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MCMC methods for sampling function
space

Alexandros Beskos and Andrew Stuart*

Abstract. Applied mathematics is concerned with developing models with predictive
capability, and with probing those models to obtain qualitative and quantitative insight
into the phenomena being modelled. Statistics is data-driven and is aimed at the devel-
opment of methodologies to optimize the information derived from data. The increasing
complexity of phenomena that scientists and engineers wish to model, together with our
increased ability to gather, store and interrogate data, mean that the subjects of applied
mathematics and statistics are increasingly required to work in conjunction in order to
significantly progress understanding. .
This article is concerned with a research program at the interface between these tw

disciplines, aimed at problems in differential equations where profusion of data and the
sophisticated model combine to produce the mathematical problem of obtaining informa-
tion from a probability measure on function space. In this context there is an array of
problems with a common mathematical structure, namely that the probability measure
in question is a change of measure from a Gaussian. We illustrate the wide-ranging ap-
plicability of this structure. For problems whose solution is determined by a probability
measure on function space, information about the solution can be obtained by sampling
from this probability measure. One way to do this is through the use of Markov chain
Monte-Carlo (MCMC) methods. We show how the common mathematical structure of
the aforementioned problems can be exploited in the design of effective MCMC methods.

Mathematics Subject Classification (2000). Primary 35R30; Secondary 65C40.

Keywords. Bayes’s formula, inverse problem, change of measure from Gaussian, MCMC,
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1. Introduction

The Bayesian approach to inverse problems is natural in many situations where
data and model must be integrated with one another to provide maximal infor-
mation about the system. When the object of interest is a function then the
posterior measure from Bayes’s formula is a measure on a function space. In this
article we introduce a range of applied problems where this viewpoint is natural,
and which all possess a common mathematical framework: the posterior measure
on function space, 7, has density with respect to a Gaussian reference measure;
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see Section 2. In Section 3 we describe a general approach for writing down -
invariant stochastic partial differential equations (SPDEs). It is important to be
able to sample the posterior measure to get information about it. This is the topic
of Section 4 where we introduce Markov chain Monte-Carlo (MCMC) methods and
describe the Metropolis—Hastings variant. Section 5 contains statements of theo-
retical results concerning the complexity of these MCMC methods, when applied
to (finite-dimensional approximations of) the target measures of interest in this
article; proofs are contained in the Appendix. Section 6 contains a summary and
directions for further research.

2. Measures on function space

In this section we give several illustrations of problems whose solution requires
sampling of a measure on function space. For simplicity we confine our analysis
to the situation where the functions are in a Hilbert space H. In all cases we will
see that the target measure m has Radon—Nikodym derivative with respect to a
reference Gaussian measure 7, so that we can write

%(m) o exp ( — B(x)). (1)

For future reference we will assume that mg has mean m and covariance operator C.
Adopting standard notation we will write mg ~ N(m,C). For expression (1) to
make sense we require that the potential ® : H +— R is defined mp-almost surely.
Informally?, it is instructive to write the density for the Gaussian measure as

mo(x) o<exp(— —;—<x—m,C_1(x—m)>). (2)

The inverse of —C is known as the precision operator and will be denoted by
L. Using this notation and combining (1) and (2) we get the following informal
expression for the density () :

m(x) o exp ( —®(x) + %<x —m, L(z — m)>) (3)

In many of our applications £ will be a differential operator. Note that the density
(3) is maximized at solutions of the equation

L(x —m)— D®(z) =0.

This is a first hint at the difficulties inherent in sampling measures on function
space: even locating places of high probability involves the solution of differential
equations. Sampling the entire measure will typically be even more difficult.

In finite dimensions formula (2) gives the density of a Gaussian measure N/ (m, C) with respect
to Lebesgue measure. On a general Hilbert space there is no analogue of Lebesgue measure, so
the formula should be viewed simply as a useful heuristic, which is helpful for understanding the

ideas in this article. For economy of notation we use the symbol 7 for both a measure and its
density.
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2.1. Molecular dynamics. In the mathematical description of molecules a com-
monly used model is that of Brownian dynamics in which the atomic positions
undergo thermally activated motion in a potential V:

dz 2 dB

= ="VW@+y 35 (4)

Here z denotes the vector of atomic positions in RV? where N is the number of
atoms and d the spatial dimension. The process B is a standard Brownian motion
in RV4 and f the inverse temperature. When the temperature is small (3 > 1)
the solution of this stochastic differential equation (SDE) spends most of its time
near the minima of the potential V. Transitions between different minima are
then rare events. Simply solving the SDE starting from one of the minima will be
a computationally infeasible way of generating sample paths which jump between
minima since the time to make a transition is exponentially small in 8 [12]. Instead
we may condition on this rare event occurring. Let z+ denote two minima of the
potential and consider the boundary conditions

2(0) =2~ and (T)==z". (5)

If we now view the Brownian motion as a control, we see that it may be chosen to
drive the solution of (4) from one minimum to the other. Since paths of Brownian
motion carry a probability measure, which induces a measure on paths z, we have
a mechanism to construct a probability measure on a function space of paths which
respect (5). We now make these ideas more precise.

The probability measure m governing the stochastic boundary value problem
(4), (5) has density with respect to the Brownian bridge (Gaussian) measure 7
arising in the case V' = 0. Girsanov’s theorem, together with It6’s formula [17, 25],

gives that
dm 8 I*
E(m) X exp (—5/0 G(x,ﬂ)dt)

1 1
G(w: ) = 5|V @ - GAV(a),

We have thus established a particular instance of (1). It is useful conceptually
to write the Brownian bridge probability density function with respect to an infinite
dimensional Lebesgue measure as is frequently done in the physics literature [7];
the desired expression, which may be found by discretization and passage to the
limit (see [31] for example) is

2
dt> |

¢ R

where

dx
dt

4 Jo

together with boundary conditions enforcing (5). The rigorous interpretation of

- - . . . . . . 2
this expression for mg is that in this case the precision operator is £ = g—;t—Q
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equipped with homogeneous Dirichlet boundary conditions on t € [0,77], and the

mean is the function

t 3 =i
m(t):fm++ T

Thus, we may think of the probability density for = as being proportional to

CE bl IR

with the boundary conditions (5) enforced. This is an explicit example of the
general structure (3).

A typical application from molecular dynamics is illustrated in Figure 1. The
figure shows a crystal lattice of atoms in two dimensions, with an atom removed
from one site. The potential is a sum of pairwise potentials between atoms which
has an r~!2 repulsive singularity, r being the distance between a pair of atoms. The
lattice should be viewed as spatially extended to the whole of Z? by periodicity.
Removal of an atom creates a vacancy which, under thermal activation as in (4),
will diffuse around the lattice: the vacancy will move to a different lattice site
whenever one of the neighboring atoms moves into the current vacancy position.
This motion of the vacancy is a rare event; we can now condition our model on
this event occurring. The solution of such rare event problems arising in chemistry
and physics is an active area of research. See [4] for an overview of the subject and
[11] for an approach which is useful in the zero temperature limit or close to it.

In summary, we have defined a probability measure for z = z(¢) in the Hilbert
space H = L2([0,T],RN%) which we term the diffusion bridge measure. This
measure describes the distribution of sample paths of the SDE (4) conditioned to
link two points in phase space R™V¢ within a specified time period, as in (5). Solving
problems of this form has wide application, not only in chemistry and physics, but
also in areas such as econometrics where it is frequently of interest to augment
discrete time data driven by an SDE [5, 6].

T

dz

dt

Figure 1. Crystal lattice with vacancy. We condition on the red atom moving into the
vacancy.
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2.2. Signal processing. It is often of interest to identify an underlying signal
{z(t)}o<t<T, given some observation {y(t)}o<t<T. In the context of SDEs this can
be formulated via a pair of coupled equations:

dz dB ili

%’ IR a%, Y(0) = 0. (7)

The filtering problem [24] is to find, for each t € [0, T, the probability distribution
of z(t) € R™ given y only at times up to ¢: {y(s)}o<s<¢. In contrast, the smoothing
problem is to find the distribution of z(¢) given all observations {y(s)}o<s<T; the
smoothing problem can be viewed as finding the probability measure on the en-
tire path {z(s)}o<s<r, conditioned on {y(s)}o<s<7- The filtering and smoothing
distributions on z(T) are the same but differ on z(t) for any ¢ € (0,T).

The smoothing problem can be formulated as determining a probability mea-
sure on L?([0,T],R™) of the form

dm T
;j;)-(x) X exp (—/0 G(x;y)dt)

where the observation y appears as fixed data in the probability measure for x. Here
o is again a Gaussian measure, known as the Kalman-Bucy smoother, derived from
the original problem in the case where f and g are set to zero and ( is Gaussian.
The inverse of the covariance operator is again a second-order differential operator,
as for the bridge diffusion in the previous example; details may be found in [15, 17].
Once again we have established a particular instance of the general framework (1).
Figure 2 illustrates the set-up.

2.3. Lagrangian data assimilation. Understanding oceans is fundamental in
the atmospheric and environmental sciences, and for both commercial and military
purposes. One way of probing the oceans is by placing “floats” (at a specified
depth) or “drifters” (on the surface) in the ocean and allowing them to act as
Lagrangian tracers in the flow. These tracers broadcast GPS data concerning
their positions which can be used to make inference about the oceans themselves.
The natural mathematical formulation is that of an inverse problem. We derive
such a formulation, providing at the same time a straightforward illustration of the
Bayesian approach to inverse problems. In so doing we show that Lagrangian data
assimilation is yet another example of a problem which inherits the structure (1).

As a concrete model of this situation we consider the incompressible forced
Navier-Stokes equations written in the form:

0
a—:+v-Vv:VAv—Vp+f, (z,t) € Q2 x [0, 00),

V-v=0, (z,t)€Qx][0,00).
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Figure 2. The upper panel shows the original signal (a sample path from (6)) together
with the mean and standard deviation of the posterior measure on z given y (shaded
band). The lower panel shows a single draw from the posterior measure on z given y.
(The posterior measure is sampled using the SPDE defined later in Section 3.2.)

Here  is the unit square and v the viscosity. Also, we impose periodic boundary
conditions on the velocity field v and the pressure p. We assume that f has zero
average over {2; note that this implies the same for v(z, t), provided that we require
that the initial velocity field u(z) = v(z,0) has zero average.

Our objective is to find the initial velocity field u(xz) € H where H is here the
Hilbert space found as the closure in L2(T?,R?) of the space of periodic divergence-
free, smooth functions on T2, with zero average. We assume that we are given noisy
observations of Lagrangian tracers with position z solving

dz
E = ’U(Z, t).

The issue of minimal regularity assumptions on v and f so that Lagrangian tracers
are well defined is discussed in [9]. For simplicity assume that we observe a single
tracer z at a set of times {tk}szlz

yk=Z(tk)+§k, kIl,...,K,

where the &’s are zero mean Gaussian random variables. Concatenating data we
may write

y=2+¢
where y = (y1,...,Yk), 2 = (2(t1), ..., 2(tx)) and £ ~ N(0, X) for some covariance

matrix Y. Figure 3 illustrates the set-up, showing a snap-shot of the flow field
streamlines for v(z,t) and the tracer particles z(¢) for some fixed time instance t.
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We now construct the probability measure of interest, namely the probability
of u given y. The first step is to assign a prior measure on u. We choose this to
be the Gaussian measure with mean zero and precision operator which is minus
the square of the Stokes operator A on H [29]. We now condition this prior on
the observations, to find the posterior measure on u. We observe that z is a
(complicated) function G of u, the initial condition, so we may write

y=G(u)+¢
Thus the probability of y given u is

P(y| u) oc exp(—5ly — Gw)f3)

where |- |3 = |~z -|2 and | - | is the standard finite-dimensional Euclidean norm.
By Bayes’s rule we deduce that

I () o« exp (3l — G

where 7 is the prior Gaussian measure. We have now determined another example
of the probability density structure (1).
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Figure 3. An example configuration of the velocity field at a given time instance. The
small circles correspond to a number of Lagrangian tracers.

Informally we may write

() o exp(~ 5y — G — 3l Aul,),

where || - || is the norm induced by the inner-product on H. This expression
provides another example of the general structure (3). The model is a very simple
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one, but more realistic models, in complex geometries and for coupled evolution
of velocity, temperature and other fields (with multiple also observations) have a
similar mathematical structure.

2.4. Geophysics. An important problem in subsurface geophysical applications,
of interest to both petroleum engineers and hydrologists, is the determination
of subsurface properties, in particular the permeability field (also known as the
hydraulic conductivity). Making direct subsurface measurements is hard, so the
primary observation is via indirect measurements of flow and transport through
the medium. The following model for this set-up is taken from [10, 22]. The for-
ward problem contains two unknown scalar fields: the water saturation S (volume
fraction of water in an oil-water mixture) and pressure p. We study the problem
in a bounded open set Q C R? (typically d = 2 or 3). By means of Darcy’s law
we define the velocity field v = —A\(S) K Vp, where K is a permeability tensor field
and the scalar \(S) determines the effect of saturation on permeability. In terms
of the velocity field v, mass conservation and scalar advection respectively give the
equations

—V-v=h, (z,t)€Nx]|0,00),
oS

aJrv.vf(s):o, (z,t) € Q x [0,00).

Here h is a source term and f the flux function. Boundary conditions are given
for the pressure, or its gradient in the normal direction, on 9€2. One way to un-
derstand the equations is as follows: Darcy’s Law determines p, given S; the mass
conservation equation is then a non-local hyperbolic conservation law for S and
boundary conditions are specified on the inflow boundary 9 C 9. We set
o0t = 9N\IN™. The initial condition for the saturation is S = 0 and the bound-
ary conditions on the inflow boundary are S = 1. In physical terms, the subsurface
rock is assumed to be saturated entirely with oil at time ¢ = 0, and water is then
pumped in at the boundaries.

For simplicity we assume that the tensor K has the simple form K = kI, where
k is the scalar permeability field, The inverse problem is to find the permeability
field k£ from noisy measurements of what is known as the fractional flow or oil cut
F(t), a measurement which quantifies the fraction of oil produced at the outflow
boundary 92°** as water is pumped in through 0Q™=. Specifically

faQout f(S)v’rLdl
faﬂout Undl 7

F(t)=1-

where v,, is the component of v normal to the boundary and dl denotes integration
along the boundary. Assume that we make measurements of F' at times {t;z}£ ;
subject to Gaussian noise. So, the data are

yk:F(tk)+§k7 k:]-a-"aKa
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where the &’s are zero mean Gaussian random variables. Concatenating data we
may write B
p=F4E,

where y = (y1,...,Yk), F = (F(t1),...,F(tx)) and £ ~ N(0,%) for some covari-
ance matrix X encapsulating measurement errors.

It is physically and mathematically important that k be positive in order to
ensure that the elliptic equation for the pressure is well-posed. We thus write
k = exp(u) and consider the problem of determining u. We observe that F' is a
(complicated) function of u and so we may write

y=G(u)+¢

as in the previous data assimilation application. The prior is a zero mean Gaussian
measure on u, usually specified through a covariance function ¢(z,y) concerning

which there is direct experimental information. The covariance operator C is de-
fined by

(Cu) (z) = /Q ez, y)u(y)dy.

Applying a zero mean Gaussian prior on u with this covariance operator gives rise
to what is termed a log-normal permeability. We then have

j_;)(u) x exp(—%ly — g(u)lé)

where 7 is the prior Gaussian measure N(0,C). This provides another explicit
example of the structure (1). A typical sample from the prior distribution on a
permeability field is shown in Figure 4.

Figure 4. A realization from the prior distribution on the log-permeability field.
For this problem the precision operator £ is not necessarily a differential op-

erator; in fact, it is typically a non-local operator. Informally we may write the
desired probability via a density of the form

1 1 1
r(u) o< exp((~ 1y~ GG — 21(~C)bull iy
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providing another explicit example of the structure (3). We have only described
a simplistic model. However, more involved models, in complex geometries and
for the coupled evolution of multiple phases of oil, water and gas, and with multi-
ple injection and production sites (for generation and measurement of data), and
determination of a tensor permeability, share a similar mathematical structure.

2.5. Mathematical structure of the posterior measure. The examples given
in this section suggest a general approach to the rigorous mathematical formulation
of a range of problems defined through a probability measure on function space. A
fundamental step in such a formulation is a choice of prior measure 7y for which ®
in (1) is mo-measurable and the Radon—Nikodym derivative (1) is mo—integrable. In
the data assimilation application this is intimately connected with the question of
determining sufficient regularity on the initial velocity field u so that Lagrangian
tracers are well-defined. Similarly, in the geophysics application, it is necessary to
specify sufficient regularity on the log-permeability field to ensure that the coupled
equations for pressure and water saturation have a unique solution. The regularity
of samples from a Gaussian measure on function space can be understood in terms
of the rate of decay of eigenvalues of the covariance operator C, via the Karhunen-
Loeéve expansion. In this context it is natural in many applications to specify C
through a precision operator £ = —C~! which is a differential operator as then
the full power of spectral theory for differential equations can be used. In many
applications the primary role of the prior measure will indeed be to specify regular-
ity information. However in the geophysics application the situation is somewhat
different as there exists direct experimental evidence concerning the covariance
function ¢(+,-) which must also be combined with regularity issues to determine
the prior. In both the data assimilation and geophysics applications this complete
rigorous mathematical formulation is not carried out in this article, but is left for
future study. It is our belief that there are a wide range of problems which will
benefit from such an analytical investigation. A rigorous formulation of the first

two examples, from molecular dynamics and signal processing, is undertaken in
[17].

3. Langevin stochastic PDEs

Underpinning the probability measure = on H given by (1) is a stochastic par-
tial differential equation for which 7 is invariant. This is an infinite-dimensional
Langevin equation. In terms of the precision operator £ = —C~! this Langevin
equation may be written as an SDE on Hilbert space with the form

dx aw
— =Lz — — Do —
o = L(z—m) - DB(x) + V2, ®)
where W is an ‘H-valued Brownian motion. This equation is written down in [16]
and can be given a rigorous interpretation in many concrete situations: see [15, 17].

It corresponds to a noisy gradient flow for the functional found as the logarithm
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of the formal expression (3) for the probability density on function space. We now
give several explicit instances of this Langevin SPDE connected with the examples
introduced in the previous section. For general background concerning SPDEs see
8, 13, 30].

3.1. Molecular dynamics. In the bridge diffusion case of (4), (5), arising in
Brownian dynamics models of thermally activated atomic motion, the Langevin
equation takes the form

o B B_ ., oW
5;=§w—§VG($,ﬁ)+\@E‘> (9a)
£(0,8) =z~ and =z(T,s) =z", (9b)
#(t,0) = z5(2). (9¢)

Here the last term in (9a) is space-time white noise. This SPDE is derived in
[17, 25, 31]. Notice that ¢, the spatial variable in the SPDE, represents the real time
in (4) whereas s, the time-like variable in the SPDE;, is an artificial “algorithmic”
time.

3.2. Signal processing. In the signal processing case the objective is to sample
a path of z from (6) given a single realization of the observation y from (7). The
SPDE which is invariant with respect to this conditional distribution of z is as
follows:

0x 2 dz oW
= ) -V 5~ VR Ve
+dg(2,9)T (00 (L — g(z,1)) ~ 5V=(Vy - 9(a,0))
Oz Ox
E:(f(x)—vzlné(a:)), t=0, a:f(x% t=1,

T—= T ws="0:

Here

F(@) = 51 @P + 59 - /(@)

This SPDE is derived in [17, 31].

3.3. Lagrangian data assimilation. Recall that in this case we take £ to be
the square of the Stokes operator and

&(u) = 51y~ 6(u)l;

where G maps the initial data for the velocity field into the positions of a Lagrangian
tracer. We have

D®(u) = —DG(u) "7 (y — G(u)).
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Note that DG requires knowledge of the derivative of the Navier-Stokes equations
with respect to initial data. The Langevin stochastic PDE is

ou

5, = ~V° A% = Vp+ DG(u) 27" (y - G(u) + V2 88—2/, (11a)

V-u=0, (11b)

together with periodic boundary conditions on Q and a divergence free initial
condition. Here the last term in (11a) is space-time white noise in H. As in the
Navier-Stokes equations themselves, the pressure p is a Lagrange multiplier which
acts to enforce the incompressibility condition.

3.4. Geophysics. The geophysical application and the Lagrangian data assimi-
lation problem share a common mathematical structure, with the exception of the
choice of the precision operator £. Consequently the Langevin stochastic differen-
tial equation in this case is

e = Lu+ DG(u)Tx1 (y—g(u))+\/§iu—/, (12)
Jds Js

together with an initial condition. Here G maps the log-permeability into the
fractional flow at the boundary, hence its derivative will be a complex object. The
operator L is not necessarily a differential operator in this application: it may be
a non-local operator. So, in this case equation (12) is not necessarily an SPDE.

3.5. Mathematical structure of the Langevin equation. Many outstand-
ing questions remain concerning the rigorous formulation of the above Langevin
SDEs. Such questions have been resolved for the bridge diffusion measure arising
in the molecular dynamics example in [17], and the signal processing problems for
some limited choice of vector fields (f,g): the pair should be the sum of a linear
function plus a gradient [17]. For the general signal processing problem there are
still open questions [16]. Similarly, checking that the SPDEs for data assimila-
tion and for the geophysics application are well-posed remains an open question.
As we will see, discretizations of the Langevin SPDE provide good proposals for
MCMC methods and in this context development of the rigorous underpinnings of
the subject revolve around showing that the MCMC methods can be defined on
function space. Doing so is intimately bound up with the construction of efficient
MCMC methods, as shown in [2]. It is to the subject of MCMC methods that we
now turn.

4. Metropolis—Hastings methods

We have illustrated that a wide range of problems can be written in a single unifying
framework: that of a probability measure on Hilbert space with Radon—Nikodym
derivative with respect to a Gaussian measure. Formulating the problems in this
way is, of course, simply the first step in their resolution. The second step is to
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develop methods to interrogate the probability measure and thereby extract in-
formation from it. In practice we must discretize the function space (via finite
differences, finite elements or spectral methods for example) leading to a high di-
mensional measure on R™ with n» > 1. Sampling probability measures in high
dimensions is notoriously hard. A generic approach to sampling that has seen
spectacular success in recent years is the Markov chain Monte-Carlo (MCMC)
methodology [21, 26]. A particular variant of this approach, which we will em-
ploy for our problems, is the Metropolis—Hastings method [23, 19]. In the next
section we overview the analysis of such algorithms, when applied to measures
arising from discretization of the structure (1), and show how our set-up fits into
a broader context concerning the analysis of Metropolis—Hastings methods in high
or infinite dimensions. In this section we give the necessary background concerning
the MCMC methodology.

We start by discussing a variety of forms of target measure that have been
studied in the literature, introducing a hierarchy of increasing complexity which
eventually leads to discretizations of (1). We then explain how the Metropolis—
Hastings method works in general, illustrating that the key tunable parameters
arise through the choice of the proposal distribution. Finally, we introduce a range
of proposal distributions appropriate for sampling measures such as (1) and its
discretizations.

4.1. Structure of the target. The following hierarchy of target measures will be
central in our discussion of the computational complexity of Metropolis—Hastings
methods in high dimensions.

e IID product in R™. The earliest attempts to understand the behaviour of
MCMC methods in R™,n > 1, concentrated on measures of product form in
which each component is independent and identically distributed with density
proportional to f (see [14] and references therein to the physics literature
which preceded that work). Clearly, such measures are not intrinsically high
dimensional as only one component need be sampled accurately to determine
the entire measure. However the Metropolis—Hastings algorithm couples the
different components, through the proposal, so study of these measures does
provide an interesting starting point for analysis of MCMC methods in high
dimensions. The structure of the target distribution 7 is now

m(z) = I, £(z:).

e Scaled product in R™. An interesting variant of the IID product is the
case where independence is retained but the independent components are no
longer identical. Specifically they are all derived by scaling a single measure
on R with density f. The target measure is now

1 ZT;
w(x) =11, — (—)
( ) 2—1 )\l f )\Z
Assuming for simplicity that the measure on R has mean 0 and unit variance,
the variance of each component is \?.
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e Change of measure from product in R™. Product measures are intrin-
sically limiting for applications. Change of measure from product is a far
more general setting. We will now consider target measures of the form

m(x) o< exp ( - @n(:c)) le%f(%> (13)
7 1
Here we allow for dependency among the different components of z via the
presence of ®,,. We will show that, under certain conditions on ®, asn — oo,
the behavior of Metropolis—Hastings methods on targets like (13) can be
very similar to that arising in the scaled product case. We will give some
motivation for these results in the sequel.

e Change of measure from Gaussian in R™. If f(z) = exp(—z%/2) then
the product measure is Gaussian and the form (13) becomes

7(x) exp(—‘bn(m) + %(m,ﬁnx)) (14)

with £,, a diagonal matrix with entries —1/\?. More generally the structure
(14) is of interest for any negative definite precision matriz L,,. Viewed in
this context, we see that the structure (14) is exactly what will arise from an
approximation of the measure (1) which is of interest to us in this article.

4.2. Metropolis—Hastings algorithm. The basic idea of MCMC is to generate
a sequence {z; }Jle which, for large J, produces a set of approximate draws from
a given target measure 7. This is done by creating a Markov chain for which =
is invariant. The approximate samples z; from 7 are correlated. The MCMC
method is very flexible allowing for the construction of a wide range of methods
with the aforementioned properties. A key issue is the construction of methods
which minimize correlation amongst samples, thereby increasing efficiency.

The Metropolis algorithm, a particular MCMC method, was introduced in [23]
where it was used by physicists aiming at calculating averages under the Boltzmann
distribution. It was later generalized by Hastings in [19]. The algorithm has proven
particularly effective in a range of applications; we will concentrate on this variant
of MCMC methods here.

The goal is to sample 7 : R™ — R*. The idea of the method is, given an ap-
proximate sample z;, to propose a new sample y from some Markov chain with
transition kernel g(z;, -). This proposal is then accepted (z;+1 = y) with probabil-
ity a(z;,y) and rejected (z;4+1 = ;) otherwise. The composition of proposal from
a Markov kernel and the accept-reject criteria gives a modified Markov chain. If
m(y)q(y, z) ) (15)

a(z,y) = min(l, 7(x)q(z,y)

then the resulting Markov chain for the sequence {z;} 3-]:1 is m-invariant and will,
for large J, generate samples from 7 under mild ergodicity hypotheses [21, 26].
The following piece of pseudo-code defines the algorithm:
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Algorithm 1.
1. Set j=0. Pick zg € R".

2. Given z; propose y ~ ¢(z;,-).

3. Calculate a(zj,y).

4. Set zj4; =y with probability a(z;,y).
5. Otherwise set z,41 = T;.

6. Set =7+ 1 and return to 2.

We mentioned that key to success of the algorithm is minimizing correlation
in the generated sequence. From this point of view, the acceptance probability is
clearly a key object of interest: if it is small (on average) then the sequence will be
highly correlated. In the high-dimensional case that we study here our focus will
be on defining appropriate proposals which ensure that the acceptance probability
is bounded away from zero, on average, as the dimension grows n — co. We now
turn to the class of proposals which effect this.

4.3. Proposals for Metropolis—Hastings. Consider a target density 7 : R™ +—
R*. A commonly used family of proposals are random-walks for which ¢(z,y) is
the transition kernel associated with the proposal

y=1z+ V2As¢, (16)

where £ ~ N(0, I) is a standard Gaussian random variable in R™. These proposals
are very simple to implement but, as we will see, can suffer from (relatively) high
rejection rate due to the fact that they contain no information about n. For
what comes next it is instructive to note that the proposal (16) can be seen as a
discretization of the SDE

ds "7 ds’
This SDE contains no information about the target w. In contrast, the Langevin
SDE

dz dw
—~ =Viogr .o il
S ogm(z) + V2 - (17)

is m-invariant if W is an R™-valued Brownian motion; a straightforward calculation
with the Fokker-Planck equation will show this. Equation (8) is an infinite dimen-
sional version of this SDE, applied to the formal density (3). If we could sample
exactly from the transition density for equation (17) over some time-increment
As, we would obtain a perfect proposal: it would be accepted with probability
1, and a large enough choice of As would ensure lack of correlation among sam-
ples. Unfortunately it is not possible, in general, to sample from this transition
density. However we can discretize the equation in s to obtain proposals which
approximate this distribution and hence, for small As, should deliver reasonable
acceptance probability. We now pursue this idea further.
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It turns out that there is a whole family of equations, including (17) as a special
case, which are m-invariant. For any positive-definite self-adjoint matrix A the SDE

d dW
% — AVlogn(z) + V2A — (18)
ds ds
is r-invariant?. Many of the proposals we consider below arise from discretization

of equations of this type.

5. Computational complexity

We now explain a heuristic approach for selecting the time-step As in the proposals
mentioned above, with a view toward optimizing the acceptance probability. We
will choose the time-step as an inverse power of the dimension n of the state-space
so that

Bs=a . (19)

Note that the proposal y is now a function of: (i) the current state x; (ii) the
parameter v through the time-step scaling above; and (iii) the noise £ which will
appear in all the proposals that we consider. Thus y = y(z,&;v). We would
like v to be as small as possible, so that the chain will be making large steps and
decorrelation amongst samples will be maximised. However, we would additionally
like to ensure that the acceptance probability does not degenerate to 0 as n — oo,
also to prevent high correlation amongst samples. To that end we define 7 as
follows:

Yo = min,yczo{fyc : liminf Ea(z,y) > 0 Vy € ['yc,oo)}.

Here the expectation is with respect to z distributed according to 7 and y cho-
sen from the proposal distribution. In other words, we take the largest possible
time-steps, as a function of n, constrained by asking that the average acceptance
probability is bounded away from zero, uniformly in n. The resulting time-step
restriction (19) is reminiscent of a Courant restriction arising in the numerical
solution of PDEs.

Carrying this analogy further, we introduce the heuristic that the number of
steps required to reach stationarity is given by

M) =ua™,

As we will discuss below, this heuristic can be given a firm foundation in a number
of cases. Here we simply note that, in these cases, the Markov chain arising from
the Metropolis—Hastings method approximates a Langevin SDE; one could think
of the Markov chain as traveling with time-step As on the paths of the Langevin
SDE. It takes O(1) for the limiting SDE to reach stationarity, so in terms of the

2Making these assertions about m-invariance rigorous in infinite dimensions requires being
much more specific about the problem; for the set-up of subsections 2.1 and 2.2. such a task is
carried out in [17].
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time-step As we obtain the expression for M (n) above. We give more details on
this point in the sequel.

Our goal now is to understand how M (n) depends on the structure of the
target distribution and the choice of proposal distribution. At our disposal are the
form of the discretization and the form of A. We will carry out such a study for
the hierarchy of target distributions introduced in subsection 4.1. We require a
regularity condition on the density f.

Condition 1. (i) All moments of f are finite. (ii) log f is infinitely differentiable;
log f and all its derivatives have a polynomial growth bound.

All results are obtained under Condition 1 which we assume to hold throughout
without further mention. For clarity of exposition all the proofs are collected in
the Appendix; within this section we confine ourselves to a brief discussion of the
results. In this article we make strong conditions on the scalings A; and the change
of measure ®,, in order to simplify the proofs. Weaker conditions, and stronger
theoretical results, are given in [3].

5.1. IID products. Here we consider the case of target density with the form
m(x) = I, f (2:)-

We discuss two different proposals y = y(z, &) found by setting 8 =0 and g =1
in the following formula:

- 2
L= =BVlogn(a) + /-6 E~NOD).

The choice # = 0 corresponds to the random walk proposal (16) whereas 8 = 1
corresponds to an Euler-Maruyama discretization of the Langevin SDE (17).

Theorem 5.1.
o If 3 =0 then M(n) = O(n).
o If 3 =1 then M(n) = O(n'/3).

We provide a direct proof of Theorem 5.1 only for completeness, since these
results are implicit in the pair of papers [14, 27] (see also the survey [28]). In fact
in these papers the much stronger result of convergence, as n — oo, of any scalar
component of the n-dimensional Markov chain to that of a Langevin diffusion,
is demonstrated. To be more precise, if :cgi),mgi) ,... is the trajectory of the it"
scalar component, then by appropriately tuning As o< n™7% , the continuous-time
process {mf:)mo]; s > 0} converges to a Langevin diffusion. Such a result justifies the
statement that the number of steps to reach stationarity is of the order M (n) = n°.

The basic takehome message of Theorem 5.1 is that using steepest ascents
information in the proposal which, for small As, suggests moves in the direction
of modes of the distribution, positively impacts the computational complexity of
Metropolis—Hastings algorithms for iid target densities in high dimension. We now
take this idea further.
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5.2. Scaled products. Now consider the target density of the form
7 1 xT;
m(x) = =17 <>\_1) (20)

with )\; = i~ * for some x > 0. Thus, the target measure is of product form with
the it" component having variance i~2* times a constant. We saw in the previ-
ous theorem that including steepest descent information improves complexity. For
this reason we will henceforth work only with proposals arising from discetiza-
tions which include the V log 7 term. Specifically, we employ discretizations of the
Langevin equation in the form (18) giving

= 2A
L= = AVlogn(a) + 1/ 5-6 E~N(O,D). (21)

We define the diagonal matrix C,, = diag{\?,--- ,A\2}.
Theorem 5.2.

o If A=1 then M(n) = O(n2~+1/3),

o If A=C, then M(n) = O(n!/3).

Matrix A can be viewed as a preconditioner which, in the case A = C,, acts
by placing different components on the same scale. By doing so, it is possible
to optimize the time-step As for all components of the proposal, resulting in a
substantial improvement in computational complexity. Thus, the takehome mes-
sage from this theorem is that preconditioning positively impacts complexity of
Metropolis—Hastings algorithms. The proof of this result is given in the Appendix.
It should be noted however that the result can be proved by a straightforward
generalization of the ideas in [27]. The theorem is readily extended to the case
where the A; are replaced by ); ,, satisfying algebraic upper and lower bounds in 7,
uniformly in n — see [3]. Related results, for scalings somewhat different in nature
from those considered here, may be found in [1].

5.3. Change of measure. In both of the previous sections the target measure
was of product type and hence not fundamentally high dimensional as each com-
ponent could be considered separately. We now move away from this restrictive
assumption and consider targets of the form

() o exp ( — Bn())mo(2),

mo(z) = M - £ (1)

Similarly to the previous section, we assume that \; = i~*. We use a family of
proposals which, in the product case, coincides with the proposal (21):

y—

2
o ZAVlogwo(m)Jr\/A—é{, &~ N(0,I). (22)
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We also assume the following uniform bound on ®,,:

sup (](I)n(a:)|) < 00.
neZ+t zeR”

Defining C,, as in the previous section we have the following result.
Theorem 5.3.

o If A=1 then M(n) = O(n?+1/3),

o If A=C, then M(n) = O(n'/3).

We prove this theorem in the Appendix. The takehome message from this
theorem is that the change of measure does not affect the computational complex-
ity. The boundedness assumption on ®,, is very severe and mostly considered for
clarity of exposition. Weaker and more pragmatic conditions, based on Lipschitz
properties of a limiting ® on Hilbert space, may be found in [3]. The intuition
behind all the results concerning change of measure, both here and in [3], is that
we work under conditions on the ®,, under which the reference product measure
structure dominates in the tails; such a situation arises naturally when approx-
imating infinite dimensional measures with Radon—Nikodym derivative (1) with
respect to a product measure 7.

Note that a proposal derived from the discretization of the Langevin SDE (18)
would take the form

3 2A
yAs:C :AVlogwo(m)—V@n($)+\/Efy £~ N(0,1) (23)

instead of (22). However we have omitted the term V®,(z) in (22) to simplify the
proof of the complexity results in the above theorem, and because the resulting
proposal suffices (under the stated conditions on ®,,) to deliver an algorithm which
has the same computational complexity as the one corresponding to product targets
in Theorem 5.2; this is in some sense (and apart from extraordinary choices of ®,,)
the best one can expect. However, whilst use of the proposal (23) might not
improve the asymptotic computational complexity in n, when compared with the
results obtained for the proposal (22), it can have a significant positive effect in
terms of the constant in the asymptotic cost, and in other measures of efficiency.

5.4. Change of measure from Gaussian. In the previous section we made
the useful step of considering settings which are no longer of product form, taking
us into a family of problems with practical application. Here we take a further
step in the direction of applicability, by assuming that the reference measure g is
Gaussian so that the target has the form

m(z) exp(—@n(m‘) + %(:L‘, Enx)). (24)

We have used £, = —C;' = diag{—\[?,---,—);2}. We consider a family of
proposals parameterised by a € € [0, 1] which, in the Gaussian reference measure
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case, is identical to that from the previous section, in the case § = 0. When
6 € (0,1) the family corresponds to using an implicit discretization of (18):

gz = [2A
= A (e,cy +( H)Lx) + 56 E~NOD.
We make the same assumption on ®,, as in the previous section.

Theorem 5.4.
e If0 =3 and A=1 or A=C, then M(n) = O(1).
e If0 =0 and A= C, then M(n) = O(n'/3).
e If0 =0 and A= I then M(n) = O(n?+1/3),

Thus the takehome message from this theorem is that implicitness in the pro-
posal can positively impact computational complexity. It turns out that the choice
8 = % is crucial to obtaining n-independent estimates on M (n). This is due to
the fact that 6 = % is the unique choice of # for which the Metropolis—Hastings
method is well-defined on the limiting (for n — o0) infinite-dimensional Hilbert
space H. This result is proved in [2]; for numerical illustrations of the effect of 6
see that paper and [18].

The results of Theorem 5.4 are directly relevant to the infinite-dimensional
models of interest in this paper characterised by the general density structure 7 in
(3) and the m-invariant SPDE (8). The target 7, in (24) should be viewed as an
approximation of 7. One can readily obtain such a structure for a finite dimensional
approximation of m by truncating the spectral expansion corresponding to the
eigenbasis of the covariance operator C of the reference Gaussian measure appearing
at the definition of 7. Equivalently, this corresponds to an n-dimensional projection
of the Karhunen-Loéve expansion for Gaussian measures. Other methods, like
finite differences or finite elements can deliver a similar structure. In these cases
note that appropriate orthogonal transformations can force a diagonal structure
for the approximation of the covariance operator, thus granting the structure (24).
In terms of results, Theorem 5.4 dictates that one should use a #-method for
the discretization of the SPDE (8) in the algorithmic time s-direction, with the
particular choice § = %.

6. Conclusions

In this article we have studied a class of problems that lie at the interface of applied
mathematics and statistics. We have illustrated the following:

e Applications. Measures which have density with respect to a Gaussian arise
naturally in many applications where the solution is a measure on functions.
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SPDEs. There is a natural notion of Langevin equations on function space
for these measures. These Langevin equations are often stochastic partial
differential equations (SPDEs).

Algorithms. Using these SPDEs, and their finite-dimensional analogues,
natural MCMC methods can be constructed to sample function space.

Numerical analysis. Ideas such as steepest descents, preconditioning and
implicitness have crucial impact on the complexity of MCMC algorithms.

Many interesting issues remain open for further study:

Mathematical formulation. As indicated in subsection 2.5, providing a
rigorous formulation of many problems which require a measure on func-
tion space, especially inverse problems, is an open and interesting area for
analysis.

Algorithms. In theory it is advantageous to incorporate information con-
cerning V&, (z) (as in (23)) in the proposal. In practice, calculation of this
derivative may be very expensive: study of the data assimilation [20] and
geophysical applications [22] will illustrate this. Thus, it is important to find
cheaper surrogates for V® which result in improved acceptance probabilities.

Applications. As we have shown these are numerous in chemistry, physics,
data assimilation, signal processing and econometrics. Realizing the potential
for the methodology studied here remains a significant challenge.

Stochastic analysis. The existing theory of m-invariant SPDEs would bene-
fit from extension, in the case of conditioned diffusions, to non-gradient vector
fields, state-dependent noise, degenerate noise and non-Gaussian noise. More
generally, in particular for inverse problems, making sense of the resulting
SPDEs remains an open and interesting problem - see subsection 3.5.

Numerical analysis. It is important to develop an approximation theory
for the S(P)DEs and MCMC methods on function space written down in this
article. Challenging issues include nonlinear boundary conditions, nonlinear
Dirac sources, and preserving symmetry of the inverse covariance matrix.

Statistics. Incorporation of this function space sampling into the (Gibbs)
sampler to estimate parameters as well as functions. Study of optimal scaling
of proposals in various singular limits, such as small diffusion in the case of
bridge diffusions or signal processing, or rapidly varying permeability in the
case of geophysical applications.

Apart from the intrinsic interest in the class of problems studied here, and
the specific conclusions listed, the work presented here is perhaps also of interest
because it highlights an important general trend, namely that applied mathemat-
ics and statistics are increasingly required to work in tandem in order to tackle
significant problems in science, engineering and beyond.
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A. Appendix. Proof of theorems

The following generic result will allow us to obtain estimates for the Metropolis—
Hastings acceptance probability.

Lemma A.1. Let T be a real-valued random wvariable.

E[1Ael]>e (1—E’Tl> :

(&

i) For any ¢ > 0:

ii) IfE[T] <0, then:

E|T -E[T]]
(-E[T])

E[1AeT] < BITV2 19

Proof. For the first result note that:
E[1Ael | >E[(1AD) - I{|T|<c}] > e °P[|T| L c].

The Markov inequality now gives the required result. For the second result, we set
p:=—E[T], To :=T — E[T']. Then:

Ty, s [ Ty . ]< —p/2 [ E]
]E[(l/\e ) I[{|T0|_ 2}]+1E 1 neT) H{|T0\> 2} <e 24P ||T| > ).
The result follows from Markov inequality. g

For simplicity in the proofs that follow, we set:

g(x) = log f(x)

and we use gU) to denote the jt" derivative of g.

Proof of Theorem 5.1.
e =0

The acceptance probability a(z,y) in (15) is now determined as follows:
NIC) Rn.
a(z,y) =1A (w)—l/\e 0 J = Z —g(zi)) -

Recall that since § = 0:
Yi = Ti + V2As§;.

Case A: As=n"7 with v > 1.

We take a second order Taylor expansion of R,, = R, (v/As) around vAs = 0. So:
Rn = Al,n Sl A2,n + una
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with individual components:
n mn n
Ain = VAs ch,i Az n = As ZCz,i, Un = AZ’/Q Z Uin;
i=1 i=1 i=1

; 1" 2
Cl,i = \/59 (Ii)§i> Cz,z' = (331) 12, Ui,n = %9(3)(%‘ = \/ﬁAffi) ?7

for some A} € [0,V/As|, i = 1,...,n. Notice that {C;;}; and {Cs;}; are both
sequences of iid random variables, so we will ignore reference to the index 7 when
considering expectations w.r.t. C; ; or Cy ;. Using Condition 1(ii), we find that:

[Uin| < Mi(zi) Ma(&:) M3(A7), (25)

for some positive polynomials M, M3, M3. Using Condition 1(i), E [ M;(z;)] < oo,
E[M5(&)] < oo, both expectations not depending on 7. Since A} is bounded above
uniformly in 4, n, so is M3(AY). Since the z; and £ are independent of one another,
it is now clear that E |U; | < K for some constant Ky not depending on 7, n, and
subsequently:

lim E|U, | = 0.
n—oo
Note now that, since E[C;..] = 0, Jensen’s inequality gives:

E[|A1n|] < VAsVAE[C? ]2,

Also,
E[[A2n]] < AsnE[|Cy,|].
Since As = n~7 with v > 1, we deduce that limsup,, E| R, | < co. Lemma A.1(i)
now implies that:
liminf Ea(z,y) > 0.

n—oo

Case B: As =n"7 with v € (0,1).

We select an integer m such that (m + 1)y > 2 and use the m!*-order Taylor
expansion:

R = f:Aj’n +Z/{,;,

=1

with terms specified as follows:
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for some corresponding A} € [0,v/As]. The residual terms Uz-,’n can be bounded
by a constant as in (25), so the particular choice of m gives that:

lim E|U, | =0.

Also, since E[A; ,] =0

ElR.]= iE[Aj’n] +0Q1); E[Ajn]=(VAs)nE[C;.].

=2

From the analytical expression for Cy ;:

E[Cy.]=— / {6 (@)} exp{g(z)}dz < 0.

All other Cj,. satisfy E|C;.| < co. So, E[R,] — —co as fast as —n'~7. For the
expectation E | R, —E[ R, ]|, we use Jensen’s inequality to get the following upper
bound:

E|R, —E[R, ]|§§: VAs) /nVar[C;. Y2 + OQ1).

So, E|R, —E[R,]| does not grow faster than (| E[R,]|)'/2. From Lemma A.1(ii):

lim Ea(z,y) =0.

n—oo
e =1

The proof follows the same lines as the case § = 0. The acceptance probability
a(z,y) can be written again as 1 A ef*» for some corresponding R,,. We will again
consider Taylor expansions of R, = R, (v/As) around vAs = 0. So, considering
an mP-order expansion we obtain the following structure:

Rn(VAs) = f: Ajn + Us; (26)

Jj=1

= (\/_A:)J Z Cj,’h Uy, = (\/E)m-i-l Z G(mlv §i) A:) (27)

=1

for some C} ;, G involving g and it’s derivatives, and some A} € [0,VAs|, 1 < i < n.
For the explicit expressions for C;,; and G see [27]. We will only exploit the fol-
lowing characteristics:

Cji = Cj,.(%i,&) (28)
Cl’i:CQ’iEO,i-——l,...’n; E[Cg’.]:E[C41.]=E[Cs,.]:0; ]E[Cﬁ’.]<0
G has a polynomial growth bound .



MCMC methods for sampling function space 361

Since the first two terms in the expansion cancel out, a larger step-size v/ As can
now control the remaining term compared with the case § = 0. Working as above,
we can show that:

E|Ajn.| < (VAs)Y vrE[C2 Y2, j=3,4,5,
E[|Asn|] < (As)>nE|Cs.| .

So, when As = n™7 with v > 1/3 all terms in a sixth-order Taylor expansion of
R, (v/As) will have n-bounded absolute expectation, and Lemma A.1(i) will again
give the bound liminf,, Ea(z,y) > 0. Using the same arguments as in the case
when 8 = 0, one can also prove that lim, .. Ea(z,y) = 0 if v € (0,1/3). We
avoid further details. O

Proof of Theorem 5.2.
e A=1

The proof is a slight modification of the proof of Theorem 5.1. Again, we consider
the exponent R, = R,(v/As) from the expression 1 A efi» for the acceptance
probability a(z,y), and consider Taylor expansions of it around v/As = 0. The
formulae are similar to the ones for the iid case given in (26) and (27). Analytically:

R, = iA‘,n+Un;

=3

A = (B B Cul X, W =B Y Ola/ s AL AT
i=1 i=1
for some A} € [0,vVAs], i = 1,...n. The functional G is the same as in (27),
whereas Cj; = Cj.(x;/);) for the functions C;. in (28); in particular {C;;}; are
again iid for all 7 > 1.

We work as before. For v > 2k + 1/3, we consider the sixth-order expansion
(m = 6), and find that:

G (@i /Xi, &6, AT/ A)| < Mi(zi/ M) Ma(&) M3(A7 /X)),
for some positive polynomials M7, My, M3. One can now easily check that:
lim E|U,| =0.

‘We then obtain the bounds:

n

E|4sn| < (A5)* (3OAT®) E|Cs, |-

=il




.\
i

G

362 A. Beskos and A. Stuart

Recall that A\; =i~ ". So, when As = n~" with 7 > 2k + 1/3, then one can easily
verify that limsup,, E| R, | < co. So, from Lemma A.1(i), liminf, . Ea(z,y) >
0.

When v € (2k,2k+1/3), we consider an m-th order expansion, for (m+1)y > 2
and work as in Theorem 5.1, taking into consideration the scalings A; as above.
We avoid further details.

e A=0C,

One can easily check that, on the transformed space z — Cp, /25 the original algo-
rithm with target distribution (20) and proposal (21) coincides with the algorithm
of the iid case given in section 5.1. So the result follows from Theorem 5.1, with
Fe= 1, O

Proof of Theorem 5.3.

The acceptance probability will now be:

a(z,y) = 1 A efn=EnW)+en(2) |
for R,, as in the product case. Note now that:
limsup Ex |[Rp — @ (y) + @n(z) | < Ky + Ko limsup Eq, |Ry| ,
n n
E,PAe&f@Mw%%@qE;KEmuAeEq,

for some constants K, K7, Ko > 0, where we have used the assumption of a uniform
bound on ®,,. Consider the case A = I with As = n~7. We have already showed in
the proof for Theorem 5.2 above that if v > 2k +1/3 then limsup,, Ex, | R, | < 0.
The first inequality above implies that also lim sup,, E, | Ry, — @5 (y) + ®n(z) | < o0,
and Lemma A.1(i) gives a lower bound for the average acceptance probability in
stationarity. When v € (2x, 2k + 1/3), we showed that E,, [1 A eft»] — 0, so also
E, [1 A efin=2a)+2n(2)] _, 0,

A similar argument gives the required result for A = C,. O

Proof of Theorem 5.4.
e =0

The required results for § = 0 are special cases of Theorem 5.3.
e =3 A=1

After carrying out some calculations, the acceptance probability can be written as
1 A eT» where:

n

T = Bu(z) — aly) + 5 (0 = 5 ) A5 DA (@s/N)? = (@:/)?),

i=1
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So, when 6 = 1/2, the average acceptance probability in stationarity is lower
bounded even for constant As = ¢. A similar simplification of the acceptance
probability expression arises also in the case A = C,,. U
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