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Importance Sampling:

and Computational Cost

S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso and A. M. Stuart

Abstract. The basic idea of importance sampling is to use independent sam-
ples from a proposal measure in order to approximate expectations with re-
spect to a target measure. It is key to understand how many samples are re-
quired in order to guarantee accurate approximations. Intuitively, some no-
tion of distance between the target and the proposal should determine the
computational cost of the method. A major challenge is to quantify this dis-
tance in terms of parameters or statistics that are pertinent for the practitioner.
The subject has attracted substantial interest from within a variety of com-
munities. The objective of this paper is to overview and unify the resulting
literature by creating an overarching framework. A general theory is pre-
sented, with a focus on the use of importance sampling in Bayesian inverse
problems and filtering.

Key words and phrases: Importance sampling, notions of dimension, small
noise, absolute continuity, inverse problems, filtering.

Intrinsic Dimension

1. INTRODUCTION
1.1 Our Purpose

Our purpose in this paper is to overview various
ways of measuring the computational cost of impor-
tance sampling, to link them to one another through
transparent mathematical reasoning, and to create co-
hesion in the vast published literature on this subject. In
addressing these issues, we will study importance sam-
pling in a general abstract setting, and then in the par-
ticular cases of Bayesian inversion and filtering. These
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two application settings are particularly important as
there are many pressing scientific, technological and
societal problems which can be formulated via inver-
sion or filtering. An example of such an inverse prob-
lem is the determination of subsurface properties of the
Earth from surface measurements; an example of a fil-
tering problem is the assimilation of atmospheric mea-
surements into numerical weather forecasts. We now
proceed to overview the subject of importance sam-
pling, and the perspective on it that is our focus. In
Section 1.2, we describe the organization of the paper
and our main contributions. Section 1.3 then collects
all the references linked to the material in the intro-
duction, as well as other general references on impor-
tance sampling. Each subsequent section of the paper
contains its own literature review subsection providing
further elaboration of the literature, and linking it to the
details of the material that we present in that section.
The general abstract setting in which we work is as
follows. We let i and 7 be two probability measures
on a measurable space (X, F) related via the expres-
sion
du
an  Lwi=ew /[ swrao.
drm x

Here, g is the unnormalised density (or Radon—Niko-
dym derivative) of p with respect to . Note that the
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very existence of the density implies that the target is
absolutely continuous with respect to the proposal; ab-
solute continuity will play an important role in our sub-
sequent developments.

Importance sampling is a method for using indepen-
dent samples from the proposal mw to approximately
compute expectations with respect to the target p. The
way importance sampling (and more generally Monte
Carlo integration methods) is used within Bayesian
statistics and Bayesian inverse problems is as an ap-
proximation of the target measure u by a random prob-
ability measure using weighted samples that are gener-
ated from m. (This perspective differs from that aris-
ing in other disciplines, e.g., in certain applications in
mathematical finance, such as option pricing.) Our per-
spective is dictated by the need to use the samples to
estimate expectations and quantiles of a wide range
of functions defined on the state space, for example,
functions of a single variable or pairs of variables, or
marginal likelihood quantities. The resulting approx-
imation is typically called a particle approximation.
Our perspective on importance sampling as a proba-
bility measure approximation dictates in turn the tools
for studying its performance. Its computational cost is
measured by the number of samples required to con-
trol the worst error made when approximating expec-
tations within a class of test functions. In this article,
and following existing foundational work, we primar-
ily focus on a total variation metric between random
measures for assessing the particle approximation er-
ror. Intuitively, the size of the error is related to how
far the target measure is from the proposal measure.
We make this intuition precise, and connect the parti-
cle approximation error to a key quantity, the second
moment of du/dm under the proposal, which we de-
note by p:

p=m(g?)/m(g)>.

As detailed below, p is essentially the x? divergence
between the target and the proposal.

The first application of this setting that we study is
the linear inverse problem to determine u € X from y
where

(1.2) y=Ku+n, n~N(QOT).

We adopt a Bayesian approach in which we place a
prior u ~ P, = N (0, X), assume that 7 is independent
of u and seek the posterior u|y ~ IP,y. We study im-
portance sampling with [P, |, being the target 1 and PP,
being the proposal 7.

The second application is the linear filtering prob-
lem of sequentially updating the distribution of v; € X

given {y,~}{:1 where
vjt1=Mv; +§j,
§;i~N(©0,0),j=0,
Yi+1=Hvji1 +Ej+1,
¢ji+1~N(,R), j>0.

(1.3)

We assume that the problem has a Markov structure.
We study the approximation of one step of the filter-
ing update by means of particles, building on the study
of importance sampling for the linear inverse prob-
lem. To this end, it is expedient to work on the prod-
uct space X x X, and consider importance sampling
for (vj,vjy1) € X x X. It then transpires that, for two
different proposals, which are commonly termed the
standard proposal and the optimal proposal, the cost of
one step of particle filtering may be understood by the
study of a linear inverse problem on X’; we show this
for both proposals, and then use the link to an inverse
problem to derive results about the cost of particle fil-
ters based on these two proposals.

The linear Gaussian models that we study can—and
typically should—be treated by direct analytic calcula-
tions or efficient simulation of Gaussians. However, it
is possible to analytically study the dependence of p on
key parameters within these model classes, and further-
more they are flexible enough to incorporate formula-
tions on function spaces, and their finite dimensional
approximations. Thus, they are an excellent framework
for obtaining insight into the performance of impor-
tance sampling for inverse problems and filtering.

For the abstract importance sampling problem, we
will relate p to a number of other natural quanti-
ties. These include the effective sample size ess, used
heuristically in many application domains, and a vari-
ety of distance metrics between m and p. Since the ex-
istence of a density between target and proposal plays
an important role in this discussion, we will also inves-
tigate what happens as this absolute continuity prop-
erty breaks down. We study this first in high dimen-
sional problems, and second in singular parameter lim-
its (by which we mean limits of important parameters
defining the problem). The ideas behind these two dif-
ferent ways of breaking absolute continuity are pre-
sented in the general framework, and then substantially
developed in the inverse problem and filtering settings.
The motivation for studying these limits can be appre-
ciated by considering the two examples mentioned at
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the start of this introduction: inverse problems from the
Earth’s subsurface, and filtering for numerical weather
prediction. In both cases, the unknown which we are
trying to determine from data is best thought of as a
spatially varying field for subsurface properties such as
permeability, or atmospheric properties, such as tem-
perature. In practice, the field will be discretized and
represented as a high dimensional vector, for computa-
tional purposes, but for these types of application the
state dimension can be of order 10°. Furthermore, as
computer power advances there is pressure to resolve
more physics, and hence for the state dimension to in-
crease. Thus, it is important to understand infinite di-
mensional problems, and sequences of approximating
finite dimensional problems which approach the infi-
nite dimensional limit. A motivation for studying sin-
gular parameter limits arises, for example, from prob-
lems in which the noise is small and the relevant log-
likelihoods scale inversely with the noise variance.

This paper aims in particular to contribute towards a
better understanding of the recurrent claim that impor-
tance sampling suffers from the curse of dimensional-
ity. Whilst there is some empirical truth in this state-
ment, there is a great deal of confusion in the literature
about what exactly makes importance sampling hard.
In fact, such a statement about the role of dimension
is vacuous unless “dimension” is defined precisely. We
will substantially clarify these issues in the contexts of
inverse problems and filtering. Throughout this paper,
we use the following conventions:

e State space dimension is the dimension of the mea-
surable space where the measures p and 7 are de-
fined. We will be mostly interested in the case where
the measurable space X is a separable Hilbert space,
in which case the state space dimension is the cardi-
nality of an orthonormal basis of the space. In the
context of inverse problems and filtering, the state
space dimension is the dimension of the unknown.

e Data space dimension is the dimension of the space
where the data lives.

e Nominal dimension is the minimum of the state
space dimension and the data state dimension.

e Intrinsic dimension: we will use two notions of in-
trinsic dimension for linear Gaussian inverse prob-
lems, denoted by efd and 7. These combine state/
data dimension and small noise parameters. They
can be interpreted as a measure of how informative
the data is relative to the prior.

We show that the intrinsic dimensions are natural
when studying the computational cost of importance

sampling for inverse problems. In particular, we show
how these intrinsic dimensions relate to the parame-
ter p introduced above, a parameter that we show to
be central to the computational cost, and to the break-
down of absolute continuity. Finally, we apply our un-
derstanding of linear inverse problems to particle fil-
ters, translating the results from one to the other via
an interesting correspondence between the two prob-
lems, for both standard and optimal proposals, that we
describe here. In studying these quantities, and their
inter-relations, we aim to achieve the purpose set out at
the start of this introduction.

1.2 Organization of the Paper and Main
Contributions

Section 2 describes importance sampling in abstract
form. In Sections 3 and 4, the linear Gaussian inverse
problem and the linear Gaussian filtering problem are
studied. Our aim is to provide a digestible narrative,
and hence all proofs—and all technical matters related
to studying measures in infinite dimensional spaces—
are left to the Supplementary Material [4].

Further to providing a unified narrative of the exist-
ing literature, this paper contains some original contri-
butions that shed new light on the use of importance
sampling for inverse problems and filtering. Our main
new results are:

e Theorem 2.1 bounds the error of importance sam-
pling for bounded test functions. The main appeal
of this theorem is its nonasymptotic nature, together
with its clean interpretation in terms of: (i) the key
quantity p; (ii) effective sample size; (iii) metrics
between probability measures; (iv) existing asymp-
totic results. According to the perspective on impor-
tance sampling as an approximation of one probabil-
ity measure by another, the metric used in Theorem
2.1 is natural and it has already been used in im-
portant theoretical developments in the field as we
discuss in Section 2.5. On the other hand, the re-
sult is less useful for quantifying the error for a spe-
cific test function of interest, such as linear, bilin-
ear or quadratic functions, typically used for com-
puting moments and covariances. We discuss exten-
sions and generalizations in Section 2.

e Theorem 3.8 studies importance sampling for in-
verse problems. It is formulated in the linear Gaus-
sian setting to allow a clear and full develop-
ment of the connections that it makes between
heretofore disparate notions. In particular, we high-
light the following. (i) It provides the first clear
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connection between finite intrinsic dimension and
absolute continuity between posterior and prior.
(i1) It demonstrates the relevance of the intrinsic
dimension—rather than the state space or the nom-
inal dimension—in the performance of importance
sampling, by linking the intrinsic dimension and the
parameter p; thus, it shows the combined effect of
the prior, the forward map and the noise model in the
efficacy of the method. (iii) It provides theoretical
support for the use of algorithms based on impor-
tance sampling for posterior inference in function
space, provided that the intrinsic dimension is finite
and the value of p is moderate.

e Theorems 4.2 and 4.3 are proved by studying the in-
verse problem at the heart of importance sampling
based particle filters. These theorems, together with
Theorem 4.5 and Example 4.6, provide an improved
understanding of the advantages of the optimal pro-
posal over the standard proposal in the context of
filtering.

1.3 Literature Review

In this subsection, we provide a historical review of
the literature in importance sampling. Each of the fol-
lowing Sections 2, 3 and 4 will contain a further liter-
ature review subsection providing detailed references
linked explicitly to the theory as outlined in those sec-
tions.

Early developments of importance sampling as a
method to reduce the variance in Monte Carlo estima-
tion date back to the early 1950s [47, 48]. In particular,
the paper [48] demonstrates how to optimally choose
the proposal density for given test function ¢ and target
density. Standard text book references for importance
sampling include [33] and [71]. Important method-
ological improvements were introduced in [66, 72, §82]
and [96]. A modern view of importance sampling in
the general framework (1.1) is given in [22]. A com-
prehensive description of Bayesian inverse problems
in finite state/data space dimensions can be found in
[49], and its formulation in infinite dimensional spaces
in [30, 60-62, 95]. Text books overviewing the subject
of filtering and particle filters include [6, 31], and the
article [27] provides a readable introduction to the area.
For an up-to-date and in-depth survey of nonlinear fil-
tering, see [28]. The linear Gaussian inverse problem
and the linear Gaussian filtering problem have been ex-
tensively studied because they arise naturally in many
applications, lead to considerable algorithmic tractabil-
ity, and provide theoretical insight. For references con-
cerning linear Gaussian inverse problems, see [39, 53,

64, 74]. The linear Gaussian filter—the Kalman filter—
was introduced in [51]; see [59] for further analysis.
The inverse problem of determining subsurface prop-
erties of the Earth from surface measurements is dis-
cussed in [81], while the filtering problem of assimilat-
ing atmospheric measurements for numerical weather
prediction is discussed in [52].

The key role of p, the second moment of the Radon—
Nikodym derivative between the target and the pro-
posal, has long been acknowledged [70, 83]. The cru-
cial question of how to choose a proposal measure that
leads to small value of p has been widely studied, and
we refer to [67] and references therein. In this vein,
our theory in Sections 3 and 4 shows precise condi-
tions that guarantee p < oo in inverse problems and
filtering settings, in terms of well-defined basic con-
cepts such as absolute continuity of the target with re-
spect to the proposal. Our study of importance sam-
pling for inverse problems in Section 3 is limited to the
choice of prior as proposal, which is of central theo-
retical relevance. In practice, however, more sophisti-
cated proposals are often used, potentially leading to
reduced parameter p; two novel ideas include the im-
plicit sampling method described in [78], and the use
of proposals based on the ensemble Kalman filter sug-
gested in [65]. The value of p is known to be asymptot-
ically linked to the effective sample size [56, 57, 70].
Recent justification for the use of the effective sample
size within particle filters is given in [101]. We pro-
vide a further nonasymptotic justification of the rele-
vance of p through its appearance in error bounds on
the error in importance sampling; a relevant related pa-
per is [26] which proved nonasymptotic bounds on the
error in the importance-sampling based particle filter
algorithm. In this paper, we will also bound the im-
portance sampling error in terms of different notions
of distance between the target and the proposal mea-
sures. Our theory is based on the x 2 divergence—as in
[20]—while the recent complementary analysis of im-
portance sampling in [19] highlights the advantages of
the Kullback-Leibler divergence; a useful overview of
the subject of distances between probability measures
is [43].

We formulate problems in both finite dimensional
and infinite dimensional state spaces. We refer to [50]
for a modern presentation of probability appropriate
for understanding the material in this article. Some of
our results are built on the rich area of Gaussian mea-
sures in Hilbert space; we include all the required back-
ground in the Supplementary Material, and references
are included there. However, we emphasize that the
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presentation in the main body of the text is designed
to keep technical material to a minimum and to be ac-
cessible to readers who are not versed in the theory
of probability in infinite dimensional spaces. Absolute
continuity of the target with respect to the proposal—
or the existence of a density of the target with respect
to the proposal—is central to our developments. This
concept also plays a pivotal role in the understanding
of Markov chain Monte Carlo (MCMC) methods in
high and infinite dimensional spaces [97]. A key idea
in MCMC is that breakdown of absolute continuity on
sequences of problems of increasing state space dimen-
sion is responsible for poor algorithmic performance
with respect to increasing dimension; this should be
avoided if possible, such as for problems with a well-
defined infinite dimensional limit [25]. Similar ideas
will come into play in this paper.

As well as the breakdown of absolute continuity
through increase in dimension, small noise limits can
also lead to sequences of proposal/target measures
which are increasingly close to mutually singular and
for which absolute continuity breaks down. Small
noise regimes are of theoretical and computational in-
terest for both inverse problems and filtering. For in-
stance, in inverse problems there is a growing inter-
est in the study of the concentration rate of the pos-
terior in the small observational noise limit; see [2, 5,
53-55, 84, 100]. In filtering and multiscale diffusions,
the analysis and development of improved proposals in
small noise limits is an active research area [37, 78, 94,
99, 104].

In order to quantify the computational cost of a prob-
lem, a recurrent concept is that of intrinsic dimen-
sion. Several notions of intrinsic dimension have been
used in different fields, including dimension of learn-
ing problems [12, 102, 103], of statistical inverse prob-
lems [73], of functions in the context of quasi Monte
Carlo (QMC) integration in finance applications [16,
58, 79] and of data assimilation problems [23]. The
underlying theme is that in many application areas
where models are formulated in high dimensional state
spaces, there is often a small subspace which captures
most of the features of the system. It is the dimension
of this subspace that effects the cost of the problem.
The recent subject of active subspaces shows promise
in finding such low dimensional subspace of interest
in certain applications [24]. In the context of inverse
problems, the paper [8] proposed a notion of intrin-
sic dimension that was shown to have a direct con-
nection with the performance of importance sampling.
We introduce a further notion of intrinsic dimension

for Bayesian inverse problems which agrees with the
notion of effective number of parameters used in ma-
chine learning and statistics [12]. We also establish that
this notion of dimension and the one in [8] are finite, or
otherwise, at the same time. Both intrinsic dimensions
account for three key features of the cost of the inverse
problem: the nominal dimension (i.e., the minimum of
the dimension of the state space and the data), the size
of the observational noise and the regularity of the prior
relative to the observation noise. Varying the parame-
ters related to these three features may cause a break-
down of absolute continuity. The deterioration of im-
portance sampling in large nominal dimensional lim-
its has been widely investigated [8, 11, 88-91]. In par-
ticular, the key role of the intrinsic dimension, rather
than the nominal one, in explaining this deterioration
was studied in [8]. Here, we study the different be-
haviour of importance sampling as absolute continuity
is broken in the three regimes above, and we investi-
gate whether, in all these regimes, the deterioration of
importance sampling may be quantified by the various
intrinsic dimensions that we introduce.

We emphasize that, whilst the theory and discus-
sion in Section 2 is quite general, the applications to
Bayesian inverse problems (Section 3) and filtering
(Section 4) are in the case of linear problems with addi-
tive Gaussian noise. This linear Gaussian setting allows
substantial explicit calculations and yields consider-
able insight. However, empirical evidence related to the
behaviour of filters and Monte Carlo based methods
when applied to nonlinear problems and non-Gaussian
target measures suggests that similar ideas may apply
in those situations; see [14, 24, 25, 29, 90]. Quantifying
this empirical experience more precisely is an interest-
ing and challenging direction for future study. We note
in particular that extensions of the intrinsic dimension
quantity that we employ have been provided in the lit-
erature for Bayesian hierarchical non-Gaussian mod-
els, more specifically within the so-called deviance in-
formation criterion of [93]; see Section 3.5.3 for more
discussion.

1.4 Notation

Given a probability measure v on a measurable space
(X, F) expectations of a measurable function ¢ : X —
R with respect to v will be written as both v(¢) and
E,[¢]. When it is clear which measure is being used
we may drop the suffix v and write simply E[¢]. Simi-
larly, the variance will be written as Var, (¢) and again
we may drop the suffix when no confusion arises from
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doing so. All test functions ¢ appearing in the paper
are assumed to be measurable.

We will be interested in sequences of measures in-
dexed by time or by the state space dimension. These
are denoted with a subscript, for example, v;, v;. Any-
thing to do with samples from a measure is denoted
with a superscript: N for the number of samples, and
n for the indices of the samples. The ith coordinate of
a vector u is denoted by u(i). Thus, u} (i) denotes ith
coordinate of the nth sample from the measure of in-
terest at time ¢. Finally, the law of a random variable v
will be denoted by P,.

2. IMPORTANCE SAMPLING

In Section 2.1, we define importance sampling and in
Section 2.2 we demonstrate the role of the second mo-
ment of the target-proposal density, p; we prove two

nonasymptotic theorems showing O((p/N )%) conver-
gence rate of importance sampling with respect to the
number N of particles. Then in Section 2.3.2 we show
how p relates to the effective sample size ess as often
defined by practitioners, whilst in Section 2.3.3 we link
p to various distances between probability measures.
In Section 2.4.1, we highlight the role of the break-
down of absolute continuity in the growth of p, as the
dimension of the space X grows. Section 2.4.2 follows
with a similar discussion relating to singular limits of
the density between target and proposal. Section 2.5
contains a literature review and, in particular, sources
for all the material in this section.

2.1 General Setting

We consider target u and proposal 7, both probabil-
ity measures on the measurable space (X, F), related
by (1.1). In many statistical applications, interest lies
in estimating expectations under u, for a collection of
test functions, using samples from 7. For a test func-
tion ¢ : X — R such that u(|¢|) < oo, the identity

(Pg)
n(g)’

leads to the autonormalized importance sampling esti-
mator:

() =

2.1
1 N
N N 2n=1 P@")gW") " ..
= ~ 7 1.1.d.
u (@) %Z,lx:lg(um) , U 711
N
_ n n n e g(un) .
_,;w H), W YN gm)’

here the w"’s are called the normalized weights. As
suggested by the notation, it is useful to view (2.1) as
integrating a function ¢ with respect to the random
probability measure p" := Z,I,V:1 w"8,n. Under this
perspective, importance sampling consists of approx-
imating the target u by the measure 1V, which is typi-
cally called the particle approximation of j1. Note that,
while 11"V depends on the proposal 7, we suppress this
dependence for economy of notation. Our aim is to un-
derstand the quality of the approximation "V of . In
particular, we would like to know how large to choose
N in order to obtain small error. This will quantify the
computational cost of importance sampling.

2.2 A Nonasymptotic Bound on Particle
Approximation Error

A fundamental quantity in addressing this issue is p,
defined by

pim m(g?)
C ()

Thus, p is the second moment of the Radon—-Nikodym
derivative of the target with respect to the proposal. The
Cauchy—Schwarz inequality shows that 77 ()% < 7(g?)
and hence that p > 1. Our first nonasymptotic result
shows that, for bounded test functions ¢, both the bias
and the mean square error (MSE) of the autonormal-
ized importance sampling estimator are O(N ') with
constant of proportionality linear in p.

(2.2)

THEOREM 2.1. Assume that p is absolutely con-
tinuous with respect to 1w, with square-integrable den-
sity g, that is, w(g?) < 0o. The bias and MSE of im-
portance sampling over bounded test functions may be
characterized as follows:

12
sup [E[u" (¢) — (@] < ~ P

|¢1<1
and
N 27_ 4
sup E[(1™ (¢) — u(@#))] < —p.
pl<1 N
REMARK 2.2. For a bounded test function |¢| <1,

we trivially get |u® (¢) — u(¢)| < 2; hence the bounds
on bias and MSE provided in Theorem 2.1 are useful
only when they are smaller than 2 and 4, respectively.

The upper bounds stated in this result suggest that
it is good practice to keep p/N small in order to ob-
tain good importance sampling approximations. This
heuristic dominates the developments in the remainder
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of the paper, and in particular our wish to study the be-
haviour of p in various limits. The result trivially ex-
tends to provide bounds on the mean square error for
functions bounded by any other known bound different
from 1. For practical purposes, the theorem is directly
applicable to instances where importance sampling is
used to estimate probabilities, such as in rare event
simulation. However, its primary role is in providing
a bound on the particle approximation error, which is
naturally defined over bounded functions, as is com-
mon with weak convergence results. It is also impor-
tant to realise that such a result will not hold without
more assumptions on the weights for unbounded test
functions; for example when g has third moment but
not fourth under 7, then ;L(gz) < 00, rr(gz) < o0 but
the importance sampling estimator of j(g?) has infi-
nite variance. We return to extensions of the theorem
for unbounded test functions in Section 2.3 below.

2.3 Connections, Interpretations and Extensions

Theorem 2.1 clearly demonstrates the role of p, the
second moment of the target density with respect to
the proposal, in determining the number of samples re-
quired to effectively approximate expectations. Here,
we link p to other quantities used in analysis and mon-
itoring of importance sampling algorithms, and we dis-
cuss some limitations of thinking entirely in terms of p.

2.3.1 Asymptotic consistency. It is interesting to
contrast Theorem 2.1 to a well-known elementary
asymptotic result. First, note that

NTUYN S G ) — ()]

— N ™)
N-! Zn:l f‘[?g)

N (@) — u(g) =

Therefore, under the condition n(gz) < 00, and pro-
vided additionally that 7 (g%$%) < 0o, an application
of the Slutsky lemmas gives that

@),

N —
VN @) - (@) = N0 .

(2.3)
where ¢ := ¢ — 1 (¢).

For bounded |¢| < 1, the only condition needed for ap-
pealing to the asymptotic result is 7(g?) < oo. Then
(2.3) gives that, for large N and since |¢| < 2,

4
E[(1Y (9) — n(#))] £ R

which is in precise agreement with Theorem 2.1.

2.3.2 Effective sample size. Many practitioners de-
fine the effective sample size by the formula

N -1 v L
ess = (Z(w")z) _ = 8W)”

o 1 g(umy?

_ani/[vc(g)z
S e’
mcl8

where ”ﬂc is the empirical Monte Carlo random mea-
sure

1 N

N .

”MC':NE Suny  u" ~ .
n=1

By the Cauchy-Schwarz inequality, it follows that
ess < N. Furthermore, since the weights lie in [0, 1],
we have

N
X:(w")2 < Z w" =1
n=1 n=1
so that ess > 1. These upper and lower bounds may
be attained as follows. If all the weights are equal, and
hence take value N~!, then ess = N, the optimal situ-
ation. On the other hand, if exactly k weights take the
same value, with the remainder then zero, ess = k; in
particular the lower bound of 1 is attained if precisely
one weight takes the value 1 and all others are zero.
For large enough N, and provided 7 (g?) < oo, the
strong law of large numbers gives

ess~ N/p.

Recalling that p > 1, we see that p~! quantifies the
proportion of particles that effectively characterize the
sample size, in the large particle size asymptotic. Fur-
thermore, by Theorem 2.1, we have that, for large N,

4
2
sup E[(u" (¢) — n@)] £ —.

lp|=<I ess
This provides a further justification for the use of ess
as an effective sample size, in the large N asymptotic
regime.

2.3.3 Probability metrics. Intuition tells us that im-
portance sampling will perform well when the distance
between proposal 7 and target p is not too large. Fur-
thermore, we have shown the role of p in measuring
the rate of convergence of importance sampling. It is
hence of interest to explicitly link p to distance metrics
between 7 and w. In fact, we consider asymmetric di-
vergences as distance measures; these are not strictly
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metrics, but certainly represent useful distance mea-
sures in many contexts in probability. First, consider
the x 2 divergence, which satisfies

24) Do) = n([%g) _ 1T> —p—1.

The Kullback-Leibler divergence is given by

_ (& . 8
D () = ”<n S toe (g)),

and may be shown to satisfy
(2.5) 0> ePrulullm)

Thus, Theorem 2.1 suggests that the number of parti-
cles required for accurate importance sampling scales
exponentially with the Kullback—Leibler divergence
between proposal and target and linearly with the x?2
divergence.

2.3.4 Beyond bounded test functions. In contrast
to Theorem 2.1, the asymptotic result (2.3), estab-
lishes the convergence rate N ~'/2 (asymptotically) un-
der the weaker moment assumption on the test func-
tion m(g%¢?) < oo. It is thus of interest to derive
nonasymptotic bounds on the MSE and bias for much
larger classes of test functions. This can be achieved
at the expense of more assumptions on the importance
weights. The next theorem addresses the issue of re-
laxing the class of test functions, whilst still deriv-
ing nonasymptotic bounds. By including the result, we
also highlight the fact that, whilst p plays an important
role in quantifying the difficulty of importance sam-
pling, other quantities may be relevant in the analysis
of importance sampling for unbounded test functions.
Nonetheless, the sufficiency and necessity of scaling
the number of samples with p is understood in certain
settings, as will be discussed in the bibliography at the
end of this section.

To simplify the statement, we first introduce the fol-
lowing notation. We write m[ /] for the ¢th central mo-
ment with respect to 7 of a function z : X — R. That
is,

m[h] = m(|hu) —x()|").
We also define, as above, ¢ := ¢ — ().
THEOREM 2.3. Suppose that ¢ and g are such that
CwMSE defined below is finite:

3
CMSE = Tg)zmz[d)g]

11 1
+ 7 (1pg )4 Cs maclgle

3
m(g)*

1
+——n(1¢*P)?
201+1
n(g) ( +p)

1

q
' Czq(1+%)m2q(1+§)[g] :

=

Then the bias and MSE of importance sampling when
applied to approximate w(¢) may be characterized as
follows:

IE[1™ () — n(@)]|

(SIE

! ﬂ(g2)5>

1 2 1= 2
< (—mz[g]2m2[¢g] +200sE 7 )

= N\ (g)?

and

1
E[(1" () — n(¢))?] < ~ Cuse

1
The constants C; > 0, t > 2, satisfy Cf <t—1 and
the two pairs of parameters d, e, and p, q are conju-
gate pairs of indices satisfying d, e, p,q € (1,00) and
dl4+el=1, p_1 +q_1 =1.

REMARK 2.4. In Bayesian inverse problems,
7 (g) < oo often implies that 7 (g%) < oo for any pos-
itive s; we will demonstrate this in a particular case
in Section 3. In such a case, Theorem 2.3 combined
with Holder’s inequality shows that importance sam-
pling converges at rate N~! for any test function ¢
satisfying 7 (|¢|>1€) < oo for some € > 0. Note, how-
ever, that the constant in the O(N 1) error bound is not
readily interpretable simply in terms of p; in particular
the expression necessarily involves moments of g with
exponent greater than two.

2.4 Behaviour of the Second Moment p

Having demonstrated the importance of p, the sec-
ond moment of the target-proposal density, we now
show how it behaves in high dimensional problems
and in problems where there are measure concentra-
tion phenomena due to a small parameter in the likeli-
hood. These two limits will be of importance to us in
subsequent sections of the paper, where the small pa-
rameter measure concentration effect will arise due to
high quality data.

2.4.1 High state space dimension and absolute
continuity. The preceding three subsections have de-
monstrated how, when the target is absolutely continu-
ous with respect to the proposal, importance sampling
converges as the square root of p/N. It is thus natural
to ask if, and how, this desirable convergence breaks
down for sequences of target and proposal measures



IMPORTANCE SAMPLING 413

which become increasingly close to singular. To this
end, suppose that the underlying space is the Carte-
sian product R equipped with the corresponding prod-
uct o -algebra, the proposal is a product measure and
the un-normalized weight function also has a product
form, as follows:

d

ma(du) =[] mi(du()),
i=1
d

pa(du) = [T p1(du(@),

i=1
d
ga(u) =exp{—2h(u<z‘))},
i=1

for probability measures 7y, #y on R and 4 : R — R™
(and we assume it is not constant to remove the triv-
ial case ;1 = 7). We index the proposal, target, den-
sity and p with respect to d since interest here lies in
the limiting behaviour as d increases. In the setting of
(1.1), we now have

(2.6) pa(du) x gq(u)mwq(du).

By construction, g4 has all polynomial moments un-
der w4 and importance sampling for each d has the
good properties developed in the previous sections. It
is also fairly straightforward to see that (oo and mso
are mutually singular when /4 is not constant: one way
to see this is to note that

1 d
E;u(l)

has a different almost sure limit under (oo and .
Two measures cannot be absolutely continuous un-
less they share the same almost sure properties. There-
fore, (1o is not absolutely continuous with respect to
T~ and importance sampling is undefined in the limit
d = 00. As a consequence, we should expect to see a
degradation in its performance for large state space di-
mension d.

To illustrate this degradation note that under the
product structure (2.6), we have p; = (pl)d . Further-
more, p1 > 1 (since / is not constant). Thus, p; grows
exponentially with the state space dimension suggest-
ing, when combined with Theorem 2.1, that exponen-
tially many particles are required, with respect to di-
mension, to make importance sampling accurate.

It is important to realise that it is not the product
structure per se that leads to the collapse, rather the
lack of absolute continuity in the limit of infinite state

space dimension. Thinking about the role of high di-
mensions in this way is very instructive in our un-
derstanding of high dimensional problems, but is very
much related to the setting in which all the coordinates
of the problem play a similar role. This does not happen
in many application areas. Often there is a diminishing
response of the likelihood to perturbations in growing
coordinate index. When this is the case, increasing the
state space dimension has only a mild effect in the cost
of the problem, and it is possible to have well-behaved
infinite dimensional limits; we will see this perspective
in Sections 3.1, 3.2 and 3.3 for inverse problems, and
Sections 4.1, 4.2 and 4.3 for filtering.

2.4.2 Singular limits. In the previous subsection,
we saw an example where for high dimensional state
spaces the target and proposal became increasingly
close to being mutually singular, resulting in p which
grows exponentially with the state space dimension. In
this subsection, we observe that mutual singularity can
also occur because of small parameters in the unnor-
malized density g appearing in (1.1), even in problems
of fixed dimension; this will lead to p which grows al-
gebraically with respect to the small parameter. To un-
derstand this situation, let X = R and consider (1.1) in
the setting where

ge(u) = exp(—e_lh(u)),

where i : R — R*. We will write g and p, to high-
light the dependence of these quantities on €. Fur-
thermore assume, for simplicity, that 4 is twice dif-
ferentiable and has a unique minimum at u*, and that
h"(u*) > 0. Assume, in addition, that v has a Lebesgue
density with bounded first derivative. Then the Laplace
method shows that

2me
2]’1”(14*)

Eexp(—2¢ " h(u)) ~ exp(—2¢ " h(u*))

and that

2
Eexp(—e ™ 'h(u)) ~ exp(—e'h(u*)),] h//j(rui).
It follows that
N h//(u*)
pe™ ' dme -

Thus, Theorem 2.1 indicates that the number of parti-
cles required for importance sampling to be accurate

1
should grow at least as fast as e 2.
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2.5 Discussion and Connection to Literature

2.5.1 Metrics between random probability mea-
sures. In Section 2.1, we introduced the importance
sampling approximation of a target p using a proposal
7, both related by (1.1). The resulting particle approx-
imation measure 1" is random because it is based on
samples from 7. Hence, 1" (¢) is a random estimator
of u(¢). This estimator is in general biased and, there-
fore, a reasonable metric for its quality is the MSE

E[(u™ (¢) — n(@))?],

where the expectation is with respect to the random-
ness in the measure u”. We bound the MSE over the
class of bounded test functions in Theorem 2.1. In fact,
we may view this theorem as giving a bound on a dis-
tance between the measure p and its approximation
w! . To this end, let v and 1 denote mappings from
an underlying probability space (which for us will be
that associated with ) into the space of probability
measures on (X, F); in the following, expectation [E
is with respect to this underlying probability space. In
[85], a distance d (-, -) between such random measures
is defined by

2
27)  d(v,w)?= sup E[(v(¢) — u(9)"].
lpI=<1
The paper [85] used this distance to study the conver-
gence of particle filters. Note that if the measures are
not random the distance reduces to total variation. Us-
ing this distance, together with the discussion in Sec-
tion 2.3.3 linking p to the x? divergence, we see that
Theorem 2.1 states that
4
(14 D2 ().

AN, n)? < —
W) =

In Section 2.3.3, we also link p to the Kullback-Leibler
divergence; the bound (2.5) can be found in Theo-
rem 4.19 of [13]. As was already noted, this suggests
the need to increase the number of particles linearly
with D, 2 (ul|l7r) or exponentially with Dk (u||7).

2.5.2 Complementary analyses of importance sam-
pling error. Provided that log(£ ((Z,; ), U ~ [, iS concen-
trated around its expected value, as often happens in
large dimensional and singular limits, it has recently
been shown [19] that using a sample size of approx-
imately exp(Dkr(u||r)) is both necessary and suffi-
cient in order to control the L' error E|u™ () — ()]
of the importance sampling estimator u” (¢). Theo-
rem 2.1 is similar to [31], Theorem 7.4.3. However,
the later result uses a metric defined over subclasses

of bounded functions. The resulting constants in their
bounds rely on covering numbers, which are often in-
tractable. In contrast, the constant p in Theorem 2.1 is
more amenable to analysis and has several meaningful
interpretations as we highlight in this paper. The cen-
tral limit result in equation (2.3) shows that for large
N the upper bound in Theorem 2.1 is sharp. Equation
(2.3) can be seen as a trivial application of deeper cen-
tral limit theorems for particle filters; see [21].

This discussion serves to illustrate the fact that a
universal analysis of importance sampling in terms of
o alone is not possible. Indeed Theorem 2.3 shows
that the expression for the error constant in useful er-
ror bounds may be quite complex when considering
test functions which are not bounded. The constants
C; > 0, t > 2 in Theorem 2.3 are determined by the
Marcinkiewicz—Zygmund inequality [86]. The proof
follows the approach of [35] for evaluating moments
of ratios. Despite the complicated dependence of er-
ror constants on the problem at hand, there is further
evidence for the centrality of the second moment p in
the paper [87]. There it is shown (see Remark 4) that,
when p is finite, a necessary condition for accuracy
within the class of functions with bounded second mo-
ment under the proposal, is that the sample size N is of
the order of the x? divergence, and hence of the order
of p.

Further importance sampling results have been
proved within the study of convergence properties of
various versions of the particle filter as a numeri-
cal method for the approximation of the true filter-
ing/smoothing distribution. These results are often
formulated in finite dimensional state spaces, under
bounded likelihood assumptions and for bounded test
functions; see [1, 26, 27, 32, 77]. Generalizations for
continuous time filtering can be found in [6] and [45].

2.5.3 Effective sample size, and the case of infinite
second moment. The effective sample size ess, intro-
duced in Section 2.3.2, is a standard statistic used to
assess and monitor particle approximation errors in im-
portance sampling [56, 57]. The effective sample size
ess does not depend on any specific test function, but is
rather a particular function of the normalized weights
which quantifies their variability. So does p, and as we
show in Section 2.3.2 there is an asymptotic connec-
tion between both. Our discussion of ess relies on the
condition 77 (g?) < oo. Intuitively, the particle approx-
imation will be rather poor when this condition is not
met. Extreme value theory provides some clues about
the asymptotic particle approximation error. First, it
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may be shown that, regardless of whether 7 (g?) is fi-
nite or not, but simply on the basis that 7(g) < oo, the
largest normalised weight, w®™), will converge to 0 as
N — o0; see, for example, Section 3 of [36] for a re-
view of related results. On the other hand, [76] shows
that, for large N,

N N
El — |~ S dy,
[ess] foy (y)dy

where S(y) is the survival function of the distribution
of the un-normalized weights, v := g(u) for u ~ .
For instance, if the weights have density proportional
to )/_“_1, for 1 < a < 2, then 7T(g2) = oo and, for
large enough N and constant C,

E[i] ~ CN~F2,

ess

Thus, in contrast to the situation where 7T(g2) < 00,
in this setting the effective sample size does not grow
linearly with N.

2.5.4 Large state dimension, and singular limits. In
Section 2.4.1, we studied high dimensional problems
with a product structure that enables analytical calcula-
tions. The use of such product structure was pioneered
for MCMC methods in [42]. It has then been recently
employed in the analysis of importance sampling in
high nominal dimensions, starting with the seminal pa-
per [8], and leading on to others such as [9-11, 88-90]
and [91].

In [8], Section 3.2, it is shown that the maximum nor-
malised importance sampling weight can be approxi-
mately written as

1
1+ 3,2 exp{—vde(z™ — zD)}’
N

where {z"},"_, are samples from N (0, 1) and the z
are the ordered statistics. In [11], a direct but nontriv-
ial calculation shows that if N does not grow exponen-
tially with d, the sum in the denominator converges to 0
in probability and as a result the maximum weight to 1.
Of course, this means that all other weights are con-
verging to zero, and that the effective sample size is 1.
It chimes with the heuristic derived in Section 2.4.1
where we show that p grows exponentially with d and
that choosing N to grow exponentially is thus neces-
sary to keep the upper bound in Theorem 2.1 small.
The phenomenon is an instance of what is sometimes
termed collapse of importance sampling in high di-
mensions. This type of behaviour can be obtained for
other classes of targets and proposals; see [8, 90]. At-
tempts to alleviate this behaviour include the use of

w®™ A

tempering [9] or combining importance sampling with
Kalman-based algorithms [40]. However, the range of
applicability of these ideas is still to be studied. In Sec-
tion 2.4.2, we use the Laplace method. This is a clas-
sical methodology for approximating integrals and can
be found in many text books; see, for instance, [7].

3. IMPORTANCE SAMPLING AND INVERSE
PROBLEMS

The previous section showed that the distance be-
tween the proposal and the target is key in understand-
ing the computational cost of importance sampling and
the central role played by p. In this section, we study
the computational cost of importance sampling applied
in the context of Bayesian inverse problems, where
the target will be the posterior and the proposal the
prior. To make the analysis tractable, we consider lin-
ear Gaussian inverse problems, but our ideas extend be-
yond this setting. Section 3.1 describes the setting and
necessary background on inverse problems. Then Sec-
tion 3.2 introduces various notions of “intrinsic dimen-
sion” for linear Gaussian inverse problems; a key point
to appreciate in the sequel is that this dimension can be
finite even when the inverse problem is posed in an infi-
nite dimensional Hilbert space. The analysis of impor-
tance sampling starts in Section 3.3. The main result is
Theorem 3.8, that shows the equivalence between (i) fi-
nite intrinsic dimension, (ii) absolute continuity of the
posterior (target) with respect to the prior (proposal),
and (iii) the central quantity p being finite. The sec-
tion closes with a thorough study of singular limits in
Section 3.4 and a literature review in Section 3.5.

3.1 General Setting

We study the inverse problem of finding u from y
where

3.1) y=Ku+n.

In particular, we work in the setting where u is an ele-
ment of the (potentially infinite dimensional) separable
Hilbert space (H, (-, -), || - |I). Two cases will help guide
the reader.

EXAMPLE 3.1 (Linear Regression Model). In the
context of the linear regression model, u € R4 is the
regression parameter vector, y € R% is a vector of
training outputs and K € R%*% is the so-called de-
sign matrix whose column space is used to construct
a linear predictor for the scalar output. In this set-
ting, d,,, dy < o0, although in modern applications both
might be very large, and the case d, > d, is the so-
called “large p (here d,,) small N (here dy)” problem.
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EXAMPLE 3.2 (Deconvolution Problem). In the
context of signal deconvolution, u € LZ(O, 1) is a
square integrable unknown signal on the unit inter-
val, K : L?(0,1) — L2(0,1) is a convolution oper-
ator Ku(x) = (¢ xu)(x) = f01¢(x — 2)u(z)dz, and
y = Ku + n is the noisy observation of the convoluted
signal where 1 is observational noise. The convolu-
tion kernel ¢ might be, for example, a Gaussian kernel

¢ (x) = ¢=3*% Note also that discretization of the de-
convolution problem will lead to a family of instances
of the preceding linear regression model, parametrized
by the dimension of the discretization space.

The infinite dimensional setting does require some
technical background, and this is outlined in the Sup-
plementary Material. Nevertheless, the reader versed
only in finite dimensional Gaussian concepts will read-
ily make sense of the notions of intrinsic dimension
described in Section 3.2 simply by thinking of (po-
tentially infinite dimensional) matrix representations of
covariances.

In equation (3.1), the data y is comprised of the im-
age of the unknown u under a linear map K, with
added observational noise 7. Here, K can be formally
thought of as being a bounded linear operator in H,
which is ill-posed in the sense that if we attempt to in-
vert the data using the (generalized) inverse of K, we
get amplification of small errors n in the observation
to large errors in the reconstruction of «. In such situ-
ations, we need to use regularization techniques in or-
der to stably reconstruct the unknown u from the noisy
data y.

We assume Gaussian observation noise n ~ P, :=
N(0,T') and adopt a Bayesian approach by putting
a prior on the unknown u ~ P, = N(0, X). Here
and throughout, I' : H — H and X : H — H are
bounded, self-adjoint, positive-definite linear opera-
tors. Note that we do not assume that I' and X are
trace class, which introduces some technical difficul-
ties since n and u do not necessarily live in . This is
discussed in the Supplementary Material.

The Bayesian solution is the posterior distribution
uly ~ IP,y. In the finite dimensional setting, the prior
P, and the posterior IP,|, are Gaussian conjugate and
Pyjy = N(m, C), with mean and covariance given by

(32 m=3XKKSK*+T) 'y,
(33) C=%—-SK*(KSK*4+T) 'Kx.

A simple way to derive the expressions above is by
working with precision matrices. Indeed, using Bayes’

rule and completion of the square gives
(3.4) cl'=x'+ k177K,
(3.5) C 'm=K*T"y.

An application of Schur complement then yields (3.2)
and (3.3).

REMARK 3.3. Under appropriate conditions—see
the references in the literature review Section 3.5 and
the Supplementary Material—formulae (3.2)—(3.5) can
be established in the infinite dimensional setting. From
now on and whenever necessary, we assume that these
expressions are available in the general Hilbert space
setting that we work in. In particular, Proposition 3.5
makes use of the formula (3.4) for the posterior preci-
sion.

Under the prior and noise models, we may write
u= E%uo and n = F%no where ug and ng are inde-
pendent centred Gaussians with identity covariance op-
erators (white noises). Thus, we can write (3.1), for

Yo= F‘%y, as

(3.6)  yo=Suo+mno, S=I KT

Therefore, all results may be derived for this inverse
problem, and translated back to the original setting.
This intuition demonstrates the centrality of the oper-
ator S linking K, ¥ and I'. The following assumption
will be in place in the remainder of the paper.

ASSUMPTION 3.4. Define S = F*%KE%, A=
S*S and assume that A, viewed as a linear operator
in H, is bounded. Furthermore, assume that the spec-
trum of A consists of a countable number of eigenval-
ues, sorted without loss of generality in a nonincreas-
ing way:

MZAp= == 20

In Section 3.5, we give further intuition on the cen-
trality of the operator S, and hence A, and discuss the
role of the assumption in the context of inverse prob-
lems.

3.2 Intrinsic Dimension

Section 2 demonstrates the importance of the dis-
tance between the target (here the posterior) and the
proposal (here the prior) in the performance of impor-
tance sampling. In the Gaussian setting considered in
this section, any such distance is characterized in terms
of means and covariances. We now show that the “size”
of the operator A defined in Assumption 3.4 can be
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used to quantify the distance between the prior and the
posterior covariances, X and C. In Sections 3.3 and
3.4, we will see that, although A does not contain ex-
plicit information on the prior and posterior means, its
size largely determines the computational cost of im-
portance sampling.

PROPOSITION 3.5. Under the general setting of
Section 3.1, the following identities hold:

Tr((C™!' = 271 2) = Tr(A),
Tr((S — O)S ) =Te((I + A) ' A).

Thus, the traces of A and of (/ + A)~'A measure
the differences between the posterior and prior preci-
sion and covariance operators, respectively, relative to
their prior values. For this reason, they provide useful
measures of the computational cost of importance sam-
pling, motivating the following definitions:

(3.7)  Tt:=Tr(A), efd:=Tr((I +A)"A).

Note that the trace calculates the sum of the eigenval-
ues and is well-defined, although may be infinite, in
the Hilbert space setting. We refer to efd as effective
dimension; both T and efd are measures of the intrin-
sic dimension of the inverse problem at hand. The next
result shows that the intrinsic dimension efd has the ap-
pealing property of being bounded above by the nomi-
nal dimension.

PROPOSITION 3.6. Let S and A be defined as in
Assumption 3.4, and consider the finite dimensional
setting with the notation introduced in Example 3.1:

1. The matrices TYV2S(I + A)~1S*I~1/2 ¢ Révxdy,
S(I+A)1S* e RY*y gnd (I + A)~'A € Ruxdu
have the same nonzero eigenvalues, and hence the
same trace.

2. If &; > 0 is a nonzero eigenvalue of A then these
three matrices have corresponding eigenvalue
rM(l+r)"1 <1, and

Aj .
efd = Z,: s d = min{d,, dy}.

1

Here, recall, d = min{d,,d,} is the nominal di-
mension of the problem. Part 2 of the preceding re-
sult demonstrates the connection between efd and the
physical dimensions of the unknown and observation
spaces, whilst part 1 demonstrates the equivalence be-
tween the traces of a variety of operators, all of which
are used in the literature; this is discussed in greater de-
tail in Section 3.5. In the Hilbert space setting, recall,

the intrinsic dimensions efd and t can be infinite. It is
important to note, however, that this cannot happen if
the rank of K is finite. That is, the intrinsic dimension
efd (and, as we now show, also 1) is finite whenever
the unknown u or the data y live in a finite dimensional
subspace of H. The following result relates efd and t.
It shows in particular that in the infinite dimensional
setting they are finite, or otherwise, at the same time.

LEMMA 3.7. Under the general setting of Sec-
tion 3.1, the operator A is trace class if and only if
(I + A)~YA is trace class. Moreover, the following in-
equalities hold.

- —1
TEW Tr(A) < Tr((I + A)~ A) < Tr(A).

Asa consequence,

;‘L’ <efd<r.
11+ All

We are now ready to study the performance of im-
portance sampling with posterior as target and prior as
proposal. In Section 3.3, we identify conditions under
which we can guarantee that p in Theorem 2.1 is fi-
nite and absolute continuity holds. In Section 3.4, we
then study the growth of p as mutual singularity is ap-
proached in different regimes. The intrinsic dimensions
7 and efd will be woven into these developments.

(3.8)

3.3 Absolute Continuity

In the finite dimensional setting, the Gaussian
proposal and target distributions have densities with
respect to the Lebesgue measure. They are hence mu-
tually absolutely continuous and it is hence straight-
forward to find the Radon—-Nikodym derivative of the
target with respect to the proposal by taking the ratio
of the respective Lebesgue densities once the posterior
is identified via Bayes’ theorem; this gives

du
E(”)

Ly )

3.9) dP
1
x exp(—iu*K*F_lKu + u*K*F_ly)

=:g(u; y).

Direct calculation shows that, for d,,, dy, < oo the ra-
tio p defined in (2.2) is finite, and indeed that g admits
all polynomial moments, all of which are positive. In
this subsection, we study p in the Hilbert space set-
ting. In general, there is no guarantee that the posterior
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is absolutely continuous with respect to the prior; when
it is not, g, and hence p, are not defined. We thus seek
conditions under which such absolute continuity may
be established.

To this end, we define the likelihood measure y|u ~
Pyu := N(Ku,T), and the joint distribution of (u, y)
under the model v(du, dy) := Py, (dylu)P,(du), re-
calling that P, = N (0, X). We also define the marginal
distribution of the data under the joint distribution,
vy(dy) =Py (dy). We have the following result.

THEOREM 3.8. Let Assumption 3.4 hold and let
w =Py, and w =P,. The following are equivalent:

(1) efd < oo;

(i) T < o0;

(iii) T=Y2Ku e H, w-almost surely;

(iv) for vy-almost all y, the posterior w is well-defined
as a measure in any space of full prior measure
and is absolutely continuous with respect to the
prior with

du
E(“)

1
x exp(—— [T 2 Ku|?
(3.10) 2

1
+ 5(F—l/zy, F_l/zKu))

=:g(u; y),
where 0 < w(g(-; y)) < oo.

REMARK 3.9. Due to the exponential structure of
g, we have that assertion (iv) of the last theorem is im-
mediately equivalent to g being v-almost surely posi-
tive and finite and for vy-almost all y the second mo-
ment of the target-proposal density is finite:

, o TGV
CICRY)

Item (iii) is a requirement on the regularity of the
forward image of draws from the prior, relative to the
regularity of the noise. This regularity condition heav-
ily constrains the space of possible reconstructions and
is thus related to the intrinsic dimension of the inverse
problem, as we establish here. For a discussion on the
regularity of draws from Gaussian measures in Hilbert
spaces, see the Supplementary Material.

We have established something very interesting:
there are meaningful notions of intrinsic dimension for
inverse problems formulated in infinite state/data state
dimensions and, when the intrinsic dimension is finite,

importance sampling may be possible as there is ab-
solute continuity; moreover, in such a situation p is
finite. Thus, under any of the equivalent conditions (i)—
(iv), Theorem 2.1 can be used to provide bounds on
the effective sample size ess, defined in Section 2.3.2;
indeed the effective sample size is then proportional
to N.

It is now of interest to understand how p, and the
intrinsic dimensions 7 and efd, depend on various pa-
rameters, such as small observational noise or the di-
mension of finite dimensional approximations of the
inverse problem. Such questions are studied in the next
subsection.

3.4 Large Nominal Dimension and Singular
Parameter Limits

The parameter p is a complicated nonlinear function
of the eigenvalues of A and the data y. However, there
are some situations in which we can lower bound p in
terms of the intrinsic dimensions 7, efd and the size of
the eigenvalues of A. We present two classes of exam-
ples of this type. The first is a simple but insightful ex-
ample in which the eigenvalues cluster into a finite di-
mensional set of large eigenvalues and a set of small re-
maining eigenvalues. The second involves asymptotic
considerations in a simultaneously diagonalizable set-
ting.

3.4.1 Spectral jump. Consider the setting where u
and y both live in finite dimensional spaces of di-
mensions d, and dy, respectively. Suppose that A has

eigenvalues {Ai}flil with A; =C > 1 for 1 <i <k,
and A; <« 1 fork+1<i <d,; indeed, we assume that

d
D Mkl
i=k+1

Then t(A) =~ Ck, whilst the effective dimension satis-
fies efd ~ k. Using the identity,

2DKL(Pu|y||]P)u) = log(det(l + A))
—Tr((I + A)'A) +m* 2w
and studying the asymptotics for fixed m, with k and C
large, we obtain

efd

Therefore, using (2.5),
e cT.

This suggests that p grows exponentially with the num-
ber of large eigenvalues, whereas it has an algebraic



IMPORTANCE SAMPLING 419

dependence on the size of the eigenvalues. Theorem 2.1
then suggests that the number of particles required for
accurate importance sampling will grow exponentially
with the number of large eigenvalues, and algebraically
with the size of the eigenvalues. A similar distinction
may be found by comparing the behaviour of p in large
state space dimension in Section 2.4.1 (exponential)
and with respect to small scaling parameter in Sec-
tion 2.4.2 (algebraic).

3.4.2 Spectral cascade. We now introduce a three-
parameter family of inverse problems, defined through
the eigenvalues of A. These three parameters represent
the regularity of the prior and the forward map, the size
of the observational noise and the number of positive
eigenvalues of A, which corresponds to the nominal
dimension. We are interested in investigating the per-
formance of importance sampling, as quantified by p,
in different regimes for these parameters. We work in
the framework of Assumption 3.4, and under the fol-
lowing additional assumption.

ASSUMPTION 3.10. Within the framework of As-
sumption 3.4, we assume that ' = I and that A

has eigenvalues (L= }OO1 with y > 0, and 8 > 0.
We consider a truncated sequence of problems with

A(B,y,d), with eigenvalues {L— }/ 1» d € NU {o0}.
Finally, we assume that the data is generated from a
fixed underlying infinite dimensional truth u",

(3.11) y=Ku'4+n, Ku' eH,

and for the truncated problems the data is given by pro-
jecting y onto the first d eigenfunctions of A.

REMARK 3.11. Since Ku' € #, using the Gaus-
sian theory provided in the Supplementary Material
one can check that the distribution of the data in (3.11)
is equivalent to the marginal probability measure of the
data under the model, vy (dy). Hence, the conclusions
of Theorem 3.8 and Remark 3.9 which are formulated
for vy-almost all y, also hold for almost all y of the
form of (3.11).

Note that d in the previous assumption is the data
space dimension, which agrees here with the nomi-
nal dimension. The setting of the previous assumption
arises, for example, when d is finite, from discretizing
the data of an inverse problem formulated in an infi-
nite dimensional state space. Provided that the forward
map K and the prior covariance ¥ commute, our anal-
ysis extends to the case where both the unknown and
the data are discretized in the common eigenbasis. In

all these cases, interest lies in understanding how the
cost of importance sampling depends on the level of
the discretizations. The parameter y may arise as an
observational noise scaling, and it is hence of interest
to study the cost of importance sampling when y is
small. And finally, the parameter S reflects regularity
of the problem, as determined by the prior and noise
covariances, and the forward map; critical phase tran-
sitions occur in computational cost as this parameter is
varied, as we will show.

EXAMPLE 3.12 (Example 3.2 revisited). We re-
visit the deconvolution problem in the unit interval. In
particular, we consider the problem of deconvolution of
a periodic signal which is blurred by a periodic kernel
and polluted by Gaussian white noise N (0, y ). This
problem is diagonalized by the discrete Fourier trans-
form, giving rise to a countable number of decoupled
equations in frequency space of the form:

yi=Kjuj+n;, jeN

Here, u; are the Fourier coefficients of the unknown
signal u, K; the Fourier coefficients of the blurring
kernel ¢ which is assumed to be known, and n; oy
N (O, y) the Fourier coefficients of the observational
noise 7. Consider the case in which K; =< j7t >0
the case t = 0 corresponds to the direct observation
case while the bigger ¢ is the more severe the blur-
ring. We put a Gaussian prior on u, u ~ N (0, (—A)™¥),
s > 0, where A is the Laplacian with periodic bound-
ary conditions on (0, 1), so that by the Karhunen—
Loeve expansion u;j =  /k;¢;, with k; < i and

g RS (0, 1). The larger s is the higher the regular-

ity of draws from the prior. In this case, the operator A
—2t=2s
has eigenvalues {c ; ".il, where c is independent

of j, y. For this example, the value of 8 in Assump-
tion 3.10 is B = 2t 4+ 2s and large values of § corre-
spond to more severe blurring and/or higher regularity
of the prior. A natural way of discretizing this problem
is to truncate the infinite sequence of 1-dimensional
problems to d terms, resulting in truncation of the se-
quence of eigenvalues of A. The limit ¥y — O corre-
sponds to vanishing noise in the observation of the
blurred signal.

The intrinsic dimensions t = 7(8, y,d) and efd =
efd(B, y, d) read

(3.12) t=

d
A=y ——.
2t e Zy+j‘ﬂ

1
Y j=1 j=1
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TABLE 1
The third and fourth columns show the scaling of the intrinsic dimensions with model parameters for the spectra cascade example of
Section 3.4.2. The fourth one gives a lower bound on the growth of p, suggesting that the number of particles should be increased at least as
indicated by this column in terms of the model parameters. This lower bound holds for all realizations of the data y when y — 0, and in

probability for those regimes where y is fixed. € can be chosen arbitrarily small

Regime Parameters efd T P
Small noise y —>0,d <o d y_l ]ﬂ/_d/Z
€ —1/B—€
y—0,d=00,>1 y /P y~! y= T
Large d d— o0, B <1 al=p dal=# exp(d1=#)
Small noise and large d y=d %d—>o00,B>1,a>8 d d“ de—Pd
y=d=%d—oc0,f>1,a<p d/B d° qed’P=e
y=d %d—>oo,B<l,a>p d dl+o—8 d@—Bd
y=d %d—>oo,B<l,a<§B dlte—8 Jl+e—8 dgdoc/ﬁ—e
Regularity d=o00,8\ 1 ﬂlj ﬁ%l CXP(TL)

Table 1 shows the scalings of the effective dimen-
sions efd and 7 with the model parameters. It also
shows how p behaves under these scalings, and hence
gives, by Theorem 2.1, an indication of the number of
particles required for accurate importance sampling in
a given regime. In all the scaling limits where p grows
to infinity, the posterior and prior are approaching mu-
tual singularity; we can then apply Theorem 2.1 to get
an indication of how importance sampling deteriorates
in these limits.

Note that by Theorem 3.8 we have t(8, y,d) < oo
if and only if efd(8, y, d) < oo. It is clear from (3.12)
that T = oo if and only if {d = oo, 8 < 1}. By The-
orem 3.8 again, this implies, in particular, that abso-
lute continuity is lost in the limit as d — oo when
B <1, and as 8 \ 1 when d = oco. Absolute conti-
nuity is also lost in the limit y — 0, in which the pos-
terior is fully concentrated around the data (at least in
those directions in which the data live). In this limit,
we always have T = oo, whereas efd < oo in the case
where d < oo and efd = oo when d = co. Note that in
the limit y = 0 Assumption 3.4 does not hold, which
explains why 7 and efd are not finite simultaneously.
Indeed, as was noted before, efd is always bounded by
the nominal dimension d irrespective of the size y of
the noise.

Some important remarks on Table 1 are:

e p grows algebraically in the small noise limit (y —
0) if the nominal dimension d is finite.

e p grows exponentially in t or efd as the nominal di-
mension grows (d — oo) if B < 1, and as the prior
becomes rougher (8 \( 1) if d = oc.

e p grows factorially in the small noise limit (y — 0)
if d = 0o, and in the joint limit y =d~%,d — oo.
The exponent in the rates relates naturally to efd.

The scalings of 7 and efd can be readily deduced by
comparing the sums defining T and efd with integrals.
The analysis of the sensitivity of p to the model param-
eters relies on an explicit expression for this quantity.
Details are given in the Supplementary Material.

3.5 Discussion and Connection to Literature

3.5.1 Examples and Hilbert space formulation of
inverse problems. Further examples of linear inverse
problems in both finite and infinite dimensions include
the Radon transform inversion used for X-ray imaging,
the determination of the initial temperature from later
measurements and the inversion of the Laplace trans-
form. Many case studies and more elaborate nonlinear
inverse problems can be found, for example, in [49,
95], which adopt a Bayesian approach to their solu-
tion, and [38, 80], which adopt a classical approach.
The periodic deconvolution problem considered in Ex-
ample 3.12 is discussed, for instance, in [18], Section 5,
where an example of a convolution operator with al-
gebraically decaying spectrum is also provided. The
Bayesian approach we undertake, in the example of
linear regression (Example 3.1) becomes the Gaussian
conjugate Bayesian analysis of linear regression mod-
els, as in [69]. This paper also derives formulae (3.4),
(3.5) for the mean and covariance expressed via preci-
sions in the finite dimensional setting. For the infinite
dimensional counterpart, see [2], Section 5. Formulae
(3.2), (3.3) in the infinite dimensional setting are de-
rived in [64, 74]; in the specific case of inverting for the
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initial condition in the heat equation they were derived
in [39]. The Supplementary Material has a discussion
of Gaussian measures in Hilbert spaces and contains
further background references.

3.5.2 The operator A: Centrality and assumptions.
The assumption that the spectrum of A introduced
in Assumption 3.4 consists of a countable number of
eigenvalues, means that the operator A can be thought
of as an infinitely large diagonal matrix. It holds if A
is compact [63], Theorem 3, Chapter 28, but is in fact
more general since it covers, for example, the noncom-
pactcase A =1.

We note here that the inverse problem

(3.13)

with ng a white noise and wg ~ N (0, SS*) is equiv-
alent to (3.6), but formulated in terms of unknown
wo = Aug, rather than unknown ug. In this picture,
the key operator is SS* rather than A = S*S. Note
that by Lemma S.M.1.5 in the Supplementary Material
Tr(S*S) = Tr(SS*). Furthermore, if S is compact the
operators SS* and S*S have the same nonzero eigen-
values [38], Section 2.2, thus Tr((I + SS*)~1SS*) =
Tr((I + S*S)~15*S). The last equality holds even if
S is noncompact, since then Lemma S.M.1.5 together
with Lemma 3.7 imply that both sides are infinite.
Combining, we see that the intrinsic dimension (t or
efd) is the same regardless of whether we view wg or
ug as the unknown. In particular, the assumption that
A is bounded is equivalent to assuming that the op-
erators S, S* or SS* are bounded [63], Theorem 14,
Chapter 19. For the equivalent formulation (3.13), the
posterior mean equation (3.2) is

Yo = wo + No

m=SS*(SS*+1)""y.

If S§* is compact, that is, if its nonzero eigenvalues
A; go to 0, then m is a regularized approximation of
wo, since the components of the data corresponding to
small eigenvalues A; are shrunk towards zero. On the
other hand, if $S™* is unbounded, that is, if its nonzero
eigenvalues A; go to infinity, then there is no regular-
ization and high frequency components in the data re-
main almost unaffected by SS* in m. Therefore, the
case SS* is bounded is the borderline case determin-
ing whether the prior has a regularizing effect in the
inversion of the data.

The operator A has played an important role in the
study of linear inverse problems. First, it has been used
for obtaining posterior contraction rates in the small
noise limit; see the operator B*B in [3, 68]. Its use
was motivated by techniques for analyzing classical

regularization methods, in particular regularization in
Hilbert scales; see [38], Chapter 8. Furthermore, its
eigenvalues and eigendirections can be used to deter-
mine (optimal) low-rank approximations of the poste-
rior covariance [15], [92], Theorem 2.3. The analogue
of A in nonlinear Bayesian inverse problems is the so-
called prior-preconditioned data-misfit Hessian, which
has been used in [75] to design Metropolis—Hastings
proposals. In more realistic settings, the spectrum of
A may not be analytically available and needs to be
numerically approximated; for example, see [15], Sec-
tion 6.7, in the context of linearized global seismic in-
version.

3.5.3 Notions of dimension and interpretations. In
Section 3.2, we study notions of dimension for
Bayesian inverse problems. In the Bayesian setting, the
prior imparts information and correlations on the com-
ponents of the unknown u, reducing the number of pa-
rameters that are estimated. In the context of Bayesian
or penalized likelihood frameworks, this has led to the
notion of effective number of parameters, defined as

Te(C'28(1 + §*85) "' s*1~1/2).

This quantity agrees with efd by Proposition 3.6 and
has been used extensively in statistics and machine
learning; see, for example, the deviance information
criterion in [93] (which generalises this notion to
more general Bayesian hierarchical models), and Sec-
tion 3.5.3 of [12] and references therein. One motiva-
tion for this definition is based on a Bayesian version of
the “hat matrix”; see, for example, [93]. In this article,
we provide a different motivation that is more relevant
to our aims: rather than as an effective number of pa-
rameters, we interpret efd as the effective dimension
of the Bayesian linear model. Similar forms of effec-
tive dimension have been used for learning problems
in [17, 102, 103] and for statistical inverse problems
in [73]. In all of these contexts, the size of the oper-
ator A quantifies how informative the data is; see the
discussion below. The paper [11] introduced the no-
tion of T = Tr(A) as an effective dimension for im-
portance sampling within linear inverse problems and
filtering. In that paper, several transformations of the
inverse problem are performed before doing the analy-
sis. We undo these transformations here. The role of t
in the performance of the ensemble Kalman filter had
been previously studied in [41].

Proposition 3.6 shows that efd is at most as large as
the nominal dimension. The difference between both is
a measure of the effect the prior has on the inference
relative to the maximum likelihood solution. Proposi-
tion 3.5 shows that efd quantifies how far the poste-
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rior is from the prior, measured in terms of how distant
their covariances are in units of the prior; and similarly
for 7, but expressed in terms of precisions and again
in units of the prior. By the cyclic property of the trace,
Lemma S.M.1.5(ii) in the Supplementary Material, and
by Proposition 3.5, T and efd may also be characterized
as follows:

t=Tr((C' == HE)=Tr((T - )Y,
efd=Tr((ZT — )X ) =Tr((C™' = =71H0).

Thus, we may also view efd as measuring the change
in the precision, measured in units given by the pos-
terior precision; whilst T measures the change in the
covariance, measured in units given by the posterior
covariance.

4. IMPORTANCE SAMPLING AND FILTERING

This section studies importance sampling in the con-
text of filtering. In particular, we study two different
choices of proposals that play an important role in the
subject of filtering. The analysis relies on the relation-
ship between Bayesian inversion and filtering men-
tioned in the introductory section, and detailed here.
In Section 4.1, we set-up the problem and derive a
link between importance sampling based particle fil-
ters and the inverse problem. In Sections 4.2 and 4.3,
we use this connection to study, respectively, the intrin-
sic dimension of filtering and the connection to abso-
lute continuity between the two proposals considered
and the target. Section 4.4 contains some explicit com-
putations which enable comparison of the cost of the
two proposals in various singular limits relating to high
dimension or small observational noise. We conclude
with the literature review Section 4.5.

The component of particle filtering which we anal-
yse in this section is only that related to sequential
importance sampling; we do not discuss the interac-
tion between the simulated particles which arises via
resampling schemes. Such interaction would not typi-
cally be very relevant in the two time-unit dynamical
systems we study here, but would be necessary to get
reasonable numerical schemes when assimilating data
over many time units. We comment further on this, and
the choice of the assimilation problem we study, in the
literature review.

4.1 General Setting

We simplify the notation by setting j =0 in (1.3) to
obtain

v = Muvg + &,
yl=HU1+§?

vo~ N(0, P), & ~N(0, Q),

4.1
@D ¢ ~N(@,R).

Note that we have also imposed a Gaussian assump-
tion on vg. Because of the Markov assumption on the
dynamics for {v;}, we have that vy and & are inde-
pendent. As in Section 3, we set-up the problem in a
separable Hilbert space H, although the reader versed
only in finite dimensional Gaussian measures should
have no trouble following the developments, simply by
thinking of the covariance operators as (possibly infi-
nite) matrices. We assume throughout that the covari-
ance operators P, O, R : H — H are bounded, self-
adjoint, positive linear operators, but not necessarily
trace-class (see the discussion on this trace-class is-
sue in Section 3). We also assume that the operators
M, H : H — H that describe, respectively, the uncon-
ditioned signal dynamics and the observation opera-
tor, can be extended to larger spaces if necessary; see
the Supplementary Material for further details on these
technical issues.

Our goal in this section is to study the cost of impor-
tance sampling within the context of both the standard
and optimal proposals for particle filtering. For both
these proposals, we show that there is an inverse prob-
lem embedded within the particle filtering method, and
compute the proposal covariance, the observation op-
erator and the observational noise covariance. We may
then use the material from the previous section, con-
cerning inverse problems, to make direct conclusions
about the cost of importance sampling for particle fil-
ters.

The aim of one step of filtering may be expressed
as sampling from the target Py, yq)y, . Particle filters do
this by importance sampling, with this measure on the
product space X’ x X as the target. We wish to compare
two ways of doing this, one by using the proposal dis-
tribution P, |, [Py, and the second by using as proposal
distribution Py, |y, y, Py, - The first is known as the stan-
dard proposal, and the second as the optimal proposal.
We now connect each of these proposals to a different
inverse problem.

4.1.1 Standard proposal. For the standard proposal,
we note that, using Bayes’ theorem, conditioning, and
that the observation y; does not depend on vy explic-
itly,

thvolm X Py1|U1vU()]P>Ul,U()
= ]PYIWIsUO]P)U”UO]PUO
= PY””IPUHUOPUO‘

Thus, the density of the target P, 4y, With respect
to the proposal Py, |y, Py, is proportional to Py, |y,. Al-
though this density concerns a proposal on the joint
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FIG. 1. Filtering step decomposed in two different ways. The upper path first pushes forward the measure Py, using the signal dynamics,
and then incorporates the observation yy. The lower path assimilates the observation yy first, and then propagates the conditioned measure
using the signal dynamics. The standard proposal corresponds to the upper decomposition and the optimal one to the lower decomposition.

space of (vg, v1), since it involves only v; we may con-
sider the related inverse problem of finding v, given
y1, and ignore vg.

In this picture, filtering via the standard proposal
proceeds as follows:

Pyy = Py = Py -

Here, the first step involves propagation of probability
measures under the dynamics. This provides the pro-
posal m = P, used for importance sampling to deter-
mine the target u = Py,|y,. The situation is illustrated
in the upper branch of Figure 1. Since

E(viv}) = E(Mvo + &) (Mug + &),

and vg and & are independent under the Markov as-
sumption, the proposal distribution is readily seen to be
a centred Gaussian with covariance ¥ = M PM* + Q.
The observation operator is K = H and the noise co-
variance I' = R. We have established a direct connec-
tion between the particle filter, with standard proposal
and the inverse problem of the previous section. We
will use this connection to study the cost of the particle
filter, with standard proposal, in what follows.

4.1.2 Optimal proposal. For the optimal proposal,
we note that, by conditioning on vy,

PUI»”OWI = Pv1|v0,y1on|y1

on\yl
V,
0 ]P)UO

=Py vy, P :
Thus, the density of the target Py, |y, With respect to
the proposal Py, |, y, Py, is the same as the density of
Py1y, with respect to IP,;. As a consequence, although
this density concerns a proposal on the joint space of
(vo, v1), it is equivalent to an inverse problem involv-
ing only vg. We may thus consider the related inverse
problem of finding vy given yj, and ignore v;.

In this picture, filtering via the optimal proposal pro-
ceeds as follows:

Py > Pogly; > Py, -

Here, the first step involves importance sampling with
proposal m = IP,, and target u = IPyy,. This target
measure is then propagated under the conditioned dy-
namics to find IP,, |y, ; the underlying assumption of the
optimal proposal is that IP,, |,,y, can be sampled so that
this conditioned dynamics can be implemented parti-
cle by particle. The situation is illustrated in the lower
branch of Figure 1. Since

vi=HMuvy+ HE +¢

the proposal distribution is readily seen to be a cen-
tred Gaussian with covariance X = P, the observation
operator K = HM and the noise covariance given by
the covariance of H¢ + ¢, namely ' = HQH* + R.
Again we have established a direct connection between
the particle filter, with optimal proposal, and the in-
verse problem of the previous section. We will use this
connection to study the cost of the particle filter, with
optimal proposal, in what follows.

A key assumption of the optimal proposal is the sec-
ond step: the ability to sample from the conditioned dy-
namics Py, |y,,y, and we make a few comments on this
before returning to our main purpose, namely to study
cost of particle filtering via the connection to an inverse
problem. The first comment is to note that since we are
in a purely Gaussian setting, this conditioned dynam-
ics is itself determined by a Gaussian and so may in
principle be performed in a straightforward fashion. In
fact, the conditioned dynamics remains Gaussian even
if the forward model Mvy is replaced by a nonlinear
map f(vp), so that the optimal proposal has wider ap-
plicability than might at first be appreciated. Second,
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TABLE 2
Comparison of the standard and optimal proposals

Optimal proposal

Standard proposal
Proposal Pyo (dvp) Py, vy (dv1)
BIP y1=Hvy + 15
Prior Cov. MPM*+ Q
Data Cov. R
logg(us y1) =3l Hvtllg + (1. Hui)g

on (dUO)Pvl [vo,y1 (dvy)
Y1 =HMuvy + nop
p
R+ HQH*

—SIHMvol %y o g + (01, HMv0) Ry i o1

we comment that the Gaussian arising in the condi-
tioned dynamics has mean m and variance E given by
the formulae

E=Q—- QH*(HQH*+R) 'HOQ,
m=Muvy+ QH*(HQH* + R)™ ' (y — HMuy).

It is a tacit assumption in what follows that the op-
erators defining the filtering problem are such that
& :H — H is well-defined and that m € H is well-
defined. More can be said about these points, but doing
so will add further technicalities without contributing
to the main goals of this paper.

4.2 Intrinsic Dimension

Using the inverse problems that arise for the standard
proposal and for the optimal proposal, and employing
them within the definition of A from Assumption 3.4,
we find the two operators A arising for these two dif-
ferent proposals:

A= ASt
= (MPM* + Q)'*H*R'"H(MPM* + Q)"
for the standard proposal, and
Ai=Agp:=PIM*H*(R+ HQH")'"HMP'/

for the optimal proposal. Again here it is assumed that
these operators are bounded in H:

ASSUMPTION 4.1. The operators Ay and Agp,
viewed as linear operators in 7, are bounded. Fur-
thermore, the spectra of both Ay and Aop consist of
a countable number of eigenvalues.

Using these definitions of Ag and Aop, we may de-
fine, from (3.7), the intrinsic dimensions 7y, efdy for
the standard proposal and t,p, €fd,p for the optimal one
in the following way:

Ty =Tr(Ag), efdy=Tr((] + Aw) ' Ag)
and

4.3 Absolute Continuity

The following two theorems are a straightforward
application of Theorem 3.8, using the connections be-
tween filtering and inverse problems made above. The
contents of the two theorems are summarized in Ta-
ble 2.

THEOREM 4.2. Consider one-step of particle fil-
tering for (4.1). Let pu = Py,|y, and m =P, = N(0,
QO + M PM?*). Then the following are equivalent:

(1) efdg < o0;
(i) 75t < 00;
(iii) R~V?Hv, € H, w-almost surely;
(iv) for vy-almost all 'y, the target distribution [ is
well-defined as a measure in X and is absolutely
continuous with respect to the proposal with

du
g(vl)

1
o exp(—— |R=Y2Huv, ||2
(4.2) 2

1
+ E(R_l/zyl, R_l/szl))

=:gst(v1; y1),
where 0 < w(gs(+; y1)) < 00.

THEOREM 4.3. Consider one-step of particle fil-
tering for (4.1). Let pu = Py, and m =P,, = N(0,
Q). Then, for Rop = R + HQH?*, the following are
equivalent:

(1) efdop < 00;
(i) Top < 00;
(iii) Ro_p1 /ZHMvo € H, m-almost surely;
(iv) for vy-almost all 'y, the target distribution [ is
well defined as a measure in X and is absolutely
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continuous with respect to the proposal with
du
—(v
e (vo)

! -1/2 2
ocexp(—— R H My
. 3 |Rop 2 H M|

L, _ _
+ E(Ropl/zyl’ Ropl/ZHMU()))

=: gop(v0; Y1),
where 0 < 7w (gop(-; y1)) < 00.

REMARK 4.4. Because of the exponential struc-
ture of gy and gqp, the assertion (iv) in the preced-
ing two theorems is equivalent to g and gop being
v-almost surely positive and finite and for almost all
y1 the second moment of the target-proposal density

being finite. This second moment is given, for the stan-
dard and optimal proposals, by

_ (g1 3)?)
7 (gst(3 ¥))?

st

and
7 (gop(; )?)
7 (gop(-: ¥))?
respectively. The relative sizes of pg and pop determine

the relative efficiency of the standard and optimal pro-
posal versions of filtering.

Pop

The following theorem shows that there is loss of
absolute continuity for the standard proposal whenever
there is for the optimal one. The result is formulated in
terms of the intrinsic dimension 7, and we show that
Top = 00 implies 75 = 00; by Theorem 3.8, this im-
plies the result concerning absolute continuity. Recall-
ing that poor behaviour of importance sampling is inti-
mately related to such breakdown, this suggests that the
optimal proposal is always at least as good as the stan-
dard one. The following theorem also gives a condi-
tion on the operators H, Q and R under which collapse
for both proposals occurs at the same time, irrespective
of the regularity of the operators M and P. Roughly
speaking, this simultaneous collapse result states that
if R is large compared to Q then absolute continuity
for both proposals is equivalent; and hence collapse
of importance sampling happens under one proposal
if and only if it happens under the other. Intuitively,
the advantages of the optimal proposal stem from the
noise in the dynamics; they disappear completely if the
dynamics is deterministic. The theorem quantifies this
idea. Finally, an example demonstrates that there are

situations where 7, is finite, so that optimal proposal
based importance sampling works well for finite di-
mensional approximations of an infinite dimensional
problem, whilst 7 is infinite, so that standard proposal
based importance sampling works poorly for finite di-
mensional approximations.

THEOREM 4.5.
holds. Then

Suppose that Assumption 4.1

4.4) Top = Tst-
Moreover, if Te(H QH*R™1) < oo, then

Tst <0 <: Top < Q.

We remark that, under additional simplifying as-
sumptions, we can obtain bounds of the form (4.4) for
efd and p. We chose to formulate the result in terms of
T since we can prove the bound (4.4) in full general-
ity. Moreover, by Theorem 3.8 the bound in terms of
T suffices in order to understand the different collapse
properties of both proposals.

The following example demonstrates that it is possi-
ble that 7o, < 00 while tg = 00; in this situation, fil-
tering via the optimal proposal is well-defined, whilst
using the standard proposal it is not. Loosely speak-
ing, this happens if y; provides more information on
v1 than vg.

EXAMPLE 4.6. Suppose that

H=Q=R=M=1, Ti(P)<oo.

Then it is straightforward from the definitions that
Ag= P +1 and Aop = P /2. In an infinite dimensional
Hilbert space setting, the identity operator has infinite
trace, Tr(/) = oo, and so

Tst = Tr(Ag) = Tr(P + 1) = oo,
Top = Tr(Agp) = Tr(P/2) < oo.

We have thus established an example of a filtering
model for which 7y = 00 and 7, < 00. We note that
by Theorem 4.5, any such example satisfies the condi-
tion Tr(H QH*R~') = 0o. When this condition is met,
automatically 7y = 0o. However, 7op can still be finite.
Indeed, within the proof of that theorem in the Supple-
mentary Material we show that the inequality

Top < Tr(R"'HM P M*H*)

always holds. The right-hand side may be finite pro-
vided that the eigenvalues of P decay fast enough.
A simple example of this situation is where HM is a
bounded operator and all the relevant operators have
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eigenvalues. In this case, the Rayleigh—Courant—Fisher
theorem (see the Supplementary Material) guarantees
that the eigenvalues of H M P M* H* can be bounded in
terms of those of P. Again by the Rayleigh—Courant—
Fisher theorem, since we are always assuming that the
covariance R is bounded, it is possible to bound the
eigenvalues of R“"'HM PM*H* in terms of those of
HMPM*H*. This provides a wider range of exam-
ples where 7y = 00 while 7, < 00.

4.4 Large Nominal Dimension and Singular
Parameter Limits

We noted in Remark 4.4 that the values of the sec-
ond moment of the target-proposal density, ps; and pop,
can be used to characterize the performance of particle
filters based on the standard and optimal proposals, re-
spectively. By comparing the values of pg and pop, we
can ascertain situations in which the optimal proposal
has significant advantage over the standard proposal.
We also recall, from Section 3, the role of the intrinsic
dimensions in determining the scaling of the second
moment of the target-proposal density.

The following example will illustrate a number of
interesting phenomena in this regard. In the setting of
fixed finite state/data state dimension, it will illustrate
how the scalings of the various covariances entering
the problem effect computational cost. In the setting
of increasing nominal dimension d, when the limiting
target is singular with respect to the proposal, it will
illustrate how computational cost scales with d. And
finally, we will contrast the cost of the filters in two
differing initialization scenarios: (i) from an arbitrary
initial covariance P, and from a steady state covariance
P~ Such a steady state covariance is a fixed point of
the covariance update map for the Kalman filter defined
by (1.3).

EXAMPLE 4.7. Suppose that M = H = I e R4*4,
and R=rl, Q =ql, with r,q > 0. A simple calcu-
lation shows that the steady state covariance is given

by

2
+ 4qr —
POO:\/Q 2‘1 ql,

and that the operators Ag and Aop when P = Py, are

\/q2+4qr+q1 _\/q2+4qr—ql

S P R

Note that Ay and A, are a function of g/r only,
whereas P is not.

If the filtering step is initialized outside stationarity
at P = pl, with p > 0, then

p+q V4
Astz—l, A0p=
r q+r

Both the size and number of the eigenvalues of
Aop/ Ay play a role in determining the size of p, the
second moment of the target-proposal variance. It is
thus interesting to study how p scales in both the small
observational noise regime r < 1 and the high dimen-
sional regime d >> 1. The results are summarized in
Tables 3 and 4. Some conclusions from these tables
are:

I

e The standard proposal degenerates at an algebraic
rate as r — 0, for fixed dimension d, for both ini-
tializations of P.

e The optimal proposal is not sensitive to the small ob-
servation limit » — 0 if the size of the signal noise,
q, is fixed. If started outside stationarity, the optimal
proposal degenerates algebraically if g o< r — 0.
However, even in this situation the optimal proposal
scales well if initialized in the stationary regime.

e In this example, the limiting problem with d = oo
has infinite intrinsic dimension for both proposals,
because the target and the proposal are mutually sin-
gular. As a result, p grows exponentially in the large
d limit.

e Example 4.6 suggests that there are cases where pg
grows exponentially in the large dimensional limit

TABLE 3
Scalings of the standard and optimal proposals in small noise and large d regimes for one filter step initialized from stationarity (P = Poo).
This table should be interpreted in the same way as Table 1

Regime Param. eig(Agt) eig(Aop) eig(Poso) Pst Pop

Small obs. noise r—0 1 r r ,—d/2 1
r=q—0 | 1 r(=q) 1 1

Large d d— oo 1 1 1 exp(d) exp(d)
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TABLE 4
Scalings of the standard and optimal proposals in small noise and large d regimes for one filter step initialized from P = pl. This table
should be interpreted in the same way as Table 1

Regime Param. eig(Agt) eig(Aop) Pst Pop

Small obs. noise r—0 rl 1 rd/2 1
r=q—0 -1 r1 rd/2 r=d/2

Large d d— 00 1 1 exp(d) exp(d)

d — oo but pop converges to a finite value. This
may happen if Tr(HQH*R™") < oo, but the prior
covariance P is sufficiently smooth.

4.5 Discussion and Connection to Literature

In Section 4.1, we follow [8, 11, 88-91] and con-
sider one step of the filtering model (1.3). There are
two main motivations for studying one step of the filter.
First, if keeping the filter error small is prohibitively
costly for one step, then there is no hope that an on-
line particle filter will be successful [8]. Second, it can
provide insight for filters initialized close to station-
arity [23]. As in [88, 89, 91], we cast the analysis of
importance sampling in joint space and consider as tar-
get u :=Py)y,, withu := (vo, v1) and with the standard
and optimal proposals defined in Section 4.1.

In general nonlinear, non-Gaussian problems, the
optimal proposal is usually not implementable, since it
is not possible to evaluate the corresponding weights,
or to sample from the distribution Py, |y, y,. However,
the optimal proposal is implementable in our frame-
work (see, e.g., [34]) and understanding its behaviour
is important in order to build and analyse improved and
computable proposals which are informed by the data
[44, 78, 98]. It is worth making the point that the so-
called “optimal proposal” is really only locally opti-
mal. In particular, this choice is optimal in minimizing
the variance of the weights at the given step given that
all previous proposals have been already chosen. This
choice does not minimize the Monte Carlo variance for
some time horizon for some family of test functions.
A different optimality criterion is obtained by trying
to simultaneously minimize the variance of weights at
times ¢t <r < t+m, for some m > 1, or minimize some
function of these variances, say their sum or their max-
imum. Such look ahead procedures might not be feasi-
ble in practice. Surprisingly, examples exist where the
standard proposal leads to smaller variance of weights
some steps ahead relative to the locally optimally tuned
particle filter; see, for example, Section 3 of [46], and

the discussion in [22], Chapter 10. Still, such examples
are quite contrived and experience suggests that local
adaptation is useful in practice.

Similarly as for inverse problems, the values of pg
and pop determine the performance of importance sam-
pling for the filtering model with the standard and opti-
mal proposals. In Section 4.3, we show that the condi-
tions of collapse for the standard and optimal proposals
(found in [89] and [11], resp.) correspond to any of the
equivalent conditions of finite intrinsic dimension or fi-
nite p in Theorems 4.2 and 4.3.

In Section 4.4, we study singular limits in the frame-
work of [23]. Thus, we consider a diagonal filtering
setting in the Euclidean space R?, and assume that all
coordinates of the problem play the same role, which
corresponds to the extreme case 8 = 0 in Section 3.4.
The paper [23] introduced a notion of effective di-
mension for detectable and stabilizable linear Gaussian
data assimilation problems as the Frobenius norm of
the steady state covariance of the filtering distribution.
It is well known that the detectability and stabilizability
conditions ensure the existence of such steady state co-
variance [59]. This notion of dimension quantifies the
success of data assimilation in having reduced uncer-
tainty on the unknown once the data has been assim-
ilated. Therefore, the definition of dimension given in
[23] is at odds with both 7 and efd: it does not quan-
tify how much is learned from the data in one step,
but instead how concentrated the filtering distribution
is in the time asymptotic regime when the filter is in
steady state. Our calculations demonstrate differences
which can occur in the computational cost of filtering,
depending on whether it is initialized in this statistical
steady state, or at an arbitrary point. The paper [23]
also highlights the importance of the size of the opera-
tor A in studying the performance of importance sam-
pling, both for the standard and optimal proposals. Mo-
tivated by computational and physical intuition, the au-
thors of [23] quantify the size of this operator by means
of the Frobenius norm rather than the trace which we
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employ here. The trace is more natural in the infinite di-
mensional limit, as demonstrated through large intrin-
sic dimension limits in [11], and through the connec-
tion with absolute continuity in Theorems 4.2 and 4.3
above. We remark that the analysis in [89] also relies
on traces, but an unfortunate typo may trick the reader
into believing that the Frobenius norm is being used.
Note also that some authors [11] write the eigenval-
ues as squares which can cause confusion to the casual
reader.

5. CONCLUSIONS

In this article, we have provided a framework which
unifies the multitude of publications with bearing on
importance sampling. We have aimed to give new in-
sight into the potential use of importance sampling for
inference in inverse problems and filtering settings in
models that involve high and infinite state space and
data dimensions. Our study has required revisiting the
fundamental structure of importance sampling on gen-
eral state spaces. We have derived nonasymptotic con-
centration inequalities for the particle approximation
error and related what turns out to be the key parame-
ter of performance, the second moment of the density
between the target and proposal, to many different im-
portance sampling input and output quantities.

As a compromise between mathematical tractability
and practical relevance, we have focused on Bayesian
linear models for regression and statistical inversion of
ill-posed inverse problems. We have studied the effi-
ciency of sampling-based posterior inference in these
contexts carried out by importance sampling using the
prior as proposal. We have demonstrated that perfor-
mance is controlled by an intrinsic dimension, as op-
posed to the state space or data dimensions, and we
have discussed and related two different notions of in-
trinsic dimension. It is important to emphasise that the
intrinsic dimension quantifies the relative strength be-
tween the prior and the likelihood in forming the pos-
terior, as opposed to quantifying the “degrees of free-
dom” in the prior. In other words, infinite-dimensional
Bayesian linear models with finite intrinsic dimension
are not identified with models for which the prior is
concentrated on a finite-dimensional manifold of the
infinite-dimensional state space.

A similar consideration of balancing tractability and
practical relevance has dictated the choice not to study
interacting particles typically used for filtering, but
rather to focus on one-step filtering using importance
sampling. For such problems, we introduce appropriate

notions of intrinsic dimension and compare the relative
merits of popular alternative schemes.

The most pressing topic for future research stem-
ming from this article is the development of concrete
recommendations for algorithmic design within classes
of Bayesian models used in practice. Within the model
structure, we have studied here, practically relevant
and important extensions include models with non-
Gaussian priors on the unknown, nonlinear operators
that link the unknown to the data, and unknown hyper-
parameters involved in the model specification. Lin-
earisation of a nonlinear model around some reason-
able value for the unknown (e.g., the posterior mean) is
one way to extend our measures of intrinsic dimension
in such frameworks. We can expect the subject area to
see considerable development in the coming decade.
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S.M.1. SUPPLEMENTARY MATERIAL
S.M.1.1 Gaussian Measures in Hilbert Space

In section 3 we study Bayesian inverse problems in the Hilbert space setting. This enables us
to talk about infinite dimensional limits of sequences of high dimensional inverse problems and is
hence useful when studying the complexity of importance sampling in high dimensions. Here we
provide some background on Gaussian measures in Hilbert space. We start by describing how to
construct a random draw from a Gaussian measure on an infinite dimensional separable Hilbert
space (H, (-,-),||]])- Let C : #H — H be a self-adjoint, positive-definite and trace class operator.
It then holds that C has a countable set of eigenvalues {r;};jen, with corresponding normalized

eigenfunctions {e;};eny which form a complete orthonormal basis in H.

ExaMpPLE S.M.1.1. We use as a running example the case where H is the space of square
integrable real-valued functions on the unit interval, H = L?(0,1) and where the Gaussian measure
of interest is a unit centred Brownian bridge on the interval (0,1). Then m = 0 and C is the
inverse of the negative Laplacian on (0,1) with homogeneous Dirichlet boundary conditions. The

etgenfunctions and eigenvalues of C are given by
ej(t) = V2sin(jrt), r; = (jm) 2.
The eigenvalues are summable and hence the operator C is trace class. For further details see [12].

For any m € H, we can write a draw x ~ N(m,C) as
)
rT=m+ Z VEjGiej,

j=1
where (; are independent standard normal random variables in R; this is the Karhunen-Loeve
expansion [1, Chapter II1.3]. The trace class assumption on the operator C, ensures that x € H
with probability 1, see Lemma S.M.1.2 below. The particular rate of decay of the eigenvalues {x;}
determines the almost sure regularity properties of x. The idea is that the quicker the decay, the
smoother z is, in a sense which depends on the basis {e;}. For example if {e;} is the Fourier basis,
which is the case if C is a function of the Laplacian on a torus, then a quicker decay of the eigenvalues

of C means a higher Hélder and Sobolev regularity (see [12, Lemmas 6.25 & 6.27] and [5, Section
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2.4]). For the Brownian bridge Example S.M.1.1 above, draws are almost surely in spaces of both
Hélder and Sobolev regularity upto (but not including) one half.

The above considerations suggest that we can work entirely in the “frequency” domain, namely
the space of coefficients of the element of H in the eigenbasis of the covariance, the sequence
space £2. Indeed, we can identify the Gaussian measure N(m,C) with the independent product
measure ®J°i1 N(mj, k), where m; = <m, ej>. Using this identification, we can define a sequence
of Gaussian measures in R? which converge to N(m,C) as d — oo, by truncating the product
measure to the first d terms. Even though in R? any two Gaussian measures with strictly positive
covariances are absolutely continuous with respect to each other (that is, equivalent as measures),
in the infinite-dimensional limit two Gaussian measures can be mutually singular, and indeed are
unless very stringent conditions are satisfied.

For N(m,C) in H, we define its Cameron-Martin space E as the domain of C~2. This space can
be characterized as the space of all the shifts in the mean which result in an equivalent Gaussian
measure, whilst the covariance is fixed. Since C is a trace class operator, its inverse (hence also its
square root) is an unbounded operator, therefore F is a compact subset of H. In fact E has zero
measure under N(0,C). For example, if C is given by the Brownian bridge Example S.M.1.1, then
the Cameron-Martin space E is the Sobolev space of functions which vanish on the boundary and
whose first derivative is in H; in contrast, and as mentioned above, draws from this measure only
have upto half a derivative in the Sobolev sense. The equivalence or singularity of two Gaussian
measures with different covariance operators and different means depends on the compatibility
of both their means and covariances, as expressed in the three conditions of the Feldman-Hajek
theorem. For more details on the equivalence and singularity of Gaussian measures see [4].

The Karhunen-Loeve expansion makes sense even if C is not trace class, in which case it defines
a Gaussian measure in a space X O H with a modified covariance operator which s trace class.
Indeed, let D : H — H be any injective bounded self-adjoint operator such that: a) D is diagonal-
izable in {e;};cn, with (positive) eigenvalues {d;};en; b) the operator DCD is trace class, that is,
{de]z}jeN is summable. Define the weighted inner product < , ->D,2 = <D D - >, the weighted

norm || - || p—2 = ||D - || and the space

X :=spanfe; : j € N}”'”D_z.
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Then the functions v; = dj_lej, j € N, form a complete orthonormal basis in the Hilbert space
(X, (-, - >D,2, | -l p—2). The Karhunen-Loeve expansion can then be written as

) o0

r=m+ )y RiGe; =mt Y RdiG;,

j=1 j=1
so that we can view z as drawn from the Gaussian measure N(m, DCD) in X, where DCD is trace
class by assumption. For example, the case H = L?(0,1) and C = I, corresponding to Gaussian
white noise for functions on the interval (0,1), can be made sense of in negative Sobolev-Hilbert
spaces with —1/2— e derivatives, for any € > 0. Finally, we stress that absolute continuity in general
and the Cameron-Martin space in particular, are concepts which are independent of the space in
which we make sense of the measure. In the Gaussian white noise example, we hence have that the
Cameron-Martin space is F = H.

The following lemma is similar to numerous results concerning Gaussian measures in function

spaces. Because the precise form which we use is not in the literature, we provide a direct proof.

LEMMA S.M.1.2.  Let X be a separable Hilbert space with orthonormal basis {¢;}jen. Define the

Gaussian measure v through the Karhunen-Loeve expansion
o

v = 5(2 V Aj§j¢j>,
j=1

where A\ is a sequence of positive numbers and where §; are i.i.d. standard normal. Then draws

from v are in X almost surely if and only if Z]Oil Aj < 00.
PrOOF. If 3322, A; < oo, then

oo o
2 2
Ey llzfl% = EZ)‘J@ = Z)‘j < 00,

j=1 j=1
hence x ~ v is in X almost surely.

For the converse, suppose that x ~ « is in X almost surely. Then
[o¢]
2 2
2l =D A& <o, as.

j=1

Note that this implies that A; — 0, and so in particular Ao := sup; A; < co.

By [8, Theorem 3.17], since y/A;&; ~ N(0, A;) are independent and symmetric random variables,

we get that

D ENE AL < oo
j=1
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A change of variable gives

2 L2
EN\E A1) > — /0 e W dy

3
2)\2 AVRY; .2 2N YA 2
= J e vdz= L 2
\/QWAj 0 V2m Jo

Thus, for every j € N,

o). [1/VAx 2
ENE AT > Z2 22”2 dz.
I~ 27 Jo

Nor

Since the left hand side is summable, we conclude that

oo
jgzlkj‘< Q0.
=1

S.M.1.2 Details of the inverse problem setting in section 3

In section 3 we assume Gaussian observation noise n ~ P, := N(0, I') and put a Gaussian
prior on the unknown u ~ P, = N(0, X), where I' : H — H and ¥ : H — H are bounded,
self-adjoint, positive-definite linear operators. As discussed in subsection S.M.1.1, if the covariance
I' (respectively X)) is trace class then n ~ P, (respectively u ~ P,) is almost surely in . On the
other hand, as also discussed in subsection S.M.1.1, when the covariance I' (respectively ¥) is not
trace-class we have that n ¢ H but n € Y P,-almost surely (respectively u ¢ H but u € X P,-almost
surely) where ) (respectively X') strictly contains H; indeed H is compactly embedded into X', ).

We tacitly assume that K can be extended to act on elements in X and that the sum of Ku and n
makes sense in ). This assumption holds trivially if the three operators K, >, I" are simultaneously
diagonalizable as in Example 3.12. It also holds in non-diagonal settings, in which it is possible to
link the domains of powers of the three operators by appropriate embeddings; for some examples

see [2, Section 7].
S.M.1.3 Proofs Section 2

Throughout we denote by 7, the empirical random measure

1 N
N . n
Tye (= N E Oyny, U ~ .
n=1

We recall that Y denotes the particle approximation of p based on sampling from the proposal 7.
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S.M.1.3.1 Proof of Theorem 2.1

PROOF OF THEOREM 2.1. For the bias we write

1
= 7r1\]>lfc<g> e ((d) - M(¢))g>
Then, letting ¢ := ¢ — u(¢) and noting that
m(¢g) =0

we can rewrite

1 _ _
iV (8) = (@) = s (ie(00) — (39)).

The first of the terms in brackets is an unbiased estimator of the second one, and so

E[n" (6) — ul(6)] = E !(ﬂ;(m - ) (7o) - w(asg))]

~E !W (7(9) — 7hic(9)) (7l (B9) - w(qﬁg))] .

Therefore,

2 — _

= W(g)QEUW(g) N WIJ\YC(Q)HWI\]XC(GZ)Q) - 77((;59)’] + 2P<2wgc(g) < w(g))
2 1 /2 2 /

< 7)) 4 28 (2nll9) < 7(9)),

where in the second and third inequality we used that |¢| < 1. Now note that

P(2mlo(9) < 7(9)) = P(2(nllcle) — 7(9)) < —7(9)) < P(2mdelg) — 7(9)] = 7(9)).

By the Markov inequality IP’(27rI\]¥C(g) < ﬂ(g)) < %Zgg, and so

Ny 27(92)
@ﬁ‘é’lE[“ (@) - u(@)]] < N

[\
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This completes the proof of the result for the bias. For the MSE

(S.M.1.1)

N
Ne(9)

Tyc

(

m(g)

Wﬁ%(g)

1
- @W@g)

- ) heten) -
(7(9) = 79V (&) -

1 N

MC

1
m(g)

and so using the inequality (a + b)? < 2(a? + b%) we obtain

Therefore, for |p| <1,

E|(1(6) - n(6))’]

and the proof is complete.

REMARK S.M.1.3.

the indicator Ligni

= (x(00) ~ wle(om)
(w(69) = mc(09)).

W(E)Q { (W(!J) - Wgc(g))ZﬂN(QSV + (W(d)g) - Wﬂc(qﬁg))Q}.
< Z { — WMC(9)>2] +E [(W(qﬁg) - Wli\{c(¢g)>2:| }
= o {Var (xe() + Vars (. (09)}
= N7r2(g)2{ m(9°) + TF((ZSQQQ)}

(a2
< ¥

the constant C' ~ 10.42 rather than C = 12.

O

The constant 12 for the bias can be somewhat reduced by using in the proof

(9)<n(q)} instead of Lion (9)<n(a)} and optimizing over a > 0. Doing this yields

S.M.1.3.2 Proof of Theorem 2.3 The proof of the MSE part of Theorem 2.3 uses the approach

of [6] for calculating moments of ratios of estimators. The proof of the bias part is very similar to

the proof of the bias part of Theorem 2.1.

In order to estimate the MSE, we use [6, Lemma 2] which in our setting becomes:

LEMMA S.M.14. For0 <6 <1, it holds
Neay [mia(89) — n(¢9)| | Imhe(d9)l B
|M (¢) M(¢0| S; W(g) + ﬂ(g) | MC(g) 7T(g)|
mic(g) — m(g)["H*
+ 12na<xN ¢l m(g)+?
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The main novelty of the above lemma compared to the bounds we used in the proof of Theorem
2.1, is not the bound on ¢ using the maximum, but rather the introduction of 6 € (0, 1). This will
be apparent in the proof of Theorem 2.3 below.

We also repeatedly use Holder’s inequality in the form
1 1
E[luvl*] < E[ful**]*E[lo]*]?,

for any s > 0 and for a,b > 1 such that é—l—% =1, as well as the Marcinkiewicz-Zygmund inequality

[11], which for centered i.i.d. random variables X, gives

>

t

E < GNZE[|X,]"], Vt>2.

1
There are known bounds on the constants, namely C}' < ¢ — 1, [11]. We apply this inequality in
several occasions with X,, = h(u™) — 7(h) for different functions h, in which case we get

(S.M.1.2) E[ngc(h) - w(h)\t] < ctnz[\h(ul) - w(h)ﬂN—%, Vi > 2.
We are now ready to prove Theorem 2.3.

PrROOF OF THEOREM 2.3. We first prove the MSE part. By Lemma S.M.1.4 we have that

E[(5"(9) - 1(9))°] <341 +345 + 345,

where Aj, As, As correspond to the second moments of the three terms respectively.

1. For the first term we have

A =

B (to0) — n(o9))’| <

2. For the second term, Holder’s inequality gives

1
Ay = B[ 00) (elo) ~ 7)) ]
| :

< 4E[‘71{¥c(¢9)‘2d} éE[ 7Tﬂc(g) - W(g)‘ze} )

7(g)
where é + % = 1. Use of the triangle inequality yields
1
Qd] d

2d) d 1 al
E|[me(09)!] " = NQEUZ o(u)g(u”)
n=1
< 7 (|¢g??) 1.
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Combining with (S.M.1.2) (note that ¢t = 2e > 2) we get

! bol 2]t
Ao = )1C5E - °|*N-1.
2= gt m(16g1*) s, Dg(“l) (g)] }
3. By Holder we have
= . _ ny|2 N 2(1+0)
A= g | max [o(u")*|m(g) — mic(9)]

2p
< -
S g o)

q
2q(1+6
E||r(g) — 7o (9)] ‘““] ,

where % + % = 1. Note that

N P L Ny
E Z!@ﬁ(un)fp] = Nom(lo7)?.
n=1

Combining with (S.M.1.2), with tp = 2¢(1 + 6) > 2, we get

E| max }gb

1<n<N

1 1 14 Wl
A3 < WNPF(’¢‘QP)PCt0E[‘g(U1) _7-‘—(9” 9:| N 1 9'

L (0,1) gives the desired order of convergence

Now choosing 0 = 5

nl167)P O, o E[lg = w7

2 |[rlo) - (o)

@) = 700 | + [E[076) - 1O om0

9

where ¢ = ¢ — pu(¢). Using the Cauchy-Schwarz inequality we obtain

2ml13 ) l_i_CMSE 2 77(9 )2
Nz m(g) ’

[N
J—
<
N
—
=)
N—
[N}
—_
ol
=
J—
<
—~
I
—
SN—
)
—~
<
—
N~—
|
N
/\‘
NS
N—
[\e)
—_
0

<

where to bound the probability of 2m).(g) < 7(g) we use the Markov inequality similarly as in the

analogous part of the proof of Theorem 2.1. O
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S.M.1.4 Proofs Section 3

We next state a lemma collecting several useful properties of the trace of linear operators. A
compact linear operator T is said to belong in the trace class family if its singular values {o;}?2,
are summable. In this case we write Tr(T') = Y2, 0y, while for notational convenience we define
the trace even for operators that are not trace class, with infinite value. T is said to belong in
the Hilbert-Schmidt family, if its singular values are square summable (equivalently if 7T is trace

class).

LEMMA S.M.1.5. Let T be an operator on a Hilbert space H. Suppose for the next three items

that T is trace class. Then
i) Te(T*) = Tr(T). In particular, if the eigenvalues of T are real then Tr(T*) = Tr(T);
it) for any bounded operator B in H, Tr(T'B) = Tr(BT) and this assertion also holds if T and

B are Hilbert-Schmidt;
iii) for any bounded operator B in H, Tr(T'B) = Tr(BT) < ||B| Tr(T).

For any bounded linear operator T, it holds that
w) Te(T*T) = Te(TT™),

where if T (equivalently T* ) is not Hilbert-Schmidt, we define the trace to be +oo.
If T is a linear operator and P is bounded and positive definite, such that TP~' (equivalently
P :TP"2 or P~IT) is bounded, it holds that

v) Tr(TP) = Te(P2TP2) = Tr(PT),

where as in (iv) we allow infinite values of the trace.

Finally, suppose that D1 is positive definite and Dy is positive semi definite, and that T is self
adjoint and bounded in H. Furthermore, assume that Dl_lT and (D1 + D2)™'T have eigenvalues.
Then

vi) Te(Dy'T) > Te((Dy + Do) 7'T).
PRrOOF. The proofs of parts (i)-(iii) can be found in [9, Section 30.2], while (iv) is an exercise in

[9, Section 30.8]. Part (v) can be shown using the infinite-dimensional analogue of matrix similarity,

see [3, Section 2]. In particular, if we multiply T'P to the left by P1/2 and to the right by P~1/2
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we do not change its eigenvalues hence neither its trace, so Tr(T'P) = Tr(P%TP%). Similarly, if we
multiply 7'P to the left by P and to the right by P!, we get Tr(TP) = Tr(PT). Part (vi) follows
from the stronger fact that the ordered eigenvalues of D LT are one by one bounded by the ordered
eigenvalues of (D + Do)~'T. This in turn can be established using that the eigenvalues of these
operators are determined by the generalized eigenvalue problem T'v = ADjv and Tv = A(D1+ D2)v,

with associated Rayleigh quotients

(x,Tx) < (x,Tx)

(S.M.1.3) (. D1z} = (o, (Dy + Do)}’

and an application of the Rayleigh-Courant-Fisher theorem (see [9] and [10]). O

S.M.1.4.1 Proofs of subsection 3.2

PROOF OF PROPOSITION 3.5. We give the proof for the final dimensional case. For the extension
to infinite dimensions see Remark S.M.1.6 below. Under the given assumptions, expression (3.4)

for C~! is well-defined and gives
(S.M.1.4) 207N =T + A.

Thus

Tr(A) = Tr(C2C'8z — 1)

(Cz(C' —x7Hx3)

Tr
Tr((C™' —27hHy),

where the last equality is justified using the cyclic property of the trace, Lemma S.M.1.5(ii). For
the second identity, since (I + A)™'A =1 — (I + A)~!, we have again by (S.M.1.4)
Te((I + A)~'A) = Tr (1 —(I+ A)—l)
- Tr(f — 2—1/202—1/2>
Ty (z*/?(z - 0)2*1/2)

- Tr((E - 0)2—1),

where the last equality is again justified via the cyclic property of the trace. O
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REMARK S.M.1.6. Proposition 3.5 also holds in the Hilbert space setting, but requires formula
(3.4) for the precision operator of the posterior is justified see Remark 3.3 and [2, Section 5]. Indeed,
the proofs of the two identities are almost identical to the finite dimensional case, the only difference
being in the justification of the last equalities in the two sequences of equalities above. In this case the
two trace-commutativity equalities have to be justified using Lemma S.M.1.5(v) rather than Lemma
S.M.1.5(ii). In the first case, Lemma S.M.1.5(v) can be applied, since A = Z]%(C’*1 — 2*1)2% is
bounded by Assumption 3.4, and ¥ is assumed to be positive definite and bounded. In the second
case, Lemma S.M.1.5(v) can be applied, since by Assumption 3.4 the operator (I+A)~' A is bounded,

and X is bounded and positive definite.

PROOF OF PROPOSITION 3.6. 1. We have that (v;, ;) is an eigenvector /value pair of the first

—1/2y, ;) is of the second. It is also immediate that (v;, i;) is a pair

matrix if and only if ("
for the second if and only if (S*v;, ;) is for A(I + A)~'. However, it is also easy to check that
AT+ A=+ A) A

2. In view of the above, note that (v;, ;) is a pair for (I 4+ A)~*A if an only if (v;, pi /(1 — 1)) is
for A. Hence, if \; is an eigenvalue of A, \;/(1+ )\;) is one for the other matrices. Given that

this is always less or equal to 1 and the efd is a trace of either d, x d, or d, x d,, matrices,

the inequality follows immediately.

O]

PROOF OF LEMMA 3.7. If A is trace class then it is compact and since it is also self-adjoint and
nonnegative it can be shown (for example using the spectral representation of A) that H (I+A)~1 H <

1. Then Lemma S.M.1.5(iii) implies that
Tr((I +A)~'A4) < Tr(A).

Assume now that (I + A)~'A is trace class. Then A is too since it is the product of the bounded

operator I+ A and the trace class operator (I4A4)~!A, see again Lemma S.M.1.5(iii). In particular,

Tr(A) < ||I + A||Te((I + A)~tA).
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S.M.1.4.2 Proofs of subsection 3.3

PROOF OF THEOREM 3.8. i) < i7) is immediate from Lemma 3.7.
i1) < 1i7) It holds that T 2Ku~ N(0, F_%KEK*F_%) since T2 K is a linear transformation of
the Gaussian u ~ P, = N(0,X). By Lemma S.M.1.2 and since A has eigenvalues, we hence have

that T2 Ku € H if and only if Te(T 2 KXK*T"2) < oo.

iii) = v) According to the discussion in subsection S.M.1.1 on the absolute continuity of two
Gaussian measures with the same covariance but different means, the Gaussian likelihood measure

Py, = N(Ku,T') and the Gaussian noise measure P, = N(0,T") are equivalent if and only if

ylu

I'2Ku € H. Under i7i), we hence have that P, and P, are equivalent for m-almost all u and

ylu

under the Cameron-Martin formula [4] for m-almost all u we have

dP
Ylu (y) = exp <—1 HF_I/ZKUHQ + <F_1/2y,F_1/2KU>) =: g(u;y).
dP, 2

Defining the measure vo(u,y) := 7(u) x P,(y) in X x ), we then immediately have that

dv

djo(u,y) = g(w; ),

where v is the joint distribution of (u,y) under the model y = Ku + n with u and 7 independent
Gaussians N (0,3) and N(0,T") respectively.

We next show that w(g(-;y)) > 0 for P)-almost all y, which will in turn enable us to use a standard
conditioning result to get that the posterior is well defined and absolutely continuous with respect
to the prior. Indeed, it suffices to show that g(u;y) > 0 vy-almost surely. Fix u ~ 7. Then, as a
function of y ~ P, the negative exponent of g is distributed as N(%HF_%KUHQ, HF_%KuHQ) where
||F7%K u|? < oo with 7 probability 1. Therefore, for vg-almost all (u,y) the exponent is finite and
thus g is vp-almost surely positive implying that 7(g(-;y)) > 0 for P,-almost all y. Noticing that
the equivalence of v and vy implies the equivalence of the marginal distribution of the data under
the model, v, with the noise distribution P,, we get that w(g(-;y)) > 0 for vy-almost all y. Hence,
we can apply Lemma 5.3 of [7], to get that the posterior measure Py, (-) = v(-|y) exists vy-almost

surely and is given by

dp 1 ( 1 H —1/2 H2 Lnm1y2, re1/2 )
—(u)=——exp | ——||T Ku|| +—(T , T Ku) ).
ar) () TP\ 2y ’Y< Y )
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Finally, we note that since jT”O = ¢, we have that [ Xxy gdvy(u,y) = 1. Thus the Fubini-Tonelli

theorem implies that w(g(-;y)) < oo for P,-almost all y and hence also for v,-almost all y.

iv) = i) Under iv) we have that the posterior measure p which, as discussed in subsection
3.1, is Gaussian with mean and covariance given by (3.2) and (3.3), is y-almost surely absolutely
continuous with respect to the prior 7 = N(0,X). By the Feldman-Hajek theorem [4], we hence
have that y-almost surely the posterior mean lives in the common Cameron-Martin space of the
two measures. This common Cameron-Martin space is the image space of Y3 in H. Thus we
deduce that w := E_%EK*(KEK* + T~y € H almost surely. We next observe that, under v,
F_%y ~ N(0,85* 4 I). Furthermore

w=S§*(SS* +I)" T2y,

thus under v, w ~ N(0,5*(SS* + I)~1S) where S is defined in Assumption 3.4. Using Lemma
S.M.1.2, we thus get that iv) implies that S*(SS* +I)~1S is trace class. Using Lemma S.M.1.5(iv)
with T = (SS* + I)_%S, we then also get that (S5* 4+ I)_%SS*(SS* + I)_% is trace class. Since
(SS*+1 )% is bounded, using Lemma S.M.1.5(iii) twice we get that SS™* is trace class. Finally, again

using Lemma S.M.1.5(iv) we get that S*S is trace class, thus ii) holds. O

S.M.1.4.8 Proofs of subsection 3.4 The scalings of 7 and efd can be readily deduced by comparing

the sums defining 7 and efd with integrals:

1[4 4 R
7(B,7,d) ~ — — dx, efd%/ = _1/6/ dy.
(8,7,d) vﬂaﬁ T ) A T

Our analysis of the sensitivity of p = p(8,7,d) to the model parameters relies in the following
expression for p, which is valid unless the effective dimension is infinite, i.e. unless d = oo, 8 < 1.
In the next result, and in the analysis that follows, we ease the notation by using subscripts to

denote the coordinate of a vector. Thus we write, for instance, y; rather than y(j).

LEMMA S.M.1.7. Under Assumption 3.10

L 2 1\
(S.M.1.5) p=p(B.7,d) =] F—— exp<§ j( — — . >”)
= 8 ’

2l 1 \E\2E 1)y

which is finite for vy-almost all y.
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PrROOF OF LEMMA S.M.1.7. We rewrite the expectation with respect to m as an expectation
with respect to the law of Ku as follows. Note that here u; is a dummy integration variable, which

represents the j-th corrdinate of Kwu, rather than that of uw. Precisely, we have:

m(9(v)) Z/Xg(u,y)dﬂ(U)

1 o0 1 d d
:/ exp | —o- u]2-+—Zyjuj d ®N(O,j_5) (uj)
>~ 7= 7ia j=1
()
d exXp | — 2
—H/exp< 1u2»+1y > du
= jUj J
=R 2y 7 27— P
d 1 2
= H = / exp (—(’y Ly 2L+ yjuj> duj
=1 27y R
v %y3 1,
_ 2P (Q(V_IHE)) —1 B (J vzlfjj'ﬁ)
=11 — exp [ —(v7 +J7) 5 du
=1 2mj R
=11 . xp( 5 i
e A 2y~ +5°)
d -1,2
el e i 2(1+75°)
Thus,
-3 -1,2
2 YJ Y
™ s = 7 €
(g( y)) ]1;[114-’}/]5 (14—’)/]5)
and
d 1,2
B 2
2 v YUY
™ ) = 35 € )
(90 9)°) 31;[1 2 + vyjP p<2+'y35
Taking the corresponding ratio gives the expression for p. O

ANALYSIS OF SCALINGS OF p. Here we show how to obtain the scalings in Table 1. Taking log-

arithms in (S.M.1.5)

(S.M.1.6) log( Zlo %H +zd:( 2 1 )‘12
LY g g +1 e 2+’7j5 1_{_7‘75 AR

Note that every term of both sums is positive. In the small noise regimes the first sum dominates,
whereas in the large d, 8 \, 1 the second does. We show here how to find the scaling of v — 0

when d = oco.
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where f(7) is a function of v that we are free to choose. Choosing f(7) = 7~ /#~¢ (e small) the

first integral dominates the second one and, for small ~, log(p) > v~ Y/#=¢log(y~%/?) from where

the result in Table 1 follows. The joint large d, small « scalings can be established similarly.

When the second sum in (S.M.1.6) dominates, the scalings hold in probability. To illustrate this,

we study here how to derive the large d limit with 8 < 1. Without loss of generality we can assume

in what follows that each y; is centered, i.e. y; ~ N(0,7v) instead of y; ~ N((Ku);,fy). This is

justified since, for any ¢ > 0,
Py = ©) = Pllyy| = ¥?) = P(ly; — (Kw)| = c'/2).

Neglecting the first sum in (S.M.1.6), which can be shown to be of lower order in d, we get

d 2 1
Z<2+vj5 1+w"3>7 i =St d)

Using that EyJQ =7,

2

1
d 2
2 1
~~ — dr ~ d'=28 = ¢(d).
/1 (2—1—73:/3 1+’y:v5> (d)
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Thus we have

> P(|5(y. d) — ES(y. d)| < ES(y,d)/2)
=1-P(IS(y,d) ~ ES(y, d)| > ES(y,d)/2)

>1-P(|S(y,d) ~ ES(y, d)| = m(d)/2)

c(d
>1—4m2d;2—>1.

S.M.1.5 Proofs Section 4
The following lemma will be used in the proof of Theorem 4.5. It justifies the use of the cyclic

property in calculating certain traces in the infinite dimensional setting.

LEMMA S.M.1.8. Suppose that A = S*S, where S = I'"V2K¥Y2 as in Assumption 3.4 is
bounded. Then
T =Tr(A) = Tr(I'KXK*).

Therefore, using the equivalence in Table 2 we have that 75 and 7o, admit the following equivalent

exXPTessions:

(S.M.1.7) T =Tr(RTH(MPM* + Q)H*)
and

(S.M.1.8) Top = Tr((R+ HQH*)'HMPM*H*).

PRrROOF. Using Lemma S.M.1.5(iv) we have that 7 = Tr(5*S) = Tr(SS*). Now note that SS* =
I12KSK*T~Y2 is bounded since A is, and that T''/2 is also bounded, hence we can use Lemma

S.M.1.5(v) to get the desired result. O
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PrROOF OF THEOREM 4.5. Using the previous lemma,

Top = Tr (R*HMPM*H*) FTr (R*HQH*)
> Tr (R—lHMPM*H*)

> Tr((R + HQH*)*WMPM*H*) = Top,

where the first inequality holds because R is positive-definite and HQH™* is positive semi definite,

and the second one follows from Lemma S.M.1.5(vi).

If Tr(HQH*R™!) < oo then there is ¢ > 0 such that, for all z, |HQH*z| < c|[Rz||. Hence

applying again Lemma S.M.1.5(vi) for both directions of the equivalence, we obtain that

[1]

Top = Tr((R + HQH*)—lﬂMPM*H*> <o = Tr(R—lﬂMPM*H*) < 00

< Tg < O0.
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