## SINGULAR LIMITS IN FREE BOUNDARY PROBLEMS

## ANDREW STUART

ABSTRACT. We analyze the following class of nonlinear eigenvalue problems: find  $(u, \mu) \in B \times \Re$  satisfying

(1) 
$$D\mathbf{u} + \mu H(\mathbf{a} \cdot \mathbf{u} - 1)\mathbf{f}(\mathbf{u}) = 0 \quad \text{in } \Omega \subseteq \Re^N,$$

(2) 
$$u = 0 \quad \text{on } \partial\Omega.$$

Here H(X) is the Heaviside step-function defined by

$$H(X) = 0, \qquad X \le 0$$

$$H(X) = 1, \qquad X > 0.$$

B is some Banach space appropriate to the problem. D is taken to be a (possibly nonlinear) differential operator with the property that, when  $\mu=0$ , equations (1,2) have the unique solution  $\mathbf{u}\equiv 0$ .

The problem (1,2) is of free boundary type, since determination of the sets on which  $\underline{\mathbf{a}} \cdot \underline{\mathbf{u}} = 1$  is necessary to determine the solution. Our motivation is the study of porous medium combustion where equations of the form (1,2) represent equilibrium states of the coupled chemical and heat-transfer processes governing the combustion  $[\mathbf{3}, \mathbf{4}]$ . The step function H arises from the diffusion limited reaction rate, in the limit of large activation energy. The reaction behaves as a switch, triggered when the temperature of the solid phase reaches a threshold value. Problems such as (1,2) also arise in a variety of other applications such as the study of vortex motion in ideal fluids  $[\mathbf{1}]$  and plasma physics  $[\mathbf{7}]$ .

Clearly  $\underline{\mathbf{u}} \equiv 0$  satisfies (1,2) for all  $\mu$ . However, there is no classical bifurcation from this trivial solution, since all other solutions must satisfy  $\underline{\mathbf{a}} \cdot \underline{\mathbf{u}} > 1$  at some point in  $\Omega$ , and hence cannot be of arbitrarily small supremum norm. Nonetheless, it is useful to develop a constructive approach to the solution of (1,2) since explicit constructions are useful both as the basis for numerical continuation procedures and as the basis for local time-dependent stability calculations.

Received by the editors on May 20, 1989.

Let  $\chi = \{x \in \Omega | \underline{\mathbf{a}} \cdot \underline{\mathbf{u}} > 1\}$ . Then we find that, in a large class of problems, the singular limit meas  $(\chi) \to 0$  provides a basis for constructive existence proofs for nontrivial solutions of (1,2). The relevance of this limit in nonconstructive existence theory, when D is a linear elliptic operator, was noticed in the case N = 1 in  $[\mathbf{2}]$  and N = 2 in  $[\mathbf{1}]$ .

In [3,6] a rigorous connection is made between the limiting behavior of (1,2) as meas  $(\chi) \to 0$  and the application of standard local bifurcation theory to a transformed problem. The transformed problem arises from a coordinate transformation which maps  $\chi$  onto the unit ball; considering meas  $(\chi) = 0$  creates an artificial trivial solution and local bifurcation theory can be used to construct small amplitude solutions of the transformed problem, for meas  $(\chi) \ll 1$ .

This connection allows the results of local bifurcation theory to be used to construct solutions of (1,2), even though there is no local bifurcation structure inherent in (1,2). In [3] the approach is applied to proving the existence of traveling waves in a fourth order partial differential equation modeling full porous medium combustion; in [6] the approach is applied to the existence of steady solutions of a simpler model elliptic problem, derived from the equations in [3] under various simplifying assumptions (which are detailed in [5]).

Acknowledgments. I am grateful to the following for financial support: (i) the Science and Engineering Research Council, U.K.; (ii) the Royal Society; (iii) the NSF, under Grant DMS 8613813; (iv) Brigham Young University.

## REFERENCES

- 1. M.S. Berger and L.E. Fraenkel, Nonlinear desingularisation in certain free-boundary problems, Comm. Math. Phys. 77 (1980), 149–172.
- 2. P. Nistri, Positive solutions of a nonlinear eigenvalue problem with discontinuous nonlinearity, Proc. Roy. Soc. Edinburgh Ser. A 87 (1979), 133-145.
- 3. J. Norbury and A.M. Stuart, Travelling combustion waves in a porous medium, Parts I and II, SIAM J. Appl. Math. 48 (1988), 155–169 and 374–392.
- 4. ——and ——, Parabolic free boundary problems arising in porous medium combustion, IMA J. Appl. Math. 39 (1987), 241–257.

- **5.** A.M. Stuart, *The mathematics of porous medium combustion*, in *Nonlinear diffusion equations and their equilibrium states*, Volume II. Eds: W.-M. Ni, L.A. Peletier and J. Serrin, MSRI Publications, **13**, Springer, New York, 1988.
- $\bf 6.$  A.M. Stuart, Singular free boundary problems and local bifurcation theory, SIAM J. Appl. Math.  $\bf 49~(1989),~72–85.$
- 7. R. Temam, Remark on a free boundary value problem arising in plasma physics, Comm. Partial Differential Equations  $\bf 2$  (1977), 563–586.

School of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK.