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Computational Complexity of
Metropolis-Hastings
Methods in High Dimensions

Alexandros Beskos and Andrew Stuart

Abstract This article contains an overview of the literature concerning the com-
putational complexity of Metropolis-Hastings based MCMC methods for sampling
probability measures on R4, when the dimension d is large. The material is struc-
tured in three parts addressing, in turn, the following questions: (i) what are sensible
assumptions to make on the family of probability measures indexed by d ? (ii) what
is known concerning computational complexity for Metropolis-Hastings methods
applied to these families? (iii) what remains open in this area?

1 Introduction

Metropolis-Hastings methods [19, 15] form a widely used class of MCMC meth-
ods [17, 21] for sampling from complex probability distributions. It is therefore of
considerable interest to develop mathematical analyses which explain the structure
inherent in these algorithms, especially structure which is pertinent to understanding
the computational complexity of the algorithm. In this short article we overview the
literature concerning the computational complexity of Metropolis-Hastings based
MCMC methods for sampling probability measures on R?, when the dimension d
is large. The presentation will be discursive: theorems will not be given, rather we
will outline the essential ideas and give pointers to the relevant literature where the
theorems are stated and proved.
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The article is organized around three sections. In Section 2 we address the ques-
tion of how to make sensible assumptions on the family of probability measures
indexed by dimension d. In Section 3 we overview what is known concerning com-
putational complexity for Metropolis-Hastings methods applied to these families.
Section 4 highlights open questions.

2 Structure of the Target

2.1 Product Target

A pioneering paper in the study of Metropolis methods in high dimensions is [10];
it studied the behaviour of random walk Metropolis methods when applied to target
distributions with density

Al (x) = 0L, f(x:). (1)

A similar study was undertaken in [22] for Langevin based Metropolis methods.
Whilst these were amongst the first papers to pursue a rigorous study of Metropolis
methods in high dimensions, a natural objection to this work is that families of target
measures of the form (1) are restrictive from an applied perspective and, in any case,
can be tackled by sampling a single one-dimensional target, because of the product
structure. Partly in response to this objection, there have been several papers which
generalize this work to target measures which retain the product structure inherent in
(1), but are no longer 1.1.d.. To be precise, we introduce standard deviations {)\i,d}le
so that

(= L L0 %) . @

The papers [2, 23] consider this form of measure in the case where A; ;4 = A; only,
when the standard deviations do not change with dimension. Similar objections
maybe raised concerning applicability of this work, namely that the product struc-
ture renders the problem far from most applications.

2.2 Beyond the Product Structure

In [5, 3] a different approach was taken, motivated by an infinite dimensional per-
spective arising in many applications. The target measure 7 is defined on a function
space and is absolutely continuous with respect to some simpler reference measure

0"
dm

H(x) ox exp(—¥ (x)). 3)

For example 7 and mp might be the posterior and prior distributions respectively
in the Bayesian formulation for an inverse problem on function space [7], or might
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arise from a (possibly conditioned on observations, end-point constraints etc.) SDE
via the Girsanov formula [12]. Often m( has a product structure when written in an
appropriate basis.

Perhaps the simplest context in which to see such a product structure is to con-
sider the case where m( is a Gaussian distribution NV (0,C) on a Hilbert space H.
The eigenvalue problem

Coi = A} 4)
provides a basis {¢;}7°, in which the operator C is diagonal and hence may be used
to create a coordinate system in which there is a product structure. For the Gaussian
measure to be well defined, C must be a trace-class operator which in turn implies

that the A;’s are square summable [9]. Any function x € H may be written as

X :in¢i- (5)

i=1

If x ~ N (0, C) then the {x;} form a sequence of independent Gaussian random vari-
ables on R with x; ~ N (O, )\,.2). Thus we may write

x =Y Edidy (6)

=l

where the &; are an i.i.d. sequence of standard unit Gaussians. This shows that any
Gaussian measure can be identified with a product measure on R°°, an important
idea which underlies the connections between simple product measures and quite
complex measures 7 given by (3). The representation (6) is known as the Karhunen-
Loéve expansion.

In the applications cited in [7, 12], the exponent ¥ is shown to satisfy useful
properties which can be exploited in the design and analysis of sampling methods.
In particular, ¥ can be shown to be bounded from below and above polynomially,
and to be Lipschitz, on some Banach space X of full measure under mg.

Consideration of some finite dimensional approximation of (3) will lead to a
target measure 7¢ of the form

d

Eog(x) ocexp(—¥9 (x)) 3 (7)

where ng is given by (2). Such measures are no longer of product form. However,
the fact that they arise as approximations of measures on function space which are
absolutely continuous with respect to a product measure leads to certain properties
of ¥4 being uniform in d. Furthermore, absolute continuity of 7 with respect to g
means, in rough terms, that if we expand a sample from 7 and one from g in an
orthonormal basis for H, then the expansion coefficients are asymptotically (in the
parameter indexing the expansion) identical: indeed absolute continuity sets strict
conditions on the rate at which this asymptotic behaviour must occur (the Feldman-
Hajek theorem [9]). Intuitively this allows for insight gleaned from the case of prod-
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uct measures to be transferred to this more applicable context and explains the im-
portance of the initial work in [10, 22, 23] concerning product measures.

These insights enable proof that, in some contexts, w4 is bounded from below
and above polynomially and is Lipschitz, with constants uniform in dimension d,
provided appropriate norms are chosen to reflect the underlying infinite dimensional
norm on X; see [3].

To give a little more detail on the nature of finite dimensional approximations of
(3) we continue with the case where the reference measure is symmetric Gaussian
and the Karhunen-Loéve expansion (5). If we denote by P¢ the orthogonal projec-
tion of H onto the linear span

PUH := span{¢y, ..., ¢4}

then we may define the measure m,; on H by
—XL (x) x exp(—¥ (P9x)). (8)

This measure is identical to 7y on H\ P?H, i.e. on the orthogonal complement of
PO

On P9H, it provides a measure with the structure (7) and with the reference
measure yrg given by (2) for A; 4 = A; given by (4); see [3] for details. Further ap-
proximation may be necessary, or desirable, as it may not be possible to evaluate ¥,
even on P9H. In the case of SDE (possibly conditioned on observations, end-point
constraints etc.), and finite difference approximations (Euler-Maruyama method)
one again obtains a measure of the form (7) with the reference measure Jr(‘f given by
(2), but now the A; 4 depend on d and satisfy A; 4 — A; as d — oo, for each fixed i;
see [3] for details. .

In summary, the early foundations of the study of the computational complex-
ity of Metropolis methods in high dimension are based in the study of families of
product measures (2); see [23] for an overview. More recently, this has given way
to the study of wider classes of problems arising in applications with target measure
of the form (3); see [5] for an overview. Whilst product measures might seem un-
duly restrictive, it turns out that a great deal of intuition can be transferred from this
situation to the more applied problems, whenever the underlying reference measure
in (3) has a product structure, a situation arising frequently in practice. With this in
mind we now turn to the study of complexity.

3 Computational Complexity

We study Metropolis methods applied to the target measure 7¢ given by (7), and
based on approximating (3). We assume that there are constants 0 < C~ < CT < 00
and « > 0O such that, for all indices i and dimensions d,
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giving bounds on the standard deviations.

Note that this setup subsumes the simpler cases (1) and (2) — by choosing ¥ =
0 for both cases, and A; 4 = 1 for the first. In real applications a wide range of
k > 0 are encountered. For SDEs, possibly conditioned on observations, we have
k« = 1. For Gaussian random field priors based on covariance operators which are
fractional powers of the Laplacian in spatial dimension 2 (not to be confused with
the dimension d of the approximating space) we require Kk > % to obtain almost
surely continuous fields; more generally, increasing « will correspond to random

fields with increasing regularity, almost surely.

3.1 The Algorithms

The Metropolis methods we will consider are based on proposals on R? with kernel
0% (x,dy) derived from the following expression in which the parameter § > 0 and
the square root is applied to a positive-definite matrix:

?:aAVlogng(x)-l-\/%& £ ~ A0, I). ©)

In the case o = 0 we refer to random walk methods and for « = 1 to Langevin
methods. We will take A = I or A = C4 where we define the diagonal matrix C; =
diag{)\%,d,~-- ,)\fi,d}.

In the case where yrg 1s Gaussian we will also be interested in proposals of the
form, for 6 € [0, 1],

¥=x
)

:GAVVlothTg(y)+(l—6)AV10g7r€(x)+,/%€ (10)

for &€ ~ N (0, I). For both classes of proposal we will refer to § as the proposal vari-
ance. All these proposals can be viewed as being derived from Euler-Maruyama-
like discretizations of stochastic differential equations (SDEs) which are either -
invariant or n(‘f—invariant. Note, for instance, that proposals (9) for « = 1 and (10)
could be conceived as approximations (the first an explicit, the second an implicit
one, see [16] for background on numerical approximations of SDEs) of the mp-
invariant SDE:

dx

dt
driven by d-dimensional Brownian motion W. See [1, 14, 13, 11, 24] for more
details on this interpretation. In this setting § is the time-step in the Euler-Maruyama
discretization.

The Metropolis-Hastings MCMC method [19, 15] creates a ¢ invariant Markov

chain {x"} as follows. Let a(x, y) denote the acceptance probability, that is:

aw
AVlogzrg(x)+v2A7



66 Alexandros Beskos and Andrew Stuart

: )_lAn“(y)Qd(y,X)
FOX= " 2dx) 04(x, y)

Given x" we make a proposal y" ~ 04(x",-). With (independent) probability
a(x", y") we set x"t1 = y"; otherwise we set x"*1 = x".

3.2 Complexity

Application of the Metropolis-Hastings accept-reject rule to proposals generated by
the kernels Q described above gives rise to a % invariant Markov chain {x" 20
on R¥; we are interested in the computational complexity of running this chain
to explore 7¢. Let y" denote the proposed state at step n, calculated from setting
x =x"and y = y" in (9) or (10). The cost of each update is usually straightforward
to compute, as a function of dimension, and thus the question of computational
complexity boils down to understanding the number of steps required to explore x4,
Complexity of Metropolis methods on R¢, for d large, is a difficult subject and the
work we are about to overview does not provide the kind of complete analysis that
is currently available for MCMC methods applied to some combinatorial problems.
We will overview results related to optimizing choices of A, @ and 6 (and &, as a
function of the dimension d) according to four (inter-twined) criteria, which we now
describe.

Assume that x? ~ 79 and that y | x is given by one of the proposals (9) or (10)
above. The four criteria are:

1. choose proposal parameters to maximize the mean square jump
E “xn—i—l —x" ”2;
2. choose proposal paramete’fs to maximize the mean time-step
§xEla(x",y")];

3. choose proposal parameters to maximize the proposal variance subject to the
constraint that the average acceptance probability is bounded away from zero,
uniformly in dimension:

liminfE[a(x", y")] > 0;
d— o0

4. choose proposal parameters to maximize the proposal variance for which there
exists a 7r-invariant diffusion limit for z%(7) := x'%), as d — 0.

In all four cases we use the rule of thumb that the number of steps M (d) required to
sample the invariant measure is given by the expression

M(d) x 87!, (11)

==r
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where the constant of proportionality is independent of dimension d, but the pro-
posal variance § depends on d. Later in this section we discuss the theory which
justifies this decision. In the final section we will discuss the relations among these
criteria and ideal criteria for convergence of Markov chains. For now we proceed on
the assumption that the four criteria listed are useful in practice.

In [3] it is shown that, for proposals of the form (9), the optimality criteria 1., 2.
and 3. all lead to the same conclusion (in an asymptotic sense, as d — o0) about
optimal scaling of the proposal variance, hence to the same expression for M (d).
We summarise the specification of M (d) for the different choices of « and A in
Table 1.

Briefly, for « = 0 and A = I we find that M (d) = d*+1: fora =0and A=Cy
we remove the k-dependence, at the expense of inverting a covariance operator, and
find that M (d) = d. Similar considerations apply for the case when o = 1, only now
the corresponding values are d2<*1/3 and d'/3.

Table 1 Number of steps M (d) to sample the invariant measure for each of the various MCMC
algorithms derived via proposals (9) and (10).

Proposal (9), witha =0 and A=/ M(d) = d*+!
Proposal (9), with @ =0 and A =Cy M) =d
Proposal (9), witha = 1 and A =/ M(d) = d>+173
Proposal (9), witha =1 and A =C, M(d)=d'"?
Proposal (10), with 8 = 1/2 and wg Gaussian|M (d) = O(1)

In [4] we show that, by choosing 6 = % in proposal (10), it is possible to achieve
M (d) = O(1) when the reference measure is Gaussian. In [4] numerical illustration
is given only in the case of SDEs conditioned to start and end at specified points
(diffusion bridges); however, [8] shows application of the same algorithmic idea to
the problem of data assimilation for the Navier-Stokes equation.

3.3 A Special Result: Diffusion Limit

We now turn to the subject of diffusion limits. This will enable us to connect crite-
rion 4. with criteria 1., 2. and 3., providing substantiation for the use of the heuristic
(11) to measure the number of steps required to explore the target distribution in
stationarity.

First we consider the simplest case where the target measure has the form (1).
In [10] it was shown that, using (9) with « = 0 and .A = I, and choosing the pro-
posal variance § to scale as 6 = 02d ‘], for some constant £ > 0, leads to an average
acceptance probability of order 1. Furthermore, with this choice of scaling, individ-
ual components of the resulting Markov chain converge to the solution of an SDE.
Analytically, if the Markov chain is started in stationarity, and




68 Alexandros Beskos and Andrew Stuart

i
Zd(t) = x,'L o

denotes a continuous-time interpolant of the i’ h component of the Markov chain,
then z¢ = 7 as d — oo in C([0, T']; R), where 7 solves the SDE

dz ; dw
o = h(£) (log f) (z) +v2h(¥) el (12)
Here h(£) is often termed the speed measure and simply sets a time-scale for the
SDE; it is identified explicitly in [10].

The diffusion limit leads to the interpretation that, started in stationarity, and
applied to target measures of the form (1), the random walk Metropolis algorithm
will require an order of 8! steps to explore the invariant measure; it also provides
the justification for (11). Furthermore, the existence of a diffusion limit in this case
shows that optimality criteria 1., 2., 3. and 4. all coincide. But the diffusion limit
contains further information: it can be shown that the value of £ which maximizes
h(£), and therefore maximizes the speed of convergence of the limiting diffusion,
leads to a universal acceptance probability, for random walk Metropolis algorithms
applied to targets (1), of approximately 0.234. This means that, for the stated class
of target distributions and algorithms, optimality can be obtained simply by tuning
the algorithm to attain this desired acceptance probability.

These ideas have been generalized to other proposals, such as those based -on
(9) with @ = 1 and A = I in [22]. In this case, the choice § = £2d~'/3 leads to a

diffusion limit for
Ld'/3tJ

2 = s

again implying that optimality criteria 1., 2., 3. and 4. all coincide. This leads to the
interpretation that the algorithm will take time of order d!/3 to explore the invariant
measure. Furthermore, the choice of £ which maximizes the speed of the limiting
SDE can be identified and results from an acceptance probability of appr0x1mately
0.574.

These papers of Roberts and coworkers concerning i.i.d. product measures are
extended to non-i.i.d. products in [2, 23]. The impact of this work has been very
high, in part because of the simple criteria for optimality when expressed in terms
of the average acceptance probabilities 0.234 and 0.574, and in part because the
existence of a diffusion limit provides an important conceptual understanding of the
behaviour of MCMC methods in high dimensions. It is therefore natural to wonder
if these optimal average acceptance probabilities arise also in the nonproduct case
and if diffusion limits can then be found. We finish this section by discussing these
two issues.

As mentioned above, [5, 3] study the question of optimal scaling of the proposal
variance according to criteria 1., 2. and 3., for proposals (9), with « € {0, 1} and
A € {I,Cq4}, for non-product target measures of the form (7). There, it is shown that
the mean square jumping distance (criterion 1.) and the mean time-step (criterion
2.) are both maximized by choosing the acceptance probabilities to be 0.234 (for
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a =0)or0.574 (for « = 1) as in the i.i.d. product case (1). It is also shown that such
a choice corresponds to optimizing with respect to criterion 3.

For target measures of the form (7), individual components of the Metropolis
Markov chain cannot be expected to converge to a scalar SDE as happens for (1).
However, it is natural to expect convergence of the entire Markov chain to an infinite
dimensional continuous time stochastic process. In [13, 14] it is shown that the target
measure v given by (3) is invariant for H-valued SDEs (or stochastic PDEs, labelled
SPDEs) with the form

. —CW/(z)+~/'2—c'ﬂ, (13)
ds ds

where W is cylindrical Brownian motion (see [9] for a definition) in H. In [18],
we show that for proposal (9) with « = 0 and A = C,, started in stationarity, and
@) =x9 4= z7ad - oo0in C([0,T]; H). This generalizes the work in
[10, 22, 23] to the non-product set-up and shows that, in stationarity, the random
walk Metropolis algorithm requires O(d) steps to explore the target distribution.

4 Open Questions

There are, of course, many open questions in the broad area of analyzing and con-
structing efficient MCMC methods in infinite dimensions. We mention a few inter-
esting avenues in this general area, reflecting our personal tastes.

* Rigorous complexity estimates. Perhaps the primary open question concerning
the work described herein is whether it can be used as the basis of the proof
of a spectral gap for the Markov chain {x"}7° ;, and determination of how the
spectral gap scales with dimension d. A natural approach to this problem would
be to use the theory highlighted in [20]. This theory provides a methodology
for establishing convergence results of the following form: there are constants
C > 0,1 < 1 and function V : R? [1, 00) such that, for every x% e R4, and
every function g with |g| <V,

IE[g(x™)1—79(g)| < CV(xO)Am.

The distance of the constant A from 1 can be used to estimate the spectral gap of
the Markov chain. In typical proofs, the value of A reflects both the mixing rate
of the Markov chain in the center of the state space (in a small set) and the rate of
return to the center of the state space. Since the results outlined in the previous
section are concerned with behaviour in stationarity, it is likely that they reflect
behaviour in the center of the state space. Thus, they do not contain information
about travel times from outside the center of the state space; indeed this may
lead to optimal scalings of the proposal variance which differ from those in the
center of the state space, as shown in [6]. This relates to the burn-in time of the
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algorithm, whereas the work described in Section 3 is primarily concerned with
behaviour in stationarity.

e [Number of steps]/[work per step] trade-off. We have indicated above that the
work in [4] demonstrates that, for measures of the form (7) with th Gaussian,
it is possible to construct algorithms which explore the state space in a num-
ber of steps independent of dimension. These algorithms use proposals given by
(10) with 6 = % However, the algorithms require, at each step, either drawing
a sample from the Gaussian reference measure N (0,Cy) (in the case A = Cy),
or inversion of the operator / + %Cd_l (in the case A = I). In contrast, proposal
(9) with A = I is potentially considerably cheaper per step, but does require
O(d**1) steps to explore the invariant measure. There is, therefore, a trade-off
between cost per step, and number of steps, for proposals based on (9) and (10).
For probability measures arising from SDEs (possibly conditioned by observa-
tions, end-point constraints etc.) the linear algebra associated with proposals of
the form (10) is (asymptotically in d) no more expensive than the cost of an
update under (9) with A = I, so it is clear that methods based on (10) with
@ = % have a significant advantage; this advantage is illustrated numerically in
[4]. However, for other classes of problems the trade-off remains to be studied.
This poses an interesting avenue for study.

e Non-Gaussian reference measures. At the end of Subsection 3.2 we highlighted
the fact that certain probability measures can be explored in number of steps in-
dependent of the dimension d, when started in stationarity. However this relies
heavily on the assumption that the reference measure ng in (7) is Gaussian. It re-
mains an open question whether similar ideas to those in [4, 8] can be developed
in the case of non-Gaussian reference measures. This is intimately related to the
development of m-invariant SPDEs for measures of the form (3) [1, 13].

* Other proposals. The proposals we have discussed have been based on the
discretization of m- or mp-reversible SPDEs, leading to the Metropolis and
Metropolis-Hastings variants of MCMC methods. However, there are many other
proposals known'to be effective in practice. In particular, Hybrid Monte Carlo
(HMC) methods are widely used by practitioners. These methods double the size
of the state space, from d to 2d, by adding a momentum variable; they then use
randomized Hamiltonian mechanics to explore the probability measure. Practi-
cal experience indicates that these methods can be very effective and theoret-
ical studies of these proposals, of the type described in this review, would be
of interest. More generally, there may be other proposals which yield improved
complexity and this area is likely to be fruitful for further development.
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