𝑦

(𝑛)
𝑗+1 −𝐻𝑣 |2Γ +1

2 | 𝑣 − ̂︀𝑣(𝑛)
𝑗+1 |2̂︀𝐶𝑗+1

if 𝑣 − ̂︀𝑣(𝑛)
𝑗+1 ∈ ℛ( ̂︀𝐶𝑗+1).

∞ otherwise.
(3)

It can be useful to rewrite the objective function for the optimization problem in
an equivalent and more standard form for input to software:⎧⎪⎨⎪⎩

1
2𝑣𝑇

(︂
𝐻𝑇 Γ−1𝐻 + ̂︀𝐶−1

𝑗+1

)︂
𝑣−
(︂ ̂︀𝐶−1𝑇

𝑗+1 ̂︀𝑣(𝑛)
𝑗+1 + 𝐻𝑇 Γ−1𝑇

𝑦
(𝑛)
𝑗+1

)︂𝑇

𝑣 if 𝑣 − ̂︀𝑣(𝑛)
𝑗+1 ∈ ℛ( ̂︀𝐶𝑗+1).

∞ otherwise.

The 𝑦
(𝑛)
𝑗+1 are either identical to the data 𝑦𝑗+1, or found by perturbing it randomly.

Note that ̂︀𝐶𝑗+1 is an operator of rank at most 𝑁 − 1, and thus can only
be invertible when 𝑁 − 1 is larger than the dimension of ℋ1. For moderate-
and high-dimensional systems, it is often impractical to satisfy this condition.
However, the minimizing solution can be found by regularizing ̂︀𝐶𝑗+1 by addition
of 𝜖𝐼 for 𝜖 > 0, deriving the update equations and then letting 𝜖 → 0. We give
the resulting formulae, and then justify them immediately afterwards, in the
following subsubsection. Alternatively it is possible to directly seek a solution in
ℛ( ̂︀𝐶𝑗+1), which is a subspace of dimension 𝑁 − 1; this is done in the subsequent
subsubsection.
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2.2.1. Formulation In The Original Variables The well-known Kalman update
formulae arising from solution of the minimization problem (3) are as follows:

𝑆𝑗+1 = 𝐻 ̂︀𝐶𝑗+1𝐻
𝑇 + Γ (4a)

𝐾𝑗+1 = ̂︀𝐶𝑗+1𝐻
𝑇 𝑆−1

𝑗+1 (Kalman Gain) (4b)
𝑦

(𝑛)
𝑗+1 = 𝑦𝑗+1 + 𝑠𝜂

(𝑛)
𝑗+1, 𝑛 = 1, ..., 𝑁 (4c)

𝑣
(𝑛)
𝑗+1 = (𝐼 −𝐾𝑗+1𝐻)̂︀𝑣(𝑛)

𝑗+1 + 𝐾𝑗+1𝑦
(𝑛)
𝑗+1, 𝑛 = 1, ..., 𝑁 (4d)

Here 𝜂
(𝑛)
𝑗 ∼ 𝑁(0, Γ) i.i.d. and the constant 𝑠 takes value 0 or 1. When

𝑠 = 1 the 𝑦
(𝑛)
𝑗+1 are referred to as perturbed observations. The choice 𝑠 = 1

is made to ensure the correct statistics of the updates in the linear Gaussian
setting when a probabilistic viewpoint is taken, and more generally to introduce
diversity into the ensemble procedure when an optimization viewpoint is taken.
Derivation of the formulae may be found in [31]. In brief the formulae arise
from completing the square in the objective function 𝐼filter,𝑗,𝑛(·) and then applying
the Sherman–Morrison formula to rewrite the updates in the data space rather
than state space; the latter is advantageous in many applications where ℋ2 has
dimension much smaller than ℋ1.

We summarize with the following pseudo-code:

Algorithm 1 EnKF Algorithm

1: Choose {𝑣(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Predict {̂︀𝑣(𝑛)

𝑗+1}𝑁
𝑛=1, ̂︀𝐶𝑗+1 from (1)

3: Update {𝑣(𝑛)
𝑗+1}𝑁

𝑛=1 from (4)
4: 𝑗 ← 𝑗 + 1, go to 2.

An equivalent formulation of the minimization problem is now given by means
of a penalized Lagrangian approach to incorporate the property that the solution
of the optimization problem lies in the range of the empirical covariance. The
perspective is particularly useful when further constraints are imposed on the
solution of the optimization problem.
Theorem 2.2. Suppose that the dimensions of ℋ1 and ℋ2 are finite. Let 𝑗 be in
Z+ and 1 ≤ 𝑛 ≤ 𝑁 . Define 𝑦′ = 𝑦

(𝑛)
𝑗+1 −𝐻̂︀𝑣(𝑛)

𝑗+1. Then the update formulae (1), (4)
may be given alternatively by

𝑣
(𝑛)
𝑗+1 = ̂︀𝑣(𝑛)

𝑗+1 + argmin
(𝑎,𝑣′)∈𝒜

(︂1
2 | 𝑦

′ −𝐻𝑣′ |2Γ +1
2⟨𝑎, 𝑣′⟩

)︂
(5)
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where 𝒜 = {(𝑎, 𝑣′) ∈ ℋ1 ×ℋ1 : ̂︀𝐶𝑗+1𝑎 = 𝑣′} and the argmin is projected from the
pair (𝑎, 𝑣′) onto the 𝑣′ coordinate only. Moreover 𝑣

(𝑛)
𝑗+1 = lim

𝜖→0
𝑣𝜖 with

𝑣𝜖 = argmin
𝑣∈ℋ1

(︂1
2 | 𝑦

(𝑛)
𝑗+1 −𝐻𝑣 |2Γ +1

2 |
̂︀𝑣(𝑛)

𝑗+1 − 𝑣 |2̂︀𝐶𝜖

)︂
and ̂︀𝐶𝜖 = ̂︀𝐶𝑗+1 + 𝜖𝐼.

Proof. For notational convenience denote ̂︀𝐶 = ̂︀𝐶𝑗+1 and see that the minimization
(5) is performed under the constraint ̂︀𝐶𝑎 = 𝑣′. Then notice that ⟨𝑎, 𝑣′⟩ =| 𝑣′ |2̂︀𝐶
with 𝑣′ lying in the range of the operator ̂︀𝐶; this is a convex constraint. The
restriction of ̂︀𝐶 over the constraint set is positive definite which means that
the quadratic objective function, now depending only on 𝑣′, is strongly convex.
Therefore the problem has a unique solution and its Lagrangian is written as:

ℒ(𝑣′, 𝑎, 𝜆) = 1
2 |𝑦

′ −𝐻𝑣′|2Γ + 1
2⟨𝑎, 𝑣′⟩+ ⟨𝜆, ̂︀𝐶𝑎− 𝑣′⟩

To express optimality conditions compute the derivatives and set them to zero:

−𝐻𝑇 Γ−1(𝑦′ −𝐻𝑣′) + 1
2𝑎− 𝜆 = 0,

1
2𝑣′ + ̂︀𝐶𝜆 = 0,

𝑣′ − ̂︀𝐶𝑎 = 0.

The last two equations imply that ̂︀𝐶(2𝜆 + 𝑎) = 0. Thus we set 𝜆 = −1
2𝑎 and drop

the second equation, replacing the first by

−𝐻𝑇 Γ−1(𝑦′ −𝐻 ̂︀𝐶𝑎) + 𝑎 = 0.

Solving this for 𝑎 gives

𝑣
(𝑛)
𝑗+1 = ̂︀𝑣(𝑛)

𝑗+1 + 𝑣′

= ̂︀𝑣(𝑛)
𝑗+1 + ̂︀𝐶𝑎

= ̂︀𝑣(𝑛)
𝑗+1 + ̂︀𝐶(𝐻𝑇 Γ−1𝐻 ̂︀𝐶 + 𝐼)−1𝐻𝑇 Γ−1𝑦′

= ̂︀𝑣(𝑛)
𝑗+1 + ̂︀𝐶(𝐻𝑇 Γ−1𝐻 ̂︀𝐶 + 𝐼)−1𝐻𝑇 Γ−1(𝑦(𝑛)

𝑗+1 −𝐻̂︀𝑣(𝑛)
𝑗+1)

= (𝐼 −𝐾𝑗+1𝐻)̂︀𝑣(𝑛)
𝑗+1 + 𝐾𝑗+1𝑦

(𝑛)
𝑗+1 .

It remains to show that 𝐾𝑗+1 agrees with the prescription given in the formulae
above. To see this we note that if we choose 𝑆 to be any matrix satisfying
𝐾𝑗+1 = ̂︀𝐶𝐻𝑇 𝑆−1 then

𝐻𝑇 𝑆−1 = (𝐻𝑇 Γ−1𝐻 ̂︀𝐶 + 𝐼)−1𝐻𝑇 Γ−1
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so that
(𝐻𝑇 Γ−1𝐻 ̂︀𝐶 + 𝐼)𝐻𝑇 = 𝐻𝑇 Γ−1𝑆.

Thus
𝐻𝑇 Γ−1𝐻 ̂︀𝐶𝐻𝑇 + 𝐻𝑇 = 𝐻𝑇 Γ−1𝑆

which may be achieved by choosing any 𝑆 so that

Γ−1(𝐻 ̂︀𝐶𝐻𝑇 + Γ) = Γ−1𝑆

and multiplication by Γ gives the desired formula for 𝑆𝑗+1.

Concerning the alternative representation of the solution, we note that
𝐻𝑇 Γ−1𝐻 + ̂︀𝐶−1

𝜖 is strictly positive definite and hence the related quadratic
function is strongly convex. As a consequence we have existence and uniqueness
of the solution, and the optimality condition becomes,

(𝐻𝑇 Γ−1𝐻 + ̂︀𝐶−1
𝜖 )𝑣𝜖 = 𝐻𝑇 Γ−1𝑦

(𝑛)
𝑗+1 + ̂︀𝐶−1

𝜖 ̂︀𝑣(𝑛)
𝑗+1 .

Then if we apply Woodbury matrix identity we obtain

𝑣𝜖 = ( ̂︀𝐶𝜖 − ̂︀𝐶𝜖𝐻
𝑇 (𝐻 ̂︀𝐶𝜖𝐻

𝑇 + Γ)−1𝐻 ̂︀𝐶𝜖)(𝐻𝑇 Γ−1𝑦
(𝑛)
𝑗+1 + ̂︀𝐶−1

𝜖 ̂︀𝑣(𝑛)
𝑗+1)

and rearranging the terms:

𝑣𝜖 = (𝐼 − ̂︀𝐶𝜖𝐻
𝑇 (𝐻 ̂︀𝐶𝜖𝐻

𝑇 + Γ)−1𝐻)̂︀𝑣(𝑛)
𝑗+1 + ̂︀𝐶𝜖𝐻

𝑇 (𝐻 ̂︀𝐶𝜖𝐻
𝑇 + Γ)−1𝑦

(𝑛)
𝑗+1.

Finally, as 𝐴 ↦→ 𝐴−1 is continuous over the set of invertible matrices, letting 𝜖→ 0
gives:

lim
𝜖→0

𝑣𝜖 = (𝐼 −𝐾𝑗+1𝐻)̂︀𝑣(𝑛)
𝑗+1 + 𝐾𝑗+1𝑦

(𝑛)
𝑗+1

which concludes the proof.

2.2.2. Formulation In Range Of The Covariance The form of the minimization
problem for each individual particle has a special structure which follows from the
fact that the predicted covariance is computed empirically and is a sum of rank
one matrices. This allows us to seek the solution of the minimization problem as a
linear combination of a given set of vectors, and to minimize over the scalars which
define this linear combination. This reformulation of the optimization problem is
useful if the number of ensemble members 𝑁 is much smaller than the dimension
of the data space, where the inversion of 𝑆 takes place to form Kalman gain 𝐾.
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In order to implement the minimization in the 𝑁 dimensional subspace we
note that 𝐼filter,𝑗,𝑛(𝑣) is infinite unless

𝑣 − ̂︀𝑣(𝑛)
𝑗+1 = ̂︀𝐶𝑗+1𝑎

for some 𝑎 ∈ R𝑛. From the structure of ̂︀𝐶𝑗+1 given in (1c) it follows that

𝑣 = ̂︀𝑣(𝑛)
𝑗+1 + 1

𝑁

𝑁∑︁
𝑚=1

𝑏𝑚𝑒(𝑚), 𝑒(𝑚) := ̂︀𝑣(𝑚)
𝑗+1 −̂︁𝑚𝑗+1. (7)

Here each unknown parameter 𝑏𝑚 ∈ R and 𝑏 := {𝑏𝑚}𝑁
𝑚=1, is the unknown vector

to be determined. This form for 𝑣 follows from the fact that

̂︀𝐶𝑗+1 = 1
𝑁

𝑁∑︁
𝑚=1

𝑒(𝑚) ⊗ 𝑒(𝑚) (8)

which in turn implies that

̂︀𝐶𝑗+1𝑎 = 1
𝑁

𝑁∑︁
𝑚=1

𝑏𝑚𝑒(𝑚). (9)

Note that the unknown vector 𝑏 depends on 𝑛 as we need to solve the constrained
minimization problem for each of the particles, indexed by 𝑛 = 1, . . . , 𝑁 ; we have
suppressed the dependence of 𝑏 on 𝑛 for notational simplicity.

The expression (7) for 𝑣 in terms of the 𝑒(𝑚) can be substituted into (3) to
obtain a functional 𝐽filter,𝑗,𝑛(𝑏) to be minimized over 𝑏 ∈ R𝑁 , because 𝑣 is an affine
function of 𝑏. Equation (7) may be written in compact form as

𝑣 = ̂︀𝑣(𝑛)
𝑗+1 + 𝐵𝑏 (10)

where 𝐵 is the linear mapping from R𝑁 into ℋ1 defined by

𝐵𝑏 := 1
𝑁

𝑁∑︁
𝑚=1

𝑏𝑚𝑒(𝑚).

We now identify 𝐽filter,𝑗,𝑛(𝑏). We note that (9) is solved by taking

𝑏𝑚 = ⟨𝑒(𝑚), 𝑎⟩.

Now note that

1
2 | 𝑣 −

̂︀𝑣(𝑛)
𝑗+1 |2̂︀𝐶𝑗+1

= 1
2⟨𝑎, ̂︀𝐶𝑗+1𝑎⟩ = 1

2𝑁

𝑁∑︁
𝑚=1

𝑏2
𝑚.
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Using this and (10) in the definition of 𝐼filter,𝑗,𝑛(𝑣) we obtain

𝐽filter,𝑗,𝑛(𝑏) = 𝐼filter,𝑗,𝑛

(︁̂︀𝑣(𝑛)
𝑗+1 + 𝐵𝑏

)︁
and hence, from (3),

𝐽filter,𝑗,𝑛(𝑏) :=1
2 | 𝑦

(𝑛)
𝑗+1 −𝐻̂︀𝑣(𝑛)

𝑗+1 −𝐻𝐵𝑏 |2Γ + 1
2𝑁
|𝑏|2 (11a)

=1
2𝑏𝑇

(︂
𝐵𝑇 𝐻𝑇 Γ−1𝐻𝐵 + 1

𝑁
𝐼
)︂

𝑏−
(︁
𝐵𝑇 𝐻𝑇 Γ−1(𝑦(𝑛)

𝑗+1 −𝐻̂︀𝑣(𝑛)
𝑗+1)

)︁𝑇
𝑏 + const.

(11b)

Once 𝑏 is determined it may be substituted back into (10) to obtain the solution
to the minimization problem.

The preceding considerations also yield the following result, concerning the
unconstrained Kalman minimization problem; its proof is a corollary of the more
general Theorem 2.4 from the next subsection, which includes constraints in the
minimization problem.

Corollary 2.3. Suppose that the dimensions of ℋ1 and ℋ2 are finite. Given the
prediction (1a), the unconstrained Kalman update formulae may be found by
minimizing 𝐽filter,𝑗,𝑛(𝑏) from (11) with respect to 𝑏 and substituting into (10).

We summarize the ensemble Kalman state estimation algorithm, using
minimization over the vector 𝑏, in the following pseudo-code:

Algorithm 2 EnKF Algorithm formulated in range of covariance

1: Choose {𝑣(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Predict {̂︀𝑣(𝑛)

𝑗+1, 𝑒(𝑛)}𝑁
𝑛=1, from (1)

3: Optimize {𝑏(𝑛)}𝑁
𝑛=1 as argmin of (11)

4: Update 𝑣
(𝑛)
𝑗+1 = ̂︀𝑣(𝑛)

𝑗+1 + 𝐵𝑏(𝑛) from (10)
5: 𝑗 ← 𝑗 + 1, go to 2.

2.3. Constrained Ensemble Kalman Filter

In this subsection we introduce linear equality and inequality constraints on the
state variable into the ensemble Kalman filter. We make prediction according to
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(1), and then incorporate data by solving the minimization problem (3) subject
to the additional constraints

𝐹𝑣 = 𝑓, (12a)
𝐺𝑣 ⪯ 𝑔. (12b)

Here 𝐹 and 𝐺 are linear mappings which, respectively, take the state 𝑣 into the
number of equality and inequality constraints; the notation ⪯ denotes inequality
componentwise.

2.3.1. Formulation In The Original Variables The preceding considerations lead
to the following algorithm for ensemble Kalman filtering subject to constraints
(the theoretical justification for using this algorithm follows from Theorem 2.4
below):

Algorithm 3 Constrained EnKF Algorithm

1: Choose {𝑣(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Predict {̂︀𝑣(𝑛)

𝑗+1}𝑁
𝑛=1, ̂︀𝐶𝑗+1 from (1)

3: Update {𝑣(𝑛)
𝑗+1}𝑁

𝑛=1 from (4)
4: for 𝑛 = 1 : 𝑁

5: if 𝑣
(𝑛)
𝑗+1 violates constraints in (12)

6: 𝑣
(𝑛)
𝑗+1 ← argmin of (3) subject to (12)

7: end if
8: end for
9: 𝑗 ← 𝑗 + 1, go to 2.

2.3.2. Formulation In Range Of The Covariance The linear constraints (12) can
be rewritten in terms of the vector 𝑏, by means of (10), as follows:

𝐹𝐵𝑏 = 𝑓 − 𝐹 ̂︀𝑣(𝑛)
𝑗+1, (13a)

𝐺𝐵𝑏 ⪯ 𝑔 −𝐺̂︀𝑣(𝑛)
𝑗+1. (13b)

We may thus predict and then optimize the objective function 𝐽filter,𝑗,𝑛(𝑏),
given by (11), subject to the constraints (13). Implementation of this leads to
following algorithm for ensemble Kalman filtering subject to constraints:
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Algorithm 4 Constrained EnKF Algorithm formulated in range of covariance

1: Choose {𝑣(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Predict {̂︀𝑣(𝑛)

𝑗+1, 𝑒(𝑛)}𝑁
𝑛=1, from (1)

3: Update 𝑏(𝑛) ← argmin of (11), 𝑣
(𝑛)
𝑗+1 = ̂︀𝑣(𝑛)

𝑗+1 + 𝐵𝑏(𝑛) from (10)
4: for 𝑛 = 1 : 𝑁

5: if 𝑣
(𝑛)
𝑗+1 violates constraints in (12)

6: 𝑏(𝑛) ← argmin of (11) subject to (13)
7: Update 𝑣

(𝑛)
𝑗+1 = ̂︀𝑣(𝑛)

𝑗+1 + 𝐵𝑏(𝑛) from (10)
8: end if
9: end for

10: 𝑗 ← 𝑗 + 1, go to 2.

Justification for the use of this algorithm, working in the constrained space
parameterized by 𝑏, is a consequence of the following:

Theorem 2.4. Suppose that the dimensions of ℋ1 and ℋ2 are finite. The problem
of finding 𝑣

(𝑛)
𝑗+1 as the minimizer of 𝐼filter,𝑗,𝑛(𝑣) subject to the constraints (12)

is equivalent to finding 𝑏 to minimize 𝐽filter,𝑗,𝑛(𝑏) subject to the constraints (13)
and then using (10) to find 𝑣

(𝑛)
𝑗+1 from 𝑏. Furthermore, both of these constrained

minimization problems have a unique solution provided that the constraint sets
are non-empty.

Proof. For notational convenience set ̂︀𝑣 = ̂︀𝑣(𝑛)
𝑗+1, 𝑦 = 𝑦

(𝑛)
𝑗+1, 𝑦′ = 𝑦 −𝐻̂︀𝑣, ̂︀𝐶 = ̂︀𝐶𝑗+1

and ̂︀𝐶𝜖 = ̂︀𝐶𝑗+1 + 𝜖𝐼.

Denote

𝑣* =argmin
𝑣′

1
2 | 𝑦

′ −𝐻𝑣′ |2Γ +1
2⟨𝑎, 𝑣′⟩

subject to ∙ ̂︀𝐶𝑎 = 𝑣′

∙ 𝐹𝑣′ = 𝑓 − 𝐹 ̂︀𝑣
∙𝐺𝑣′ ⪯ 𝑔 −𝐺̂︀𝑣

(14)

𝑣𝜖 =argmin
𝑣

1
2 | 𝑦 −𝐻𝑣 |2Γ +1

2 | 𝑣 −
̂︀𝑣 |2̂︀𝐶𝜖

subject to ∙ 𝐹𝑣 = 𝑓

∙𝐺𝑣 ⪯ 𝑔

(15)



15

and

𝐽(𝑣) = 1
2 | 𝑦 −𝐻𝑣 |2Γ +1

2 | 𝑣 −
̂︀𝑣 |2̂︀𝐶

𝐽𝜖(𝑣) = 1
2 | 𝑦 −𝐻𝑣 |2Γ +1

2 | 𝑣 −
̂︀𝑣 |2̂︀𝐶𝜖

The part of the statement of Theorem 2.4 concerning existence of a minimizer
is a consequence of the Lemma 2.5 stated and proved below. The second part,
concerning the equivalence of minimization over 𝑏 and over 𝑣 (or 𝑣′) was shown
prior to the theorem statement. This concludes the proof.

Lemma 2.5. Suppose that the constraint sets of (14) and (15) are non empty,
then 𝑣* exists and is unique and for all 𝜖 > 0, 𝑣𝜖 exists and is unique. Furthermore
𝑙𝑖𝑚 𝑣𝜖

𝜖→0
= 𝑣* + ̂︀𝑣.

Proof. To prove existence and uniqueness of the solution of (14), notice that it
can be reformulated as

argmin
𝑣′

𝐽(𝑣′ + ̂︀𝑣)

subject to ∙ ̂︀𝐶𝑎 = 𝑣′

∙ 𝐹𝑣′ = 𝑓 − 𝐹 ̂︀𝑣
∙𝐺𝑣′ ⪯ 𝑔 −𝐺̂︀𝑣

and that the restriction of ̂︀𝐶 over its range is strictly positive definite. Hence 𝐽

is a strongly convex function being minimized over a non empty closed convex
set. From standard theory 𝑣* exists and is unique. Then as ̂︀𝐶𝜖 is strictly positive
definite, the same type of arguments provide existence and uniqueness of 𝑣𝜖.

Now we prove the second part of the lemma. We note that 𝑣* + ̂︀𝑣 matches the
constraints of (15). It follows that for all 𝜖 > 0, 𝐽𝜖(𝑣𝜖) ≤ 𝐽𝜖(𝑣* + ̂︀𝑣). Then let us
prove that 𝐽𝜖(𝑣* + ̂︀𝑣) →

𝜖→0
𝐽(𝑣* + ̂︀𝑣). First denote by 𝜆1 ≤ · · · ≤ 𝜆𝑁−1 the strictly

positive eigenvalues of ̂︀𝐶 (recall that ̂︀𝐶 is symmetric positive semidefinite and that
rank( ̂︀𝐶) = 𝑁 − 1 almost surely). Hence ̂︀𝐶−1

𝜖 = ∑︀𝑁−1
𝑘=1

1
𝜆𝑘+𝜖

𝑎𝑘𝑎𝑇
𝑘 +∑︀dim(ℋ1)

𝑘=𝑁
1
𝜖
𝑎𝑘𝑎𝑇

𝑘

where the 𝑎𝑘’s are the eigenvectors of ̂︀𝐶 (the first and second sums respectively
gather the vectors of the range and of the nullspace of ̂︀𝐶) . As 𝑣* lies in the range
of ̂︀𝐶, it holds that | 𝑣* + ̂︀𝑣 − ̂︀𝑣 |2̂︀𝐶𝜖

= | 𝑣* |2̂︀𝐶𝜖
= ∑︀𝑁−1

𝑘=1
1

𝜆𝑘+𝜖
(𝑎𝑇

𝑘 𝑣*)2. Now as the 𝑎𝑘’s
do not depend on 𝜖, by letting 𝜖 tending to zero, this quantity will tend to

𝑁−1∑︁
𝑘=1

1
𝜆𝑘

(𝑎𝑇
𝑘 𝑣*)2 =| 𝑣* |2̂︀𝐶=| 𝑣* + ̂︀𝑣 − ̂︀𝑣 |2̂︀𝐶 .
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Therefore it holds that 𝐽𝜖(𝑣* + ̂︀𝑣) →
𝜖→0

𝐽(𝑣* + ̂︀𝑣). From this we deduce that there
exists 𝛿 > 0 such that for all 0 < 𝜖 < 𝛿, 𝐽𝜖(𝑣𝜖) ≤ 𝐽(𝑣* + ̂︀𝑣) + 1.

Then set 𝑤𝜖 = 𝑣𝜖 − ̂︀𝑣 = 𝑤0
𝜖 + 𝑤1

𝜖 where 𝑤0
𝜖 lies in the nullspace of ̂︀𝐶

and 𝑤1
𝜖 in its range (recall that for a symmetric matrix nullspace and range

are orthogonal) and see that 𝐽𝜖(𝑣𝜖) = 1
2 | 𝑦′ − 𝐻𝑤𝜖 |2Γ +1

2 | 𝑤𝜖 |2̂︀𝐶𝜖
. It holds

that 1
2 | 𝑤𝜖 |2̂︀𝐶𝜖

≤ 𝐽𝜖(𝑣𝜖) ≤ 𝐽(𝑣* + ̂︀𝑣) + 1 for 𝜖 sufficiently small. Furthermore
| 𝑤𝜖 |2̂︀𝐶𝜖

=| 𝑤0
𝜖 |2̂︀𝐶𝜖

+ | 𝑤1
𝜖 |2̂︀𝐶𝜖

= 1
𝜖
| 𝑤0

𝜖 |2 + | 𝑤1
𝜖 |2̂︀𝐶𝜖

, and since this quantity is
bounded from above we deduce that 𝑤0

𝜖 →𝜖→0
0 and that 𝑤1

𝜖 is bounded. Let
(𝜖𝑚)𝑚∈N be a sequence of positive real numbers such that 𝜖𝑚 →

𝑚→∞
0, and from

the preceding extract a converging subsequence (denoted (𝜖𝑚)𝑚∈N for simplicity)
such that (𝑤1

𝜖𝑚
)𝑚∈N converges to a limit denoted 𝑤*. As 𝑤1

𝜖𝑚
lies in ℛ( ̂︀𝐶), we can

use the eigenvalue decomposition of ̂︀𝐶 to show that | 𝑤1
𝜖𝑚
|2̂︀𝐶𝜖𝑚

→
𝑚→∞

| 𝑤* |2̂︀𝐶 . This
limiting identity, and the fact that 𝑤0

𝜖 has limit 0, may be used to establish the
first equality within the following chain of equalities and inequalities:

𝐽(𝑤* + ̂︀𝑣) = lim
𝑚→∞

1
2 | 𝑦

′ −𝐻𝑤𝜖𝑚 |2Γ +1
2 | 𝑤

1
𝜖𝑚
|2̂︀𝐶𝜖𝑚
≤ lim

𝑚→∞
𝐽𝜖𝑚(𝑣𝜖𝑚)

≤ lim
𝑚→∞

𝐽𝜖𝑚(𝑣* + ̂︀𝑣) = 𝐽(𝑣* + ̂︀𝑣).

Now note that 𝑤* matches all the constraints of (14). Indeed 𝑤1
𝜖𝑚

lies in the
range of ̂︀𝐶 which is a closed space, also 𝑣𝜖𝑚 − ̂︀𝑣 = 𝑤0

𝜖𝑚
+ 𝑤1

𝜖𝑚
→

𝑚→∞
𝑤*. It is clear

that 𝑣𝜖𝑚 − ̂︀𝑣 matches the equality and inequality constraints of (14) for all 𝑚 and
hence passing to the limit we have that 𝑤* satisfies the equalities and inequalities.

From the uniqueness of the minimizer of (14) we have that 𝑤* is equal to 𝑣*.
In particular this means that 𝑣* is the unique cluster point of the original sequence
(𝑤1

𝜖𝑚
)𝑚∈N. Since the original sequence was arbitrarily chosen, we conclude that

lim 𝑣𝜖
𝜖→0

= 𝑣* + ̂︀𝑣.

Remark 2.6. Notice that the proof remains true if we take general convex
inequalities. We simply need the constrained sets to be closed and convex; however
we have restricted to linear equality and inequality constraints for simplicity and
because these arise most often in practice.

3. Ensemble Kalman Inversion

3.1. Inverse Problem

In this section we show how a generic inverse problem may be formulated as
a partially observed dynamical system. This enables the machinery from the
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preceding section 2 to be used to solve inverse problems.
We are interested in the inverse problem of finding 𝑢 ∈ ℋ1 from 𝑦 ∈ ℋ2

where

𝑦 = 𝐺(𝑢) + 𝜂, 𝜂 ∼ 𝑁(0, Γ) .

Time does not appear (explicitly) in this equation (although 𝐺 may involve
solution of a time-dependent differential equation, for example). In order to use
the ideas from the previous section, we introduce a new variable 𝑤 = 𝐺(𝑢) and
rewrite the equation as

𝑤 =𝐺(𝑢),
𝑦 =𝑤 + 𝜂.

The key point about writing the equation this way is that the data 𝑦 is now
linearly related to the variable 𝑣 = (𝑢, 𝑤)𝑇 and now we may apply the ideas of
the previous section to the model by introducing the following dynamical system,
taking 𝑦𝑗+1 = 𝑦 as the given data:

𝑢𝑗+1 =𝑢𝑗,

𝑤𝑗+1 =𝐺(𝑢𝑗),
𝑦𝑗+1 =𝑤𝑗+1 + 𝜂𝑗+1.

If we introduce the new variables

𝑣 = (𝑢, 𝑤)𝑇 , Ψ(𝑣) = (𝑢, 𝐺(𝑢))𝑇 (16a)
𝐻 = [0, 𝐼], 𝐻⊥ = [𝐼, 0] , (16b)

and write 𝑣𝑗 = (𝑢𝑗, 𝑤𝑗)𝑇 , we may write the dynamical system in the form

𝑣𝑗+1 =Ψ(𝑣𝑗) (17a)
𝑦𝑗+1 =𝐻𝑣𝑗+1 + 𝜂𝑗+1, (17b)

which is exactly in the same form as in the previous section. We note that

𝐻𝑣 = 𝑤, 𝐻⊥𝑣 = 𝑢.

3.2. Ensemble Kalman Inversion

The prediction step and the Kalman gain are defined as in (3), and the solution of
the optimization problem is given by (4). We now simplify these formulae using
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the specific structure on Ψ, 𝑣, 𝐻 arising in the inverse problem and given in (16);
this results in block form vectors and matrices. First we note that

̂︀𝐶𝑗+1 =
[︃

𝐶𝑢𝑢
𝑗+1 𝐶𝑢𝑤

𝑗+1
(𝐶𝑢𝑤

𝑗+1)𝑇 𝐶𝑤𝑤
𝑗+1

]︃
, 𝑣𝑗+1 =

(︃
�̄�𝑗+1

�̄�𝑗+1

)︃
.

Here
�̄�𝑗+1 = 1

𝑁

𝑁∑︁
𝑛=1

𝑢
(𝑛)
𝑗 , �̄�𝑗+1 = 1

𝑁

𝑁∑︁
𝑛=1

𝐺(𝑢(𝑛)
𝑗 ) := �̄�𝑗

and

𝐶𝑢𝑤
𝑗+1 = 1

𝑁

𝑁∑︁
𝑛=1

(𝑢(𝑛)
𝑗 − �̄�𝑗+1)⊗ (𝐺(𝑢(𝑛)

𝑗 )− �̄�𝑗),

𝐶𝑤𝑤
𝑗+1 = 1

𝑁

𝑁∑︁
𝑛=1

(𝐺(𝑢(𝑛)
𝑗 )− �̄�𝑗)⊗ (𝐺(𝑢(𝑛)

𝑗 )− �̄�𝑗),

𝐶𝑢𝑢
𝑗+1 = 1

𝑁

𝑁∑︁
𝑛=1

(𝑢(𝑛)
𝑗 − �̄�𝑗+1)⊗ (𝑢(𝑛)

𝑗 − �̄�𝑗+1).

The covariance 𝐶𝑤𝑤
𝑗+1 denotes the empirical covariance of the ensemble in data

space, 𝐶𝑢𝑢
𝑗+1 denotes the empirical covariance of the ensemble in space of the

unknown 𝑢, and 𝐶𝑢𝑤
𝑗+1 denotes the empirical cross-covariance from data space to

the space of the unknown.
Noting that 𝑆𝑗+1 = (𝐶𝑤𝑤

𝑗+1 + Γ)−1 we obtain

𝐾𝑗+1 =
(︃

𝐶𝑢𝑤
𝑗+1(𝐶𝑤𝑤

𝑗+1 + Γ)−1

𝐶𝑤𝑤
𝑗+1(𝐶𝑤𝑤

𝑗+1 + Γ)−1

)︃
. (18)

Combining equation (18) with the update equation within (4) it follows that

{𝑣(𝑛)
𝑗 }𝑁

𝑛=1 → {𝑣
(𝑛)
𝑗+1}𝑁

𝑛=1

and

{𝐻⊥𝑣
(𝑛)
𝑗 }𝑁

𝑛=1 → {𝐻⊥𝑣
(𝑛)
𝑗+1}𝑁

𝑛=1

and hence that

𝑢
(𝑛)
𝑗+1 = 𝐻⊥𝑣

(𝑛)
𝑗+1 = 𝑢

(𝑛)
𝑗 + 𝐶𝑢𝑤

𝑗+1

(︁
𝐶𝑤𝑤

𝑗+1 + Γ
)︁−1(︁

𝑦
(𝑛)
𝑗+1 −𝐺(𝑢(𝑛)

𝑗 )
)︁
.

Thus we have derived the EKI update formula:

𝑢
(𝑛)
𝑗+1 = 𝑢

(𝑛)
𝑗 + 𝐶𝑢𝑤

𝑗+1

(︁
𝐶𝑤𝑤

𝑗+1 + Γ
)︁−1(︁

𝑦
(𝑛)
𝑗+1 −𝐺(𝑢(𝑛)

𝑗 )
)︁
. (19)
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We note also that

𝑤
(𝑛)
𝑗+1 = 𝐺(𝑢(𝑛)

𝑗 ) + 𝐶𝑤𝑤
𝑗+1

(︁
𝐶𝑤𝑤

𝑗+1 + Γ
)︁−1(︁

𝑦
(𝑛)
𝑗+1 −𝐺(𝑢(𝑛)

𝑗 )
)︁
. (20)

However 𝑤
(𝑛)
𝑗+1 is not needed to update the state and so plays no role in this

unconstrained EKI algorithm. (It may be used, however, to impose constraints
on observation space, as discussed in the next subsection.)

In summary we have derived the following algorithm for solution of the
unconstrained inverse problem:

Algorithm 5 EKI Algorithm

1: Choose {𝑢(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Calculate forward model applications {𝐺(𝑢(𝑛)

𝑗 )}𝑁
𝑛=1

3: Update {𝑢(𝑛)
𝑗+1}𝑁

𝑛=1 from (19)
4: 𝑗 ← 𝑗 + 1, go to 2.

3.3. Ensemble Kalman Inversion With Constraints

3.3.1. Formulation In The Original Variables We now consider imposing
constraints on the optimization step arising in ensemble Kalman inversion. As in
the unconstrained case we do this by formulating the problem as a special case of
the partially observed dynamical system, subject to constraints, from the previous
section.

To this end we formulate the constraints in the space of the unknown and
the data as follows:

𝐹 𝑢𝑢 = 𝑓𝑢, (21a)
𝐹 𝑤𝑤 = 𝑓𝑤, (21b)
𝐺𝑢𝑢 ⪯ 𝑔𝑢, (21c)

𝐺𝑤𝑤 ⪯ 𝑔𝑤. (21d)

The algorithm proceeds by predicting according to equation (1), and then
optimizing (3), all using the specific structure (16), and with the optimization
subject to the constraints (21), written in the notation of the general Kalman
updating formulae in (23), detailed below; in particular the rewrite (23) of the
constraints expresses everything in terms of the variable 𝑣. We may summarize
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the constraints as follows, to allow direct application of the ideas of the previous
section. To this end define

𝐹 =
(︃

𝐹 𝑢𝐻⊥

𝐹 𝑤𝐻

)︃
=
(︃

𝐹 𝑢 0
0 𝐹 𝑤

)︃
(22a)

𝐺 =
(︃

𝐺𝑢𝐻⊥

𝐺𝑤𝐻

)︃
=
(︃

𝐺𝑢 0
0 𝐺𝑤

)︃
(22b)

𝑓 =
(︃

𝑓𝑢

𝑓𝑤

)︃
, 𝑔 =

(︃
𝑔𝑢

𝑔𝑤

)︃
. (22c)

Then the constraints (21) may be written as

𝐹𝑣 = 𝑓, (23a)
𝐺𝑣 ⪯ 𝑔. (23b)

See Algorithm 6 for the resulting pseudo-code.

Algorithm 6 Constrained EKI Algorithm

1: Choose {𝑢(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Calculate forward model application {𝐺(𝑢(𝑛)

𝑗 )}𝑁
𝑛=1

3: Update {𝑢(𝑛)
𝑗+1}𝑁

𝑛=1 from (19)
4: Update {𝑤(𝑛)

𝑗+1}𝑁
𝑛=1 from (20)

5: for 𝑛 = 1 : 𝑁

6: if 𝑣
(𝑛)
𝑗+1 = (𝑢(𝑛)

𝑗+1, 𝑤
(𝑛)
𝑗+1) violates constraints in (23)

7: 𝑣
(𝑛)
𝑗+1 ← argmin of (3) subject to (16), (23)

8: end if
9: end for

10: Extract 𝑢
(𝑛)
𝑗+1 = 𝐻⊥𝑣

(𝑛)
𝑗+1.

11: 𝑗 ← 𝑗 + 1, go to 2.

3.3.2. Formulation In Range Of The Covariance We describe an alternative way
to approach the derivation of the EKI update formulae. We apply Theorem 2.4
with the specific structure (16), (23) arising from the dynamical system used in
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EKI. To this end we define

𝐽filter,𝑗,𝑛(𝑏) :=1
2 | 𝑦

(𝑛)
𝑗+1 −𝐺(𝑢(𝑛)

𝑗 )−𝐵𝑤𝑏 |2Γ + 1
2𝑁
|𝑏|2 (24a)

=1
2𝑏𝑇

(︂
(𝐵𝑤)𝑇 Γ−1𝐵𝑤 + 1

𝑁
𝐼
)︂

𝑏−
(︁
(𝐵𝑤)𝑇 Γ−1(𝑦(𝑛)

𝑗+1 −𝐺(𝑢(𝑛)
𝑗 ))

)︁𝑇
𝑏 + const.

(24b)

where 𝑏 is the vector of 𝑁 scalar weights 𝑏𝑚 and

𝐵𝑢𝑏 = 1
𝑁

𝑁∑︁
𝑚=1

𝑏𝑚

(︁
𝑢

(𝑚)
𝑗 − �̄�𝑗

)︁
, (25a)

𝐵𝑤𝑏 = 1
𝑁

𝑁∑︁
𝑚=1

𝑏𝑚

(︁
𝐺(𝑢(𝑚)

𝑗 )− �̄�𝑗

)︁
, (25b)

𝐵𝑏 =
(︃

𝐵𝑢𝑏

𝐵𝑤𝑏

)︃
. (25c)

Once this quadratic form has been minimized with respect to 𝑏 then the
update formula (7) gives

𝑢
(𝑛)
𝑗+1 = 𝑢

(𝑛)
𝑗 + 1

𝑁

𝑁∑︁
𝑚=1

𝑏𝑚

(︁
𝑢

(𝑚)
𝑗 − �̄�𝑗

)︁
, (26a)

𝑤
(𝑛)
𝑗+1 = 𝐺(𝑢(𝑛)

𝑗 ) + 1
𝑁

𝑁∑︁
𝑚=1

𝑏𝑚

(︁
𝐺(𝑢(𝑚)

𝑗 )− �̄�𝑗

)︁
. (26b)

Note that the vector {𝑏𝑚} depends on the particle label 𝑛; as in the previous
section, we have suppressed this dependence for notational convenience. We may
now impose linear equality and inequality constraints on both 𝑢 and 𝑤 = 𝐺(𝑢)
(i.e. in parameter and data spaces) and minimize (24) subject to these constraints.
To be more specific if we impose the constraints (23) expressed in the variable 𝑏:

𝐹𝐵𝑏 = 𝑓 − 𝐹 ̂︀𝑣(𝑛)
𝑗+1, (27a)

𝐺𝐵𝑏 ⪯ 𝑔 −𝐺̂︀𝑣(𝑛)
𝑗+1. (27b)

Here 𝐹, 𝐺, 𝑓 and 𝑔 are given by (22), 𝐵 is defined by (25) and

̂︀𝑣(𝑛)
𝑗+1 =

⎛⎝ 𝑢
(𝑛)
𝑗

𝐺(𝑢(𝑛)
𝑗 )

⎞⎠.

See Algorithm 7 for the resulting pseudo-code.
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Algorithm 7 Constrained EKI algorithm formulated in range of covariance

1: Choose {𝑢(𝑛)
0 }𝑁

𝑛=1, 𝑗 = 0
2: Calculate forward model application {𝐺(𝑢(𝑛)

𝑗 )}𝑁
𝑛=1

3: Update 𝑏(𝑛) ← argmin of (24), {𝑢(𝑛)
𝑗+1}𝑁

𝑛=1 and {𝑤(𝑛)
𝑗+1}𝑁

𝑛=1 from (26)
4: for 𝑛 = 1 : 𝑁

5: if 𝑣
(𝑛)
𝑗+1 = (𝑢(𝑛)

𝑗+1, 𝑤
(𝑛)
𝑗+1) violates constraints in (27)

6: 𝑏(𝑛) ← argmin of (24) subject to (27)
7: Update {𝑢(𝑛)

𝑗+1} and {𝑤(𝑛)
𝑗+1} from (26)

8: end if
9: end for

10: 𝑗 ← 𝑗 + 1, go to 2.

Remark 3.1. As in the previous section, the result holds true for general convex
inequality constraints; the linear case is considered for simplicity of exposition,
and because it is most frequently arising in practice.
Remark 3.2. The EKI algorithm, with or without constraints, has the following
invariant subspace property: define 𝒜 = 𝑠𝑝𝑎𝑛(𝑢(𝑛)

0 )𝑛∈{1,··· ,𝑁}, then for all 𝑗 in
{0, . . . , 𝐽} and for all 𝑛 in {1, · · · , 𝑁}, then the 𝑢

(𝑛)
𝑗 defined by the three algorithms

in this section all lie in 𝒜. This is a direct consequence of writing the update
formulae in terms of 𝑏 and noting (26).

We can now state a result analogous to Theorem 2.4, and with proof that is
a straightforward corollary of that result, using the specific structure (16):
Theorem 3.3. Suppose that the dimensions of ℋ1 and ℋ2 are finite. Suppose
also that the specific structure (16) is applied. The problem of finding 𝑢

(𝑛)
𝑗+1 from

the minimizer of 𝐼filter,𝑗,𝑛(𝑣), defined in (3) and subject to the constraint (21), is
equivalent to finding 𝑏 that minimizes (24), subject to (27), and then using (26) to
find 𝑢

(𝑛)
𝑗+1 from 𝑏. Furthermore, both of these constrained minimization problems

have a unique solution provided that the constraint sets are non-empty.

4. Numerical Results

This section contains numerical results which demonstrate the benefits of imposing
constraints on ensemble Kalman methods. Subsection 4.1 concerns an application
of state estimation (using EnKF) in biomedicine, using real patient data, whilst
subsection 4.2 concerns on application of inversion (using EKI) in seismology and
employs simulated data. When comparing results from the two experiments, recall
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that iterations of EKI correspond to an algorithmic dynamics intended to converge
to a single distribution (over ensemble members) on the parameters for which we
invert, whereas iterations of EnKF correspond to the incorporation of new data
at every physical measurement time, and thus the distribution (over ensemble
members) is not necessarily expected to converge as the iteration progresses.

4.1. State Estimation

Here we present an application of the constrained EnKF to the tracking and
forecasting of human blood glucose levels. We use self-monitoring data collected by
an individual with Type 2 Diabetes. We use the "P1" data set described by Albers
et al. in [32]; this dataset includes measurements of blood glucose and consumed
nutrition, and is publicly available on physionet.org. For more information on
the data, and on an unconstrained data assimilation approach using the unscented
Kalman filter, see [32]. We model the glucose-insulin system with the ultradian
model proposed by [33]. The primary state variables are the glucose concentration,
𝐺, the plasma insulin concentration, 𝐼𝑝, and the interstitial insulin concentration,
𝐼𝑖; these three state variables are augmented with a three stage delay (ℎ1, ℎ2, ℎ3)
which encodes a non-linear delayed hepatic glucose response to plasma insulin
levels. The resulting ordinary differential equations have the form:

𝑑𝐼𝑝

𝑑𝑡
= 𝑓1(𝐺)− 𝐸( 𝐼𝑝

𝑉𝑝

− 𝐼𝑖

𝑉𝑖

)− 𝐼𝑝

𝑡𝑝

(28a)

𝑑𝐼𝑖

𝑑𝑡
= 𝐸( 𝐼𝑝

𝑉𝑝

− 𝐼𝑖

𝑉𝑖

)− 𝐼𝑖

𝑡𝑖

(28b)

𝑑𝐺

𝑑𝑡
= 𝑓4(ℎ3) + 𝑚𝐺(𝑡)− 𝑓2(𝐺)− 𝑓3(𝐼𝑖)𝐺 (28c)

𝑑ℎ1

𝑑𝑡
= 1

𝑡𝑑

(𝐼𝑝 − ℎ1) (28d)

𝑑ℎ2

𝑑𝑡
= 1

𝑡𝑑

(ℎ1 − ℎ2) (28e)

𝑑ℎ3

𝑑𝑡
= 1

𝑡𝑑

(ℎ2 − ℎ3) (28f)

Here 𝑚𝐺(𝑡) represents a known rate of ingested carbohydrates, 𝑓1(𝐺) represents the
rate of glucose-dependent insulin production, 𝑓2(𝐺) represents insulin-independent
glucose utilization, 𝑓3(𝐼𝑖)𝐺 represents insulin-dependent glucose utilization and
𝑓4(ℎ3) represents delayed insulin-dependent hepatic glucose production; the
functional forms of these parameterized processes can be found in the appendix,
along with a description of model parameters.
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In the EnKF setting, we write 𝑢 = [𝐼𝑝, 𝐼𝑖, 𝐺, ℎ1, ℎ2, ℎ3], and use (28) to define
𝐹 such that

𝑑𝑢

𝑑𝑡
= 𝐹 (𝑢, 𝑡, 𝜃),

where 𝜃 contains model parameters. We then extend the state vector in order to
perform joint parameter estimation: 𝑣 = [𝑢, 𝑅𝑔]𝑇 .

For the purposes of this paper, the function 𝑚𝐺(𝑡) may be viewed as known;
it is determined from data describing meals consumed by the patient. Since insulin
(𝐼𝑝 and 𝐼𝑖) and delay variables (ℎ1, ℎ2, and ℎ3) are not measured, whilst glucose is
measured, we define the measurement operator to be 𝐻 = [0, 0, 1, 0, 0, 0, 0]. The
discrete time forward model is obtained by integrating the deterministic model in
(28) between consecutive measurement time-points and applying an identity map
to 𝑅𝑔. Because these time-points may not be equally spaced, and because the
time-dependent forcings (meals) will differ in different time-intervals, this leads to
a map of the form

𝑣𝑗+1 = Ψ𝑗(𝑣𝑗).
This is a slight departure from the methodology outlined in section 2, where Ψ
does not depend on 𝑗 (autonomous dynamics) but is a straightforward extension
which the reader can easily provide.

We present EnKF results from a single patient’s data when run with and
without constraints (Algorithms 1 and 3 respectively). We performed joint state-
parameter estimation, augmenting the state with parameter 𝑅𝑔 (see Appendix for
details of where this parameter appears) and adding identity-map dynamics for
parameter 𝑅𝑔. The following constraints were imposed:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.01
0.01
2000
0.01
0.01
0.01

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⪯ 𝑣 ⪯

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10000
10000
40000
10000
10000
10000

1000000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(29)

Figure 1 compares the overall distribution of updated state means over time
when running EnKF with and without these state constraints. While individual
particles in this experiment often violated the constraints, the overall updated
means did not. Nevertheless, enforcement of lower-bound constraints shifts up the
state distribution slightly. Note that upper bound constraints were never violated
in this experiment.
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Figure 2 shows a two-dimensional state projection of updated particles at
a given time step before and after applying the constrained optimization. Note
that particles may additionally violate constraints in unplotted dimensions—this
explains why one particle whose unconstrained update appears to live within
the constraints is in fact differently updated under the constrained optimization.
Time step 126 was selected for illustrative purposes, and was the measurement
event in which particles most often violated the constraints.

Figure 3 depicts the overall frequency of constraint violations. We observe
that the the measured state (blood glucose) never violated a constraint, nor did the
inferred parameter 𝑅𝑔. However, other model states did often violate constraints,
and up to 30% (4/13) of particles simultaneously violated the constraints at a
single time-step.

By adding constraints, we ensure that all the simulations which constitute
the ensemble method are biologically plausible.

Figure 1 The distribution of mean state updates when running EnKF with and
without inequality constraints. Black vertical lines denote lower bound state
constraints.
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Figure 2 Particle updates at a given time-step (here, measurement 126) are shown
using a traditional Kalman gain versus using the constrained optimization. The
black lines denote lower bound constraints on the states ℎ1 and ℎ3.

Figure 3 Percentage map of the constraint violations, where each lower-bound
constraint is represented by a row. At each iteration, the percentage of particles
that violated a constraint is color-coded, with yellow representing the largest
proportion of constraint violations.
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4.2. Inverse Problem

Here we present application of the constrained EKI in seismology. We study
near-surface site characterization in which we invert for the shear wave velocity
profile of the geomaterials in the earth shallow crust, using downhole array data.
For forward modeling, we consider a semi-discrete form of the following wave
equation in a horizontally stratified heterogeneous soil layer:

𝜕

𝜕𝑧

[︃
𝑐2

𝑠(𝑧)𝜕𝑑(𝑧, 𝑡)
𝜕𝑧

]︃
− 𝜕2𝑑(𝑧, 𝑡)

𝜕𝑡2 = 0.

Here 𝑑(𝑧, 𝑡) is the displacement field of the wave response as a function of spatial
variable 𝑧 ∈ (0, 𝐻) and time variable 𝑡 ∈ (0, 𝑇 ]. The function 𝑐𝑠(𝑧) is the shear
wave velocity function. We impose the following boundary and initial conditions:

𝑑(𝐻, 𝑡) = 𝑑0(𝑡), 𝜕𝑑(0, 𝑡)/𝜕𝑧 = 0, 𝑑(𝑧, 0) = 0, 𝜕𝑑(𝑧, 0)/𝜕𝑡 = 0

where 𝑑0(𝑡) is the prescribed displacement at depth 𝑧 = 𝐻. Generally, the
shear wave velocity changes as a piecewise constant function with depth. If the
layering information, i.e., the total number of layers and their thickness, is not
available or is poorly characterized, it is desired to use a generic function for site
characterization, such as this:

𝑐𝑠(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑐𝑠0 0 ≤ 𝑧 ≤ 𝑧0

𝑐𝑠0(1 + 𝑘(𝑧 − 𝑧0))𝑛 𝑧0 ≤ 𝑧 ≤ 𝑧1

𝛼𝑐𝑠0(1 + 𝑘(𝑧1 − 𝑧0))𝑛 𝑧1 ≤ 𝑧 ≤ 𝐻

.

See, for example, [34]. In the constrained EKI setting, 𝑢 = (𝑐𝑠0, 𝑘, 𝑧0, 𝑛, 𝑧1, 𝛼) and

𝐺(𝑢) = 𝜕2𝑑(0, 𝑡)/𝜕𝑡2.

For the numerical example studied here, 𝐺𝑢 and 𝑔𝑢 are determined by enforcing
the constraints 0 ≤ 𝑐𝑠0 ≤ 1000, 0 ≤ 𝑘 ≤ 100, 0 ≤ 𝑧0 ≤ 𝑧1, 0 ≤ 𝑛 ≤ 1, 𝑧0 ≤ 𝑧1 ≤ 𝐻,
and 1 ≤ 𝛼 ≤ 10. We generate the initial ensemble by drawing samples from
uniform distributions and discard members that violate the enforced constraints.
In order to avoid very large velocities at 𝑧 = 𝑧1, we also discard members with
𝑐𝑠(𝑧1) > 5000m/s. If we perform parameter learning using the unconstrained EKI,
the experiment fails at 𝑗 = 1 because of incapability of the dynamic model to
propagate unphysical values of the shear wave velocity 𝑐𝑠.

All results shown use Algorithm 7. Figure 4 shows the ensemble distribution
of 𝑢 at 𝑗 = 2 before and after enforcing constraints whilst Figure 5 shows the
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evolution of the updated ensemble. Note that parameter 𝑘 saturates with an
ensemble close to the upper bound of 100 imposed through constraints on this
parameter; however experiments in which we imposed different upper bounds on
this parameter lead to different estimates for 𝑘, with little change to the estimated
velocity profile and we conclude that this parameter suffers from identifiability
issues. (Note that Figure 4 displays the updated ensemble distribution at a
single step in the sequence of ensemble updates, comparing the effect of imposing
constraints with neglecting them; in contrast Figure 1 shows the distribution over
all measurement time-points of the ensemble means. The figures thus illustrate
different phenomena).

Moreover, Figure 6a shows the map of violation for different constraints
enforced on parameters whilst Figure 6b shows the estimated generic 𝑐𝑠 profile
after 40 iterations compared to the true profile and the initial estimate. Figure 6a
shows the key role employed by the enforcing of constraints. In this case the
addition of constraints ensures that all the simulations which constitute the
ensemble method are physically meaningful, and also that the forward model
remains well-posed.

Figure 4 The distribution of parameters before and after enforcing constraints in
Algorithm 7 at iteration 𝑗 = 2. Black vertical lines denote the lower and upper
bound constraints.
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Figure 5 Evolution of the updated ensemble with iteration. Black horizontal lines
denote the lower and upper bound constraints.
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Figure 6 (a) The percentage map of the constraint violations for the first 20
iterations; (b) the estimated velocity profile (�̄�𝑗=40) compared to the true profile
(𝑢†) and the initial estimate (�̄�𝑗=0)
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5. Conclusions

Constraints arise naturally in many state and parameter estimation problems. We
have shown how convex constraints may be incorporated into ensemble Kalman
based state or parameter estimation algorithms with relatively few changes to
existing code: the standard algorithm is applied and for any ensemble member
which violates a constraint, a quadratic optimization problem subject to convex
constraints is solved instead. We have written the resulting algorithms in easily
digested pseudo-code, we have developed an underpinning theory and we have
given illustrative numerical examples.

Two primary directions suggest themselves in this area. The first is the use
of these methods in applications. As indicated in the introduction, our general
formulation is inspired by the two papers [8, 6] from the geosciences and we have
demonstrated applicability to problems from biomedicine and seismology; but
many other potential application domains are ripe for application of ensemble
Kalman methodology, because of its black-box and derivative-free formulation,
and the ability to impose constraints in a straightforward fashion will help to
extend this methodology. The second is the theoretical analysis of these methods:
can the inclusion of constraints be used to deduce improved accuracy of state or
parameter estimates; or can the inclusion of constraints be used to demonstrate
improved performance as measured, for example, by proportion of model runs
which are physically (or biologically etc.) plausible? Furthermore, although the
imposition of constraints is reasonable, it is not clear that it may not lead to
pathologies in algorithmic performance and ruling out, or understanding, the
occurrence of such pathological behaviour may be important.
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Appendix

We give the details of the ultradian model of glucose-insulin dynamics used as the
forward model in subsection 4.1. An example of the induced dynamics is given in
Figure 7.
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𝑑𝐼𝑝

𝑑𝑡
= 𝑓1(𝐺)− 𝐸( 𝐼𝑝

𝑉𝑝

− 𝐼𝑖

𝑉𝑖

)− 𝐼𝑝

𝑡𝑝

(30)

𝑑𝐼𝑖

𝑑𝑡
= 𝐸( 𝐼𝑝

𝑉𝑝

− 𝐼𝑖

𝑉𝑖

)− 𝐼𝑖

𝑡𝑖

(31)

𝑑𝐺

𝑑𝑡
= 𝑓4(ℎ3) + 𝑚𝐺(𝑡)− 𝑓2(𝐺)− 𝑓3(𝐼𝑖)𝐺 (32)

𝑑ℎ1

𝑑𝑡
= 1

𝑡𝑑

(𝐼𝑝 − ℎ1) (33)

𝑑ℎ2

𝑑𝑡
= 1

𝑡𝑑

(ℎ1 − ℎ2) (34)

𝑑ℎ3

𝑑𝑡
= 1

𝑡𝑑

(ℎ2 − ℎ3) (35)

where, for 𝑁 meals at times {𝑡𝑗}𝑁
𝑗=1 with carbohydrate composition {𝑚𝑗}𝑁

𝑗=1

𝑚𝐺(𝑡) =
𝑁∑︁

𝑗=1

𝑚𝑗𝑘

60 exp(𝑘(𝑡𝑗 − 𝑡)), 𝑁 = #{𝑡𝑗 < 𝑡} (36)

and

𝑓1(𝐺) = 𝑅𝑚

1 + exp( −𝐺
𝑉𝑔𝑐1

+ 𝑎1)
: the rate of insulin production (37)

𝑓2(𝐺) = 𝑈𝑏(1− exp( −𝐺

𝐶2𝑉𝑔

)) : insulin-independent glucose utilization (38)

𝑓3(𝐼𝑖) = 1
𝐶3𝑉𝑔

(𝑈0 + 𝑈𝑚 − 𝑈0

1 + (𝜅𝐼𝑖)−𝛽
), 𝑓3(𝐼𝑖)𝐺 : insulin-dependent glucose utilization

(39)

𝑓4(ℎ3) = 𝑅𝑔

1 + exp(𝛼( ℎ3
𝐶5𝑉𝑝
− 1))

: delayed insulin-dependent glucose utilization

(40)

𝜅 = 1
𝐶4

( 1
𝑉𝑖

− 1
𝐸𝑡𝑖

) (41)
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