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ANALYSIS OF THE ENSEMBLE KALMAN FILTER FOR INVERSE
PROBLEMS∗

CLAUDIA SCHILLINGS† AND ANDREW M. STUART†

Abstract. The ensemble Kalman filter (EnKF) is a widely used methodology for state estimation
in partially, noisily observed dynamical systems and for parameter estimation in inverse problems.
Despite its widespread use in the geophysical sciences, and its gradual adoption in many other areas
of application, analysis of the method is in its infancy. Furthermore, much of the existing analysis
deals with the large ensemble limit, far from the regime in which the method is typically used. The
goal of this paper is to analyze the method when applied to inverse problems with fixed ensemble
size. A continuous time limit is derived and the long-time behavior of the resulting dynamical
system is studied. Most of the rigorous analysis is confined to the linear forward problem, where we
demonstrate that the continuous time limit of the EnKF corresponds to a set of gradient flows for
the data misfit in each ensemble member, coupled through a common preconditioner which is the
empirical covariance matrix of the ensemble. Numerical results demonstrate that the conclusions of
the analysis extend beyond the linear inverse problem setting. Numerical experiments are also given
which demonstrate the benefits of various extensions of the basic methodology.
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1. Introduction. The ensemble Kalman filter (EnKF) has had enormous im-
pact on the applied sciences since its introduction in the 1990s by Evensen and cowork-
ers; see [11] for an overview. It is used for both data assimilation problems, where
the objective is to estimate a partially observed time-evolving system sequentially in
time [17], and inverse problems, where the objective is to estimate a (typically dis-
tributed) parameter appearing in a differential equation [25]. Much of the analysis of
the method has focused on the large ensemble limit [24, 23, 13, 20, 10, 22]. However,
the primary reason for the adoption of the method by practitioners is its robustness
and perceived effectiveness when used with small ensemble sizes, as discussed in [2, 3],
for example. It is therefore important to study the properties of the EnKF for fixed
ensemble size, in order to better understand current practice, and to suggest future
directions for development of the method. Such fixed ensemble size analyses are start-
ing to appear in the literature for both data assimilation problems [19, 28] and inverse
problems [15, 14, 16]. In this paper we analyze the EnKF for inverse problems, adding
greater depth to our understanding of the basic method, as formulated in [15], as well
as variants on the basic method which employ techniques such as variance inflation
and localization (see [21] and the references therein), together with new ideas (intro-
duced here) which borrow from the use of the sequential Monte Carlo (SMC) method
for inverse problems introduced in [18].
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Let G : X → Y be a continuous mapping between separable Hilbert spaces X and
Y. We are interested in the inverse problem of recovering unknown u from observation
y where

y = G(u) + η.

Here η is an observational noise. We are typically interested in the case where the
inversion is ill-posed on Y, i.e., one of the following three conditions is violated: ex-
istence of solutions, uniqueness, stability. In the linear setting, we can think, for
example, of a compact operator violating the stability condition. Indeed throughout
we assume in all our rigorous results, without comment, that Y = RK for K ∈ N ex-
cept in a few particular places where we explicitly state that Y is infinite dimensional.
A key role in such inverse problems is played by the least squares functional

Φ(u; y) =
1

2
‖Γ− 1

2 (y − G(u))‖2Y .

Here Γ > 0 normalizes the model-data misfit and often knowledge of the covariance
structure of typical noise η is used to define Γ.

When the inverse problem is ill-posed, infimization of Φ in X is not a well-
behaved problem and some form of regularization is required. Classical methods
include Tikhonov regularization, infimization over a compact ball in X , and trun-
cated iterative methods [9]. An alternative approach is Bayesian regularization. In
Bayesian regularization (u, y) is viewed as a jointly varying random variable in X ×Y
and, assuming that η ∼ N(0,Γ) is independent of u ∼ µ0, the solution to the inverse
problem is the X -valued random variable u|y distributed according to measure

(1) µ(du) =
1

Z
exp
(
−Φ(u; y)

)
µ0(du),

where Z is chosen so that µ is a probability measure:

Z :=

∫
X

exp
(
−Φ(u; y)

)
µ0(du).

See [7] for details concerning the Bayesian methodology.
The EnKF is derived within the Bayesian framework and, through its ensemble

properties, is viewed as approximating the posterior distribution on the random vari-
able u|y. However, except in the large sample limit for linear problems [23, 13, 20]
there is little to substantiate this viewpoint; indeed the paper [10] demonstrates this
quite clearly by showing that for nonlinear problems the large ensemble limit does
not approximate the posterior distribution. In [22], a related result is proved for the
EnKF in the context of data assimilaion; in the large ensemble size limit the EnKF is
proved to converge to the mean-field EnKF, which provides the optimal linear estima-
tor of the conditional mean, but does not reproduce the filtering distribution, except
in the linear Gaussian case. A different perspective on the EnKF is that it consti-
tutes a derivative-free optimization technique, with the ensemble used as a proxy for
derivative information. This optimization viewpoint was adopted in [15, 14] and is
the one we take in this paper: through analysis and numerical experiments we study
the properties of the EnKF as a regularization technique for minimization of the least
squares misfit functional Φ at fixed ensemble size. We do, however, use the Bayesian
perspective to derive the algorithm and to suggest variants of it.
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In section 2 we describe the EnKF in its basic form, deriving the algorithm by
means of ideas from SMC applied to the Bayesian inverse problem, together with in-
vocation of a Gaussian approximation. Section 3 describes continuous time limits of
the method, leading to differential equations, and in section 4 we study properties of
the differential equations derived in the linear case and, in particular, their long-time
behavior. Using this analysis we obtain clear understanding of the sense in which the
EnKF is a regularized optimization method for Φ. Indeed we show in section 3 that
the continuous time limit of the EnKF corresponds to a set of preconditioned gradient
flows for the data misfit in each ensemble member. The common preconditioner is
the empirical covariance matrix of the ensemble which thereby couples the ensemble
members together and renders the algorithm nonlinear, even for linear inverse prob-
lems. Section 5 is devoted to numerical studies which illustrate the foregoing theory
for linear problems, and which also demonstrate that similar ideas apply to nonlinear
problems. In section 6 we discuss variants of the basic EnKF method, in particular
the addition of variance inflation, localization, or the use of random search methods
based on SMC, within the ensemble method; all of these methods break the invariant
subspace property of the basic EnKF proved in [15] and we explore numerically the
benefits of doing so.

2. The EnKF for inverse problems. Here we describe how to derive the
iterative EnKF as an approximation of the SMC method for inverse problems. Recall
the posterior distribution µ given by (1) and define the probability measures µn by,
for h = N−1,

µn(du) ∝ exp
(
−nhΦ(u; y)

)
µ0(du).

The measures µn are intermediate measures defined via likelihoods scaled by the step
size h = N−1. It follows that µN = µ the desired measure on u|y. Then

(2) µn+1(du) =
1

Zn
exp
(
−hΦ(u; y)

)
µn(du)

for

Zn =

∫
exp(−hΦ(u; y))µn(du).

Denoting by Ln the nonlinear operator corresponding to application of Bayes’ theorem
to map from µn to µn+1 we have

(3) µn+1 = Lnµn .

We have introduced an artificial discrete time dynamical system which maps the prior
µ0 into the posterior µN = µ. A heuristic worthy of note is that although we look at
the data y at each of N steps, the effective variance is amplified by N = 1/h at each
step, compensating for the redundant, repeated use of the data. The idea of SMC is
to approximate µn by a weighted sum of Dirac masses: given a set of particles and

weights {u(j)
n , w

(j)
n }Jj=1 the approximation takes the form

µn '
J∑
j=1

w(j)
n δun

(j)

with δun
(j) denoting the delta-Dirac mass located at un

(j). The method is defined
by the mapping of the particles and weights at time n to those at time n + 1. The



ANALYSIS OF THE EnKF FOR INVERSE PROBLEMS 1267

method is introduced for Bayesian inverse problems in [18], where it is used to study
the problem of inferring the initial condition of the Navier–Stokes equations from data.
In [4] the method is applied to the inverse problem of determining the coefficient of a
divergence form elliptic PDE from linear functionals of the solution; furthermore the
method is also proved to converge in the large particle limit J →∞.

In practice the SMC method can perform poorly. This happens when the weights

{w(j)
n }Jj=1 degenerate in that one of the weights takes a value close to one and all others

are negligible. The EnKF aims to counteract this by always seeking an approximation
in the form

µn '
1

J

J∑
j=1

δ(j)
un

and thus

µn+1 '
1

J

J∑
j=1

δ(j)
un+1

.

The method is defined by the mapping of the particles at time n into those at time

n + 1. Let un = {u(j)
n }Jj=1. Then using equation (25) in [15] with Γ 7→ h−1Γ shows

that this mapping of particles has the form

(4) u
(j)
n+1 = u(j)

n + Cup(un)(Cpp(un) + h−1Γ)−1
(
y

(j)
n+1 − G(u(j)

n )
)
, j = 1, . . . , J,

where
y

(j)
n+1 = y + ξ

(j)
n+1,

and, for u = {u(j)}Jj=1, we define the operators Cpp and Cup by

Cpp(u) =
1

J

J∑
j=1

(
G(u(j))− G

)
⊗
(
G(u(j))− G

)
,

Cup(u) =
1

J

J∑
j=1

(
u(j) − u

)
⊗
(
G(u(j))− G

)
,(5)

u =
1

J

J∑
j=1

u(j), G =
1

J

J∑
j=1

G(u(j)).

We will consider both the cases where ξ
(j)
n+1 ≡ 0 and where, with respect to both j

and n, the ξ
(j)
n+1 are independent and identically distributed (i.i.d.) random variables

distributed according to N(0, h−1Γ). We can unify by considering the i.i.d. family

of random variables ξ
(j)
n+1 ∼ N(0, h−1Σ) and focusing exclusively on the cases where

Σ = Γ and where Σ = 0. The theoretical results will be solely derived for the setting
Σ = 0, i.e., no artificial noise will be added to the observational data.

The derivation of the EnKF as presented here relies on a Gaussian approxima-
tion, which can be interpreted as a linearization of the nonlinear operator Ln in the
following way: in the large ensemble size limit, the EnKF estimate corresponds to
the best linear estimator of the conditional mean. See [12] for a general discussion of
Bayes linear methods and [22] for details in the context of data assimilation. Thus,



1268 CLAUDIA SCHILLINGS AND ANDREW M. STUART

besides the approximation of the measures µn by a J particle Dirac measure, there
is an additional uncontrolled error resulting from the Gaussian approximation and
analyzed in [10]. In [27], the EnKF in combination with an annealing process is used
to account for nonlinearities in the forward problem by weight-correcting the EnKF.
For data assimilation problems, similar techniques can be applied to improve the per-
formance of the EnKF in the nonlinear regime; see, e.g., [5] and the references therein
for more details.

In summary, except in the Gaussian case of linear problems, there is no conver-
gence to µn as J → ∞. Our focus, then, is on understanding the properties of the
algorithm for fixed J , as an optimization method; we do not study the approximation
of the measure µ. In this context we also recall here the invariant subspace property
of the EnKF method, as established in [15].

Lemma 2.1. If S is the linear span of {u(j)
0 }Jj=1, then u

(j)
n ∈ S for all (n, j) ∈

Z+ × {1, . . . , J}.
3. Continuous time limit. Here we study a continuous time limit of the EnKF

methodology as applied to inverse problems; this limit arises by taking the parameter
h, appearing in the incremental formulation (2) of the Bayesian inverse problem (1),
to zero. We proceed purely formally, with no proofs of the limiting process, as our
main aim in this paper is to study the behavior of the continuous time limits, not to
justify taking that limit. However, we note that the invariant subspace property of
Lemma 2.1 means that the desired limit theorems are essentially finite dimensional
and standard methods from numerical analysis may be used to establish the limits.
In the next section all the theoretical results are derived under the assumption that
G is linear and Σ = 0. However, in this section we derive the continuous time limit in
a general setting, before specifying to the linear noise-free case.

3.1. The nonlinear problem. Recall the definition of the operator Cup given

by (5). We recall that un = {u(j)
n }Jj=1 and assume that un ≈ u(nh) in (4) in the limit

h→ 0. The update step of the EnKF (4) can be written in the form of a time-stepping
scheme:

u
(j)
n+1 = u(j)

n + hCup(un)(hCpp(un) + Γ)−1
(
y − G(u(j)

n )
)

+hCup(un)(hCpp(un) + Γ)−1ξ
(j)
n+1

= u(j)
n + hCup(un)(hCpp(un) + Γ)−1

(
y − G(u(j)

n )
)

+h
1
2Cup(un)(hCpp(un) + Γ)−1

√
Σζ

(j)
n+1 ,

where ζ
(j)
n+1 ∼ N (0, I) i.i.d. If we take the limit h → 0, then this is clearly a tamed

Euler–Maruyama type discretization of the set of coupled Itô SDEs

du(j)

dt
= Cup(u)Γ−1(y − G(u(j))) + Cup(u)Γ−1

√
Σ
dW (j)

dt
.(6)

Using the definition of the operator Cup we see that

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− G, y − G(u(j)) +

√
Σ
dW (j)

dt

〉
Γ

(
u(k) − u

)
,(7)

where

u =
1

J

J∑
j=1

u(j), G =
1

J

J∑
j=1

G(u(j))
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and 〈·, ·〉Γ = 〈Γ− 1
2 ·,Γ− 1

2 ·〉 with 〈·, ·〉 the inner product on Y. TheW (j) are independent
cylindrical Brownian motions on X . The construction demonstrates that, provided
a solution to (7) exists, it will satisfy a generalization of the subspace property of
Lemma 2.1 to continuous time because the vector field is in the linear span of the
ensemble itself.

3.2. The linear noise-free problem. In this subsection we study the linear
inverse problem, for which G(·) = A· for some A ∈ L(X ,Y). We also restrict attention
to the case where Σ = 0. Then the continuous time limit equation (7) becomes

(8)
du(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − u), y −Au(j)

〉
Γ

(
u(k) − u

)
, j = 1, . . . , J.

For u = {u(j)}Jj=1 we define the empirical covariance operator

C(u) =
1

J

J∑
k=1

(
u(k) − u

)
⊗
(
u(k) − u

)
.

Then (8) may be written in the form

(9)
du(j)

dt
= −C(u)DuΦ(u(j); y),

where, in this linear case,

(10) Φ(u; y) =
1

2
‖Γ− 1

2 (y −Au)‖2.

Thus each particle performs a preconditioned gradient descent for Φ(·; y), and all the
individual gradient descents are coupled through the preconditioning of the flow by
the empirical covariance C(u). This gradient flow is thus nonlinear, even though the
forward map is linear. Using the fact that C is positive semidefinite it follows that

d

dt
Φ
(
u(t); y

)
=

d

dt

1

2
‖Γ− 1

2 (y −Au)‖2 ≤ 0.

This gives an a priori bound on ‖Au(t)‖Γ but does not give global existence of a

solution when Γ−
1
2A is compact. However, global existence may be proved as we

show in the next section, using the invariant subspace property.

4. Asymptotic behavior in the linear setting. In this section we study the
differential equations (8). Although derivation of the continuous time limit suggests
stopping the integration at time T = 1 it is nonetheless of interest to study the dynam-
ical system in the long-time asymptotic T →∞ as this sheds light on the mechanisms
at play within the ensemble methodology and points to possible improvements of the
algorithm.

In subsection 4.1 we study the case where the data is noise-free. Theorem 4.1
shows existence of a solution satisfying the subspace property; Theorem 4.2 shows
collapse of all ensemble members toward their mean value at an algebraic rate; Theo-
rem 4.3 decomposes the error, in the image space under A, into an error which decays
to zero algebraically (in a subspace determined by the initial ensemble) and an error
which is constant in time (in a complementary space); and Corollary 4.4 transfers
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these results to the state space of the unknown under additional assumptions. We as-
sume throughout this section that the forward operator is a bounded, linear operator.
The convergence analysis presented in Theorem 4.3 additionally requires the operator
to be injective. For compact operators, the convergence result in the observational
space does not imply convergence in the state space. However, assuming the forward
operator is boundedly invertible, the generalization is straightforward. Note that this
assumption is typically not fulfilled in the inverse setting, but opens up the perspec-
tive to use the EnKF as a linear solver. Subsection 4.2 briefly discusses the noisy data
case where the results are analogous to those in the preceding subsection.

4.1. The noise-free case. In proving the following theorems we will consider
the situation where the data y is the image of a truth u† ∈ X under A. It is then
useful to define

e(j) = u(j) − ū, r(j) = u(j) − u†,
Elj =

〈
Ae(l), Ae(j)

〉
Γ
, Rlj =

〈
Ar(l), Ar(j)

〉
Γ
, Flj =

〈
Ar(l), Ae(j)

〉
Γ
.

We view the last three items as entries of matrices E,R, and F . The resulting
matrices E,R, F ∈ RJ×J satisfy the following: (i) E,R are symmetric; (ii) we may
factorize E(0) = XΛ(0)XT , where X is an orthogonal matrix whose columns are
the eigenvectors of E(0), and Λ(0) is a diagonal matrix of corresponding eigenvalues;
(iii) if l = (1, . . . , 1)T , then El = F l = 0. Note that e(j) measures deviation of the jth
ensemble member from the mean of the entire ensemble, and r(j) measures deviation of
the jth ensemble member from the truth u† underlying the data. The matrices E,R,
and F contain information about these deviation quantities, when mapped forward
under the operator A. The following theorem establishes existence and uniqueness of
solutions to (8).

Theorem 4.1. Assume that y is the image of a truth u† ∈ X under A. Let
u(j)(0) ∈ X for j = 1, . . . , J and define X0 to be the linear span of the {u(j)(0)}Jj=1.

Then (8) has a unique solution u(j)(·) ∈ C([0,∞);X0) for j = 1, . . . , J.

Proof. It follows from (8) that

(11)
du(j)

dt
= − 1

J

J∑
k=1

Fjke
(k).

The right-hand side of (9) is locally Lipschitz in u as a mapping from X0 to X0.
Thus local existence of a solution in C([0, T );X0) holds for some T > 0, since X0 is
finite dimensional. Thus it suffices to show that the solution does not blow up in finite
time. To this end we prove in Lemma A.2, which is presented in the appendix, that
the matrices E(t) and F (t) are bounded by a constant depending on initial conditions,
but not on time t. Using the global bound on F it follows from (11) that u is globally
bounded by a constant depending on initial conditions, and growing exponentially
with t. Global existence for u follows and the theorem is complete.

The following theorem shows that all ensemble members collapse toward their
mean value at an algebraic rate, and it demonstrates that the collapse slows down
linearly as ensemble size increases.

Theorem 4.2. Assume that y is the image of a truth u† ∈ X under A. Let
u(j)(0) ∈ X for j = 1, . . . , J . Then the matrix valued quantity E(t) converges to 0 for
t→∞ and indeed ‖E(t)‖ = O(Jt−1).
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Proof. Lemma A.2, which is presented in the appendix, shows that the quantity
E(t) satisfies the differential equation

d

dt
E = − 2

J
E2

with initial condition E(0) = XΛ(0)X>, Λ(0) = {λ(1)
0 , . . . , λ

(J)
0 }, and orthogonal X.

Using the eigensystem X gives the solution E(t) = XΛ(t)X>, where the entries of the

diagonal matrix Λ(t) are given by ( 2
J t+ 1

λ
(j)
0

)−1 if λ
(j)
0 6= 0 and 0 otherwise. Then,

the claim immediately follows from the explicit form of the solution E(t).

We are now interested in the long-time behavior of the residuals with respect to
the truth. Theorem 4.3 characterizes the relation between the approximation quality
of the initial ensemble and the convergence behavior of the residuals.

Theorem 4.3. Assume that y is the image of a truth u† ∈ X under A and the
forward operator A is one-to-one. Let Y‖ denote the linear span of the {Ae(j)(0)}Jj=1

and let Y⊥ denote the orthogonal complement of Y‖ in Y with respect to the inner
product 〈·, ·〉Γ and assume that the initial ensemble members are chosen so that Y‖
has the maximal dimension min{J − 1,dim(Y)}. Then Ar(j)(t) may be decomposed

uniquely as Ar
(j)
‖ (t) + Ar

(j)
⊥ (t) with Ar

(j)
‖ ∈ Y‖ and Ar

(j)
⊥ ∈ Y⊥. Furthermore, for

all j ∈ {1, . . . , J}, Ar(j)
‖ (t) → 0 as t → ∞ and, for all j ∈ {1, . . . , J} and t ≥ 0,

Ar
(j)
⊥ (t) = Ar

(j)
⊥ (0) = Ar

(1)
⊥ (0).

Proof. Lemma A.3, which is presented in the appendix, shows that the matrix L,
the linear transformation which determines how to write {Ae(j)(t)}Jj=1 in terms of the

coordinates {Ae(j)(0)}Jj=1, is invertible for all t ≥ 0 and hence that the linear span of

the {Ae(j)(t)}Jj=1 is equal to Y‖ for all t ≥ 0. Lemma A.3 also shows that Ar(j)(t) may

be decomposed uniquely as Ar
(j)
‖ (t) + Ar

(j)
⊥ (t) with Ar

(j)
‖ ∈ Y

‖ and Ar
(j)
⊥ ∈ Y⊥ and

that Ar
(j)
⊥ (t) = Ar

(j)
⊥ (0) for all t ≥ 0. It thus remains to show that Ar

(j)
‖ (t) converges

to zero as t→∞.
From Lemma A.3 we know that we may write

(12) Ar(j)(t) =

J∑
k=1

αkAe
(k)(t) +Ar

(1)
⊥

for some (j-dependent) coefficients α = (α1, . . . , αJ)T ∈ RJ . Furthermore Lemma A.3
shows that if we initially choose α to be orthogonal to the eigenvectors x(k), k =
1, . . . , J − J̃ , of E with corresponding eigenvalues λ(k)(t) = 0, k = 1, . . . , J − J̃ , then
this property will be preserved for all time. This is since we have QL−1x(k) = Qx(k) =
0, k = 1, . . . , J − J̃ , and the matrix Υ with the jth row given by α satisfies Q = ΥL

so that Υx(k) = 0, k = 1, . . . , J − J̃ . Finally we choose coordinates in which Ar
(j)
⊥ (0)

is orthogonal to Y‖.
Define the seminorms

|α|21 := |E1/2α|2,
|α|22 := |Eα|2 .

Note that these norms are time-dependent because E is. On the subspace of RJ
orthogonal to span{x(1), . . . , x(J−J̃)},
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|α|22 ≥ λmin(t)|α|21 ,

where λmin(t) = ( 2
J t + 1

λmin
0

)−1 is the minimal positive eigenvalue of E; see (25).

Furthermore, for the Euclidean norm | · |, we have

|α|21 ≥ λmin(t)|α|2

on the subspace of RJ orthogonal to span{x(1), . . . , x(J−J̃)}.
Now note that the following differential equation holds for the quantity ‖Ar(j)‖2Γ :

1

2

d

dt
‖Ar(j)‖2Γ = − 1

J

J∑
r=1

〈
Ar(j), Ae(r)

〉
Γ

〈
Ar(j), Ae(r)

〉
Γ
.

We also have

J∑
r=1

〈
Ar(j), Ae(r)

〉2

Γ
=

J∑
r=1

〈
J∑
k=1

αkAe
(k), Ae(r)

〉
Γ

〈
J∑
l=1

αlAe
(l), Ae(r)

〉
Γ

=

J∑
k=1

J∑
l=1

αk

(
J∑
r=1

EkrElr

)
αl

= |α|22 .

Using (12), the norm of the residuals can be expressed in terms of the coefficient
vector of the residuals as follows:

‖Ar(j)‖2Γ =

〈
J∑
k=1

αkAe
(k) +Ar

(j)
‖ (0),

J∑
l=1

αlAe
(l) +Ar

(j)
‖ (0)

〉
Γ

=

J∑
k=1

J∑
l=1

αkEklαl + ‖Ar(j)
‖ (0)‖2Γ

= |α|21 + ‖Ar(j)
‖ (0)‖2Γ .

Thus, the coefficient vector satisfies the differential equation

1

2

d

dt
|α|21 = − 1

J
|α|22 ≤ −

λmin(t)

J
|α|21 ,

which gives

1

|α|21
d

dt
|α|21 ≤ −

2

J

(
2

J
t+

1

λmin
0

)−1

.

Hence, using that ln |α(t)|21− ln |α(0)|21 ≤ ln 1
λmin
0
− ln( 2

J t+
1

λmin
0

), the coefficient vector

can be bounded by

|α(t)|21 ≤
1

λmin
0

|α(0)|21λmin(t) .

In the Euclidean norm, we have

λmin(t)|α(t)|2 ≤ 1

λmin
0

|α(0)|21λmin(t)
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and thus

|α(t)|2 ≤ 1

λmin
0

|α(0)|21 ≤
λ

(J)
0

λmin
0

‖α(0)‖2 .

Since α is bounded in time, and since the e(k) → 0 by Lemma A.3, the desired result
follows from (12).

Corollary 4.4 generalizes the convergence results of the preceding theorem to
the infinite dimensional setting, i.e., to the case dimY = ∞ under the additional
assumption that the forward operator A is boundedly invertible. This implies that A
cannot be a compact operator. However, this result allows us to use the EnKF as a
linear solver, since the convergence results can be transferred to the state space under
the stricter assumptions on A.

Corollary 4.4. Assume that y is the image of a truth u† ∈ X under A, the
forward operator A is boundedly invertible, and the initial ensemble is chosen such
that the subspace X0 = span{e(1), . . . , e(J)} has maximal dimension J−1. Then, there

exists a unique decomposition of the residual r(j)(t) = r
(j)
‖ (t) + r

(j)
⊥ (t) with r

(j)
‖ ∈ X0

and r
(j)
⊥ ∈ X1, where X = X0

⊕
X1. The two subspaces X0 and X1 are orthogonal

with respect to the inner product 〈·, ·〉X⊥ := 〈Γ− 1
2A·,Γ− 1

2A·〉. Then, r
(j)
‖ (t) → 0 as

t→∞ and r
(j)
⊥ (t) = r

(j)
⊥ (0) = r

(1)
⊥ (0).

Proof. The assumption that the forward operator is boundedly invertible ensures
that the range of the operator is closed. Furthermore, the invertibility of the operator
A allows us to transfer results from the observational space directly to the state space.
Thus, the same arguments as in the proof of Theorem 4.3 prove the claim.

4.2. Noisy observational data. Analyses very similar to those in the previous
subsection may be carried out in the case where the observational data y† is polluted
by additive noise η† ∈ RK :

y† = Au† + η† .

Global existence of solutions, and ensemble collapse, follow similarly to the proofs of
Theorems 4.1 and 4.2. Theorem 4.3 is more complex to generalize since it is not the
mapped residual Ar(j) which is decomposed into a space where it decays to zero and
a space where it remains constant, but rather the quantity ϑ(j) = Ar(j) − η†. Driving
this quantity to zero of course leads to overfitting. Furthermore, the generalization to
the infinite dimensional setting as presented in Corollary 4.4 is no longer valid, since
the noise may take the data out of the range of the forward operator.

5. Numerical results. In this section we present numerical experiments both
with and without data, illustrating the theory of the previous section for the lin-
ear inverse problem. We also study a nonlinear groundwater flow inverse problem,
demonstrating that the theory in the linear problem provides useful insight for the
nonlinear problem.

5.1. Linear forward model. We consider the one-dimensional elliptic
equation

(13) − d2p

dx2
+ p = u in D := (0, π) , p = 0 in ∂D ,

where the uncertainty-to-observation operator is given by G = O ◦G = O ◦A−1 with

A = − d2

dx2 + id and D(A) = H2(I) ∩ H1
0 . The observation operator O consists of



1274 CLAUDIA SCHILLINGS AND ANDREW M. STUART

K = 24 − 1 system responses at K equispaced observation points at xk = k
24 , k =

1, . . . , 24 − 1, ok(·) := δ(· − xk), i.e., (O(·))k = ok(·). The forward problem (13)
is solved numerically by a FEM using continuous, piecewise linear ansatz functions
on a uniform mesh with meshwidth h = 2−8 (the spatial discretization leads to a

discretization of u, i.e., u ∈ R28−1).
The goal of the computation is to recover the unknown data u from noisy obser-

vations

y† = p+ η = OA−1u† + η .(14)

The measurement noise is chosen to be normally distributed, η ∼ N (0, γI), γ ∈
R, γ > 0, I ∈ RK×K . The initial ensemble of particles is chosen to be based on
the eigenvalues and eigenfunctions {λj , zj}j∈N of the covariance operator C0. Here
C0 = β(A− id)−1, β = 10. Although we do not pursue the Bayesian interpretation of
the EnKF, the reader interested in the Bayesian perspective may think of the prior
as being µ0 = N(0, C0), which is a Brownian bridge. In all our experiments we set
u(j)(0) =

√
λjζjzj with ζj ∼ N (0, 1) for j = 1, . . . , J . Thus the jth element of the

initial ensemble may be viewed as the jth term in a Karhunen–Loève (KL) expansion
of a draw from µ0 which, in this case, is a Fourier sine series expansion.

5.1.1. Noise-free observational data. To numerically verify the theoretical
results presented in section 4.1, we first restrict the discussion to the noise-free case,
i.e., we assume that η = 0 in (14) and set Γ = id. The study summarized in Figures 1–4
shows the influence of the number of particles on the dynamical behavior of the
quantities e and r, the matrix-valued quantities, and the resulting EnKF estimate.

As shown in Theorem 4.2, the rate of convergence of the ensemble collapse is
algebraic (cf. Figure 1) with a constant growing with larger ensemble size. Comparing
the dynamical behavior of the residuals, we observe that, for the ensemble of size
J = 5, the estimate can be improved in the beginning, but it reaches a plateau after
a short time. Increasing the number of particles to J = 10 improves the accuracy
of the estimate. For the ensemble size J = 50, Figure 2 shows the convergence of
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Fig. 1. Quantities |e|22, |Ae|2Γ with respect (w.r.) to time t, J = 5 (red), J = 10 (blue),
and J = 50 (green), β = 10, K = 24 − 1, initial ensemble chosen based on KL expansion of
C0 = β(A− id)−1.
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Fig. 2. Quantities |r|22, |Ar|2Γ w.r. to time t, J = 5 (red), J = 10 (blue), and J = 50 (green),
β = 10, K = 24 − 1, initial ensemble chosen based on KL expansion of C0 = β(A− id)−1.
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based on KL expansion of C0 = β(A− id)−1.

the projected residuals, i.e., the observations can be perfectly recovered. The same
behavior can be observed by comparing the EnKF estimate with the truth and the
observational data (cf. Figure 4).

The results derived in this paper hold true for each particle; however, for the
sake of presentation, the empirical mean of the quantities of interest is shown and
the spread indicates the minimum and maximum deviations of the ensemble members
from the empirical mean.

Due to the construction of the ensembles in the example, the subspace spanned
by the ensemble of size 5 is a strict subset of the subspace spanned by the larger
ensembles. Thus, due to Theorem 4.3, which characterizes the convergence of the
residuals with respect to the approximation quality of the subspace spanned by the
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β = 10, K = 24 − 1.

initial ensemble, the EnKF estimate can be substantially improved by controlling
this subspace. As illustrated in Figure 2, the mapped residual of the ensemble of
size 5 decreases monotonically but levels off after a short time. Similar convergence
properties can be observed for J = 10. The same behavior is expected for the larger
ensemble, when integrating over a larger time horizon. This can also be observed for
the matrix-valued quantities depicted in Figure 3.

We will investigate this point further by comparing the performance of two en-
sembles, both of size 5: one based on the KL expansion and one chosen such that the

contribution of Ar
(j)
⊥ (t) in Theorem 4.3 is minimized. Since we use artificial data, we

can minimize the contribution of Ar
(j)
⊥ (t) by ensuring that Ar(1) =

∑J
k=1 αkAe

(k) for
some coefficients αk ∈ R. Given u(2), . . . , u(J) and coefficients α1, . . . , αJ , we define
u(1) = (1−α1+

∑J
k=1 αk/J)−1(u†−α1/J

∑J
j=2 u

(j)+
∑J
k=2 αku

(k)−αk/J
∑J
j=2 u

(j)),
which gives the desired property of the ensemble. Note that this approach is not
feasible in practice and has to be replaced by an adaptive strategy minimizing the

contribution of Ar
(j)
⊥ (t). However, this experiment serves to illustrate the important

role of the initial ensemble in determining the error and is included for this reason.
The convergence rate of the mapped residuals and of the ensemble collapse is alge-
braic in both cases, with rate 1 (in the squared Euclidean norm). Figure 5 shows
the convergence of the projected residuals for the adaptively chosen ensemble. The
decomposition of the residuals (cf. Figure 6) numerically verifies the presented the-
ory, which motivates the adaptive construction of the ensemble. Methods to realize
this strategy, in the linear and nonlinear cases, will be addressed in a subsequent
paper.

5.1.2. Noisy observational data. We will now allow for noise in the observa-
tional data, i.e., we assume that the data is given by y† = OA−1u† + η†, where η† is
a fixed realization of the random vector η ∼ N (0, 0.012 id). Note that the standard
deviation is chosen to be roughly 10% of the (maximum of the) observed data. Besides
the quantities e and r, the misfit ϑ(j) = Au(j) − y† = Ar(j) − η† of each ensemble
member is of interest, since, in practice, the residual is not accessible and the misfit
is used to check for convergence and to design an appropriate stopping criterion.
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Fig. 7. Quantities |r|22, |Ar|2Γ w.r. to t,
J = 5 based on KL expansion of C0 = β(A−
id)−1 (red), J = 5 adaptively chosen (blue),
β = 10, K = 24 − 1, η ∼ N (0, 0.012 id).
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Besides the two ensembles with five particles introduced in the previous section,

we define an additional one minimizing the contribution of ϑ
(j)
⊥ to the misfit, anal-

ogously to what was done in the adaptive initialization in the previous subsection,
and motivated by the analogue of Theorem 4.3 in the noisy data case. Note that the
design of an adaptive ensemble based on the decomposition of the projected residual
is, in general, not feasible without explicit knowledge of the noise η†.

Figure 7 illustrates the well-known overfitting effect, which arises without using
appropriate stopping criteria. The method tries to fit the noise in the measurements,
which results in an increase in the residuals. This effect is not seen in the misfit
functional; cf. Figures 8 and 9.

However, the comparison of the EnKF estimates to the truth reveals, in Figure
10, the strong overfitting effect and suggests the need for a stopping criterion. The
Bayesian setting itself provides a so-called a priori stopping rule, i.e., the SMC
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Fig. 14. Comparison of the EnKF es-
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viewpoint motivates a stopping of the iterations at time T = 1. Another common
choice in the deterministic optimization setting is the discrepancy principle, which
accounts for the realization of the noise by checking the condition ‖G(ū(t))−y‖Γ ≤ τ ,
where τ > 0 depends on the dimension of the observational space.

Figures 11–12 show the results obtained by employing the Bayesian stopping rule,
i.e., by integrating up to time T = 1. The adaptively chosen ensemble leads to much
better results in the case of the Bayesian stopping rule. Since we do not expect to
have explicit knowledge of the noise, the adaptive strategy as presented above is in
general not feasible. However an adaptive choice of the ensemble according to the
misfit may lead to a strong overfitting effect, as shown in Figures 13–14.
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N (0, 0.0012 id).
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Fig. 16. Comparison of the EnKF es-
timate with the truth and the observations,
J = 5 based on KL expansion of C0 =
β(A − id)−1 (red), J = 5 adaptively chosen
(blue), J = 5 minimizing the contribution of
ϑ⊥ w.r. to misfit (gray), β = 10, K = 24−1,
η ∼ N (0, 0.0012 id).

The overfitting effect is still present in the small noise regime as shown in
Figures 15 and 16. The standard deviation of the noise is reduced by 100, i.e.,
η ∼ N (0, 0.0012 id).

The ill-posedness of the problem leads to the instabilities of the identification
problem and requires the use of an appropriate stopping rule.

5.2. Nonlinear forward model. To investigate the numerical behavior of the
EnKF for nonlinear inverse problems, we consider the following two-dimensional el-
liptic PDE:

−div(eu∇p) = f in D := (−1, 1)2 , p = 0 in ∂D.

We aim to find the log permeability u from 49 observations of the solution p on
a uniform grid in D. We choose f(x) = 100 for the experiments. The mapping
from u to these observations is now nonlinear. Again we work in the noise-free case
and take Γ = I, Σ = 0 and solve (6) to estimate the unknown parameters. The
prior is assumed to be Gaussian with covariance operator C0 = (−4)−2, employing
homogeneous Dirichlet boundary conditions to define the inverse of −4. We use
a FEM approximation based on continuous, piecewise linear ansatz functions on a
uniform mesh with meshwidth h = 2−4. The initial ensemble of size 5 and 50 is chosen
based on the KL expansion of C0 in the same way as in the previous subsection.

The results given in Figures 17 and 18 show a similar behavior as in the linear
case. The approximation quality of the subspace spanned by the initial ensemble
clearly influences, also in the nonlinear example, the accuracy of the estimate. Taking
a look at the EnKF estimate in this nonlinear setting, we observe a satisfactory
approximation of the truth and a perfect match of the observational data in the case
of the larger ensemble; cf. Figure 19.

6. Variants on EnKF. In this section we describe three variants on the EnKF,
all formulated in continuous time in order to facilitate comparison with the preceding
studies of the standard EnKF in continuous time. The first two methods, variance
inflation and localization, are commonly used by practitioners in both the filtering
and inverse problem scenarios [8, 1]. The third method, random search, is motivated
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Fig. 17. Quantities |e(k)|22, |G(u(k)) −
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J
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j=1 G(u(j)|2Γ w.r. to time t, J = 5 (red)

and J = 50 (green), initial ensemble chosen
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Fig. 19. Comparison of the truth (left top) and the EnKF estimate w.r. to x, J = 5 (middle
top), J = 50 (right top) and comparison of the forward solution G(u†) (left bottom) and the estimated
solutions of the forward problem J = 5 (middle bottom), J = 50 (right bottom).

by the SMC derivation of the EnKF for inverse problems and is new in the context
of the EnKF. For all three methods we provide numerical results which illustrate
the behavior of the EnKF variant, in comparison with the standard method. In
the following, we focus on the linear case with Σ = 0. The methods from the first
two subsections have generalizations in the general nonlinear setting and indeed are
widely used in data assimilation and, to some extent, in geophysical inverse problems;
however, we present them in a form tied to (9) which is derived in the linear case.
The method in the final subsection is implemented through an entirely derivative-free
Markov Chain Monte Carlo method and is hence automatically defined, as is, for
nonlinear as well as linear inverse problems.

6.1. Variance inflation. The empirical covariances Cup and Cpp all have rank
no greater than J−1 and hence are rank deficient whenever the number of particles J is
less than the dimension of the space X. Variance inflation proceeds by correcting such
rank deficiencies by the addition of self-adjoint, strictly positive operators. A natural
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variance inflation technique is to add a multiple of the prior covariance C0 to the
empirical covariance, which gives rise to the equations

du(j)

dt
= −

(
αC0 + C(u)

)
DuΦ(u(j); y), j = 1, . . . , J ,(15)

where Φ is as defined in (10). Taking the inner product in X with DuΦ(u(j); y) we
deduce that

dΦ(u(j); y)

dt
≤ −α‖C

1
2
0 DuΦ(u(j); y)‖2 .

This implies that all ω-limit points of the dynamics are contained in the critical points
of Φ(·; y).

6.2. Localization. Localization techniques aim to remove spurious long-dist-
ance correlations by modifying the covariance operators Cup and Cpp, or directly
the Kalman gain Cupn+1(Cppn+1 + h−1Γ)−1. Typical convolution kernels reducing the
influence of distant regions are of the form

ρ : D ×D → R,
ρ(x, y) = exp(−|x− y|r) ,

where D ⊂ Rd, d ∈ N denotes the physical domain and | · | is a suitable norm in D,
r ∈ N; cf. [21]. The continuous time limit in the linear setting then reads as

(16)
du(j)

dt
= −C loc(u)DuΦ(u(j); y), j = 1, . . . , J ,

where C loc(u)φ(x) =
∫
D
φ(y)k(x, y)ρ(x, y)dy with k denoting the kernel of C(u) and

φ ∈ X .

6.3. Randomized search. We notice that the mapping on probability measures
given by (3) may be replaced by

µn+1 = LnPnµn ,

where Pn is any Markov kernel which preserves µn. For example, we may take Pn
to be the pCN method [6] for measure µn. One step of the pCN method for given

particle u
(j)
n in iteration n is realized by

• propose v
(j)
n =

√
(1− β2)u

(j)
n + βι(j), ι(j) ∼ N (0, C0),

• set ũ
(j)
n = v

(j)
n with probability a(u

(j)
n , v

(j)
n ),

• set ũ
(j)
n = u

(j)
n otherwise

assuming the prior is Gaussian, i.e., N (0, C0). The acceptance probability is given by

a
(
u(j)
n , v(j)

n

)
= min

{
1, exp

(
nhΦ

(
u(j)
n

)
− nhΦ

(
v(j)
n

))}
.

The particles ũ
(j)
n are used to approximate the measure µ̃n = Pnµn, which is then

mapped to µn+1 by the application of Bayes’ theorem, i.e., µn+1 = Lnµ̃n.
Using the continuous time diffusion limit arguments from [26, Theorem 4], which

apply in the nonlinear case, and combining with the continuous time limits described
for the EnKF earlier in this paper, we obtain
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Fig. 20. Quantities |r|22, |Ar|2Γ w.r. to
time t, J = 5 with variance inflation (red)
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Comparison of the EnKF
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Fig. 21. Comparison of the EnKF es-
timate with the truth and the observations,
J = 5 with variance inflation (red) and J =
50 with variance inflation (green), β = 10,
K = 24− 1, initial ensemble chosen based on
KL expansion of C0 = β(A− id)−1.

du(j)

dt
=

1

J

J∑
k=1

〈
G(u(k))− G, y − G(u(j))

〉
Γ

(
u(k) − u

)
(17)

− u(j) − tC0DuΦ(u(j); y) +
√

2C0
dW (j)

dt
.

Although the limiting equation involves gradients of Φ, and hence adjoints for the for-
ward model, the discrete time implementation above avoids the gradient computation
by using the accept-reject step and remains a derivative-free optimizer.

6.4. Numerical results. In the following, to illustrate behavior of the EnKF
variants, we present numerical experiments for the linear forward problem in the
noise-free case: (13) and (14) with η = 0. The performance of the EnKF variants is
compared to the basic algorithms shown in Figures 2 and 4.

6.4.1. Inflation. We investigate the numerical behavior of variance inflation of
the form given in (15) with α = 0.01. Figures 20 and 21 show that the variance
inflated method becomes a preconditioned gradient flow, which, in the linear case,
leads to fast convergence of the projected iterates. It is noteworthy that in this case
there is very little difference in behavior between ensemble sizes of 5 and 50.

6.4.2. Localization. We consider a localization of the form given by (16) with
r = 2 and Euclidean norm inside the cut-off kernel. Figures 22–23 clearly demonstrate
the improvement by the localization technique, which can overcome the linear span
property and thus leads to better estimates of the truth.

6.4.3. Randomized search. We investigate the behavior of randomized search
for the linear problem with G(·) = A·. For the numerical solution of the continuous
limit (17), we employ a splitting scheme with a linearly implicit Euler step, namely,

ũ
(j)
n+1 =

√
1− 2hu(j)

n +
√

2hC0ζn,

Ku
(j)
n+1 = ũ

(j)
n+1 + h(C(ũn+1)A∗Γ−1y† + nhC0A

∗Γ−1y†) ,

where ζn ∼ N(0, id) and K := I + h(C(ũn+1)A∗Γ−1A + nhC0A
∗Γ−1A). In all nu-

merical experiments reported we take h = 2−8. Figures 24 and 25 show that the
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Fig. 22. Quantities |r|22, |Ar|2Γ w.r. to
time t, J = 5 with localization (red) and J =
50 with localization (green), β = 10, K =
24 − 1, initial ensemble chosen based on KL
expansion of C0 = β(A− id)−1. Comparison
of the EnKF
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J = 5 with localization (red) and J = 50 with
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tial ensemble chosen based on KL expansion
of C0 = β(A− id)−1.
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Fig. 24. Quantities |r|22, |Ar|2Γ w.r. to
time t, J = 5 with randomized search (red)
and J = 50 with randomized search (green),
β = 10, K = 24 − 1, initial ensemble chosen
based on KL expansion of C0 = β(A− id)−1.
Comparison of the EnKF
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Fig. 25. Comparison of the EnKF es-
timate with the truth and the observations,
J = 5 with randomized search (red) and J =
50 with randomized search (green), β = 10,
K = 24− 1, initial ensemble chosen based on
KL expansion of C0 = β(A− id)−1.

randomized search leads to an improved performance compared to the original EnKF
method. Due to the fixed step size and the resulting high computational costs, the
solution is computed up to time T = 100. In order to accelerate the numerical solu-
tion of the limit (17), implicit schemes can be considered. Note that the limit requires
the computation of the gradients, which is in practice undesirable. However, the limit
reveals from a theoretical point of view important structure, whereas the discrete
version is more suitable for applications. The advantage of the randomized search is
apparent.

6.4.4. Summary. The experiments show a similar performance for all discussed
variants. The variance inflation technique and the localization variant both lead to
gradient flows, which are, in the noise-free case, favorable due to the fast convergence.
On the other hand, these strategies also accelerate the convergence of the ensemble to
the mean (ensemble collapse) and may be considered less desirable for this reason. The
randomized search preserves by construction the spread of the ensemble. A similar
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Fig. 26. Quantities |r|22, |Ar|2Γ w.r. to time t, J = 5 (red) for the discussed variants, β = 10,
β = 10, K = 24 − 1, initial ensemble chosen based on KL expansion of C0 = β(A− id)−1.
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Fig. 27. Comparison of the EnKF estimate with the truth and the observations, J = 5 (red)
for the discussed variants, β = 10, K = 24 − 1, initial ensemble chosen based on KL expansion of
C0 = β(A− id)−1.

regularization effect is achieved by perturbing the observational data; see (6). The
variants all break the subspace property of the original version, which results in an
improvement in the estimate.

We study the same test case as in section 5.1.2, with the same realization of
the measurement noise (cf. Figures 11 and 12), to allow for a comparison of the
three methods introduced in this section. Combining the various techniques with the
Bayesian stopping rule for noisy observations, we observe the following behavior given
in Figures 26 and 27.
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In both figures, the abbreviation VI refers to variance inflation, loc denotes the
localization technique, and MM stands for the randomized search (Markov mixing).
The randomized search clearly outperforms the two other strategies and leads to a
better estimate of the unknown data. In Figures 26 and 27, one path of the solution
of (17) is shown; similar performance can be observed for further paths. This strategy
has the potential to significantly improve the performance of the EnKF and will be
investigated in more detail in subsequent papers.

7. Conclusions. Our analysis and numerical studies for the ensemble Kalman
filter applied to inverse problems demonstrate several interesting properties: (i) the
continuous time limit exhibits structure that is hard to see in discrete time implemen-
tations used in practice; (ii) in particular, for the linear inverse problem, it reveals an
underlying gradient flow structure; (iii) in the linear noise-free case the method can be
completely analyzed and this leads to a complete understanding of error propagation;
(iv) numerical results indicate that the conclusions observed for linear problems carry
over to nonlinear problems; (v) the widely used localization and inflation techniques
can improve the method, but the (introduced here for the first time) use of ideas from
SMC hold considerable promise for further improvement; and (vi) importing stop-
ping criteria and other regularization techniques is crucial to the effectiveness of the
method, as highlighted by the work of Iglesias [14, 16]. Our future work in this area,
both theoretical and computational, will reflect, and build on, these conclusions.

Appendix.

Lemma A.1. The deviations from the mean e(j) and the deviations from the truth
r(j) satisfy

(18)
de(j)

dt
= − 1

J

J∑
k=1

Ejke
(k) = − 1

J

J∑
k=1

Ejkr
(k)

and

(19)
dr(j)

dt
= − 1

J

J∑
k=1

Fjke
(k) = − 1

J

J∑
k=1

Fjkr
(k).

Proof. Recall (8):

du(j)

dt
=

1

J

J∑
k=1

〈
A(u(k) − u), y −Au(j)

〉
Γ

(
u(k) − u

)
, j = 1, . . . , J.

From this it follows that

du

dt
= − 1

J

J∑
k=1

〈
A(u− u†), Ae(k)

〉
Γe

(k).

Hence (18) follows, with the second identity following from the fact that El = 0. Since
u† is time-independent we also have that (19) follows, with the second identity now
following from the fact that F l = 0.

Lemma A.2. Assume that y is the image of a truth u† ∈ X under A. The matrices
E and F satisfy the equations

d

dt
E = − 2

J
E2,

d

dt
F = − 2

J
FE,

d

dt
R = − 2

J
FFT .
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As a consequence both E and F satisfy a global-in-time a priori bound, depending only
on initial conditions. Explicitly we have the following. For the orthogonal matrix X
defined through the eigendecomposition of E(0) it follows that

E(t) = XΛ(t)X>(20)

with Λ(t) = diag{λ(1)(t), . . . , λ(J)(t)}, Λ(0) = diag{λ(1)
0 , . . . , λ

(J)
0 }, and

λ(j)(t) =

(
2

J
t+

1

λ
(j)
0

)−1

(21)

if λ
(j)
0 6= 0, and otherwise λ(j)(t) = 0. The matrix R satisfies Tr

(
R(t)

)
≤ Tr

(
R(0)

)
for all t ≥ 0, and Fij → 0 at least as fast as 1√

t
as t → ∞ for each i, j and, in

particular, is bounded uniformly in time.

Proof. The first equation may be derived as follows:(
d

dt
E

)
ij

=
d

dt

〈
Ae(i), Ae(j)

〉
Γ

= − 1

J

J∑
k=1

Eik
〈
Ae(k), Ae(j)

〉
Γ
− 1

J

J∑
k=1

Ejk
〈
Ae(i), Ae(k)

〉
Γ

= − 2

J

J∑
k=1

EikEkj

as required. The second equation follows similarly:(
d

dt
F

)
ij

=

〈
A

d

dt
r(i), Ae(j)

〉
Γ

+

〈
Ar(i), A

d

dt
e(j)

〉
Γ

= − 1

J

J∑
k=1

FikEkj −
1

J

J∑
k=1

FikEkj ,(22)

as required; here we have used the fact that Fkj −Ekj is independent of k and hence,
since F l = 0,

J∑
k=1

FikEkj =

J∑
k=1

FikFkj .

Due to the symmetry (and positive semidefiniteness) of E, E(0) is diagonalizable

by orthogonal matrices, that is, E(0) = XΛ(0)X>, where Λ(0) = diag{λ(1)
0 , . . . , λ

(J)
0 }.

The solution of the ODE for E(t) is therefore given by

E(t) = XΛ(t)X>(23)

with Λ(t) satisfying the following decoupled ODE:

dλ(j)

dt
= − 2

J
(λ(j))2 .(24)

The solution of (24) is thus given by

λ(j)(t) =

(
2

J
t+

1

λ
(j)
0

)−1

(25)
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if λ
(j)
0 6= 0, and otherwise λ(j)(t) = 0. The behavior of R is described by(

d

dt
R

)
ij

=

〈
A

d

dt
r(i), Ar(j)

〉
Γ

+

〈
Ar(i), A

d

dt
r(j)

〉
Γ

= − 1

J

J∑
k=1

FikFjk −
1

J

J∑
k=1

FjkFik ,

and thus

d

dt
R = − 2

J
FF>.

Taking the trace of this identity gives

d

dt
Tr(R) = − 2

J
‖F‖2Fr,

where ‖ · ‖Fr is the Frobenius norm. The bound on the trace of R follows.
By the Cauchy–Schwarz inequality, we have

F 2
ij =

〈
Ar(i), Ae(j)

〉2
Γ
≤ |Ar(i)|2Γ · |Ae(j)|2Γ ≤ C|Ae(j)|2Γ ,

and hence Fij → 0 at least as fast as 1√
t

as t→∞ as required.

Lemma A.3. Assume that y is the image of a truth u† ∈ X under A and the
forward operator A is one-to-one. Then

Ae(j)(t) =

J∑
k=1

`jk(t)Ae(k)(0),(26a)

Ar(j)(t) =

J∑
k=1

qjk(t)Ae(k)(0) + ρ(j)(t),(26b)

where the matrices L = {`jk} and Q = {qjk} satisfy

dL

dt
= − 1

J
EL,(27a)

dQ

dt
= − 1

J
FL,(27b)

and ρ(j)(t) = ρ(j)(0) = ρ(1)(0) is the projection of Ar(j)(0) into the subspace which is
orthogonal in Y to the linear span of {Ae(k)(0)}Jk=1, with respect to the inner product
〈·, ·〉Γ. As a consequence

L(t) = XΩ(t)X>(28)

with Ω(t) = diag{ω(1)(t), . . . , ω(J)(t)}, Ω(0) = I, and

ω(j)(t) =

(
2

J
λ

(j)
0 t+ 1

)− 1
2

.(29)

We also assume that the rank of the subspace spanned by the vectors {Ae(j)(t)}Jj=1

is equal to J̃ and that (after possibly reordering the eigenvalues) λ(1)(t) = · · · =
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λ(J−J̃)(t) = 0 and λ(J−J̃+1)(t), . . . , λ(J)(t) > 0. It then follows that ω(1)(t) = · · · =

ω(J−J̃)(t) = 1. Furthermore, L(t)x(k) = L(t)−1x(k) = x(k) for all t ≥ 0, k =
1, . . . , J − J̃ , where x(k) are the columns of X. Without loss of generality we may
assume that Q(t)x(k) = 0 for all t ≥ 0, k = 1, . . . , J − J̃ .

Proof. Differentiating expression (26a) and substituting in (18) from Lemma A.1
gives

J∑
m=1

d`jm
dt

Ae(m)(0) = − 1

J

J∑
k=1

J∑
m=1

Ejk`kmAe
(m)(0).

Reordering the double summation on the right-hand side and rearranging we obtain

J∑
m=1

(
d`jm

dt
+

1

J

J∑
k=1

Ejk`km

)
Ae(m)(0) = 0.

This is satisfied identically if (27a) holds. By uniqueness choosing the Ae(j)(t) to be
defined in this way gives the unique solution for their time evolution.

Now we differentiate expression (26b) and substitute into (19) from Lemma A.1.
A similar analysis to the preceding yields

J∑
m=1

(
dQjm

dt
+

1

J

J∑
k=1

Fjk`km

)
Ae(m)(0) +

dρ(j)

dt
= 0.

Again this can be satisfied identically if (27b) holds and if ρ(j)(t) is the constant
function as specified above. By uniqueness we have the desired solution. The inde-
pendence of ρ(j)(t) with respect to j, i.e., ρ(j)(0) = ρ(1)(0), follows from the fact that
ρ(j)(0) is the function inside the norm ‖ · ‖Γ which is found by choosing the vector
qj := {qjk}Jk=1 so as to minimize the functional∥∥∥∥∥Ar(j)(0)−

J∑
k=1

qjk(0)Ae(k)(0)

∥∥∥∥∥
Γ

.

From the definition of the r(j) and e(j) this is equivalent to determining the function
inside the norm ‖ · ‖Γ found by choosing the vector qj := {qjk}Jk=1 so as to minimize
the functional ∥∥∥∥∥Au(j)(0)−

J∑
k=1

qjk(0)A(u(k)(0)− ū(0))−Au†
∥∥∥∥∥

Γ

.

This in turn is equivalent to determining the function inside the norm ‖ · ‖Γ found by
choosing the vector q̃ := {q̃k}Jk=1 so as to minimize the functional∥∥∥∥∥

J∑
k=1

q̃kAu
(k)(0)−Au†

∥∥∥∥∥
Γ

and is hence independent of j. Our assumptions on the span of {Ae(j)(t)}Jj=1 imply

that E(0) has exactly J− J̃ zero eigenvalues, corresponding to eigenvectors {x(k)}J−J̃k=1

with the property that
J∑
j=1

x
(k)
j Ae(j)(0) = 0.
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(One of these vectors x(k) is of course l so that J̃ ≥ 1.) As a consequence we also have

(30) E(0)x(k) = F (0)x(k) = 0 k = 1, . . . , J − J̃ .

The fact that L(t)x(k) = x(k) for all t ≥ 0, k = 1, . . . , J̃ , is immediate from the
fact that L = XΩX>, because x(k) is the eigenvector corresponding to eigenvalue
ω(k)(t) = 1 k = 1, . . . , J̃ ; an identical argument shows the same for L(t)−1. The
property that Q(t)x(k) = 0 for all t ≥ 0, k = 1, . . . , J̃ , follows by choosing Q(0) so
that Q(0)x(k) = 0, which is always possible because the x(k) are eigenvectors with
corresponding eigenvalues λ(k) = 0, and then noting that Q(t)x(k) = 0 for all time
because F (t)L(t)x(k) = F (t)x(k) = 0 for all t ≥ 0. The last item is zero because
Ex(k) = 0 and because d

dtF = − 2
JFE; we also use that F (0)x(k) = 0 from (30).
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