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GAUSSIAN APPROXIMATIONS OF SMALL NOISE DIFFUSIONS IN
KULLBACK–LEIBLER DIVERGENCE∗

DANIEL SANZ-ALONSO† AND ANDREW M. STUART‡

Abstract. We study Gaussian approximations to the distribution of a diffusion. The approxi-
mations are easy to compute: they are defined by two simple ordinary differential equations for the
mean and the covariance. Time correlations can also be computed via solution of a linear stochastic
differential equation. We show, using the Kullback–Leibler divergence, that the approximations are
accurate in the small noise regime. An analogous discrete time setting is also studied. The results
provide both theoretical support for the use of Gaussian processes in the approximation of diffusions,
and methodological guidance in the construction of Gaussian approximations in applications.

Keywords. Gaussian approximations; diffusion processes; small noise; Kullback–Leibler diver-
gence.

AMS subject classifications. 28C20; 60H10; 65L05; 60G15.

1. Introduction
Consider the stochastic differential equation (SDE)

dvε(t) =f
(
vε(t)

)
dt+
√
εΣdW (t), t∈ [0,T ], vε(0)∼µε0. (1.1)

Here, and throughout, the time-horizon T >0 is finite and fixed, the drift f : RD→RD
is nonlinear in the case of interest, Σ is a positive-definite matrix for simplicity assumed
to be constant, and dW is a standard D-dimensional Wiener process. Assume that the
paths vε are continuous, and let µε be the law of vε in C([0,T ],RD). We show that in
the small ε regime —corresponding to small diffusion coefficient and little uncertainty
in the initial condition— µε can be accurately approximated by a Gaussian measure νε

in C([0,T ],RD), whose mean function and marginal covariances satisfy simple ordinary
differential equations (ODEs). Precisely, we show that the Kullback–Leibler divergence
DKL(νε‖µε) is of order ε. We investigate the effect that numerically approximating these
ODEs has on the approximation of µε. Finally, we construct —and show the accuracy
of— Gaussian approximations to Euler–Maruyama discretizations of equation (1.1).

We aim to provide a rigorous justification of Gaussian process approximations of
small noise diffusions. The use of Gaussian processes is now pervasive in applications
[15]. However, Gaussian assumptions are often used for algorithmic and mathematical
convenience without much theoretical support. An example of this is in the field of
data assimilation, where many algorithms invoke Gaussian approximations in order to
apply Kalman formulae [8]. The paper [1] suggests a variational approach to computing
Gaussian process approximations to posterior measures arising from discretely observed
diffusions. The algorithm proposed aims to minimize the Kullback–Leibler divergence
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between the Gaussian process and the posterior of interest. In [14], the authors study
the well-posedness of the abstract problem of finding the best (in the Kullback–Leibler
sense) Gaussian approximation ν to a measure µ. They use a nonconstructive calcu-
lus of variation approach. In the complementary paper [13], the authors propose an
algorithm that allows numerical computation of such best approximation. The paper
[11] seeks the best Kullback–Leibler Gaussian approximation to the distribution of con-
ditioned diffusions arising in molecular dynamics. Here our interest is not in finding
the best Gaussian approximation, but in constructing Gaussians that can be proved to
approximate accurately the distribution of a small noise diffusion. The Gaussian approx-
imations are built using certain linearizations of the drift. Crucially, the time-marginals
of our approximations can be found by solving (perhaps numerically) two simple ODEs,
which can be advantageous over numerically solving the full Fokker–Planck equation.
Our computable Gaussian approximations and error bounds are of potential interest in
filtering signals arising from small noise diffusions, for instance within the methodology
in [10].

The paper is organized as follows. Subsection 1.1 sets the mathematical framework,
and introduces the ODEs that will be used to define the means and covariances of the
time-marginals of our approximations. Subsection 1.2 gives some background on the
Kullback–Leibler divergence. Subsection 1.3 motivates the choice of the ODEs. Section
2 studies the approximation of the SDE using a Gaussian whose time-marginals mean
and covariance satisfy the ODEs given in Subsection 1.1. In Section 3 we investigate the
effect that numerically solving the ODEs has on the quality of the resulting Gaussian
approximation. Finally, Section 4 studies the approximation of Euler discretizations of
equation (1.1) via Gaussians with means and covariances defined through discretization
of the ODEs.

Notation. We denote by | · | the standard inner product in RD. For positive-
definite P ∈RD×D we denote | · |P := |P−1/2 · |. Subscripts in path measures will denote
time-marginals. Thus, for a measure µ in C([0,T ],RD) and 0≤ t≤T, we denote by µt the
push-forward measure in RD via the evaluation map Et(h) :=h(t), h∈C([0,T ],RD). In
the discrete setting, given a path measure µ0:k in RD(k+1) and 0≤ j≤k, µj will denote

the push-forward measure in RD via the evaluation map Ej : (vd)
D(k+1)
d=1 ∈RD(k+1) 7→

(vj+d)
D
d=1∈RD. A subscript d in a function or vector denotes, as usual, component and

coordinate. Superscripts highlight parameters of interest in the analysis.

1.1. Mathematical framework. ODEs for mean and covariance. We work
under the following assumption (recalling that T is fixed and finite):

Assumption 1.1. f ∈C2(RD,RD) and there exist c>0 and s∈N such that, for
1≤d≤D, and every multi-index α with |α|= 2, |∂αfd(u)|≤ c(1+ |u|s). Moreover, for
any m0∈RD, the ODE

dm

dt
=f(m), t∈ [0,T ], m(0) =m0∈RD, (1.2)

together with the SDE (1.1), have a unique solution with no explosions.

Equation (1.2), or discretizations thereof, will be used to define the mean of our
Gaussian approximations. The covariance of the time-marginals will be given by Cε= εC
where

dC

dt
=Df(m)C+CDf(m)T +Σ, t∈ [0,T ], C(0) =C0∈RD×D, (1.3)
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or discretizations thereof, and where C0 is a given positive semi-definite matrix —see
Remark 1.1. This equation has a unique solution on [0,T ] under Assumption 1.1.

It is intuitively clear that, for small ε, the solution vε={vε(t)}0≤t≤T of equation
(1.1) is close to the deterministic solution m={m(t)}0≤t≤T of (1.2). In Section 2 we
show that, for small ε, the law of vε(t) is approximately Gaussian with mean m(t) and
covariance Cε(t) = εC(t). More precisely, the error in this approximation, measured in
the Kullback–Leibler divergence, is of order ε. Indeed we show more: the law µε of the
paths vε can be approximated by a Gaussian measure νε in C([0,T ],RD). Subsection
1.3 shows that the choice of m as the mean of the Gaussian approximation is crucial. If
any other function is chosen as mean, the Kullback–Leibler error remains of order 1.

Remark 1.1. Our results will cover two possible initializations of the SDE (1.1).
First, deterministic initial condition vε(0) =v0, corresponding to µε0 = δv0

. In this case
equations (1.2) and (1.3) should be initialized with m0 =v0 and C0 = 0, corresponding
to the same Dirac measure. Second, where µε0 has positive Lebesgue density in RD, and

DKL

(
N(m0,εC0)‖µε0

)
is of order ε.

Remark 1.2. In Sections 3 and 4 we discretize equations (1.2) and (1.3) with step-
size ∆t. Assumption 1.1 and the convergence of the methods employed imply that, for
all sufficiently small ∆t, the discretized means and covariances are uniformly bounded.
That is, there is M>0 such that, for all sufficiently small ∆t, |m∆t

k |, |C∆t
k |≤M , provided

that 0≤k∆t≤T.

1.2. Background on Kullback–Leibler divergence. Let ν and µ be two
probability measures on a measurable space (X,X ). The Kullback–Leibler divergence
(also known as relative entropy) of ν with respect to µ is given by

DKL(ν‖µ) :=Eν log
(dν
dµ

)
if ν is absolutely continuous with respect to µ, denoted ν�µ, and DKL(ν‖µ) =∞ oth-
erwise. The Kullback–Leibler divergence satisfies DKL(ν‖µ)≥0, but it is not a metric
on the space of probability measures since it may not be finite, it is not symmetric, and
it does not satisfy the triangle inequality. However, it does quantify the proximity of
the measures ν and µ. For instance, it provides an upper bound on the total variation
distance

dTV(ν,µ) := sup
{
|ν(A)−µ(A)| :A∈X

}
via Pinsker’s inequality [12]

dTV(ν,µ)≤DKL(ν‖µ)1/2. (1.4)

We will use the chain rule for Kullback–Leibler divergence [3], which is well known
in information theory. We recall it in the next lemma. The result underlies the proof
of Lemma 4.1, which is analogous to the continuous time result Lemma 2.1.

Lemma 1.1. Let X and Y be Polish spaces and ν and µ be probability measures on the
measurable space (X×Y,F). Denote by νx and µx the first marginals of ν and µ and
let ν(dy|x) and µ(dy|x) be stochastic kernels on Y given X for which, for A×B∈F ,

ν(A×B) =

∫
A

ν(B|x)νx(dx), µ(A×B) =

∫
A

µ(B|x)µx(dx).
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Then,

DKL(ν‖µ) =DKL(νx‖µx)+EνxDKL

(
ν(·|x)‖µ(·|x)

)
. (1.5)

The non-negativity of the Kullback–Leibler divergence and equation (1.5) imply that
any two corresponding marginals are closer in Kullback–Leibler than the full measures,
i.e.

DKL(νx‖µx)≤DKL(ν‖µ). (1.6)

The chain rule is powerful when studying the approximation, by a Gaussian measure
ν, of a non-Gaussian measure µ for which µ(·|x) is Gaussian: the structure in equation
(1.5) allows exploitation of the Gaussianity of the kernels ν(·|x) and µ(·|x). This will
become apparent in Section 4, Lemma 4.1.

1.3. Large deviations and the choice of mean. Small noise diffusions have
been extensively studied using large deviations. An early and fundamental result in the
theory can be found in the first edition of [5], where it was shown that the collection
{vε,ε∈ (0,1)} defined by equation (1.1) with initial condition vε(0) =v0 satisfies a large
deviation principle on C([0,T ],RD) with rate function

I(ϕ) := inf
u∈Uϕ

{
1

2

∫ T

0

|u(t)|2dt
}
, (1.7)

where

Uϕ :=

{
u∈L2([0,T ],RD) :ϕ(t) =v0 +

∫ T

0

f
(
ϕ(s)

)
ds+
√

Σ

∫ t

0

u(s)ds

}
,

for absolutely continuous ϕ with ϕ(0) =v0, Uϕ=∅ for all other ϕ∈C([0,T ],RD), and
the infimum over the empty set in definition (1.7) is taken to be ∞.

It follows from the definition of the rate function I in definition (1.7) that I(ϕ) = 0
iff the zero function u≡0 is in Uϕ. This holds iff ϕ is the solution to the ODE (1.2)
with initial condition ϕ(0) =v0. In a very rough sense, this implies that the probability
of vε lying in a small tube centered around any function other than the solution to the
ODE decays at least exponentially as ε→0. That is, for small δ,ε>0, we have, as ε→0,

P
(
vε∈Bδ(ϕ)

)
≈ exp

(
−I(ϕ)

ε

)
where Bδ(ϕ) denotes the ball (in the supremum norm) of radius δ>0 and center ϕ∈
C([0,T ],RD).

Combining the large deviation result and the Markov inequality we obtain the
following:

Lemma 1.2. Let µε be the law in C([0,T ],RD) of vε given by equation (1.1) with
initial condition vε(0) =v0. Consider a Gaussian measure νε in C([0,T ],RD) with mean
m∈C([0,T ],RD) and time-marginal covariances Cε(t) = εC(t). Then, unless m is the
solution to equation (1.2) with initial condition m(0) =v0 we have, as ε→0,

dTV(νε,µε)→1.
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Note that this lemma and Pinsker’s inequality (1.4) imply that the Kullback–Leibler
divergence remains at least order one in the small ε limit, unless m solves equation (1.2).

The analysis in [5] also shows that, asymptotically, the rescaled fluctuations of the
process vε around its mean follow a Gaussian process. These asymptotic normality is
fundamental in the study of small noise diffusions, e.g. [9]. We will give explicit bounds
that further justify the use of Gaussian process approximations for sufficiently small ε,
and we will extend the analysis to discrete settings.

2. Gaussian approximation of SDEs via ODEs
Let νε be the law of lε defined via the linear SDE

dlε(t) =
(
f
(
m(t)

)
+Df

(
m(t)

)(
lε(t)−m(t)

))
dt+
√
εΣdW (t), lε(0)∼N

(
m0,εC0

)
.

(2.1)
The main result of this section is Theorem 2.1 below. It shows that, for small ε,
the Gaussian measure νε accurately approximates µε, the law of vε given by equation
(1.1). The proof is based on two observations. First, that νε has time-marginals νεt =
N
(
m(t),Cε(t)

)
, where m solves the ODE (1.2), and Cε= εC with C solving equation

(1.3). Second, the following lemma:

Lemma 2.1. Let gt(·) :RD→RD be an affine function defined by

gt(l) =a(t)+B(t)l

for some continuous functions a : [0,T ] 7→RD and B : [0,T ] 7→RD×D. Let νε0�µε0, and
let µε and νε be the laws in C([0,T ],R) of vε and lε given by

dvε=f(vε)dt+
√
εΣdW, v(0)∼µε0,

dlε=gt(l
ε)dt+

√
εΣdW, lε(0)∼νε0.

Then

DKL(νε‖µε) =DKL(νε0‖µε0)+
1

2ε
Eν

ε

∫ T

0

|f(v)−gt(v)|2Σdt.

Proof. We apply Girsanov’s theorem in the form of Theorem 11A of [4], similarly
as in Lemma 5.2 of [6]. Because equation (1.1) is assumed to have no explosions in the
time-interval [0,T ] the density of µε with respect to Wiener measure exists. Indeed the
two measures are equivalent, and the density is given by the usual Girsanov formula.
Furthermore νε defines a Gaussian measure, equivalent to Wiener measure. Dividing
the densities of νε and µε with respect to Wiener measure gives

dνε

dµε
(v) =

dνε0
dµε0

(
v(0)

)
exp
(1

ε

∫ T

0

〈gt(v)−f(v),dv〉Σ−
1

2ε

∫ T

0

|gt(v)|2Σ−|f(v)|2Σdt
)
.

Therefore,

DKL(νε‖µε) =Eν
ε

log
(dνε
dµε

)
=DKL(νε0‖µε0)+I,

where using the martingale property of Ito’s integral

I=
1

ε
Eν

ε
(∫ T

0

〈gt(v)−f(v),dv〉Σ−
1

2

∫ T

0

|gt(v)|2Σ−|f(v)|2Σdt
)
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=
1

ε
Eν

ε
(∫ T

0

〈gt(v)−f(v),
√
εΣdW 〉Σ +

1

2

∫ T

0

|f(v)−gt(v)|2Σdt
)

=
1

2ε
Eν

ε

∫ T

0

|f(v)−gt(v)|2Σdt.

Theorem 2.1. Suppose that Assumption 1.1 holds. Let µε and νε be the laws in
C([0,T ],RD) of, respectively, vε given by equation (1.1) and lε given by equation (2.1).
Then there is c>0 such that, for all ε sufficiently small,

DKL(νε‖µε)≤DKL(νε0‖µε0)+cε.

Moreover, for t∈ [0,T ],

DKL(νεt‖µεt)≤DKL(νε0‖µε0)+cε,

where νεt and µεt denote the time-marginals of νε and µε at time t.

Proof. If νε0 is not absolutely continuous with respect to µε0, then DKL(νε0‖µε0) =∞
and the result is trivial. Thus we assume that absolute continuity holds. Through-
out the proof c denotes a positive constant which is independent of all sufficiently
small ε, and may vary from line to line. As noted before, νε has time-marginals
νt=N

(
m(t),Cε(t)

)
with Cε= εC. This, combined with Lemma 2.1 with the choice

gt(·) :=f
(
m(t)

)
+Df

(
m(t)

)(
·−m(t)

)
, gives

DKL(νε‖µε) =DKL(νε0‖µε0)+
1

2ε

∫ T

0

EN(m(t),Cε(t))|f(v)−gt(v)|2Σdt. (2.2)

Recall Taylor’s formula with reminder(
f(u)−gt(u)

)
d

= 2
∑
|α|=2

(u−m)α

α!

∫ 1

0

(1− t)2∂αfd
(
m+ t(u−m)

)
dt, 1≤d≤D,

to deduce, using Assumption 1.1, that

|
(
f(u)−gt(u)

)
|≤ c|u−m|2

∫ 1

0

1+ |m+ t(u−m)|sdt

≤ c
s∑
r=0

|u−m|r+2.

Thus,

|f(u)−gt(u)|2≤ c
s∑
r=0

|u−m|2r+4. (2.3)

Combining equation (2.2) with inequality (2.3) and using that Cε= εC yields, for all ε
sufficiently small,

DKL(νε‖µε) =DKL(νε0‖µε0)+
1

2ε

∫ T

0

EN(m(t),Cε(t))|f(v)−gt(v)|2Σdt

≤DKL(νε0‖µε0)+
c

ε

∫ T

0

EN(m(t),Cε(t))
s∑
r=0

|v(t)−m(t)|2r+4dt

≤DKL(νε0‖µε0)+
c

ε
max

0≤r≤s

∫ T

0

(
EN(m(t),Cε(t))|v(t)−m(t)|2

)r+2

dt.

≤DKL(νε0‖µε0)+cε,
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which completes the proof of the first claim. The bound for the marginals then follows
from inequality (1.6).

Remark 2.1. It is not difficult to see that if f is linear then

DKL(νε‖µε) =DKL(νε0‖µε0).

This is the well-known Kullback–Leibler stability of the Fokker–Planck equation with
respect to initial conditions, of which a more general version can be found in [2].

3. Gaussian approximations of SDEs via discretized ODEs
In this section we study the approximation of µε, the law in C([0,T ],RD) of vε given

by equation (1.1), by a Gaussian νε,∆t. The path measure νε,∆t will be constructed so
that the means and covariances of the time-marginals are given by numerical approx-
imations with step size ∆t to the ODEs (1.2) and (1.3), respectively. For simplicity,
we study the effect of discretizing the ODEs with the Euler method, but the results
extend with no effort to other Runge-Kutta methods and numerical schemes. Theorem
3.1 below bounds DKL(νε,∆t‖µε) in terms of ε and the step-size ∆t.

We now spell out the construction of the measure νε,∆t. Given an integer K>0, let
∆t=T/K and define, for 1≤k≤K,

m∆t
k+1 :=m∆t

k +∆tf(m∆t
k ), m∆t

0 =m0,

C∆t
k+1 :=C∆t

k +∆t
(
Df(m∆t

k )C∆t
k +C∆t

k Df(m∆t
k )T +Σ

)
, C∆t

0 =C0.
(3.1)

Let tk =k∆t, 0≤k≤K, and define piecewise linear functions m∆t and C∆t in [0,T ]
by interpolation. That is, for t∈ (tk,tk+1),

m∆t(t) :=m∆t
k +(t− tk)f(m∆t

k ),

C∆t(t) :=C∆t
k +(t− tk)

(
Df(m∆t

k )C∆t
k +C∆t

k Df(m∆t
k )T +Σ

)
.

(3.2)

Finally, we let νε,∆t be the law of lε,∆t defined via the piecewise linear SDE

dlε,∆t=g∆t
t (lε,∆t)dt+

√
εΣdW, lε,∆t(0)∼N

(
m0,εC0

)
, (3.3)

with

g∆t
t (·) :=f(m∆t

k )+Df(m∆t
k )
(
· −m∆t(t)

)
, t∈ (tk,tk+1). (3.4)

By construction νε,∆t has time marginals νε,∆tt =N
(
m∆t(t),Cε,∆t(t)

)
with m∆t and

Cε,∆t := εC∆t defined by expression (3.2).

Remark 3.1. For fixed ∆t>0, m∆t 6=m except in trivial cases. Thus, by Lemma 1.2
it is necessary to let ∆t depend on ε in order to have accurate approximations νε,∆t of
µε in the limit ε→0.

Theorem 3.1. Suppose that Assumption 1.1 holds. Let µε be the law in C([0,T ],RD)
of vε given by equation (1.1), and let νε,∆t be as above. For K ∈N let ∆t=T/K. Then
there is c>0, independent of all sufficiently small ∆t and ε, such that

DKL(νε,∆t‖µε)≤DKL(νε,∆t0 ‖µε0)+cε+c
(∆t)2

ε
.
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Moreover, for t∈ (0,T ],

DKL(νε,∆tt ‖µεt)≤DKL(νε,∆t0 ‖µε0)+cε+c
(∆t)2

ε
,

where νε,∆tt and µε,∆tt denote the marginals of νε,∆t and µε,∆t at time t.

Proof. Throughout the proof c is a positive constant that may change from line
to line, and is independent of all sufficiently small ε and ∆t. We recall that νε,∆t=
N(m∆t,Cε,∆t) is the law of the SDE (3.3). This, combined with Lemma 2.1 applied
with gt=g∆t

t as defined by (3.4), gives

DKL(νε,∆t‖µε) =DKL(νε,∆t0 ‖µε0)+
1

2ε

∫ T

0

Eν
ε,∆t
t |f(v)−g∆t

t (v)|2Σ dt. (3.5)

We split the integral as follows:

|f(v)−g∆t
t (v)|2Σ≤ c|gt(v)−g∆t

t (v)|2Σ +c|f(v)−gt(v)|2Σ, (3.6)

and bound each of the two terms. For the first one note that, for t∈ (tk,tk+1) and all
sufficiently small ∆t,

|gt(v)−g∆t
t (v)|≤ |f

(
m(t)

)
−f(mk)|+ |Df(mk)||m(t)−mk|+ ·· ·

|Df
(
m(t)

)
−Df(mk)||v(t)−m∆t(t)|+ |Df

(
m(t)

)
−Df(mk)||m∆t−mk|

≤ c∆t+c∆t|v(t)−m∆t|.

Thus,

|gt(v)−g∆t
t (v)|2Σ≤ c(∆t)2 +c(∆t)2|v(t)−m∆t|2. (3.7)

For the second one, as in the proof of Theorem 2.1, we have for small enough ∆t that

|f(v)−gt(v)|2≤ c
s∑
r=0

|v−m|r+2

≤ c
s∑
r=0

|v−m∆t|r+2 +c

s∑
r=0

|m∆t−m|r+2

≤ c
s∑
r=0

|v−m∆t|r+2 +c(∆t)2.

Putting everything together, for all ∆t and ε sufficiently small,

DKL(νε,∆t‖µε) =DKL(νε,∆t0 ‖µε0)+
1

2ε

∫ T

0

Eν
ε,∆t
t |f(v)−g∆t

t (v)|2Σ dt

≤DKL(νε,∆t0 ‖µε0)+
c

ε
(∆t)2 +

c

ε

∫ T

0

EN(m∆t(t),Cε,∆t)
s∑
r=0

|v−m∆t|r+2

≤DKL(νε,∆t0 ‖µε0)+
c

ε
(∆t)2 +cε.
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4. Gaussian approximation of discretized SDEs via discretized ODEs
Consider the Euler–Maruyama discretization of equation (1.1)

vεk+1 =vεk+f(vεk)∆t+
√
εΣ∆tξk, vε0∼µε0, (4.1)

where the ξk are independently drawn from a standard Gaussian distribution. In this
section we consider ∆t>0 small and fixed, and analyze small ε limits. A structure of
the form (4.1) arises from discretization of SDEs, but also in many stochastic algorithms
[7]. In the case of interest where the function f is nonlinear, the distribution µεk of vεk is
not Gaussian. We study the approximation of these measures by Gaussians νεk, whose
means and covariances are built using discretizations of the ODEs (1.2) and (1.3).

We now detail the construction of the measures νεk. Let

mk+1 =mk+f(mk)∆t, (4.2)

Ck+1 =
(
I+Df(mk)∆t

)
Ck
(
I+Df(mk)∆t

)T
+Σ∆t. (4.3)

These agree with the discretization (3.1) used in Section 3, except for an extra (∆t)2

term in the covariance. We set Cεk := εCk, and finally νεk =N(mk,C
ε
k).

The subsequent analysis is parallel to that of the previous sections. We again use
two observations. First, that the νεk are the laws of lεk given by

lεk+1 = lεk+
(
f(mk)+Df(mk)(lεk−mk)

)
∆t+

√
εΣ∆t ξk. (4.4)

Second, the following lemma, analogous to Lemma 2.1. A derivation of this result can
be found for instance in the appendix of [1]. We include a short proof that highlights
how the chain rule Lemma 1.1 makes the Kullback–Leibler divergence well suited for
the analysis of conditionally Gaussian dynamics, as those defined by equation (4.1).

Lemma 4.1. Let gk :RD→RD. Let µεk and νεk be the laws of vεk and lεk in RD given by

lεk+1 = lεk+gk(lεk)∆t+
√
εΣ∆t ξk, l0∼νε0,

vεk+1 =vεk+f(vεk)∆t+
√
εΣ∆t ξk, vε0∼µε0.

Denote by µε0:k and νε0:k the law of (vεj)
k
j=0 and (lεj)

k
j=0 in RD(k+1). Then

DKL(νε0:k‖µε0:k) =DKL(νε0‖µε0)+
∆t

2ε

k−1∑
j=0

Eν
ε
j |f−gj |2Σ. (4.5)

Proof. We show that

DKL(νε0:k+1‖µε0:k+1) =DKL(νε0:k‖µε0:k)+
∆t

2ε
Eν

ε
k |f−gk|2Σ. (4.6)

Iterating equation (4.6) gives equation (4.5). To prove equation (4.6) we apply Lemma
1.1 with ν= (ν0:k,νk+1), µ= (µ0:k,µk+1), and the kernels

µ(·|x) =N
(
x+f(x)∆t,εΣ∆t

)
, ν(·|x) =N

(
x+gk(x)∆t,εΣ∆t

)
.

To conclude, recall that the Kullback–Leibler between two Gaussians with the same
covariance is

DKL

(
N(m,C)‖N(m̄,C)

)
=

1

2
|m̄−m|2C .
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The following result shows that the Gaussians νεk accurately approximate the dis-
tribution µεk of vεk in the small noise limit. More so, the result holds in path space.

Theorem 4.1. Suppose that Assumption 1.1 holds. Let µε0:k be the law of (vεj)
k
j=0

given by (4.1), and let νε0:k be the law of (lεj)
k
j=0 given by equation (4.4). Then, for all

sufficienly small ∆t and ε, and for all k with k∆t<T,

DKL(νε0:k‖µε0:k)≤DKL(νε0‖µε0)+cε, DKL(νεk‖µεk)≤DKL(νε0‖µε0)+cε,

where c>0 is independent of the noise strength ε.

Proof. Throughout the proof c denotes a positive constant that is independent of
ε and may change from line to line. We use the previous lemma with the choice

gk(u) :=f(mk)+Df(mk)(u−mk)

together with the observation made in equation (4.4) to deduce that, for k with k∆t≤T,

DKL(νε0:k‖µε0:k) =DKL(νε0‖µε0)+
∆t

2ε

k−1∑
j=0

Eν
ε
j |f−gj |2Σ

≤DKL(νε0‖µε0)+
c

ε
max

k:k∆t≤T
EN(mk,C

ε
k)|f(u)−gk(u)|2. (4.7)

Now, using Remark 1.2 it can be shown as in Theorem 2.1 that

|f(u)−gk(u)|2≤ c
s∑
r=0

|u−mk|2r+4. (4.8)

To conclude we combine inequalities (4.7) and (4.8), and recall that Cεk = εCk and
Remark 1.2 to deduce that, for k with k∆t≤T and all sufficiently small ε,

DKL(νε0:k‖µε0:k)≤DKL(νε0‖µε0)+
c

ε
max

k:k∆t≤T
EN(mk,C

ε
k)

s∑
r=0

|u−mk|2r+4

≤DKL(νε0‖µε0)+cε.

Example 4.1. Again if f is linear then, for k≥1,

DKL(νε0:k‖µε0:k) =DKL(νε0‖µε0), DKL(νεk‖µεk)≤DKL(νε0‖µε0).

As an example, suppose that D= 1, f(u) =au+b, and µε0 is Gaussian in R. Then a
direct proof of the last inequality can be easily obtained. Indeed, it boils down to showing
that, for any m,m̃,σ,σ̃,a,b∈R and ε>0,

DKL

(
N(am+b,a2σ2 +ε)‖N(am̃+b,a2σ̃2 +ε)

)
≤DKL

(
N(m,σ2)‖N(m̃,σ̃2)

)
.

In other words,

a2σ2 +ε

a2σ̃2 +ε
− log

(a2σ2 +ε

a2σ̃2 +ε

)
−1+

a2(m−m̃)2

a2σ̃2 +ε
≤ σ

2

σ̃2
− log

(σ2

σ̃2

)
−1+

(m−m̃)2

σ̃2
,

which is immediate since the sum of the first two terms in the LHS is smaller than the
sum of the first two terms in the RHS and the last term in the LHS is smaller than the
last term in the RHS.
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