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Abstract
In computational inverse problems, it is common that a detailed and accurate 
forward model is approximated by a computationally less challenging 
substitute. The model reduction may be necessary to meet constraints 
in computing time when optimization algorithms are used to find a single 
estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations 
in the Bayesian framework. The use of an approximate model introduces 
a discrepancy, or modeling error, that may have a detrimental effect on 
the solution of the ill-posed inverse problem, or it may severely distort the 
estimate of the posterior distribution. In the Bayesian paradigm, the modeling 
error can be considered as a random variable, and by using an estimate of 
the probability distribution of the unknown, one may estimate the probability 
distribution of the modeling error and incorporate it into the inversion. We 
introduce an algorithm which iterates this idea to update the distribution 
of the model error, leading to a sequence of posterior distributions that are 
demonstrated empirically to capture the underlying truth with increasing 
accuracy. Since the algorithm is not based on rejections, it requires only 
limited full model evaluations.

We show analytically that, in the linear Gaussian case, the algorithm 
converges geometrically fast with respect to the number of iterations when 
the data is finite dimensional. For more general models, we introduce particle 
approximations of the iteratively generated sequence of distributions; we 
also prove that each element of the sequence converges in the large particle 
limit under a simplifying assumption. We show numerically that, as in the 
linear case, rapid convergence occurs with respect to the number of iterations. 
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Additionally, we show through computed examples that point estimates 
obtained from this iterative algorithm are superior to those obtained by 
neglecting the model error.

Keywords: model discrepancy, discretization error, particle approximation, 
importance sampling, electrical impedance tomography, Darcy flow

(Some figures may appear in colour only in the online journal)

1. Introduction

The traditional way of describing an inverse problem is to define a forward map relating the 
unknown to an observed quantity, and to look for an estimate of the unknown when the data 
is corrupted by noise. In this description, it is often tacitly assumed that an underlying ‘truth’ 
exists, and the noiseless data arises from applying the forward map on this true value. On the 
other hand, it is commonly acknowledged that a mathematical model does not coincide with 
the reality, and therefore part of the noise must be attributed to the model discrepancy, or the 
mismatch between the model and the reality. Modeling this discrepancy is an active research 
topic in statistics—see [6, 7, 24] and the references therein; it is also a closely related to the 
concept of the ‘inverse crime’, a procedure of testing a computational method with data that 
has been generated by the same model that is used to solve the inverse problem [13, 23].

Common sources of modeling errors in inverse problems include:

 (i) model reduction—a complex, computationally intensive model is replaced by a simpler, 
less demanding model; 

 (ii) parametric reduction—in a model depending on poorly known parameters, some of them 
are frozen to fixed values, assuming that the solution is not sensitive to them; 

 (iii) unknown geometry—a computational domain of unknown shape is approximated by a 
standard geometry.

Including the modeling error into the computations in the traditional deterministic set-
ting may not be straightforward. Recasting the inverse problem via Bayesian inference pro-
vides tools to carry this out in a natural statistical fashion. The present article introduces and 
analyzes a Bayesian methodology for model error estimation which demonstrably leads to 
improved estimates of the true unknown function generating the data.

1.1. Background

In this article, we consider the problem of estimating an unknown quantity u based on indirect 
observations. In the Bayesian framework, the prior belief about the quantity u is encoded in 
the prior probability distribution P(u), and given the observed data b, the posterior distribution 
P(u | b) follows from Bayes’ formula,

P(u | b) ∝ P(b | u)P(u),

where ∝ denotes proportionality up to a scaling constant depending on b but not on u, and the 
distribution P(b | u) of b is the likelihood. To construct the likelihood, a forward model from u 
to b needs to be specified. A commonly used model, assuming additive observation noise that 
is independent of the unknown u, is

b = F(u) + ε
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where ε ∼ πnoise(·) is a realization of random noise, and F is a mapping defined typically on 
the parameter space for u, which is often infinite-dimensional (u is a function) or high dimen-
sional (a function has been discretized to obtain u). Under these assumptions, the likelihood is 
equal to the distribution of ε with mean shifted by F(u), i.e.

P(b | u) = πnoise(b − F(u)).

To estimate u, or derived quantities based on it, numerical approximations of integrals with 
respect to the posterior distribution are required, and a common approach is to use sampling 
methods such as Markov chain Monte Carlo (MCMC). This requires a large number of 
repeated evaluations of the forward map F, which is often expensive to evaluate numerically. 
A particular instance that we have in mind is the situation where evaluation of F requires 
numerical solution of a partial differential equation. If computational resources or time are an 
issue, an attractive approach is to trade off the accuracy of evaluations with the computational 
cost by adjusting the resolution of the mesh that the PDE is solved upon. Denoting by f an 
approximation to F on a coarse mesh, a model for the data can be written as

b = f (u) + m + ε

where m = F(u)− f (u) denotes the model error induced by moving from the accurate model 
F to the approximate one. If we ignore the fact that m depends on u, and instead model it as 
additive independent noise, the conditional likelihood P(b | u, m) is then given by

P(b | u, m) = πnoise(b − f (u)− m);

evaluations of this map then only require evaluation of the approximate map f. Furthermore, 
the likelihood P(b | u) can be found by marginalizing out the model error m. However, the 
marginalization requires the distribution of m which is not known. As suggested in [22],  
the Bayesian approach provides a natural approximate solution to this problem: by using the 
prior distribution of u and the model error mapping M(u) = F(u)− f (u), one can generate a 
sample of model errors to estimate the model error distribution. This approach, referred to as the 
enhanced error model, has been shown to produce more accurate point estimates than those that 
come from neglecting the model error (the conventional error model), see, e.g. [2, 3, 17, 23] for 
static inverse problems, and [19–21] for extensions to dynamic inverse problems.

In [8], the enhanced error model was developed further using the observation that the the 
posterior distribution based on the error model contains refined information about the unknown 
u beyond the point estimate determined by the enhanced error model; as a consequence the 
model error distribution can be updated by pushing forward the distribution under the model 
error mapping M. When the data are particularly informative, posterior samples may differ 
significantly from prior samples, and this should produce a much better approx imation to the 
distribution of the model error, potentially yielding a better approximation of the posterior 
distribution of u, and at the very least providing point estimates of higher accuracy. The proce-
dure can be iterated to produce a sequence of approximate posterior distributions that have the 
potential to yield a sequence of point estimates of improved accuracy; they may also approxi-
mate the true posterior distribution with increasing accuracy. In this article, we address this 
approach in a systematic way, with particular focus on convergence of the iterative updating.

The effect of model error and model discrepancy in Bayesian inference is a widely stud-
ied topic. Early works focus primarily on code uncertainty—the uncertainty that arises due 
to expense of forward model evaluations meaning that it is only practical to compute out-
puts of the model for a limited finite number of inputs. A review of work in this direction 
is given in [31], including the problems of optimal choice of inputs at which to evaluate the 
forward model, and how to predict the output for inputs away from the computed ones. In [24] 
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the numerous sources of uncertainty within computational inverse problems are discussed, 
including those arising from model inadequacy and code uncertainty. The authors model this 
error as a function independent of the approximate model, which can be justified in certain 
cases. Hierarchical Gaussian priors are placed upon the model and the model error, and the 
model and error are then linked by imposing correlations between the hyperparameters. The 
technique has subsequently been developed further in [7], and used in, for example, the con-
text of model validation [4] and uncertainty quantification [18]. More recent work in probabil-
istic numerical methods [6, 12] provides a unifying perspective on this body of work, linking 
it to earlier research connecting numerical algorithms to Bayesian statistics [16].

1.2. Our contribution

 ● We develop further the iterative updating of the posterior probability densities based on 
repeated updating of the model error distribution, leading to an approximation of the 
posterior probability density. While the approximation error is defined through the com-
putationally expensive accurate model, the posterior approximation we introduce relies 
primarily on the computationally inexpensive approximate model, and a limited number 
of evaluations of the accurate model.

	 ● In the case where the models are linear and the noise and prior distributions are Gaussian, 
we show that the means and covariances of the resulting sequence of posterior distribu-
tions converge to a limit geometrically fast.

 ● For more general models and prior/noise distributions we introduce particle approx-
imations to allow the algorithm to be implemented numerically, and show convergence of 
these approximations in the large particle limit.

 ● We illustrate numerically the effectiveness of the algorithms in multiple different settings, 
showing the advantage over the conventional and enhanced error models.

1.3. Outline

The iterative approach of updating the posterior distributions is introduced in section 2. In 
section 3 we focus on the particular case where the forward model is linear, and the noise and 
prior distributions are Gaussian. The assumptions imply that the approximate posterior distri-
butions are also Gaussian, and can therefore be characterized by their means and covariances. 
We identify conditions guaranteeing the convergence of the sequence of approximate posteri-
ors to a non-degenerate limit as the number of iterations tends to infinity. In section 4 we dis-
cuss different sampling methods which may be used to implement the algorithm in practice. In 
particular we focus on particle methods that require a finite number of full model evaluations 
in order to estimate the modeling error and posterior distribution, and show convergence to the 
correct sequence of approximate distributions in the large particle limit. Finally, in section 5, 
we provide numerical illustrations of the behavior and performance of the algorithm for three 
different forward models. Section 6 contains the conclusions and discussion.

2. Problem formulation

We start by introducing the main ingredients of the iterative algorithm: the accurate and 
approximate models are defined in section 2.1, along with some examples whose details will 
be discussed later on. The enhanced error model [22] is reviewed in section 2.2, prompting 
the question of how to update the density of the modeling error. In section 2.3 we provide 
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an iterative algorithm for doing this, in the case where all measures involved have Lebesgue 
densities; a more general algorithm is provided in the appendix for cases such as those arising 
when the measures are defined on infinite-dimensional function spaces.

2.1. Accurate versus approximate model

Let X, Y be two Banach spaces representing the parameter and data spaces, respectively.  
Let

F : X → Y , u �→ b

denote a reference forward model, referred to as the accurate model, and let the approximate 
model be denoted by

f : X → Y , u �→ b.

We write the observation model using the accurate model,

b = F(u) + ε, (1)

and equivalently, using the approximate model, as

b = f (u) +
(
F(u)− f (u)

)
+ ε

= f (u) + m + ε,
 (2)

where m represents the modeling error,

m = F(u)− f (u) = M(u).

In light of the above observation, we may view the data as coming from the approximate 
model, with an error term which reflects both observational noise ε and modeling error m. 
The main problem addressed in this paper is how to model the probability distribution of the 
model error. We study this question with the goal of providing computations to estimate the 
unknown u from b using only the less expensive model f, and not the true model F, without 
creating modeling artifacts.

We conclude this subsection by giving two examples of approximate models, both of which 
may be relevant in applications.

Example 2.1 (Linearization). In electrical impedance tomography (EIT), the goal is to 
estimate the conductivity distribution inside a body from a finite set of current/voltage measure-
ments at the boundary, as discussed in more detail in section 5.2. We denote by F the differenti-
able non-linear forward model, mapping the appropriately parametrized conductivity distribu-
tion to the voltage measurements. We define the approximate model through the linearization,

f (u) = F(u0) + DF(u0)(u − u0),

where DF(u0) is the Jacobian of the forward map, and u0 is a fixed parameter value, represent-
ing, e.g. a constant conductivity background.

Example 2.2 (Coarse mesh). In the EIT model, the accurate model represents the for-
ward model computed with a FEM grid fine enough to guarantee that the numerical solution 
approximates the solution of the underlying PDE within a required precision. To speed up 
computations, we introduce the reduced model f as the forward model based on FEM built on 
a coarse grid. We assume that both computational grids are built on an underlying independent 
discretization of the conductivity σ, appropriately parametrized, and the FEM stiffness matri-
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ces that require integration over elements are computed by evaluating σ in the Gauss points of 
the elements, respectively.

2.2. The enhanced error model

We start by reviewing the basic ideas of the enhanced error model and, for simplicity, assume 
here that X and Y are Euclidean spaces and that all probability distributions are expressible in 
terms of Lebesgue densities. We assume that u is an X-valued random variable with a given a 
priori density,

u ∼ πprior(u).

Furthermore, we assume that the additive noise ε is a Y-valued random variable, independent 
of u, with the density

ε ∼ πnoise(ε).

In view of the model (1), we may write the likelihood as

π(b | u) = πnoise(b − F(u)),

and the posterior density is, according to Bayes’ formula, given by

π(u | b) ∝ πprior(u)πnoise(b − F(u)).

If, instead, we want to use the approximate model f (u) for the data, the modeling error m 
needs to be taken into account. The idea of the enhanced error model in [22] is the follow-
ing: given the prior distribution µ0(du) = πprior(u)du, with no other information about u, the 
probability distribution of m = M(u) is obtained as a push-forward of the prior distribution:

m ∼ M#µ0.

To obtain a computationally efficient formalism, the distribution of m is approximated by a 
Gaussian distribution sharing the mean and covariance of the push-forward measure,

m ∼ N (m,Σ),

where in practice the mean and covariance may be estimated numerically by sampling the 
modeling error. The Gaussian approximation is particularly convenient if the additive noise 
is Gaussian,

ε ∼ N (0,Γ),

as it leads to the approximate likelihood model

π(b | u) ∝ exp
(
−1

2
(b − f (u)− m)T(Γ + Σ)−1(b − f (u)− m)

)
,

and, consequently, to the posterior model

π(u | b) ∝ πprior(u) exp
(
−1

2
(b − f (u)− m)T(Γ + Σ)−1(b − f (u)− m)

)
.

Note that the enhanced error model can be interpreted as a form of variance inflation: if the 
model error is neglected as in the conventional error model, then the covariance matrix in 
the likelihood would be smaller in the sense of positive-definite quadratic forms, since Σ is 
non-negative definite. This is to be expected as the lack of accuracy in the model contributes 
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additional uncertainty to the problem; we do not wish to be over-confident in an inaccurate 
model. In the next section we explain how this idea may be built upon to produce the algo-
rithms studied in this paper.

2.3. The iterative algorithm

In this subsection we generalize the preceding enhanced error model in two ways: (i) we 
iterate the construction of the model error, updating its probability distribution by pushing 
forward by M the measure µ� , the posterior distribution of u when the model error distribu-
tion is computed as the pushforward under M of the measure µ�−1; in this iterative method we 
choose µ0 to be the prior and so the first step is analogous to what is described in the previous 
subsection; (ii) we do not invoke a Gaussian approximation of the model error, leaving open 
other possibilities for practical implementation. We describe the resulting algorithm here in 
the case where Lebesgue densities exist, and refer to the appendix for its formulation in a more 
abstract setting.

Algorithm (Lebesgue densities). Let µ� denote the posterior distribution at stage �, 
with density π�, so that µ�(du) = π�(u) du. Denote π�(b | u) the likelihood at stage �.

 1. Set π0(u) = πprior(u) and � = 0.
 2. Given µ�, assume m ∼ M#µ�. Assuming that u and m are mutually independent, we have

π(b | u, m) = πnoise(b − f (u)− m),

  and by marginalization,

π�+1(b | u) =
∫

Y
πnoise(b − f (u)− m)(M#µ�)(dm)

=

∫

X
πnoise(b − f (u)− M(z))π�(z)dz.

  Hence using Bayes’ theorem, update the posterior distribution:

π�+1(u) ∝ πprior(u)
∫

X
πnoise(b − f (u)− M(z))π�(z)dz. (3)

 3. Set � �→ �+ 1 and go to 2. □ 

We can give an explicit expression for the above density π�(u):

π�(u) ∝ πprior(u)
∫

X
· · ·

∫

X

(
�∏

i=1

πnoise(b − f (zi+1)− M(zi))πprior(zi)

)
dz1 . . . dz�

where we define z�+1 = u.
The above algorithm can be generalized to the case when no Lebesgue densities exist, such 

as will be the case on infinite dimensional Banach spaces, see the appendix.

3. The linear Gaussian case

We analyze the convergence of the general algorithm in the case where both the accurate model 
F and the approximate model f are linear, and the noise and prior distributions are Gaussian. 
With these assumptions the posterior distributions forming the sequence remain Gaussian, and 
are hence characterized by the sequences of means and covariances. Convergence properties 
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of the iteration can be established by using the updating formulas for these sequences. Though 
the iteration is not immediately implementable, since the full matrix for the accurate model F 
is required to calculate each covariance matrix, the explicit convergence results give insight 
into the implementable variants of the algorithm introduced in section 4, as well as for non-
linear forward maps.

In section 3.1, we first describe how the posterior density evolves, establishing the itera-
tions that the means and covariances satisfy. In section 3.2 we show that if the model error is 
sufficiently small, the sequences of posterior means and covariances converge geometrically 
fast. Moreover, despite the repeated incorporation of the data into the posterior, the limit-
ing distribution does not become singular. Additionally, in section 3.3 we show that in finite 
dimensions the assumption of small model error is not needed in order to establish conv-
ergence of the covariance.

3.1. Evolution of the Posterior distribution

When the noise distribution πnoise and prior distribution πprior are Gaussian, the measure µ� is 
Gaussian at each stage �, and we can write down expressions for the evolution of its mean and 
covariance. Let X, Y be separable Hilbert spaces and A� : X → Y  a linear operator. Assume 
that the data b ∈ Y  arise from A� via

b = A�u + ε, ε ∼ N (0,Γ)

where Γ : Y → Y  is a symmetric positive definite covariance operator. Let A : X → Y  denote 
an approximation to A� so that the expression for b may be rewritten

b = Au + (A� − A)u + ε.

We define the model error operator M : X → Y  by M = A� − A, so that Mu represents the 
(unknown) model error. We assume that the model error is Gaussian, with unknown mean w 
and covariance Σ. Additionally we assume that it is independent of the observation noise. The 
data is now given by

b = Au + ε̂, ε̂ ∼ N (w,Σ+ Γ).

Let µ0 = N(m0,C0) denote the prior distribution on u. We first estimate w and Σ by pushing 
forward µ0 by the model error operator M:

M#µ0 = N (Mm0,MC0M
∗) ≡ N (ŵ1, Σ̂1).

Then, assuming for now that the model error has this distribution, the resulting posterior dis-
tribution on u can be calculated as µ1 = N(m1,C1), where

C1 =
(
A∗(Γ +MC0M

∗)−1A+ C−1
0

)−1
,

m1 = C1
(
A∗(Γ +MC0M

∗)−1(b −Mm0) + C−1
0 m0

)
.

As described previously, in order to obtain a better approximation of the model error, the 
above step can be repeated so that the measure pushed forward to approximate the model error 
is closer to the posterior distribution. Therefore, in the next step, we approximate the distribu-
tion of the model error by

M#µ1 = N (Mm1,MC1M
∗) ≡ N (ŵ2, Σ̂2),
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and make a further posterior approximation. Iterating this process, we see that the posterior 
mean and covariance evolve via

C�+1 =
(
A∗(Γ +MC�M

∗)−1A+ C−1
0

)−1
,

m�+1 = C�+1
(
A∗(Γ +MC�M

∗)−1(b −Mm�) + C−1
0 m0

)
.

 (4)
We wish to show that these sequences are convergent.

We may write the above iteration in an equivalent form as

C�+1 = C0 − C0A
∗(Γ +MC�M

∗ + AC0A
∗)−1AC0,

m�+1 = m0 + C0A
∗(Γ +MC�M

∗ + AC0A
∗)−1(b − Am0 −Mm�),

using results from [25, 27], assuming that C0 is trace-class and Γ is trace-class or white. This 
form has the advantage that the unbounded operator C−1

0  does not appear, and so we need not 
worry about its domain of definition. In what follows we simply assume that this equivalent 
expression for the evolution of the means and covariances is valid.

In the following subsections, we consider two different cases. In the first one, we limit 
the data into a finite dimensional space Y but let the space X to be a Hilbert space. The conv-
ergence of the algorithm is demonstrated under certain restrictive conditions: the modeling 
error needs to be small enough. In the second case, we also limit the unknown u to a finite 
dimensional space, and show that in this case the convergence proof can be obtained without 
the restrictions needed in the former case. We emphasize that, although we establish conv-
ergence of the iteration in various settings, the limiting distribution does not coincide with 
the true posterior distribution found in the absence of model error. Nonetheless our numerical 
experiments will show that the limiting distribution can significantly improve point estimates 
of the underlying value used to generate the data.

3.2. Convergence in infinite dimensions

We introduce a scalar parameter δ controlling the accuracy of the approximation A of A�, 
writing δM in place of M. By writing explicitly the dependence of the mean and covariance 
on δ, we have

C�+1(δ) = C0 − C0A
∗(Γ + δ2MC�(δ)M

∗ + AC0A
∗)−1

AC0,

m�+1(δ) = m0 + C0A
∗(Γ + δ2MC�(δ)M

∗ + AC0A
∗)−1(

b − Am0 − δMm�(δ)
)
.

Let L(X) denote the space of bounded linear operators on X, equipped with the operator norm. 
Let S+(X) ⊆ L(X) denote the set of positive bounded linear operators on X, and S+(X) the set 
of non-negative bounded linear operators on X. We may write the iteration for C�(δ) as

C�+1(δ) = F
(
C�(δ), δ

)
 (5)

where F : S+(X)× R → S+(X)  is given by

F (B, δ) = C0 − C0A
∗(Γ + δ2MBM∗ + AC0A

∗)−1
AC0.

We show that under certain assumptions, for all δ sufficiently small, F ( · , δ) has a unique 
stable fixed point C(δ). The assumptions we make are as follows.
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Assumptions 3.1. 

 (i) C0 ∈ S+(X) and is trace-class.
 (ii) Y is finite dimensional, and Γ ∈ S+(Y).
 (iii) A�, A : X → Y  are bounded.

We first establish the following result concerning convergence of the sequence of covari-
ance operators:

Proposition 3.2. Let assumptions 3.1 hold. Then there is a β > 0 such that for all δ < 1/β, 
a unique C(δ) ∈ S+(X) exists with

C(δ) = F
(
C(δ), δ

)
.

Moreover, C(δ) is a stable fixed point of F ( · , δ), and there is a constant α1 such that

‖C�(δ)− C(δ)‖L(X) � α1(βδ)
2� for all � � 1.

In particular, for δ < 1/β, the sequence {C�(δ)}��1 converges geometrically fast.

From this geometric convergence of {C�(δ)}��1 we can deduce that also the means m�(δ) 
converge: define the maps G� : X × R → X , � � 0, by

G�(m, δ) = m0 + C0A
∗(Γ + δ2MC�(δ)M

∗ + AC0A
∗)−1(

b − Am0 − δMm
)

so that the update for m�(δ) is given by

m�+1(δ) = G�

(
m�(δ), δ

)
.

Define also the limiting map G : X × R → X  by

G(m, δ) = m0 + C0A
∗(Γ + δ2MC(δ)M∗ + AC0A

∗)−1(
b − Am0 − δMm

)
.

Then we have the following result:

Proposition 3.3. Let assumptions 3.1 hold, and let β be as in proposition 3.2. Then for all 
δ < 1/β, there exists a unique m(δ) ∈ X  with

m(δ) = G
(
m(δ), δ

)
.

Moreover, there is an α2 > 0 such that

‖m�(δ)− m(δ)‖X � α2(βδ)
� for all � � 1.

Hence, for δ < 1/β, the sequence {m�(δ)}��1 converges geometrically fast.

To prove the above propositions we first prove the following lemma. In the proof, the fol-
lowing notation is used: given symmetric non-negative linear operators B1,B2 ∈ L(X), we 
write B1 � B2 to mean that B2 − B1 is non-negative.

Lemma 3.4. Let assumptions 3.1 hold. Then the family of operators K(B, δ) : Y → X given 
by

K(B, δ) = C0A
∗(Γ + δ2MBM∗ + AC0A

∗)−1

is bounded uniformly over B ∈ S+(X) and δ ∈ R .
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Proof. We have that

Γ + AC0A
∗ � Γ + Q+ AC0A

∗,

for any Q ∈ S+(Y) , which implies that

(Γ + Q+ AC0A
∗)−1 � (Γ + AC0A∗)−1,

and consequently

‖(Γ + Q+ AC0A
∗)−1‖L(Y) � ‖(Γ + AC0A

∗)−1‖L(Y).

By choosing Q = δ2MBM∗ the claim follows. □ 

In what follows we will denote Kmax = sup
{
‖K(B, δ)‖L(Y ,X) | B ∈ S+(X), δ ∈ R

}
. 

Furthermore, we define the parameter β = Kmax‖M‖L(Y).

Remark 3.5. The conclusion of the above lemma does not hold in general unless the space 
Y is finite dimensional. For example, let X  =  Y be infinite dimensional, and suppose that A, Γ 
and C0 are symmetric, positive and simultaneously diagonalizable, with normalized eigenba-
sis {ϕj} satisfying

Aϕj = ajϕj, Γϕj = γjϕj, C0ϕj = λjϕj.

Then choosing B ∈ S+(X)  to be the zero operator, we have

K(B, δ)ϕj =
λjaj

γj + a2
j λj

ϕj

=
1

γj

ajλj
+ aj

ϕj.

Assume that jaj → 0, and set γj = ajλj/j. Then ‖K(B, δ)ϕj‖ � Cj → ∞, with C > 0, and so 
the uniform boundedness cannot hold.

This does not necessarily mean that the conclusions of propositions 3.2 and 3.3 are false if 
Y is not assumed finite dimensional, however the proofs we provide of these propositions rely 
strongly on the conclusions of lemma 3.4.

Proof of proposition 3.2. We first show that for δ sufficiently small, the map F ( · , δ) is 
a contraction on S+(X). To do this, we look at the Fréchet derivative of the map, which may 
be calculated explicitly. For B ∈ S+(X)  and V ∈ L(X), we have

DBF (B, δ)V

= δ2C0A
∗(Γ + δ2MBM∗ + AC0A

∗)−1MVM∗(Γ + δ2MBM∗ + AC0A
∗)−1AC0

= δ2K(B, δ)MVM∗K(B, δ)∗

where K(B, δ) is as defined in lemma 3.4. The norm of the derivative can be estimated as
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∥∥DBF
(
B, δ

)∥∥
L(X)→L(X) = sup

‖V‖L(X)=1

∥∥DBF
(
B, δ

)
V
∥∥
L(X)

� sup
‖V‖L(X)=1

δ2‖K(B, δ)‖2
L(Y ,X)‖M‖2

L(Y)‖V‖L(X)

� (βδ)2

by the estimate of lemma 3.4. Since the above bound is uniform in B, we may use the mean 
value theorem to deduce that for all B1,B2 ∈ S+(X),

‖F (B1, δ)− F (B2, δ)‖L(X) � (βδ)2‖B1 − B2‖L(X)

and so F ( · , δ) is a contraction for δ < 1/β. The set S+(X) is a complete subset of the space 
L(X), and so by the Banach fixed-point theorem there exists a unique C(δ) ∈ S+(X) such that

C(δ) = F (C(δ), δ),

and we have C�(δ) → C(δ). Moreover,

‖C�(δ)− C(δ)‖L(X) = ‖F (C�−1(δ), δ)− F (C(δ), δ)‖L(X)

� (βδ)2‖C�−1(δ)− C(δ)‖L(X),

and recursively,

‖C�(δ)− C(δ)‖L(X) � (βδ)2�‖C1(δ)− C0‖L(X) = α1(βδ)
2�.

We finally show that we actually have C(δ) ∈ S+(X) and so the covariance does not become 
degenerate in the limit. We denote Cpost = F (Cpost, 0) the exact posterior covariance in the 
absence of model error, noting that Cpost ∈ S+(X) as we assume C0 ∈ S+(X) and Γ ∈ S+(Y). 
From a similar argument as in the proof of lemma 3.4, we have

0 < Cpost = C0 − C0A
∗(Γ + AC0A

∗)−1AC0

� C0 − C0A
∗(Γ + δ2MC(δ)M∗ + AC0A

∗)−1AC0

= C(δ),

which gives the result. □ 

Proof of proposition 3.3. We may express G� in the form of an affine mapping,

G�(m, δ) = H�(δ)m + g�(δ)

where H�(δ) and g�(δ) are given by

H�(δ) = −δC0A
∗(Γ + δ2MC�(δ)M

∗ + AC0A
∗)−1

M

= −δK(C�(δ), δ)M,

g�(δ) = m0 + C0A
∗(Γ + δ2MC�(δ)M

∗ + AC0A
∗)−1

(b − Am0)

= m0 + K(C�(δ), δ)(b − Am0),

respectively. From the estimates of lemma 3.4, we obtain the uniform bounds
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‖H�(δ)‖L(X) � βδ < 1,

‖g�(δ)‖X � ‖m0‖X +
∥∥K(C�(δ), δ)

∥∥
L(Y)‖b − Am0‖X

= ‖m0‖X + β‖b − Am0‖X = L.

From the convergence of the sequence {C�(δ)}��1 in the previous proposition, we see that 
{H�(δ)}��1 and {g�(δ)}��1 also converge, the limits being denoted by H(δ) and g(δ), respec-
tively. Explicitly,

H(δ) = −δK(C(δ), δ)M,
g(δ) = m0 + K(C(δ), δ)(b − Am0).

Moreover, since B �→ K(B, δ) is Fréchet differentiable, this convergence occurs at the same 
rate as the convergence of {C�(δ)}��1.

Next we show that {m�(δ)}��1 remains bounded for sufficiently small δ. From the bounds 
above, we have

‖m�(δ)‖X � ‖H�−1(δ)‖L(X)‖m�−1(δ)‖X + ‖g�−1(δ)‖X

� βδ‖m�−1‖X + L,

and therefore, by repeatedly applying the estimate, we obtain

‖m�(δ)‖X � (βδ)�‖m0‖X + L
�−1∑
j=0

(βδ) j

� (βδ)�‖m0‖X +
L

1 − βδ
,

which provides a uniform bound for δ < 1/β.
To prove the convergence, we write first for i � 1 the estimate

‖mi+1(δ)− mi(δ)‖X = ‖Hi(δ)mi(δ) + gi(δ)− Hi−1(δ)mi−1(δ)− gi−1(δ)‖X

� ‖Hi(δ)mi(δ)− Hi(δ)mi−1(δ)‖X

+ ‖Hi(δ)mi−1(δ)− Hi−1(δ)mi−1(δ)‖X

+ ‖gi(δ)− gi−1(δ)‖X

� ‖Hi(δ)‖L(X)‖mi(δ)− mi−1(δ)‖X

+ ‖Hi(δ)− Hi−1(δ)‖L(X)‖mi−1(δ)‖X

+ ‖gi(δ)− gi−1(δ)‖X ,

and further, by the geometric convergence of the sequences {Hi(δ)} and {gi(δ)}, and the uni-
form boundedness, for some γ > 0,

‖mi+1(δ)− mi(δ)‖X � βδ‖mi(δ)− mi−1(δ)‖X + γ(βδ)2i.

By by repeatedly applying the estimate, we arrive at
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‖mi+1(δ)− mi(δ)‖X � (βδ)i+1‖m0‖X + γ

i∑
j=0

(βδ) j((βδ)2)i−j

= (βδ)i+1‖m0‖X + γ

(
(βδ)2

)i+1 − (βδ)i+1

(βδ)2 − βδ
.

From this bound, it follows that {m�(δ)}��1 is a Cauchy sequence: for k > �, we have

‖mk(δ)− m�(δ)‖X �
k−1∑
i=�

‖mi+1(δ)− mi(δ)‖X

� ‖m0‖X

k−1∑
i=�

(βδ)i+1 + γ

k−1∑
i=�

(
(βδ)2

)i+1 − (βδ)i+1

(βδ)2 − βδ

= ‖m0‖X
(βδ)�+1 − (βδ)k+1

1 − βδ
+ γ

(βδ)�+1 − (βδ)k+1

(βδ − 1)((βδ)2 − βδ)

+ γ

(
(βδ)2

)�+1 −
(
(βδ)2

)k+1

(δ2 − 1)(δ2 − βδ)

which tends to zero as k, � → ∞, provided δ is small enough. Thus the sequence {m�(δ)} 
converges, and we denote the limit by m(δ). Taking the limit as k → ∞ in the above inequal-
ity, we have

‖m�(δ)− m(δ)‖X �
(βδ)�+1

βδ − 1
+ γ

(βδ)�+1

(βδ − 1)((βδ)2 − βδ)
+ γ

(
(βδ)2

)�+1

(δ2 − 1)((βδ)2 − βδ)

= O
(
(βδ)�

)

for all � � 1, and it follows that {m�(δ)}��1 converges geometrically with rate βδ.
To show that the limit m(δ) is indeed a fixed point of G(·, δ), we first we note that

‖G�(m�(δ), δ)− G(m(δ), δ)‖X = ‖H�(δ)m�(δ) + g�(δ)− H(δ)m(δ)− g(δ)‖X

� ‖H�(δ)− H(δ)‖L(X)‖m�(δ)‖X

+ ‖H(δ)‖L(X)‖m�(δ)− m(δ)‖X + ‖g�(δ)− g(δ)‖X

→ 0,

as � → ∞, and so it follows that

m(δ) = lim
�→∞

m�+1(δ) = lim
�→∞

G�(m�(δ), δ) = G(m(δ), δ).

All that remains is to check that the fixed point is unique. Supposing that h(δ) is another fixed 
point, it follows that

‖m(δ)− h(δ)‖X = ‖G(m(δ), δ)− G(h(δ), δ)‖X

� ‖H(δ)‖L(X)‖m(δ)− h(δ)‖X

� βδ‖m(δ)− h(δ)‖X .
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Hence, for δ < 1/β we must have that m(δ) = h(δ), and the result follows. □ 

3.3. Convergence in finite dimensions

Above we had to assume that the prior distribution was sufficiently close to the posterior in 
order to guarantee convergence; in finite dimensions we may drop this assumption and still get 
convergence of the covariances. Here we assume that X and Y are Euclidean spaces, X = RN  
and Y = RJ .

We use the following convention: for symmetric matrices B1,B2, we write B1 � B2, or 
B1 > B2 to indicate that B1 − B2 is non-negative definite, or positive definite, respectively. We 
denote by SN

+ ⊆ RN×N  the set of positive definite N × N  matrices. In this section, the adjoint 
operators are denoted as transposes.

We start by showing that the iterative updating formula (4) gives a convergent sequence. 
However, instead of the covariance matrices, it is more convenient to work with the precision 
matrices, defined as B� := C−1

� . Observe that formula (4) can be written as

C−1
�+1 = AT(Γ +MC�M

T)−1A+ C−1
0 ,

which motivates the following result.

Proposition 3.6. Let B0 = C−1
0 ∈ SN

+ be a positive definite precision matrix, and let the 
sequence {B�}��0 be generated iteratively by the formula B�+1 = R(B�), where R : SN

+ → SN
+ 

is given by

R(B) = AT(Γ +MB−1MT)−1A+ B0.

Then the sequence {B�}��0 is increasing in the sense of quadratic forms, and there exists a 
positive definite B ∈ SN

+ such that B� ↑ B.
Consequently, the sequence of covariances {C�}��0  defined by (4) satisfies C� ↓ C := B−1.

Proof. We first show that B�+1 � B� for all � using induction. Write

r(B) = AT(Γ +MB−1MT)−1A,

so that R(B) = r(B) + B0. If B > 0, then r(B) � 0, proving that B1 = r(B0) + B0 � B0.
Now assume that B� � B�−1. Then we have

B�+1 − B� = R(B�)− R(B�−1)

= r(B�)− r(B�−1)

= AT
((

Γ +MB−1
� MT

)−1 −
(
Γ +MB−1

�−1M
T
)−1

)
A.

To prove the claim, it suffices to show that the bracketed difference is non-negative definite. 
Consider the difference

(
Γ +MB−1

�−1M
T
)
−
(
Γ +MB−1

� MT
)
= M

(
B−1
�−1 − B−1

�

)
MT � 0

by the induction assumption. Therefore,
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(
Γ +MB−1

�−1M
T
)−1

�
(
Γ +MB−1

� MT
)−1

,

which implies the desired non-negative definiteness.
To prove that the sequence {B�}��0 is bounded as quadratic forms, denote the quadratic 

form as

Q�(u, v) = uTB�v, u, v ∈ RN .

Since
(
Γ +MB−1

�−1M
T
)−1

� Γ−1,

we have

Q�(u, u) � (Au)TΓ−1Au + uTB0u,

proving the boundedness of the sequence.
In particular, it follows that for each u ∈ RN ,

Q�(u, u) → uTBu, as � → ∞

for some symmetric positive definite matrix B ∈ RN×N . The fact that the matrix entries of B� 
converge to the corresponding entries of B follows from the polar identity,

uTB�v =
1
4
(Q�(u + v)− Q�(u − v)) ,

with u, v being the canonical basis vectors. This completes the proof. □ 

4. The general case

In general, the sequence of distributions π� are not Gaussian, and so it is considerably harder 
to analyze the convergence as we did in the previous section. In this section we consider how 
the algorithm may be implemented in practice, and in particular, how to produce an approx-
imation to the posterior distribution using a finite number of full model evaluations. This 
approximate distribution can be used for generating samples using only approximate model 
evaluations, leading to a significantly lower computational cost over sampling using the true 
posterior based on the full model.

In section 4.1 we outline the general framework for sampling from the approximate poste-
rior sequence and updating the density, making use of particle approximations. In section 4.2 
we reformulate the iteration (3) in terms of operators on the set of probability measures, and 
provide results on properties of these operators. Convergence in the large particle limit is 
shown, using the new formulation of the update. In section 4.3 a particular rejection sampling 
method, based on a Gaussian mixture proposal, is studied. Importance sampling is then con-
sidered in section 4.4 and similar convergence is shown.
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4.1. Updating the densities via sampling

We consider the algorithm in section 2.3, and in particular, address the question of how to 
generate a sequence of approximate samples from the iteratively defined densities µ� given by 
(3). We shall use particle approximations to do this. Assume that

S� =
{
(u1

�, w1
�), (u

2
�, w2

�), . . . , (uN
� , wN

� )
}

, � = 0, 1, 2, . . .

is the current approximate sample of the unknowns with relative weights w j
�. For � = 0, the 

sample is obtained by independent sampling from the prior, and w j
0 = 1/N . We then compute 

the modeling error sample,

M� =
{

m1
�, m2

�, . . . , mN
�

}
, � = 0, 1, 2, . . .

by defining

m j
� = M(u j

�).

Consider now the model (2). Assuming that the modeling error is independent of the unknown 
u, we may write a conditional likelihood model,

π(b | u, m) ∝ πnoise(b − f (u)− m).

Let ν�(m) denote the probability density of the modeling error based on our current informa-
tion. Then, the updated likelihood model based on the approximate model is

π�+1(b | u) =
∫

π(b | u, m)ν�(m)dm,

and, using a Monte Carlo integral approximation, postulating that the realizations m j
� inherit 

the weights of the sample points u j
�, we obtain

π�+1(b | u) ≈
N∑

j=1

w j
�π(b | u, m j

�).

The current approximation for the posterior density is

π�+1(u | b) ∝ πprior(u)
N∑

j=1

w j
�π(b | u, m j

�),

suggesting an updating scheme for S� → S�+1:

 (a) Draw an index kj by replacement from {1, 2, . . . , N}, using the probabilities w j
�; 

 (b) Draw the sample point

u j
�+1 ∼ πprior(u)π(b | u, mkj

� ). (6)

Part (b) above is straightforward, in particular, if the model is Gaussian and f is linear, such as 
in the linearized model for EIT, since the measure (6) is then a Gaussian. We will demonstrate 
the effectiveness of this approach in section 5.2. Otherwise we may consider other sampling 
methods such as importance sampling; this is what is done in the following subsections.
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4.2. A convergence result for particle approximations

In this section, we rewrite the updating formula in terms of mappings of measures, and ana-
lyze the convergence of the particle approximation under certain limited conditions.

Let µ� denote the current approximation of the posterior density for u. The updated likeli-
hood based on the modeling error is

π�+1(b | u) ∝
∫

X
πnoise(b − f (u)− M(z))µ�(dz),

and therefore, the updating, by Bayes’ formula, is given by

µ�+1(du) ∝ µprior(du)
∫

X
πnoise(b − f (u)− M(z))µ�(dz) = Pµ�(du). (7)

Furthermore, we write the normalization formally as an operator,

Lµ =
µ

µ(1)
, µ(1) =

∫

X
µ(du).

The model updating algorithm can therefore be written concisely as

µ�+1 = LPµ�, µ0 = µprior.

Let M(X) denote the set of finite measures on X. Denote by P(X) the set of probability 
measures on X, and for p ∈ (0, 1) denote by Mp(X) the set of finite measures with total mass 
lying in the interval [p, p−1].

Let μ and ν denote two random M(X)-valued measures, i.e. µω , νω ∈ M(X) for ω ∈ Ω, 
where Ω is a probability space. Denoting by E the expectation, we define the distance between 
random measures through

d(µ, ν)2 = sup
‖ϕ‖∞=1

E|µ(ϕ)− ν(ϕ)|2,

where the functions ϕ are continuous over X. For non-random measures, the definition coin-
cides with the total variation distance.

In the following two lemmas, which we need for the large particle convergence result that 
follows them, we make the following assumption about the model, prior and noise.

Assumption 4.1. There exists κ ∈ (0, 1) such that for all z ∈ X ,

κ �
∫

X
πprior(u)πnoise(b − f (u)− M(z)) du � κ−1.

Observe that this assumption holds if, for example, πnoise is Gaussian and both f, F are 
bounded. It also holds if f is linear rather than bounded, as will be established later. Under this 
assumption, we show the following results concerning the mappings P and L defined before.

Lemma 4.2. Let assumptions 4.1 hold. Then P : P(X) → Mκ(X), and

d(Pµ, Pν) � κ−1d(µ, ν).

Proof. First note that the assumption implies that κ � (Pµ)(1) � κ−1, and so P does indeed 
map P(X) into Mκ(X). Exchanging the order of integration, we see for any bounded measur-
able ϕ,
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(Pµ)(ϕ) =
∫

X

(∫

X
πprior(u)πnoise(b − f (u)− M(z))ϕ(u)du

)

︸ ︷︷ ︸
=:ψ(z)

µ(dz)

and so

|(Pµ)(ϕ)− (Pν)(ϕ)|2 = |µ(ψ)− ν(ψ)|2.

Using the assumption we see that ‖ϕ‖∞ � 1 implies that ‖ψ‖∞ � κ−1, and so

d(Pµ, Pν)2 � sup
‖ψ‖∞�κ−1

E|µ(ψ)− ν(ψ)|2

� sup
‖ψ‖∞�1

κ−2E|µ(ψ)− ν(ψ)|2

= κ−2d(µ, ν)2,

implying the claim. □ 

A similar result for the mapping L can be obtained.

Lemma 4.3. Let assumptions 4.1 hold. Then it follows that L : Mκ(X) → P(X), and  
furthermore, for µ, ν ∈ Mκ(X), we have

d(Lµ, Lν) � 2κ−2d(µ, ν).

Proof. The proof is essentially identical to that of lemma 5.17 in [15], with 1 in place of g. 
We skip the details here. □ 

We use the above results to analyze the convergence of particle approximations of the 
measures. We introduce the sampling operator SN : P(X) → P(X),

SNµ =
1
N

N∑
j=1

δu j , u1, . . . , uN ∼ µ i.i.d.

and we have

(SNµ)(ϕ) =
1
N

N∑
j=1

ϕ(u j), u1, . . . , uN ∼ µ i.i.d.

Observe that SNµ is a random measure, as it depends on the sample. It is shown in [15], lemma 
5.15, that the operator SN satisfies

sup
µ∈P(X)

d(SNµ,µ) �
1√
N

.

Define the sequence of particle approximations {µN
� }��0 to {µ�}��0 by

µN
0 = SNµ0,

µN
�+1 = SNLPµN

� .
 (8)

in light of the previous lemmas, now we prove the following result regarding convergence of 
this approximation as N → ∞:
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Proposition 4.4. Let assumptions 4.1 hold. Define {µ�}��0, {µN
� }��0 as above. Then,  

for each �,

d(µN
� ,µ�) �

1√
N

�∑
k=0

(2κ−3)k.

In particular, d(µN
� ,µ�) → 0 as N → ∞.

Proof. The triangle inequality for d(·, ·) yields

e� := d(µN
� ,µ�) � d(SNLPµN

�−1, LPµN
�−1) + d(LPµN

�−1, LPµ�−1),

and applying the bounds given by the previous lemmas, we obtain

e� �
1√
N

+ 2κ−2d(PµN
�−1, Pµ�−1)

�
1√
N

+ 2κ−3d(µN
�−1,µ�−1)

=
1√
N

+ 2κ−3e�−1.

The result follows since e0 = d(SNµ0,µ0) � 1/
√

N . □ 

4.3. Particle approximation with Gaussian densities

In this section, we consider the particle approximation when the approximate model is linear, 
while the accurate model need not be. This is the situation in the computed examples that will 
be discussed later.

Suppose that the approximate model f is linear, f (u) = Au, and the noise and prior distri-
butions are Gaussian,

πnoise = N (0,Γ), πprior = N (m0,C0).

Then the measure (6) is a Gaussian mixture:

πprior(u)π(b | u, m j
�) =

1
N

N∑
j=1

N (u | p j
�,C)

where the means and covariance are given by

C = (ATΓ−1A+ C0)
−1,

p j
� = C(ATΓ−1(b − m j

�) + C−1
0 m0).

The collection of samples S� can then be evolved via the following algorithm.

Algorithm (Linear approximate model). 

 1. Set � = 0. Define the covariance operator C = (ATΓ−1A+ C0)
−1. Draw an initial 

ensemble of particles {u j
�}N

j=1 from the prior measure µ0(du) = πprior(u)du, and define 
the collection S� = {u1

�, u2
�, . . . , uN

� }.

 2. Define the means p j
� = C(ATΓ−1(b − M(u j

�)) + C−1
0 m0), j = 1, . . . , N.
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 3. For each j = 1, . . . , N
 (i) Sample kj uniformly from the set {1, . . . , N}
 (ii) Sample u j

�+1 ∼ N ( pkj

� ,C)
 4. Set S�+1 = {u1

�+1, u2
�+1, . . . , uN

�+1}.
 5. Set � �→ �+ 1 and go to 2.

Note that the theory applies to the above example when the accurate model F is bounded:

Lemma 4.5. Let πprior = N (m0,C0) and πnoise = N (0,Γ) be Gaussian. Assume that 
f (·) = A· is linear and F is bounded. Then assumption 4.1 holds.

Proof. Let F0  >  0 be such that ‖F(z)‖Γ � F0 for all z ∈ X . We have via Cauchy-Schwarz 
and Young’s inequalities

πnoise(0) � πnoise(b − f (u)− M(z))

= πnoise(b − A(u − z)− F(z))

= D1 exp

(
−1

2
‖(b + Az)− Au − F(z)‖2

Γ

)

= D1 exp

(
−1

2
(
‖(b + Az)− Au‖2

Γ − 2〈(b + Az)− Au, F(z)〉Γ + ‖F(z)‖2
Γ

))

� D1 exp
(
−‖(b + Az)− Au‖2

Γ − F2
0

)

= D2 exp
(
−‖(b + Az)− Au‖2

Γ

)
.

Integrating with respect to the prior distribution, we therefore have that for any z ∈ X ,

πnoise(0) �
∫

X
πprior(u)πnoise(b − f (u)− M(z)) du

� D3

∫

X
exp

(
−‖(b + Az)− Au‖2

Γ − 1
2
‖u − m0‖2

C0
)

)
du

= D3

√
det

(
(
√

2ATΓ−1A+ C−1
0 )−1

)

which gives the result. □ 

We consider this setup later numerically in sections 5.2 and 5.3 in the contexts of electrical 
impedance tomography and groundwater flow problems respectively. In these cases the accu-
rate model F is not bounded and so we cannot deduce convergence in the large particle limit; 
however in practice we may modify the map F to be bounded by composing with a threshold-
ing map, corresponding to an additional prior belief that the conductivity/permeability fields 
are bounded uniformly below by positive constants.

Remark 4.6. For more general models, one could use a method such as rejection sampling 
in order to produce exact samples from the measure (6). A suitable proposal distribution for 
this rejection sampling could be, for example, a Gaussian mixture with appropriately chosen 
means and covariances [9].

Two natural candidates for non-Gaussian priors, that retain some of the simplicity of the 
Gaussian models without being as limited, are:
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 (i) Hierarchical, conditionally Gaussian prior models,

πprior(u | θ) ∼ N (µθ,Cθ),

  where the mean and covariance depend on a hyperparameter vector θ that follows a 
hyperprior distribution,

θ ∼ πhyper.

  The hypermodels allow the introduction of sparsity promoting priors, similar to total 
variation; [10, 11].

 (ii) Gaussian mixtures, which allow a fast sampling from non-Gaussian distributions through 
a local approximation by Gaussian or other simple distributions [33].

4.4. Importance sampling and convergence

In this section we consider an approximate sampling based updating scheme of the probabil-
ity densities using importance sampling. This method effectively turns a collection of prior 
samples into samples from the posterior by weighting them appropriately, using the fact that 
the posterior is absolutely continuous with respect to the prior.

Assume that at stage � of the approximation scheme, we have a collection of N particles and 

the corresponding weights, S� = {(u j
�, w j

�)}N
j=1. The associated particle approximation µN

�  of 
the probability distribution acting on a test function ϕ is

µN
� (ϕ) =

N∑
j=1

w j
�ϕ(u

j
�).

We evolve this distribution by acting on it with P and L. By the definition (7) of P, we first get 
an approximation

PµN
� (du) =




N∑
j=1

w j
�πnoise(b − f (u)− M(u j

�))


µprior(du)

=: g�(u)µprior(du).

To generate an updated sample based on this approximation, we use independent sampling to 

draw u j
�+1 ∼ µ0 , j = 1, . . . , N, and define the particle approximation by

µN
�+1(ϕ) =

N∑
j=1

w j
�+1ϕ(u

j
�+1), w j

�+1 =
g�(u

j
�+1)

N∑
j=1

g�(u
j
�+1)

.

Denoting by TN : P(X) → P(X) the importance sampling step, consisting of independent 
sampling and weighting, we may define an iterative algorithm symbolically as

µN
0 = TNµ0,

µN
�+1 = TNLPµN

� .
 (9)

Explicitly, the algorithm can be described as follows.
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Algorithm (Importance sampling). 

 1. Set � = 0. Draw an initial ensemble of particles {u j
�}N

j=1 from the prior measure 

µ0(du) = πprior(u)du, and initialize the weights w j
� = 1/N for each j = 1, . . . , N. Define 

the collection S� = {(u1
�, w1

�), (u
2
�, w2

�), . . . , (uN
� , wN

� )}.
 2. Define

g�(u) =
N∑

j=1

w j
�πnoise(b − f (u)− M(u j

�)).

 3. Sample u j
�+1 ∼ µ0 , j = 1, . . . , N i.i.d. and define the weights

w j
�+1 =

g�(u
j
�+1)

N∑
j=1

g�(u
j
�+1)

, j = 1, . . . , N.

 4. Set S�+1 = {(u1
�+1, w1

�+1), (u
2
�+1, w2

�+1), . . . , (uN
�+1, wN

�+1)}.
 5. Set � �→ �+ 1 and go to 2.

As in the previous section, we establish a convergence result for N → ∞ only under the 
restrictive condition of assumption 4.1. We recall the following result from [1]:

Lemma 4.7. Let µ ∈ P(X) be absolutely continuous with respect to the prior measure µ0,

µ(du) ∝ g(u)µ0(du),

where µ0(g2) < ∞. Define the quantity ρ � 1 by ρ = µ0(g2)/µ0(g)2. Then

d(TNµ,µ) � 2
√

ρ

N
.

By assumption 4.1, there exists κ ∈ (0, 1) such that κ � g�(ε) � κ−1 for all ε ∈ Y ,  
implying that

µ0(g2
�)

µ0(g�)2 � κ−4.

In particular, by applying the above lemma to the measure µ̂�+1 = LPµ�, we see that

d(TNLPµ�, LPµ�) �
2κ−2
√

N
.

We are ready to prove the following proposition establishing the convergence of the particle 
approximations as N → ∞:

Proposition 4.8. Let assumptions 4.1 hold for the noise distribution, and let {µ�}��0 be 
the sequence of the model error approximations of the posterior, and {µN

� }��0 a sequence of 
importance sampling approximations obtained as above. Then, for each �,

d(µN
� ,µ�) �

2κ−2
√

N

�−1∑
k=0

(2κ−3)k +
(2κ−3)�√

N
.

In particular, d(µN
� ,µ�) → 0 as N → ∞.
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Proof. From the triangle inequality for d( · , · ), we have

e� := d(µN
� ,µ�) � d(TNLPµN

�−1, LPµN
�−1) + d(LPµN

�−1, LPµ�−1).

The bounds derived above yield

e� �
2κ−2
√

N
+ 2κ−2d(PµN

�−1, Pµ�−1)

�
2κ−2
√

N
+ 2κ−3d(µN

�−1,µ�−1)

=
2κ−2
√

N
+ 2κ−3e�−1.

Since we have e0 = d(TNµ0,µ0) = d(SNµ0,µ0) � 1/
√

N , the result follows. □ 

Remark 4.9. In theory, the importance sampling method described above can be used with 
very weak assumptions on the forward maps and prior/noise distributions. However in prac-
tice it may be ineffective if the posterior is significantly far from the prior, such as when the 
size of the observational noise is small. To overcome this issue, one could instead consider 
Sequential Monte Carlo or sequential importance sampling methods to evolve prior samples 
into posterior samples by introducing a sequence of intermediate measures [5, 26].

5. Numerical illustrations

In this section, we demonstrate the convergence properties established in the preceding sec-
tions by means of computed examples. Furthermore, we demonstrate the enhanced recon-
structions obtained by modelling error as advocated in this paper. The first example is a linear 
inverse source problem, elucidating the geometric convergence in the linear Gaussian case. 
The second example is the EIT problem with linearized approximate model with a coarse 
FEM mesh, allowing for straightforward particle updates. In the last example we consider the 
problem of recovering the permeability field in the steady state Darcy flow model, again with 
a linearized approximate model.

5.1. Inverse source problem

As a proof of concept, we start by considering a simple one-dimensional inverse source 
problem. Let Ω = (0, 1) and define X = L2(Ω). Given u ∈ X, let p = P(u) ∈ H1

0(Ω) be the  
solution to the Laplace equation,

{
−p′′ = u x ∈ Ω

p = 0 x ∈ ∂Ω.

The inverse problem is to estimate the source u from pointwise observations of p. Therefore, 
define the observation operator O : H1

0(Ω) → RJ  by

O(u) =
(
u(q1), . . . , u(qJ)

)

for some set of points {q1, . . . , qJ} ⊆ Ω. We define the exact forward operator Aexact
� = O ◦ P. 

For numerical simulations, the exact forward model Aexact
�  is approximated by a high fidelity 
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proxy, A�, obtained by approximating the solution p through a finite difference solution on 
a fine mesh. The coarse mesh approximation of Aexact

� , used in the inverse model, is denoted 
by A = An. In our computed example, we use 210 − 1 = 1 023 equally spaced interior points 
for A�, while the coarse mesh model An is computed with of 2n  −  1 equally spaced interior 
points, n  <  10.

We let qj  =  j/16, j = 1, . . . , 15 = J be equally spaced observation points, and to gener-
ate the simulated data, we corrupt the high fidelity data with a small amount of white noise, 
ε ∼ N (0,Γ), where we set Γ = 10−8IJ. The prior is chosen to be a standard Brownian motion, 
specifically we take µ0 = N (0,C0) with

C0 = (−∆)−1, ∆ =
d2

dx2 ,

D(−∆) =

{
u ∈ H2(Ω)

∣∣∣∣ u(0) = 0,
du
dx

(1) = 0
}

,

and the true source used for data generation is drawn from the prior. Numerically the precision 
operator C−1

0  is implemented as the finite difference Laplacian matrix. We perform L  =  30 
iterations in each simulation.

The posterior mean and covariance, mpost,Cpost, corresponding to the high fidelity model, 
and the corresponding mean and covariance, mn

post,C
n
post, based on the approximate model are 

given by

mpost = m0 + C0A
T
� (Γ + A�C0A

T
� )

−1(b − A�m0),

Cpost = C0 − C0A
T
� (Γ + A�C0A

T
� )

−1A�C0,

mn
post = m0 + C0A

T
n (Γ + AnC0A

T
n )

−1(b − Anm0),

Cn
post = C0 − C0A

T
n (Γ + AnC0A

T
n )

−1AnC0,

respectively. The approximate posterior mean and covariances (4) obtained by the modeling 
error approach, after � iterations, are denoted by m� and C�, respectively.

Table 1 shows the approximation errors arising from both approximations of Cpost  and 
mpost with different discretization levels. The table shows that the modeling error approach 
produces a better approximation of the posterior mean than the model ignoring the modeling 
error, while the approximate covariances are slightly less accurate as approximations of the 
posterior covariance than those found without allowing for the modeling error correction. 
These experiments confirm our assertion at the start of the paper, namely that allowing for 
model error can result in improved point estimates (here the posterior mean) but that the 

Table 1. The approximation errors of the approximate posterior means and 
covariances for various approximation levels with and without the inclusion of the 
modeling error correction. The matrix norms are the Frobenius norms.

n ‖mL − mpost‖ ‖mn
post − mpost‖ ‖CL − Cpost‖ ‖Cn

post − Cpost‖

4 0.1906 0.2986 0.0676 0.0381
5 0.0455 0.0739 0.0170 0.0095
6 0.0111 0.0182 0.0043 0.0024
7 0.0028 0.0045 0.0011 0.0006
8 0.0007 0.0011 0.00026 0.00015
9 0.0002 0.0003 0.00006 0.00004
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iteration introduced does not converge to the true posterior distribution (as evidenced by the 
error in the covariance at fixed n and large L.)

To demonstrate the convergence rate, figure 1 shows the mean and covariance errors for 
various approximation levels as functions of the number of iterations. The plots, as well as 
the tabulated values, table 2, of the logarithmic slopes of the approximation errors verify the 
geometric convergence rates, with their dependence on the approximation level. Observe that 
the logarithm of the convergence rate for the covariance, a quadratic quantity, is twice that of 
the mean.

5.2. Electrical impedance tomography (EIT)

In this section, we revisit the modeling error due to coarse discretization of a PDE model 
in the context of electrical impedance tomography (EIT). Let Ω ⊂ Rd , d  =  2, 3, denote a 
bounded connected set with boundary ∂Ω, and let σ : Ω → R be a function modeling the 
electric conductivity in Ω, 0 < σm � σ � σM < ∞. We assume that S electrodes are 
attached to the boundary ∂Ω, and we model them as open disjoint surface patches es ⊂ ∂Ω, 
1 � s � S. Assuming that an electric current Is is injected through es into the body modeled by Ω,  

Figure 1. The trace of the errors ‖m� − mL‖ and ‖C� − CL‖, illustrating their convergence 
rates. From left to right, top to bottom, the approximation level n is increased from 4 
to 9.

Table 2. The convergence rates quantified in terms of the slope of the logarithmic plot 
of mean and covariance deviation from the limit values mL and CL before the deviations 
plateau, indicating that the algorithm has converged.

n Slope of log ‖m� − mL‖ Slope of log ‖C� − CL‖ ‖An − A�‖

4 −1.80 −3.60 0.101
5 −3.13 −6.26 0.0706
6 −4.57 −9.00 0.0491
7 −6.30 −11.9 0.0335
8 −7.73 −14.8 0.0219
9 −9.34 −14.9 0.0127
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the electric voltage potential v in Ω, and the electrode voltages Vs on the electrodes can be 
found as a solution of the complete electrode model (CEM) boundary value problem [32],





∇ ·
(
σ∇v

)
= 0 x ∈ Ω

σ ∂v
∂n = 0 x ∈ ∂Ω \

⋃S
s=1 es

v + zsσ
∂v
∂n = Vs x ∈ es, 1 � s � S∫

es
σ ∂v

∂n dS = Is 1 � s � S.

Here, the parameters zs  >  0 are the presumably known contact impedances, and the currents 
satisfy the Kirchhoff’s law, or conservation of charge condition,

S∑
s=1

Is ∈ RS
0 =

{
V ∈ RL

∣∣∣∣
S∑

s=1

Vs = 0
}

.

The solution of the boundary value problem is the unique solution (v, V) ∈ H1(Ω)× RS
0 of the 

weak form variational problem

B((w, W), (v, V)) =

S∑
s=1

IsWs = 〈(w, W), bI〉, for all (w, W) ∈ H1(Ω)× RS
0,

where bI = (0, I) ∈ H1(Ω)× RS
0, and

B((w, W), (v, V)) =

∫

Ω

σ∇w · ∇vdx +
S∑

s=1

1
zs

∫

es

(w − Ws)(v − Vs)dS.

To discretize the problem, assume that Ω is approximated by the union of triangular or tetrahe-
dral elements, the mesh containing nf nodes (‘f’ for fine), and let {ψj}nf

j=1 denote a nodal-based 
piecewise polynomial Lagrange basis. Further, let {φs}S−1

s=1 denote a basis of RS
0. We define the 

basis functions ψj ∈ H1(Ω)× RS
0 as

ψj = (ψj, 0), 1 � j � nf, ψnf+s = (0,φs), 1 � s � S − 1.

We approximate the potential-voltage pair (v, V) as

(v, V) =

nf+S−1∑
j=1

αjψj,

and discretize the forward problem by choosing (w, W) = ψk, to arrive at the Galerkin 
approximation,

nf+S−1∑
j=1

B(ψk,ψj)αj = 〈ψk, bI〉, 1 � k � nf + S − 1. (10)

Further, to parametrize the conductivity, we define a discretization of Ω by triangular or tetra-
hedral elements, independent of the discretization above, with K nodes, and denote by {ηj}K

j=1 
the nodal-based piecewise polynomial Lagrange basis functions. We then parametrize the 
conductivity by writing

σ(x) = σ0exp




K∑
j=1

ujηj(x)


 , x ∈ Ω,
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where σ0 > 0 is a fixed background conductivity. The matrix [B(ψk,ψj)] defining the system 
(10) is parametrized by the vector u ∈ RK , and we write the equation in matrix form concisely 
as

Anf
u α = b(I),

where we have indicated explicitly the dependency on the discretization by the number nf of 
nodes. Solving this system for α, extracting the last S  −  1 components αnf+s, 1 � s � S − 1, 
and representing the voltage in terms of the basis functions φs defines the forward map

u �→ V =

S−1∑
s=1

αnf+sφs = Rnf
u I, where α = (Anf

u )
−1b(I),

where Rnf
u ∈ RS×S  is the resistance matrix. We repeat the calculation for a full frame of S  −  1 

linearly independent current patterns, I1, . . . , IS−1 ∈ RS
0, obtaining the full frame of voltage 

patterns V1, . . . , VS−1. Finally, the voltage patterns are stacked together in a vector, constitut-
ing the forward model for the observation,

V =




V1

...
VS−1


 = Fnf(u), Fnf : RK → RS(S−1).

To guarantee satisfactory accuracy of the forward model, the discretization needs to be fine 
enough, in particular to capture the singularities of the voltage potential v at the electrode 
edges. To demonstrate the modeling error effect, we construct a forward map defined over 
a coarser FEM mesh with nc nodes (‘c’ for coarse), nc < nf , and denote the corresponding 
forward map by

V = Fnc(u), Fnc : RK → RS(S−1), nc < nf.

Observe that the discretization of u is independent of the FEM mesh, and is not changed when 
passing to a coarser computational mesh. In our computed examples, we use a piecewise lin-
ear Lagrange basis to represent both u and v over the different meshes. The three meshes that 
we base our simulations, generated with the mesh generator described in [28], on are shown 
in figure 2. The number of electrodes is S  =  16.

We assign the Whittle–Matérn prior [29, 30] for the vector u defining the conductivity so 
that

ζλ−1 (−λ2Lg + IK
)

u ∼ N (0, IK), (11)

where Lg ∈ RK×K  is the graph Laplacian defined on the conductivity mesh, λ > 0 is a cor-
relation length parameter, ζ > 0 is amplitude scaling, and IK is the identity matrix. In figure 3, 
three independently drawn realizations of the conductivity distributions are shown. The values 
of the model parameters are indicated in the figure caption.

We generate the data using the fine scale model F = Fnf, and using the conventional error 
model, i.e. ignoring the modeling error, compute a MAP estimate uMAP using the forward map 
f = Fnc in the inverse solver. The estimate is based on a simple Gauss-Newton iteration. The 
additive noise covariance in this simulation is Γ = γ2IS(S−1) with γ = 10−3Vmax, where Vmax 
is the maximum of all noiseless electrode voltages over the full frame of S  −  1 voltage pat-
terns. The noise level is assumed to be low so that the modeling error is the predominant part 
in the uncertainty. In figure 4, we show the conductivity distribution that was used to generate 
the synthetic data with the model F, the conventional error model MAP estimate based on the 
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coarse mesh model f, as well as the enhanced error model estimate. In the latter, the modeling 
error mean and covariance are estimated from a sample of 1 500 random draws from the prior 
of u.

Observe that in the reconstruction based on the conventional error model, the true inclu-
sions are completely overshadowed by the boundary artifacts that are concentrated around the 
edges of the electrodes. This is to be expected, since the basis functions in the coarse FEM 
mesh do not capture the voltage singularities at the electrode edges, and the inverse solution 
compensates the modeling error with elevated conductivity at the edges to mitigate the singu-
larity. In agreement with previously published results, the enhanced error model produces a 
solution without modeling error artifacts.

The computation of the MAP estimate, regardless of the error model, requires repeated 
linearization of the forward map. The re-evaluation of the Jacobian may be time consuming, 
and therefore it is tempting to replace the coarse mesh FEM model with a linearized approx-
imation around the background conductivity σ0  corresponding to u  =  0,

(a) (b) (c)

Figure 2. Triangular meshes used in the numerical simulations. The number of 
electrodes is L  =  16, and they are indicated by red nodal points in the plot. The mesh 
for representing the conductivity distribution (left) has K  =  733 vertices and 1364 
elements. The coarse mesh for the forward solver (middle) has nc = 877 vertices and 
1592 elements, and the fine scale mesh (right) consist of nf = 2418 vertices and 4562 
elements.

 

 

1 1.5 2 2.5

 

 

1 1.5 2 2.5

 

 

1 1.5 2

Figure 3. Conductivities σ = σ0exp(u) corresponding to three independent draws of u 
from the prior density. The parameter values used here are λ = 0.2 and ζ = 1/15. The 
background conductivity is σ0 = 1.5. The radius of the disc is unity, and the units are 
arbitrary.
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f (u) = Fnc(0) + DFnc(0)u.

The solution of the inverse problem with the linearized model and Gaussian prior is par-
ticularly straightforward, requiring a solution of a linear system. We iterate the posterior 
updating algorithm, generating samples S� = {u1

�, . . . , uN
� }, � = 0, 1, 2, · · · using the model-

ing error updating scheme. In figure 5, we plot the conductivities corresponding to the poste-
rior means,

σ� = σ0exp(u�), u� =
1
N

N∑
j=1

u j
�,

as well as the marginal variances of the parameters u�, that is,

var� = diag


 1

N

N∑
j=1

(u j
� − u�)(u

j
� − u�)

T


 .

The sample size here was N  =  5000.
Finally, we consider the convergence of the iterated densities π� towards the posterior den-

sity by means of the Kullback–Leibler divergence, which we approximate using the particles 
drawn from π�,

DKL(π�‖πpost) =

∫
π�(u) log

(
π�(u)
πpost(u)

)
du ≈ 1

N

N∑
j=1

log

(
π�(u

j
�)

πpost(u
j
�)

)

=
1
N

N∑
j=1

log

(
π�(b | u j

�)

π(b | u j
�)

)
− log

(
π(b)
π�(b)

)
,

the second term corresponding to the normalization factors of the true and approximate pos-
teriors. Observe that to evaluate the posterior density, the fine mesh model needs not to be 
evaluated anew, since the fine mesh evaluations are already computed for the modeling error 

Figure 4. Left: the true conductivity used to generate the test data using the finely 
discetized FEM forward model. Center: a Gauss–Newton-based MAP estimate based 
on the coarsely discretized FEM forward model, using the conventional error model that 
ignores the modeling error. Right: the MAP estimate computed by using the enhanced 
error model, in which the modeling error mean and covariance are estimated from 1500 
random draws from the prior.
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sample. The sample-based approximation of the KL divergence is straightforward to compute 
up to the normalizing constants.

Figure 6 shows the sample-based estimates of the Kullback–Leibler divergence for 
� = 1, 2, . . . , �max = 5. To subtract the unknown normalization offset, we plot the differences

∆DKL(π�‖πpost) = DKL(π�‖πpost)− DKL(π�max‖πpost). (12)

The figure shows also the relative error of the sample mean approximating the true conductivity,

er(u�) =
‖σ − σ�‖

‖σ‖
.

As in the previous subsection, the numerical results demonstrate that the approach to model 
error advocated in this paper leads to improved estimates of the true value used to generate 
the data.

5.3. Steady state Darcy flow

In the last computed example, we consider the inverse problem of estimating the permeability 
distribution in porous medium from a discrete set of pressure measurements. More precisely, 
let the computational domain be Ω = (0, 1)2, and define X = L∞(Ω). For a given u ∈ X, 
called log-permeability define the pressure field p = P(u) ∈ H1

0(Ω) to be the solution to the 
steady-state Darcy equation with Dirichlet boundary conditions,

{
−∇ · (eu∇p) = g x ∈ Ω

p = 0 x ∈ ∂Ω
 (13)

for some fixed and presumably known source term g ∈ H−1(Ω).
We define now the observation operator O : H1

0(Ω) → RJ  by

Oj( p) =
1

2πε

∫

Ω

p(x)e−
1

2ε2 (x−qj)
2

dx, j = 1, . . . , J,

Figure 5. Sample means of the conductivity u� for � = 1, 2, 3, 4 (upper row), and 
sample marginal variances of the components of the vectors u at the same iterations.
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for some set of points {q1, . . . , qJ} ⊆ Ω. The noiseless data consist of smoothed observa-
tions at the points {q1, . . . , qJ}, converging to point observations as ε → 0. Note that 
each Oj is a bounded linear functional on H1

0(Ω). In what follows, we choose ε = 0.02, 
g(x1, x2) = 100 sin(πx1) sin(πx2), and let {q1, . . . , q25} be a uniformly spaced grid of 25 points 
in Ω. The accurate model is then defined by the composition F = O ◦ P. As in the EIT exam-
ple, the approximate model is defined through linearization,

f (u) = F(u0) + DF(u0)u.

for some fixed u0 ∈ X; in this example we choose u0  =  0. To construct the linear model, the 
derivative may be computed inexpensively using an adjoint method. The computation of the 
full Jacobian DF(u0) requires J  +  1 numerical solutions of a PDE of the form (13), and needs 
to be performed only once.

In this example, we generate three different data sets corresponding to different noise lev-
els: the noiseless data generated by using the non-linear model is perturbed by additive obser-
vational noise drawn from normal distribution N (0,Γi), where Γi = 10−i−1I, and i  =  1, 2, 3. 
The true log-permeability u†, defined as the sum of two unnormalized Gaussian densities, is 
shown in figure 7. In the same figure, the computed pressure field is shown, with the obser-
vation points indicated by black dots. Each data set is generated using a uniform mesh of 
128 × 128 points, while in the inverse computations, we use a reduced model with a uniform 
mesh of 64 × 64 points. We perform 10 iterations of the posterior updating algorithm, using 
as few as 100 particles in the particle approximation model.

As in the EIT simulations, we choose a Whittle-Matérn prior distribution for the vector u 
defining the permeability as given in (11). We make the choices λ = 0.1 and ζ = 1, and note 
that here Lg corresponds to the the finite-difference Laplacian on the reduced mesh using the 
standard 5-point stencil.

In figure 8 the conditional means arising from the different error models and data sets are 
shown. In this example the conventional and enhanced error models have very similar perfor-
mance in terms of inferring the conditional mean. They are both able to infer the geometry of 
the log-permeability field, particularly when the observational noise is small, however they 
fail to obtain the magnitude. The iterative algorithm proposed in this article is able to obtain 
both the geometry and magnitude with good accuracy in a small number of iterations. Figure 9 
shows the evolution of the size of the error between the conditional mean at iteration � and the 

Figure 6. Left: the Kullback–Leibler divergence (12) difference estimated by using a 
sample of 5000 realizations drawn from the approximate posterior densities π�. Right: 
the relative distance of the sample mean from the true conductivity over five iterations.
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true log-permeability field. In all cases the error has converged in 4 or 5 iterations, similarly to 
what was observed in the EIT experiments. As in the previous two subsections, the numerical 
results demonstrate that the approach to model error advocated in this paper leads to improved 
accuracy of the point estimates of the true parameter underlying the data.

5.4. Computational cost considerations

We consider the cost of generating a collection of S (effectively) independent samples from 
the posterior and from the three approximations considered. Denote G+ , G− the costs of eval-
uating the accurate and approximate models respectively. Let N denote the number of particles 
in the approximations, and L the number of iterations in the iterative algorithm. Let ρj � 1 
denote the reciprocal of the integrated autocorrelation time of each MCMC chain. Finally let 
Q denote the cost of producing a sample from a given Gaussian distribution.

In table 3 we show, up to constant scalings, the cost of generating these S samples. In the 
first column we focus on the case where the approximate model f is linear and the noise and 
prior are Gaussian. For the conventional and enhanced error models, the approximate poste-
rior is then Gaussian, and for the iterative error model it is a Gaussian mixture. After these 
approximations have been constructed, independent samples may be directly sampled. The 
cost of constructing the approximation is more expensive for the iterative error model than 
the enhanced error model by a factor of L, the number of iterations. However, from the results 
earlier in this section, there appears to be little increase in accuracy from choosing L  >  2.

In the second column we show the cost of generating the samples when f is nonlinear and 
πnoise is not necessarily Gaussian. The posterior approximations are then no longer Gaussian, 
and so we use MCMC methods to perform sampling. We consider cases where the prior is 
Gaussian, as then we may use known dimension robust MCMC methods to generate the sam-
ples. We focus on the cost of the pCN method [14] in which each proposed state is constructed 
using a draw from the prior distribution, and accepted according to its relative likelihood. 
Typically, when the data is very informative, states in the MCMC chain will be strongly cor-
related due to smaller jumps in proposed states, and so the reciprocal integrated autocorrela-
tion times ρj  will be very large. This includes situations when the observational noise is small, 
which is when accounting for model error is important.

Figure 7. (Left) The true log-permeability used to generate the data. (Right) The true 
pressure and the observation points {qj}25

j=1.
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For the approximate posteriors, after constructing the approximations, only evaluations of 
the approximate model f are required to generate samples. Conversely, to sample the full pos-
terior distribution no approximation needs to be constructed, but the accurate model F must be 
evaluated to generate each sample. Thus which method is the most appropriate to use is going 
to depend on the balancing of the number of samples required, the cost of evaluating F versus 
f, and the desired accuracy of approximation. Finally it should also be noted that the construc-
tion of the particle approximations may be parallelized in a natural way, whereas standard 
MCMC methods are inherently sequential.

6. Conclusions

Ill-posedness is a characteristic feature of inverse problems, and therefore, special attention 
needs to be paid to model uncertainties and model discrepancies that manifest themselves as 
highly correlated noise, deviating the measured data from the value predicted by the forward 
model. The modeling error is particularly detrimental when the quality of the data is good, 

Figure 8. (Left column) Conditional mean arising from conventional error model. 
(Middle column) Conditional mean arising from enhanced error model. (Right column) 
Conditional mean arising from iterative error model, iteration 10. From top to bottom, 
observational noise standard deviation is 10−2, 10−3, 10−4 respectively.
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and the exogenous noise does not mask the modeling errors that may become the predominant 
component of the noise. Quantification of the uncertainty due to the modeling errors is there-
fore an important part of successfully solving the inverse problem. Modeling error depends on 
the unknown that is the target of the inverse problem, and therefore, the Bayesian framework 
provides a natural basis for attacking the problem: the unknown of interest, modeled as a ran-
dom variable, can be used in a natural way to define the modeling error as a random variable, 
thus allowing a statistical interpretation of the modeling error. In this article we introduce, and 
study the properties of, an iterative method of refining the statistical description of the model-
ing error as our information about the unknown increases.

From the implementational point of view, two cases in which the refinement of the mod-
eling error distribution can be computed are identified. When the model is linear and the 
distributions are Gaussian, a fairly straightforward updating strategy of the posterior estimate 
is found, and convergence of this iteration can be shown. For non-linear inverse problems, a 
linearized approximate model leads to a tractable iterative algorithm based on particle approx-
imations of the posterior, and as demonstrated in the numerical experiments, the computed 
point estimates can be very good, significantly improving on estimates which ignore model 
error. However, as pointed out in the article, the limiting approximate probability density 
obtained by the iterative algorithm is not identical to the Bayesian posterior density, although 
it may be close to it. Regarding both the point estimate and the posterior it is important to 
recognize that while the approximation error approach does requires a number of evaluations 
of the expensive forward model, unlike traditional MCMC algorithms no rejections occur. 
Thus the methodology has potential to compute point estimates more economically than con-
ventional non-Bayesian approaches such as Tikhonov regularization; and it also holds the 
potential to produce reasonable posterior distributions at considerably lower cost than MCMC 
using the fully accurate Bayesian posterior. One of the future directions of research is to see 
how the approximation process proposed in this article can be effectively used to produce an 
estimate of the true posterior density.

Table 3. Comparisons of costs of producing samples from different approximations of 
the posterior distribution, as well as the full posterior. We assume in all cases that πprior 
is Gaussian.

f linear, πnoise Gaussian General case

Conventional SQ SQρ1G−
Enhanced N(G+ + G−) + SQ N(G+ + G−) + SQρ2G−
Iterative N(G+ + G−)L + SQ N(G+ + G−)L + SQρ3G−
Full — SQρ4G+

Figure 9. Convergence of the error ‖u� − u†‖ between the conditional mean and the 
truth as the number of iterations increases. From left to to right observational noise 
standard deviation is 10−2, 10−3, 10−4 respectively.
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Appendix. Abstract formulation of algorithm

Let (Z,Z) be a measurable space, and given A ∈ Z define the indicator function IA : Z → R 
by

IA(z) =
{

1 z ∈ A
0 z /∈ A.

Given two measures µ, ν  on (Z,Z), let µ ∗ ν denote their convolution, i.e. the measure on 
(Z,Z) given by

(µ ∗ ν)(A) =
∫

Z×Z
IA(u + v)µ(du)ν(dv)

for any A ∈ Z. Note that if we have u ∼ µ and v ∼ ν  independently, then u + v ∼ µ ∗ ν .

Algorithm (General). Let µ0 denote the prior distribution on u and Q0 the distribution  
of the noise ε. Given v ∈ Y , define Tv : Y → Y  to be the translation operator Tv( y )  =  y  +  v. 
Set � = 0.

 1. Given µ�, assume m ∼ M#µ� independently of ε, so m + ε ∼ Q(�+1)
0 := M#µ� ∗Q0. 

The likelihood is given by

b | u ∼ Q(�+1)
u := T#

f (u)Q
(�+1)
0 .

Assume that Q(�+1)
u � Q(�+1)

0 , so that we have Radon–Nikodym density

dQ(�+1)
u

dQ(�+1)
0

(b) = exp
(
− Φ(�+1)(u; b)

)
.

Bayes’ theorem gives the posterior distribution

µ�+1(du) ∝ exp
(
− Φ(�+1)(u; b)

)
µ0(du). (A.1)

 2. Set � �→ �+ 1 and go to 1. □ 

The above iteration could be written more directly as

µ�+1(du) ∝
d[T#

f (u)(M
#µ� ∗Q0)]

d[M#µ� ∗Q0]
(b)µ0(du)

 though the expression (A.1) makes links with previous work on non-parametric Bayesian 
inverse problems clearer.
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