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Abstract
The use of ensemble methods to solve inverse problems is attractive because it 
is a derivative-free methodology which is also well-adapted to parallelization. 
In its basic iterative form the method produces an ensemble of solutions which 
lie in the linear span of the initial ensemble. Choice of the parameterization of 
the unknown field is thus a key component of the success of the method. We 
demonstrate how both geometric ideas and hierarchical ideas can be used to 
design effective parameterizations for a number of applied inverse problems 
arising in electrical impedance tomography, groundwater flow and source 
inversion. In particular we show how geometric ideas, including the level set 
method, can be used to reconstruct piecewise continuous fields, and we show 
how hierarchical methods can be used to learn key parameters in continuous 
fields, such as length-scales, resulting in improved reconstructions. Geometric 
and hierarchical ideas are combined in the level set method to find piecewise 
constant reconstructions with interfaces of unknown topology.

Keywords: ensemble Kalman inversion, hierarchical inversion, centered and 
non-centered parameterizations, discontinuous reconstructions, level set 
methods
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1. Introduction

1.1. Content

Consider finding u from y where

y = G(u) + η, (1)

G  is a forward map taking the unknown parameter u into the data space, and η represents 
noise. Ensemble Kalman inversion (EKI) is an attractive technique that has shown consider-
able success in the solution of such problems. Whilst it is derived from the application of 
Kalman-like thinking, with means and covariances computed from an empirical ensemble, it 
essentially acts as a black-box derivative-free optimizer which requires only evaluation of the 
forward map G(·); in practice it can often return good solutions to inverse problems with rela-
tively few forward map evaluations. However, the choice of parameterization of the unknown 
is key to the success of the method. In this paper we will demonstrate how carefully-thought-
out parameterizations can have a substantial impact on the quality of the reconstruction.

Although our viewpoint in this paper is to consider ensemble Kalman inversion as an 
optim ization method, and evaluate it from this perspective, there is considerable insight to 
be gained from the perspective of Bayesian inversion; this is despite the fact that the the 
algorithm does not, in general, recover or sample the true Bayesian posterior distribution of 
the inverse problem. Algorithms that can, with controllable error, approximately sample from 
the true posterior distribution are commonly referred to as fully Bayesian, with examples 
including Markov chain Monte Carlo (MCMC) and sequential Monte Carlo. EKI is not fully 
Bayesian but the link to Bayesian inversion remains important as we now explain. There is 
considerable literature available about methods to improve fully Bayesian approaches to the 
inverse problem through, for example, geometric and hierarchical parameterizations of the 
unknown. The purpose of this paper is to demonstrate how these ideas from Bayesian inver-
sion may be used with some success to improve the capability of ensemble Kalman methods 
considered as optimizers. In view of the relatively low computational cost of the ensemble 
methods in comparison with fully Bayesian inversion, this cross-fertilization of ideas has the 
potential to be quite fruitful.

1.2. Literature review

The Kalman filter (KF) [30] was developed to sequentially update the probability distribution 
on states of partially observed linear Gaussian systems, and was subsequently generalized to 
nonlinear problems in the form of the extended KF. However, for high-dimensional systems 
the size of covariances makes the use of these methods prohibitive. In 1994 Evensen [19, 20] 
proposed a Monte-Carlo-based nonlinear KF which tackled this issue by using an ensemble 
of particles to represent the covariances and mean, resulting in what is now known as the 
ensemble Kalman filter (EnKF). A major success story for the EnKF has been in weather 
prediction models [4, 23], but it has also been deployed in numerous domains, including the 
reservoir engineering community [1] and oceanography [21]. Variants on the idea include the 
randomized maximum likelihood method [40], and algorithms such as the ensemble square-
root KF [52].

In this paper we are primarily interested in the use of ensemble Kalman methods to study 
inverse problems for parameter estimation, an approach pioneered for oil industry applica-
tions where the inverse problem is known as history matching [33, 40]; the paper [18] contains 
an insightful analysis of the methodology in the large ensemble limit. In this application, such 
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inversion methods are sometimes referred to as ensemble Kalman smoothers, although the 
nomenclature is not uniform. We will simply refer to EKI. The methodology is formulated 
quite generally in [26], independently of oil industry applications; in [25] it is shown that the 
method performs well as an optimizer but does not capture true posterior uncertainty, in the 
context of oil industry applications.

The ideas introduced in this paper concerning parameterization are independent of the 
particular implementation of the EKI method used; in all our numerical experiments we will 
use the form of iterative regularization proposed by Iglesias [24]. The general philosophy 
behind the method is that, as the algorithm is iterated, the solution to the inverse problem 
should approach the truth in the small noise limit, and hence that any regularization introduced 
should diminish in influence in this limit. However, because the convergence theory for EKI is 
in its infancy, the choice of iterative regularization is made by analogy with classical iterative 
methods that have been used for inverse problems [5, 6, 22], with the ensemble method using 
empirical covariances in place of derivatives or adjoints of the forward solver. The resulting 
iterative method is an ensemble version of the Levenberg–Marquardt algorithm with the inclu-
sion of regularization as in [22].

In the form of EKI that we use, the linear span of the initial ensemble is preserved by the 
iteration [33, 26]. The initial ensemble thus encodes prior information about the solution of 
the problem. This means that the choice of the parameterization of the method, as well as the 
choice of initial subspace, is key to its performance. Based on experience with (Bayesian) 
statistical modelling we will introduce geometric and hierarchical priors that address the issue 
of making good parameterizations, and we will draw from those priors to create the initial 
ensemble. Hierarchical models have been extensively studied in the fields of computational 
statistics and machine learning [34, 41, 51]. An overview of their use in the context of MCMC 
methods for Bayesian inverse problems is given in [42]; see [15, 46] for application-oriented 
work. One important outcome of research in this area is that learning parameters such as 
length-scale, amplitude and regularity within Gaussian random field priors (such as Whittle–
Matérn) can be of significant value [3, 36, 45]. In a series of recent papers this hierarchical 
modelling was extended to allow for length-scale which is itself spatially varying [38, 45]. 
The development of hierarchical methods within EKI, rather than fully Bayesian MCMC, 
has to date been limited, with the primary contribution being [17], where the methodology 
was based on building large ensembles from multiple Gaussians assigned different weights. 
However, this work requires that the correct hierarchical parameter is in the ensemble if it is 
to be successful. We also note that there is some work in hierarchical EnKF within the context 
of state estimation; see [53] and references therein.

In addition to hierarchical approaches we will also study geometric parameterizations. 
These can be of use when the geometric object has known form, such as faults, channels and 
inclusions; when it is of unknown topology the level set method may be used [47]. We will 
build on recent Bayesian implementation of these ideas; see [27, 28] and references therein.

1.3. Contribution of this work

Our main contribution is to establish the importance of novel parameterizations which have 
the potential to substantially improve the performance of EKI. Although our perspective on 
EKI is one of optimization, the methods we introduce are all based on taking established 
and emerging methods from Bayesian statistics and developing them in the context of the 
ensemble methods. The connection to Bayesian statistics is exploited to provide insights 
into how to make these methods efficient. The resulting methods are illustrated by means of 

N K Chada et alInverse Problems 34 (2018) 055009



4

examples arising in electrical impedance tomography, groundwater flow and source inversion. 
The contrib utions are:

 • We develop hierarchical approaches for EKI, based on solving for the unknown function 
and unknown scalars which parameterize the prior.

 • We generalize these hierarchical approaches to EKI to include unknown fields which 
parameterize the prior, rather than scalars.

 • We demonstrate the key role of choosing non-centered variables when implementing 
hierarchical methods.

 • We show the potential for geometric hierarchical priors, including the level set param-
eterization, for piecewise continuous reconstructions.

1.4. Organization

The layout of the paper is as follows: in section 2 we discuss different approaches to param-
eterizing inverse problems. We begin by conveying the main ideas in section 2.1 in an abstract 
way. In section 2.2 we describe these ideas more concretely. In section 3 we describe the 
hierarchical version of iterative EKI as used in this paper, and section 4 describes the model 
problems that we use to illustrate the power of the proposed parameterizations. Numerical 
results are presented in section 5, whilst in section 6 we make some concluding remarks.

1.5. Notation

Throughout the paper we make use of common notation for Hilbert space norms and inner 
products, ‖ · ‖, 〈·〉. We will assume that X  and Y  are two separable Hilbert spaces which are 
linked through the forward operator G : X → Y . This nonlinear operator can be thought of 
as mapping from the space of unknown parameters X  to the observation space Y . Our addi-
tive noise for the inverse problems will be denoted by η ∼ N(0,Γ) where Γ : Y → Y  is a 
self-adjoint positive operator. For any such operator we define 〈·, ·〉Γ = 〈Γ−1/2·,Γ−1/2·〉 and 
‖ · ‖Γ = ‖Γ−1/2 · ‖, and for finite dimensions | · |Γ = |Γ−1/2 · | with | · | the Euclidean norm. If 
the Gaussian measure associated with η is supported on Y  then we will require Γ to be trace-
class; however we will also consider white noise whose support is on a larger space than Y  
and for which the trace-class condition fails in the infinite-dimensional setting.

2. Inverse problem

2.1. Main idea

2.1.1. Non-hierarchical inverse problem. We are interested in the recovery of u ∈ X  from 
measurements of y ∈ Y given by equation (1) in which, recall, η is additive Gaussian noise. 
In the Bayesian approach to inverse problems we treat each quantity within (1) as a random 
variable. Via application of Bayes’ theorem5 [14] we can characterize the conditional distribu-
tion of u|y  as

P(u|y) ∝ P(y|u)× P(u), (2)

5 We write all instances of Bayes’ theorem in finite dimensions for simplicity; extension to Bayes’ theorem for func-
tions is straightforward but not central to this paper and so we avoid the extra notation that would be needed for this.
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where P(u) is the prior distribution, P(u|y) is the posterior distribution and P(y|u) is the likeli-
hood. Although we view EKI as an optimizer in this paper, the Bayesian formulation of (1) 
is important because we derive the initial ensemble from the prior distribution P(u). From an 
optimization viewpoint, our goal is to make the following least squares objective function 
small:

Φ(u; y) =
1
2
|y − G(u)|2Γ. (3)

This (up to an irrelevant additive constant) is the negative log likelihood since it is assumed 
that η is a mean-zero Gaussian with covariance Γ.

2.1.2. centered hierarchical inverse problem. In many applications it can be advantageous to 
add additional unknowns θ to the inversion process. In particular these may enter through the 
prior, as in hierarchical methods, [42], and we will refer to such parameters as hyperparam-
eters. The inverse problem is then the recovery of (u, θ) from measurements of y given again 
by (1). The additional parameterization of the prior results in Bayes’ theorem in the form

P(u, θ|y) ∝ P(y|u)× P(u, θ). (4)

Prior samples, used to initialize the ensemble smoother, will then be of the pair (u, θ). What 
we will term centered hierarchical methods (a terminology we discuss in section 3) typically 
involve factorization of the prior in the form P(u, θ) = P(u|θ)P(θ). From an optimization 
point of view our goal is again to make the objective function (3) small, but now using hierar-
chical parameterization to construct the initial ensemble6.

2.1.3. Non-centered hierarchical inverse problem. Another variant of the inverse problem 
that is particularly relevant for hierarchical methods, in which θ enters only the prior, is non-
centered reparameterization (a further term discussed in section 3). We introduce the transfor-
mation T : (ξ, θ) → u and note that (1) then becomes

y = G(T(ξ, θ)) + η, (5)

and Bayes’ theorem then reads

P(ξ, θ|y) ∝ P(y|ξ, θ)× P(ξ, θ). (6)

Prior samples, again used to initialize the ensemble smoother, will then be of the pair (ξ, θ). 
Typically, the change of variables from u to ξ is introduced so that ξ and θ are independent 
under the prior: P(ξ, θ) = P(ξ)P(θ). As a result the inverse problem (5) is different to that 
appearing in (1), in terms of both the prior and the likelihood. This non-centered approach 
is equivalent to the ancillary augmentation technique discussed in [41], which discusses the 
decoupling of u and θ through the variable ξ. From an optimization viewpoint, our goal is to 
make the following least squares objective function small:

Φ(ξ, θ; y) =
1
2
|y − G(T(ξ, θ))|2Γ. (7)

In this paper we consider the application of EKI for solution of the inverse problems (1) 
non-hierarchically and centered hierarchically, and (5) non-centered hierarchically. Although 
this method has a statistical derivation, the work in [32, 26] demonstrates that the method may 
be thought of as a derivative-free optimizer that approximates the least squares problem (3) 

6 We note that hyperparameters θ may also enter the likelihood as well as the prior if the state variable is re-scaled in 
a hyperparameter-dependent fashion, as happens in the version of the Bayesian level set method advocated in [15].
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and (7) rather than sampling from the relevant Bayesian posterior distribution. We will show 
that the use of iterative EKI, as proposed by Iglesias in [24], can effectively solve a wide range 
of challenging inversion problems if judiciously parameterized.

2.2. Details of parameterizations

In this section we describe in detail several classes of parameterization that we use in this 
paper. The first and second are geometric parameterizations, ideal for piecewise continuous 
reconstructions with unknown interfaces. The third and fourth are hierarchical methods which 
introduce an unknown length-scale, and regularity parameter, into the inversion. We initially 
formulate the two geometric problems in terms of trying to find a function w : D �→ R, D a 
subset of Rd, and then reparameterize w. The hierarchical problems we initially formulate in 
terms of trying to find a function u : D �→ R, and then append parameters θ and also rewrite 
in terms of (ξ, θ) �→ u.

2.2.1. Geometric approach—finite-dimensional parameterization. In many problems of inter-
est, the unknown function w has discontinuities, the determination of which forms part of the 
solution of the inverse problem. To tackle such problems it may be useful to write w in the 
form

w(x) =
n∑

i=1

ui(x)χDi(x). (8)

Here the union of the disjoint sets Di is the whole domain D. If we assume that the configura-
tion of the Di is determined by a finite set of scalars θ and let u denote the union of the func-
tions ui and the parameters θ then we may rewrite the inverse problem in the form (1). The case 
where the number of subdomains n is unknown would be an interesting and useful extension 
of this work; but we do not consider it here.

2.2.2. Geometric approach—infinite-dimensional parameterization. If the interface bound-
ary is not readily described by a finite number of parameters we may use the level set idea. For 
example, if the field w takes two known values w± with unknown interfaces between them, 
we may write

w(x) = w+Iu>0(x) + w−Iu<0(x), (9)

and formulate the inverse problem in the form (1) for u. This idea may be generalized to func-
tions which take an arbitrary number of constant values, through the introduction of level sets 
other than u  =  0, or through vector level sets functions u.

2.2.3. Scalar-valued hierarchical parameterizations. To illustrate these ideas we will con-
centrate on Gaussian priors of Whittle–Matérn type. These are characterized by a covariance 
function of the form

c(x, y) = σ2 21−α+d/2

Γ(α− d/2)

(
|x − y|

�

)α−d/2

Kα−d/2

(
|x − y|

�

)
, x, y ∈ Rd,

 (10)
where K· is a modified Bessel function of the second kind, σ2 > 0 is the variance and Γ(·) 
is a Gamma function. We will always ensure that � > 0 and α > d/2 so that draws from the 
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Gaussian are well-defined and continuous. On the unbounded domain Rd, samples from this 
process may be generated by solving the stochastic PDE

(I − �2�)
α
2 u = �d/2

√
βξ, (11)

where ξ ∈ H−s(D), s > d
2 , is a Gaussian white noise, i.e. ξ ∼ N(0, I), and

β = σ2 2dπd/2Γ(α)

Γ(α− d
2 )

.

In this paper we will work with the scalar hierarchical parameters α and τ = �−1. Putting 
� = τ−1 into (11) gives the stochastic PDE

C− 1
2

α,τ u = ξ, (12)

where the covariance operator Cα,τ  has the form Cα,τ = τ 2α−dβ(τ 2I −∆)−α. Throughout 
this paper we choose β = τ d−2α so that

Cα,τ = (τ 2I −∆)−α, (13)

and we equip the operator Δ with Dirichlet boundary conditions on D. These choices simplify 
the exposition, but are not an integral part of the methodology; different choices could be 
made.

We have thus formulated the inverse problem in the form of the centered hierarchical inverse 
problem (1) for (u, θ) with θ = (α, τ). The parameter θ enters only through the prior, as in this 
particular case it does not appear in the likelihood. In this paper we will place uniform priors 
on α and τ, which will be specified in section 5.1. We may also work with the variables (ξ, θ) 
noting that (12) defines a map T : (ξ, θ) �→ u and we have formulated the inverse problem in 
the form (5), the non-centered hierachical form. In figures 1 and 2 we display random sam-
ples from (13) with imposed Dirichlet boundary conditions and varying values of the inverse 
length-scale τ and the regularity α. These samples are constructed in the domain D  =  [0,1]2.

Figure 1. Modified inverse length-scale for τ  =  10, 25, 50 and 100. Here α = 1.6.

Figure 2. Modified regularity for α  =  1.1, 1.3, 1.5 and 1.9. Here τ = 15.
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2.2.4. Function-valued hierarchical parameterization. In order to represent non-stationary 
features it is of interest to allow hierarchical parameters to themselves vary in space. To this 
end we will also seek to generalize (11) and work with the form

(
I − �(x; v)2∆

)α
2 u = �(x; v)

d
2 ξ. (14)

(We have set β = 1 for simplicity). In order to ensure that the length-scale is positive we will 
write it in the form

�(x; v) = g(v(x)), (15)

for some positive monotonic increasing function g(·). We thus have a formulation as a 
centered hierarchical inverse problem in the form (1) noting that hyperparameter θ = v 
is here a function and enters only through the prior. We may also formulate inversion in 
terms of the variables (ξ, v) giving the inverse problem in the form (5) with θ = v. We 
will consider two forms of prior on v. The first is based on a Gaussian random field with 
Whittle–Matérn covariance function (10), and we then choose g(v) = exp(v). The sec-
ond, which will apply only in one dimension, is to consider a one-dimensional Cauchy 
process, as in [38]. In particular, we will construct �(x; v) by employing a one-dimen-
sional Cauchy process v(x), which is an α-stable Lévy motion with α = 1, with Cauchy 
increments on the interval δ given by the density function f, and positivity-inducing 
function g, where

f (x) =
δ

π(δ2 + x2)
, g(s) =

a
b + c|s|

+ d, (16)

such that a, b, c, d > 0 are constants7. Samples from these two priors on v, and hence �, are 
shown in figures 3 and 4.

3. Iterative EKI

In this section we describe iterative EKI as implemented in this paper. We outline this first for 
inverse problems as parameterized in equation (1) and then discuss generalizations to centered 

Figure 3. Gaussian random field. Left: Length-scale realization �(x). Right: Realization 
of v(x).

7 We note here that α has a different meaning to the parameter α used in the covariance function of a Gaussian prior 
in, for example, (13). We abuse notation in this way because the parameter α is widely used in the literature in both 
contexts.
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hierarchical inversion and to the non-centered hierarchical inversion (5). We briefly mention 
the continuous time limits of the methods, as these provide insight into how EKI works, and 
the effect of re-parameterizing; the study of continuous limits from EKI was introduced in 
[48], and further details concerning their application to the problems considered here may be 
found in [12].

3.1. Formulation for (1)

The form of iterative EKI that we use is that employed in [24]. When applied to the inverse 
problem (1) it takes the following form, in which the subscript n denotes the iteration step, and 
the superscript ( j) the ensemble member:

u( j)
n+1 = u( j)

n + Cuw
n (Cww

n +ΥnΓ)
−1(y − G(u( j)

n )). (17)

The empirical covariances Cuw
n , Cww

n  are given by

Cuw
n =

1
J − 1

J∑
j=1

(u( j)
n − ūn)⊗ (G(u( j)

n )− Ḡn) (18)

Cww
n =

1
J − 1

J∑
j=1

(G(u( j)
n )− Ḡn)⊗ (G(u( j)

n )− Ḡn). (19)

Here ūn denotes the average of u( j)
n  over all ensemble members and Ḡn denotes the average of 

G(u( j)
n ) over all ensemble members. The parameter Υn is chosen to ensure that

‖y − Ḡn‖Γ � ζη, (20)

a form of discrepancy principle which avoids over-fitting.

Figure 4. Cauchy random field. Left: Length-scale realization �(x). Right: Realization 
of v(x).
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Algorithm 1. Hierarchical iterative Kalman method (centered version).

Let {u( j)
0 , θ( j)

0 }J
j=1 ⊂ X  be the initial ensemble with J elements.

Further let ρ ∈ (0, 1) with ζ > 1
ρ and θ = (α, τ).

Generate {u( j)
0 , θ( j)

0 } i.i.d. from the prior P(u, θ), with synthetic data

y( j)
n+1 = y + η

( j)
n+1, η( j) ∼ N(0,Γ) i.i.d.

Then for n = 1, . . .

1. Prediction step: Evaluate the forward map w( j)
n = G(u( j)

n ),

and define w̄n = 1
J

∑J
j=1 w( j)

n .

2. Discrepancy principle: If ‖Γ−1/2(y − w̄n)‖Y � ζη, stop!

Output ūn = 1
J

∑J
j=1 u( j)

n  and θ̄n = 1
J

∑J
j=1 θ

( j)
n .

3. Analysis step: Define sample covariances:

Cuw
n = 1

J−1

∑J
j=1(u

( j) − ū)⊗ (G(u( j))− Ḡ),
Cθw

n = 1
J−1

∑J
j=1(θ

( j) − θ̄)⊗ (G(u( j))− Ḡ),
Cww

n = 1
J−1

∑J
j=1(G(u( j))− Ḡ)⊗ (G(u( j))− Ḡ).

Update each ensemble member as follows

u( j)
n+1 = u( j)

n + Cuw
n (Cww

n +ΥnΓ)
−1(y( j)

n+1 − G(u( j)
n )),

θ
( j)
n+1 = θ

( j)
n + Cθw

n (Cww
n +ΥnΓ)

−1(y( j)
n+1 − G(u( j)

n )),

where Υn is chosen as Υi+1
n = 2iΥ0

n,

where Υ0
n is an initial guess. We then define Υn ≡ ΥN

n  where N is the first integer such that

ρ‖Γ−1/2(y( j) − w̄n)‖Y � ΥN
n ‖Γ1/2(Cww

n +ΥN
n Γ)

−1(y( j) − w̄n)‖Y.

If we define

d( j,m)
n = 〈(Cww

n +ΥnΓ)
−1(G(u( j)

n )− y),G(u(m)
n )− Ḡn〉,

then we see that

u( j)
n+1 = u( j)

n − 1
J − 1

J∑
m=1

d( j,m)
n u(m)

n , (21)

and it is apparent that the algorithm will preserve the linear span of the initial ensemble 

{u( j)
0 }J

j=1. We describe the details of how Υn is chosen in the next subsection where we dis-

play the algorithm in full for a generalization of the setting of (1) to the hierarchical setting.
To write down the continuous-time limit of the EKI we consider the setting in which 

Υ−1
n ≡ (J − 1)h and view u( j)

n  as approximating a function u( j )(t) at time t  =  nh. If we define

d( j,m) = 〈Γ−1(G(u( j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ , then we obtain the continuous-time limit

u̇( j) = −
J∑

m=1

d( j,m)u(m), (22)

N K Chada et alInverse Problems 34 (2018) 055009
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where u̇( j) denotes the standard time derivative of u( j ) viewed as solving an ordinary differ-
ential equation; because the algorithm preserves the linear span of the initial ensemble [48] 
the dynamics take place in a finite-dimensional space, even if X  is infinite-dimensional. Note 
that d(j,m) depends on {u(k)}J

k=1 and that the dynamical system couples the ensemble members.

3.2. Generalization for centered hierarchical inversion

Algorithm 1 shows the generalization of (17) to the setting of centered hierarchical inversion. 
The ensemble is now over both u and θ, and cross covariances from the observational space to 
both the u and θ spaces are required. Algorithm 1 also spells out in detail how the parameter 
Υn is chosen. We now define

d( j,m)
n = 〈(Cww

n +ΥnΓ)
−1(G(u( j)

n )− y),G(u(m)
n )− Ḡn〉,

and we see that

u( j)
n+1 = u( j)

n − 1
J − 1

J∑
m=1

d( j,m)
n u(m)

n , (23)

and

θ
( j)
n+1 = θ( j)

n − 1
J − 1

J∑
m=1

d( j,m)
n θ(m)

n . (24)

It is apparent that, once again, the algorithm will preserve the linear span of the initial ensemble 

{u( j)
0 , θ( j)

0 }J
j=1. Furthermore, we note that for the centered hierarchical method, since G  does not 

depend on θ, the algorithm projected onto the u coordinate is identical to that in the preceding 

subsection, with the only difference being that the initial span of {u( j)
0 }J

j=1 is constructed over a 

diverse set of θ, reflecting the dependency structure in P(u, θ). For hierarchical priors as in sec-
tions 2.2.3 and 2.2.4, the dependency structure is typically of the form P(u, θ) = P(u|θ)P(θ)8.

If we again define

d( j,m) = 〈Γ−1(G(u( j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ , then we obtain the continuous-time limit

u̇( j) = −
J∑

m=1

d( j,m)u(m), (25)

θ̇( j) = −
J∑

m=1

d( j,m)θ(m). (26)

Since d(j,m) depends only on {u(k)}J
k=1 and not on {θ(k)}J

k=1 for the centered hierarchical 
method the continuous-time limit for u is identical to that in the preceding subsection, with 
the only difference being the creation of the initial ensemble using variable θ. This severely 
limits the capability of the hierarchical method in the centered case, and is motivation for the 
non-centered approach that we now describe.

8 The centered hierarchical method, where G  does not depend on θ, is presented for simplicity. The details of this 
algorithm are readily transferred to include θ-dependence in the forward mapping G  as required by the version of 
the Bayesian level set method advocated in [15].
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3.3. Generalization for non-centered hierarchical parameterization

One of the reasons for using hierarchical parameterizations is that good choices of param-
eters such as length-scale and regularity of u are not known a priori; this suggests that they 
might be learnt from the data. In this context the preservation of the linear span of the initial 
ensemble is problematic if the algorithm is formulated in terms of (u, θ). This is because, even 
though the length-scale (for example) may update as the algorithm progresses, the output for 
u remains in the linear span of the initial set of u, which likely does not contain a good esti-
mate of the true length-scale. Instead one can work with the variables (ξ, θ), where ξ is the 
forcing function in a stochastic PDE, as explained in sections 2.2.3 and 2.2.4. Working with 
(u, θ) and with (ξ, θ) are referred to as the centered parameterization and the non-centered 
parameterization, respectively. The pros and cons of each method are discussed in the context 
of Bayesian inversion in [41, 42], where the terminology is also introduced. The provenance 
of the terminology has no direct relevance in our context, but we retain it to make the link with 
the existing literature.

The algorithm for updating (ξ, θ) is identical to that shown in section 3.1 with the identi-
fications u �→ (ξ, θ) and G �→ G ◦ T . Note that even though, in the centered case, G  depends 
only on u, the mapping G ◦ T  will depend on both ξ and θ. Hence these variables are coupled 
through the iteration. Indeed, if we now define

d( j,m)
n = 〈(Cww

n +ΥnΓ)
−1(G ◦ T(ξ( j)

n , θ( j)
n )− y),G ◦ T(ξ(m)

n , θ(m)
n )− G ◦ Tn〉

then we see that

ξ
( j)
n+1 = ξ( j)

n − 1
J − 1

J∑
m=1

d( j,m)
n ξ(m)

n , (27)

and

θ
( j)
n+1 = θ( j)

n − 1
J − 1

J∑
m=1

d( j,m)
n θ(m)

n . (28)

Although the algorithm will preserve the linear span of the initial ensemble {ξ( j)
0 , θ( j)

0 }J
j=1 the 

variable of interest u( j)
n = T(ξ( j)

n , θ( j)
n ) is not in the linear span of u( j)

0 , in general. This confers 
a significant advantage on the non-centered parameterization in comparison with the centered 
approach.

As in the previous subsections we describe a continuous-time limit, now for the non-cen-
tered hierarchical approach. We define

d( j,m) = 〈(Γ−1(G ◦ T(ξ( j), θ( j))− y),G ◦ T(ξ(m), θ(m))− G ◦ T〉,

again with the obvious definition of G ◦ T . In the same setting as adopted in the previous two 
subsections we obtain the limiting equations

ξ̇( j) = −
J∑

m=1

d( j,m)ξ(m),

θ̇( j) = −
J∑

m=1

d( j,m)θ(m).

Now d(j,m) depends on both {ξ(k)}J
k=1 and on {θ(k)}J

k=1 so that the dynamical system not only 
couples the ensemble members but can in general couple the dynamics for ξ and for θ. This 
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is another way to understand the significant advantage of non-centered parameterization in 
comparison with the centered approach.

4. Model problems

In order to demonstrate the benefits of the parameterizations that we introduced here we 
employ a number of models on which we will base our numerical experiments. This sec-
tion  will be dedicated to describing the various PDEs that will be used. We will describe 
the forward problem, together with a basic version of the inverse problem, for each model, 
relevant in the non-hierarchical case. We note that the ideas, such as the level set method and 
hierarchical formulations from sections 2.1.2 and 2.1.3, can be used to reformulate the inverse 
problems, and we will use these reformulations in section 5.

4.1. Model problem 1

Our first test model is from electrical impedance tomography (EIT). This imaging method 
is used to learn about the interior properties of a medium by injecting current, and mea-
suring voltages, on the boundary [8, 16]. We will use the complete electrode model (CEM) 
introduced in [49]. The forward model is as follows: given a domain D = B(0, 1)2 and a set 
of electrodes {el}me

l=1 on the boundary ∂D with contact impedance {zl}me
l=1, and interior con-

ductivity κ, the CEM aims to solve for the potential ν inside the domain D and the voltages 
{Vl}me

l=1 on the boundary. The governing equations are

∇ · (κ∇ν) = 0, ∈ D (29a)

ν + zlκ∇ν · n = Vl, ∈ el, l = 1, . . . , me (29b)

∇ν · n = 0, ∈ ∂D\ ∪me
l=1 el (29c)

∫
κ∇ν · n ds = Il, ∈ el, l = 1, . . . , me, (29d)

with n denoting the outward normal vector on the boundary. The linearity of the problem 
implies that the relationship between injected current and measured voltages can be described 
through Ohm’s law in the form

V = R(κ)× I. (30)

In our experiments, D will be a two-dimensional disc of radius 1. The inverse problem may 
now be stated. We write the unknown conductivity as κ = exp(u) and try to infer u from a set 
of J noisy measurements of voltage/current pairs (Vj, Ij). If we define Gj(u) = R(κ)× Ij then 
the inverse problem is to find u from y given an equation of the form (1).

4.2. Model problem 2

Our second model problem arises in hydrology: the single-phase Darcy flow equations. The 
concrete instance of the forward problem is as follows: given the domain D  =  [0,6]2 and 
real-valued permeability function κ defined on D, the forward model is to determine the real-
valued pressure (or hydraulic head) function p on D from
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−∇ · (κ∇p) = f , x ∈ D, (31)

with mixed boundary conditions

p(x1, 0) = 100,
∂p
∂x1

(6, x2) = 0, −κ
∂p
∂x1

(0, x2) = 500,
∂p
∂x2

(x1, 6) = 0,

 (32)
and the source term f defined as

f (x1, x2) =




0, if 0 � x2 � 4,
137, if 4 � x2 � 5,
274, if 5 � x2 � 6.

The inverse problem concerned with (31) is as follows: write κ = exp(u) and determine u 
from J linear functionals of the pressure Gj(u) = lj( p). This may thus be cast in the form (1). 
We take the linear functionals as mollified pointwise observations on a regular grid. This spe-
cific set-up of the PDE model is that tested by Hanke [22] in his consideration of the regular-
ized Levenberg–Marquardt algorithm. More information on this setting can be found in work 
by Carera et al [11].

4.3. Model problem 3

Our final model is a simple linear inverse problem which we can describe directly. The aim 
is to reconstruct a function u from noisy observation of J linear functionals Gj(u) = lj( p), 
j = 1, · · · , J , where p solves the equation

d2p
dx2 + p = u, ∈ D, (33a)

p = 0, ∈ ∂D. (33b)

This may also be cast in the form (1). We use equally-spaced, pointwise evaluations as our 
linear functionals. We will assume our domain is chosen such that D = [0, 10].

5. Numerical examples

To assess the performance of each parameterization we present a range of numerical experi-
ments on each of the three model problems described in the previous section. Our experiments 
will be presented in a consistent fashion, between the different models and the different algo-
rithms. Each model problem will be tested using each of the non-hierarchical and hierarchical 
approaches, although we will not use the centered approach for model problem 3. Within 
each of these approaches we will show the progression of the inverse solver from the first 
to the last iteration. This will include five images ordered by iteration number, with the first 
figure displaying the first iteration and the last displaying the final iteration. These figures will 
be accompanied by figures demonstrating the learning of the hyperparameters, as the iteration 
progresses, for model problems 1 and 2, but not for model problem 3 (where the hyperparam-
eter is a field).

In order to illustrate the effect of the initial ensemble we will show the output of the non-
centered approach for ten different initializations, for each model problem. We will plot the 
final iteration reconstruction arising from four of those initializations. We observe the variation 

N K Chada et alInverse Problems 34 (2018) 055009



15

across the initializations through the relative errors in the unknown field uEKI, with respect to 
the truth u†, and in the data misfit, as the iteration progresses:

‖uEKI − u†‖L2(D)

‖u†‖L2(D)

,

‖y − Ḡ(uEKI)‖Γ.

5.1. Level set parameterization

Level set methods are a computationally effective way to represent piecewise constant func-
tions, and there has been considerable development and application to inverse problems [9, 10, 
24], starting from [47], in which interfaces are part of the unknown. We apply level set tech-
niques, combined with hierarchical parameter estimation, in the context of ensemble inver-
sion; we are motivated by the recent Bayesian level set method developed by Lu et al in [28], 
and its hierarchical extensions introduced in [13, 15].

When applying the level set technique to inverse problems of the form (1), we modify our 
forward operator to

G = O ◦ G ◦ F, (34)
where G : X �→ Y  maps the coefficient of the PDE to its solution, O : Y → Y  is our observa-
tional operator, and F : X → X  is the level set map described by

(Fu)(x) → κ(x) =
n∑

i=1

κi Di(x). (35)

The sets {Di}n
i=1 are n disjoint subdomains with union D and whose boundaries define the 

interfaces. The boundaries are assumed to be defined through a continuous real-valued func-
tion u on D via its level sets. In order to model the level set method hierarchically we will base 
our reconstructions on the approaches taken in section 2.2.4. In general it can be helpful to re-
scale the level values as the hierarchical parameter τ is learned [15]; however if the unknown 
is binary and the level set taken as zero, as used in our numerical experiments here, then this 
is not a consideration.

We apply level set inversion to model problem 1 (EIT) from section 4.1. We reconstruct a 
binary field and the variable u is, rather than the logarithm of the conductivity κ, the level set 
function defining (35): specifically, the level set formulation is achieved through representing 
the conductivity as

κ(x) = (Fu)(x) = κ−χu�0 + κ+χu>0, (36)

where χA denotes a characteristic function of A with κ− and κ+ being known positive con-
stants that help define low and high levels of our diffusion coefficient.

We place 16 equidistant electrodes on the boundary of the unit disc D in order to define our 
observations. All experiments are conducted using the MATLAB package EIDORS [2]. The 
contact impedances {zl}me

l=1 are chosen with value 0.05 and all electrodes chosen are subjected 

to an input current of 0.1. This provides a matrix of stimulation patterns I = {I( j)}15
j=1 ∈ R16×15 

given as
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I = 0.1 ×




+1 0 . . . 0
−1 +1 . . . 0

0 −1
. . . 0

...
...

. . . +1
0 0 0 −1




.

For our iterative method we choose J  =  200 ensemble members with regularization param-
eter ρ = 0.8. The covariance of our noise η is chosen such that Γ = 10−4 × I . Our truth for 
the EIT problem will take the form given in figure 5 where we have high levels of conductiv-
ity within the two inclusions. This is constructed by thresholding a Whittle–Matérn Gaussian 
random field defined by (12) and (13); true values for the hierarchical parameters used are 
shown in table 1.

Remark 5.1. We do not display the underlying Gaussian random field u which is threshold-
ed to obtain the true conductivity in figure 5 as this Gaussian random field cannot be expected 
to be reconstructed accurately, in general. Furthermore it is important to appreciate that, in 
general, a true conductivity will not be constructed by such thresholding; the field u is simply 
an algorithmic construct. We do however show u, and its evolution, in the algorithm, because 
this information highlights the roles of the length-scale and regularity parameters.

When performing inversion we sample initial ensembles using the prior distributions 
shown in table 2. We have set our prior distributions in such a way that the true value for each 
hyperparameter lies within the range specified.

Figures 6–11 show the progression of both the level set function u, and the permeabil-
ity κ, through five iterations of the method. Non-hierarchical, centered and non-centered 
methods are considered in turn. By comparing the reconstructions with the true conductivity, 
these figures clearly demonstrate two facts: (a) that being hierarchical is necessary to obtain 
a good reconstruction; (b) that implementing the hierarchical method using a non-centered 

Figure 5. Model problem 1: true log-conductivity.

Table 1. Model problem 1. True values for each hyperparameter.

Hyperparameter Value

α† 3

τ † 10
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parameterization has significant benefits when compared to the centered method. These points 
are further demonstrated in figure 12 which shows the learning of the hyperparameters, in 
comparison with the truth, for the three methods.

Concentrating solely on the non-centered approach, we run ten different initializations of 
the EKI. In figure 13 we display the resulting data misfit and error, as a function of iteration, 
for all ten. We display the last iteration of four of these ten in figures 14 and 15.

In summary, figures 10–12 clearly show the superiority of the non-centered hierarchical 
method. For all the initializations shown, the EKI produces conductivities which concentrate 
near to the true conductivity and have length-scale similar to those appearing in the truth; 
see figures  13–15. The centered hierarchical and non-hierarchical methods fail to do this; 
see figures 6–9. However it is important to note that the non-centered method does produce 
substantial variation in the predicted solution, depending on which initialization is used, as 
shown in figures 13–15.

5.2. Geometric parameterization

In this subsection we employ model problem 2 from section 4.2. We consider reconstruc-
tion of a piecewise continuous channel which is defined through two heterogeneous Gaussian 

Table 2. Model problem 1. Prior distribution for each hyperparameter.

Hyperparameter Prior

α U [1.3, 4]
τ U [5, 30]

Figure 6. Model problem 1. Progression through iterations of the non-hierarchical 
method.
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Figure 7. Model problem 1. Progression through iterations of the non-hierarchical 
method with level set.

Figure 8. Model problem 1. Progression through iterations of the centered hierarchical 
method.
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Figure 9. Model problem 1. Progression through iterations of the centered hierarchical 
method with level set.

Figure 10. Model problem 1. Progression through iterations of the non-centered 
hierarchical method.
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random fields, with scalar geometric parameters specifying the geometry and scalar hierarchi-
cal parameters characterizing the length-scale and regularity of the two fields.

The truth u† is shown in figure 16. It is drawn from a prior distribution which we now 
describe; details may be found in [27]. The channel is described by five parameters: d1—ampl-
itude; d2—frequency; d3—angle; d4—initial point; and d5—width. We generate two Gaussian 
random fields {κi}2

i=1, both defined on the whole of the domain D but entering the permeabil-
ity κ only inside and outside (respectively) the channel. The unknown u thus comprises the 
five scalars {di}5

i=1 and the two fields {κi}2
i=1. We do not explicitly spell out the mapping from 

u to the coefficient κ appearing in the Darcy flow, but leave this to the reader. The {κi}2
i=1 are 

specified as log-normal random fields and the underlying Gaussians are of Whittle–Matérn 

Figure 11. Model problem 1. Progression through iterations of the non-centered 
method with level set.

Figure 12. Model problem 1. Progression of average value for α and τ.
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type, defined by (12) and (13); different uniform distributions on α and τ are used for the 
two fields {κi}2

i=1. The parameters {di}5
i=1 are also given uniform distributions. The entire 

specification of the prior is given in table 3. For the truth the true hierarchical parameters are 
provided in table 4.

In our inversion we employ 64 mollified pointwise observations {li( p)}64
i=1 given by, for 

some σ > 0,

lt( p) =
∫

D

1
2πσ2 e−

1
2σ2 (x−xt)

2

p(x)dx, (37)

where the xi are uniformly distributed points on D. We discretize the forward model using a 
second order centered finite difference method with mesh spacing 10−2. For our EKI method 
we use the same values for our parameters as in section 5.1.

Figures 17–19 are consistent with the previous subsection in that we notice that hierarchi-
cal methods are needed and that non-centering is necessary to make hierarchical methods 

Figure 13. Model problem 1. Left: relative error. Right: log-data misfit.

Figure 14. Model problem 1. EKI for the final iteration for the non-centered approach 
with Whittle–Matérn from four different initializations.
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perform well. We qualify this by noting that the geometry is well-learned in all cases, but that 
the reconstructions of the random fields u1 and u2 inside and outside the geometry are sensi-
tive to needing non-centered hierarchical representation. Even then the reconstruction is only 
accurate in terms of amplitude and length-scales and not pointwise.

Figures 20 and 21 give further insight into this, showing how the smoothness and length-
scale parameters are learned differently in the hierarchical, centered and non-centered meth-
ods. Again the conclusions are consistent with the previous subsection. Figures 22 and 23 
concentrate on the application of the non-centered approach, using ten different initializations. 
The data misfit and relative error in the field are shown for all ten cases in figure 22; four 
solution estimates are displayed in figure 23. The results are similar to those in the previous 

Figure 15. Model problem 1. EKI for the final iteration for the non-centered method 
with level set from four different initializations.

Figure 16. Model problem 2. True log-permeability.
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Table 3. Model problem 2. Prior associated with channelized flow.

Parameter Prior

d1 U [0, 1]
d2 U [2, 13]
d3 U [0.4, 1]
d4 U [0, 1]
d5 U [0.1, 0.3]
κ1 N(1, (I − τ 2

1∆)−α1)
κ2 N(4, (I − τ 2

2∆)−α2)
α1 U [1.3, 3]
τ1 U [8, 30]
α2 U [1.3, 3]
τ2 U [8, 30]

Table 4. Model problem 2. Parameter selection of the truth.

Parameter Value

α†
1

2

α†
2

2.8

τ †1
30

τ †2
10

Figure 17. Model problem 2. Progression through iterations of the non-hierarchical 
method.
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Figure 18. Model problem 2. Progression through iterations of the centered hierarchical 
method.

Figure 19. Model problem 2. Progression through iterations of the non-centered 
hierarchical method.
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Figure 20. Model problem 2. Progression of average value for α1 and τ1.

Figure 21. Model problem 2. Progression of average value for α2 and τ2.

Figure 22. Model problem 2. Left: relative error. Right: log-data misfit.
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Figure 23. Model problem 2. EKI for the final iteration for the non-centered approach 
from four different initializations.

Figure 24. Model problem 3. Progression through iterations of the non-hierarchical 
method.
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Figure 25. Model problem 3. Progression through iterations with hierarchical Gaussian 
random field.

Figure 26. Model problem 3. Progression through iterations with hierarchical Cauchy 
random field.
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subsection. However, there is more variability across initializations. This might be amelio-
rated by use of a larger ensemble size.

5.3. Function-valued hierarchical parameterization

Our final set of experiments will be based on hierarchical inversion of non-stationary ran-
dom fields, using model problem 3. We consider reconstruction of truths that are not drawn 
from the prior; the prior will be a hierarchical Gaussian model with spatially varying inverse 
length-scale as a hyperparameter. Examples of such truths are ones which contain both rough 
and smooth features. We discretize the forward model using a piecewise-linear finite element 
method, with a mesh of h  =  1/100. The truth we aim to recover is given by

Figure 27. Model problem 3. Left: relative error. Right: log-data misfit.

Figure 28. Model problem 3. EKI for the final iteration for the Gaussian hierarchical 
method from four different initializations.

Figure 29. Model problem 3. EKI for the final iteration for the Cauchy hierarchical 
method from four different initializations.
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u†(x) =





exp

(
4 − 25

x(5−x)

)
, x ∈ (0, 5)

1, x ∈ [7, 8]
−1, x ∈ (8, 9]
0, otherwise, (38)

which incorporates both rough and smooth features. Our parameters for the iterative methods 
are identical to those used in section 5.1. Because the results of sections 5.1 and 5.2 clearly 
demonstrate the need for non-centering in hierarchical methods, we do not include results for 
the centered hierarchical approach here; we compare non-hierarchical methods with the use 
of non-centered hierarchical methods with both Cauchy and Gaussian random fields as priors 
on the hyperparameter v.

For our Cauchy density function (16), we set a  =  4 and b  =  d  =  0. Our length-scale for 
the non-hierarchical method will be based on a Gaussian random field (15), similarly with the 
non-centered Gaussian approach. Our comparison of each approach is provided in figures 24–
26. We notice that the non-hierarchical method struggles to reconstruct the truth, and in par-
ticular the piecewise constant part of it with discontinuities. In contrast, both non-centered 
approaches perform well. The effectiveness of the non-centered approaches are highlighted in 
figures 27–29. The first shows the data misfit and relative error over ten realizations, and the 
second shows four reconstructions chosen from these ten at random. Substantial robustness to 
the choice of realization is clear. Note, however, that for a multi-dimensional problem inver-
sion the variability with respect to initialization may be more significant, as in the previous 
two subsections.

6. Conclusion and discussion

In this paper we have considered several forms of parameterization for EKI. In particular, our 
main contribution has been to highlight the potential for the use of hierarchical techniques 
from computational statistics, and the use of geometric parameterizations, such as the level 
set method. Our perspective on EKI is that it forms a derivative-free optimizer and we do not 
evaluate it from the perspective of uncertainty quantification. However, the hierarchical and 
level set ideas are motivated by Bayesian formulations of inverse problems. We have shown 
that our parameterizations do indeed lead to better reconstructions of the truth on a variety 
of model problems including groundwater flow, EIT and source inversion. There is very little 
analysis of EKI, especially in the fixed, small ensemble size setting where it is most powerful. 
Existing work in this direction may be found in [7, 48]; it would be of interest to extend these 
analyses to the parameterizations introduced here. Furthermore, from a practical perspective, 
it would be interesting to extend the deployment of the methods introduced here to the study 
of further applications.
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