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Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing
Posterior Expectations in Elliptic Inverse Problems∗
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Abstract. We are interested in computing the expectation of a functional of a PDE solution under a Bayesian
posterior distribution. Using Bayes’s rule, we reduce the problem to estimating the ratio of two
related prior expectations. For a model elliptic problem, we provide a full convergence and complexity
analysis of the ratio estimator in the case where Monte Carlo, quasi-Monte Carlo, or multilevel
Monte Carlo methods are used as estimators for the two prior expectations. We show that the
computational complexity of the ratio estimator to achieve a given accuracy is the same as the
corresponding complexity of the individual estimators for the numerator and the denominator. We
also include numerical simulations, in the context of the model elliptic problem, which demonstrate
the effectiveness of the approach.
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1. Introduction. Simulation frequently plays an essential role in the mathematical mod-
elling of physical processes. However, the model parameters are often subject to uncertainty.
This may be due to incomplete or inaccurate knowledge of the system or due to an inher-
ent variability. It is important to understand how this uncertainty in the input parameters
influences the reliability of the simulation outputs.

In the Bayesian framework, we initially assign a probability distribution, called the prior
distribution, to the input parameters. In addition observations, related to the model outputs,
are often available, and it is then possible to reduce the overall uncertainty and get a better
representation of the input parameters by conditioning the prior distribution on this data.
This leads to the posterior distribution on the input parameters. The goal of the simulations
is then often to compute the expected value of a quantity of interest (related to the model
outputs) under the posterior distribution. This is the problem of Bayesian inference.

Typically, the posterior distribution is intractable, in the sense that direct sampling is
unavailable. One way to circumvent this problem is to use a Markov chain Monte Carlo
(MCMC) approach to sample from the posterior distribution [41, 18, 11, 33, 9]. However,
for large-scale applications where the number of input parameters is typically large and the
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solution of the forward model expensive, MCMC methods require careful tuning and may
become infeasible in practice.

An alternative approach, considered in this paper, is to note that any given posterior
expectation can be written as the ratio of two prior expectations, both involving the likelihood.
The denominator is the normalizing constant in Bayes’s rule, namely, the expected value under
the prior of the likelihood. The numerator is similar, but the likelihood is weighted by the test
function of interest. This approach has already been considered in [45, 42, 44], where the prior
expectations are computed using adaptive sparse grid techniques. Similar ideas are also found
in [1] in the context of importance sampling. The focus of this work is to use sampling methods
to compute the prior expectations, which are also well-suited to the case of high-dimensional
inputs. In particular, we investigate the use of Monte Carlo (MC), quasi-Monte Carlo (QMC)
[39, 38, 36, 27], and multilevel Monte Carlo (MLMC) [26, 31, 2, 48, 30, 21] methods. The
work is closely related to the independent works [14, 15, 24] that also investigate the use
of QMC methods in computing posterior expectations. The papers [14, 15] are narrower in
the range of problems considered. Their analysis is based on holomorphy arguments which
require uniformly bounded coefficients, thus excluding the Gaussian case considered here. On
the other hand, the range of methods considered is wider and includes higher-order QMC and
multilevel QMC methods. The work [24] investigates the use of higher order QMC methods
for computing posterior expectations arising from partial differential equations (PDEs) posed
on random domains, again in the case of bounded parameters.

As a particular example, we consider the model inverse problem of determining the dis-
tribution of the diffusion coefficient of a divergence form elliptic PDEs from observations of
a finite set of noisy continuous functionals of the solution. The coefficient distribution is as-
sumed to be determined by an infinite number of scalar parameters through a basis expansion.
In contrast to the works [45, 42, 44, 14], our analysis also includes results in the technically
demanding case of log-normal diffusion coefficients, where the differential operator depends in
a nonaffine way on the parameters, each of which is modelled as a Gaussian random variable
under the prior distribution. We provide a full convergence and complexity analysis of the
estimator of the posterior expectation in the case of MC, QMC, and MLMC sampling. We
also demonstrate the effectiveness of this approach for the estimation of a typical quantity
of interest derived from the elliptic inverse problem. The main conclusion of our work is
that, for a given accuracy, the cost of computing the posterior expectation with any of these
MC variants is proportional to the computational complexity of the same estimator for prior
expectations.

The remainder of this paper is organized as follows. Section 2 provides the mathematical
set-up of the inverse problem of interest, including the formulation of ratio estimators for
posterior expectations. Section 3 is then devoted to the analysis of the error committed
by approximating the governing equations by finite elements, and section 4 introduces MC,
QMC, and MLMC estimators together with bounds on their sampling errors, extending the
QMC analysis to nonlinear functionals. In section 5, we then provide a full convergence
and complexity analysis of ratio estimators of posterior expectations. We demonstrate the
performance of the proposed ratio estimators on a specific quantity of interest in section 6
and finally provide some conclusions in section 7.
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2. Bayesian inverse problems. Let X and V be separable Banach spaces, and define the
Borel measurable mappings G : X → V and H : V → R

m for some m ∈ N. We will refer
to G as the forward map and to H as the observation operator. We denote by F : X → R

m

the composition of H and G, and by | · | the Euclidean norm on R
m. The inverse problem of

interest is to determine the unknown function u ∈ X from the noisy observations (or data)
y ∈ R

m given by

(2.1) y = H(G(u)) + η,

where the noise η is a realization of the Rm-valued Gaussian random variable N (0,Γ) for some
(known) covariance matrix Γ. For simplicity, we will assume that Γ = σ2ηI for some positive
constant σ2η.

We adopt a Bayesian perspective in which, in the absence of data, u is distributed according
to a prior measure μ0. Under the conditions given in Proposition 2.1 below, the posterior
distribution μy on the conditioned random variable u|y is absolutely continuous with respect
to μ0 and given by an infinite-dimensional version of Bayes’s theorem. This takes the form

(2.2)
dμy

dμ0
(u) =

1

Z
θ(G(u)),

where

(2.3) θ(ζ) = exp[−Φ(ζ)], Φ(ζ) =
1

2σ2η
|y −H(ζ)|2 and Z = Eμ0 [θ(G(u))].

The following proposition from [46] provides conditions under which the posterior distribution
μy is well defined and satisfies (2.2).

Proposition 2.1. Assume the map F : X → R
m is continuous and μ0(X) = 1. Then the

posterior distribution μy is absolutely continuous with respect the prior distribution μ0, with
the Radon–Nikodym derivative given by (2.2).

In applications, it is often of interest to compute the expectation of a functional φ : V → R

of G(u) under the posterior distribution μy. If we define

(2.4) ψ(ζ) = θ(ζ)φ(ζ) and Q = Eμ0 [ψ(G(u))],

it follows from (2.2) that the posterior expectation of φ(G(u)) can be written as

(2.5) Eμy [φ(G(u))] =
Eμ0 [ψ(G(u))]
Eμ0 [θ(G(u))]

=
Q

Z
.

We will approximate Eμy [φ(G(u))] by using different MC type methods to compute the prior
expectations Z and Q.

2.1. Parametrization of the unknown input. We consider the setting where the Banach
space X is a space of real-valued functions defined on a bounded spatial domain D ⊂ R

d for
some dimension d = 1, 2, or 3. For ease of presentation, we shall restrict our attention to the
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case X = C(D), the space of continuous functions on D, but other choices are possible (cf.
Remark 2.12), as is the extension to vector-valued functions.

We assume that the unknown function u ∈ X admits a parametric representation of the
form

(2.6) u(x) = m0(x) +

∞∑
j=1

ujφj(x),

where m0 ∈ X, {φj}∞j=1 denotes an infinite sequence in X (typically normalized to one in X
or in a larger space containing X) and {uj}∞j=1 ⊂ R

∞ denotes a set of real-valued coefficients.

By randomizing the coefficients {uj}∞j=1, we create real-valued random functions on D. To
this end, we introduce the deterministic, monotonically nonincreasing sequence γ = {γj}∞j=1

and the i.i.d. random sequence ξ = {ξj}∞j=1, and set uj = γj ξj . To emphasise the dependence
of u on ξ, we will write u = u(x; ξ).

We will consider two specific examples of the infinite series representation (2.6), referred
to as uniform priors and Gaussian priors, respectively.

2.1.1. Uniform priors. In the case of uniform priors, we specify the i.i.d. sequence of
random variables ξ = {ξj}∞j=1 by choosing ξj ∼ U [−1, 1], a uniform random variable on

[−1, 1], and the deterministic sequence γ is chosen absolutely summable, γ ∈ 
1(R∞). The
functions {φj}∞j=1 and m0 are chosen as elements of C(D) and are assumed normalized so that
‖φj‖C(D) = 1 for all j ∈ N.

We then have the following result from [12].

Lemma 2.2. Suppose there are finite, strictly positive constants mmin,mmax, and r such
that

min
x∈D

m0(x) ≥ mmin, max
x∈D

m0(x) ≤ mmax and ‖γ‖�1 =
r

1 + r
mmin.

Then the following holds almost surely: the function u(·; ξ) defined in (2.6) is in C(D) and
satisfies the bounds

1

1 + r
mmin ≤ u(x; ξ) ≤ mmax +

r

1 + r
mmin for almost all x ∈ D.

Note in particular that the upper and lower bounds on u in Lemma 2.2 are independent
of the particular realization of the random sequence ξ. With X = C(D), it follows from
Lemma 2.2 that μ0(X) = 1. We furthermore have the following result from [12] on the
spatial regularity of the function u in the case where the functions (m0, {φj}∞j=1) are Hölder
continuous.

Lemma 2.3. Suppose m0 and {φj}j≥1 are in Cα(D), the space of Hölder continuous func-

tions with exponent α ≤ 1, a and suppose
∑∞

j=1 |γj |2‖φj‖
β

Cα(D)
< ∞ for some β ∈ (0, 2).

Then the function u(·; ξ) defined in (2.6) is in Ct(D) almost surely for any t < αβ/2.
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2.1.2. Gaussian priors. For Gaussian priors, we specify the i.i.d. sequence of random
variables ξ by choosing ξj ∼ N(0, 1), a standard Gaussian random variable with mean 0
and variance 1. We choose the sequences {φj}∞j=1 and {γ2j }∞j=1 to be the eigenfunctions and

eigenvalues, respectively, of a covariance operator C : L2(D) → L2(D), such that the series
(2.6) is the Karhunen–Loeve (KL) expansion of the Gaussian measure μ0 = N(m0, C) on
L2(D). Denote by c : D × D → R the covariance kernel corresponding to the covariance
operator C. It follows from Mercer’s theorem that the eigenvalues {γ2j }∞j=1 are positive and

summable, and the equality c(x, y) =
∑∞

j=1 γ
2
jφj(x)φj(y) holds for almost all x, y ∈ D.

We have the following result on the spatial regularity of the function u from [4, 12].

Lemma 2.4. Let C denote the covariance operator with covariance kernel c satisfying
c(x, y) = g(‖x − y‖) for all x, y ∈ D, some norm ‖ · ‖ on R

d, and some Lipschitz contin-
uous function g ∈ C0,1(D). Let {φj}∞j=1 and {γ2j }∞j=1 be the eigenfunctions and eigenvalues of

C, respectively, and suppose m0 ∈ Ct(D) for some t < 1/2. Then, the function u(·; ξ) defined
in (2.6) is also in Ct(D) almost surely.

An example of a covariance kernel c(x, y) that satisfies the assumptions of Lemma 2.4 is
the exponential covariance kernel

(2.7) c(x, y) = σ2 exp[−‖x− y‖r /λ],

where the positive parameters σ2 and λ are known as the variance and correlation length,
respectively, and typically r = 1 or 2.

It follows from Lemma 2.4 that if the covariance operator C is smooth enough, so that
the function g is Lipschitz continuous, the function u(·; ξ) is almost surely continuous. With
X = C(D), it hence follows that μ0(X) = 1.

For practical applications, such as the problem described in section 2.2, it is often of
interest to construct a function that is strictly positive on D. For this reason, we consider the
function a(·; ξ) = exp[u(·; ξ)]. Since u(·; ξ) is almost surely continuous, we can define almost
surely the quantities

amin(ξ) = min
x∈D

a(x; ξ), and amax(ξ) = max
x∈D

a(x; ξ).

We have the following result on the boundedness of the function a [4, 5].

Lemma 2.5. Let the assumptions of Lemma 2.4 hold. Then a(·; ξ) = exp(u(·; ξ)) is in
Ct(D) almost surely, for any t < 1/2. Furthermore,

0 < amin(ξ) ≤ a(x; ξ) ≤ amax(ξ) <∞ for almost all x ∈ D and ξ ∈ R
∞,

and a−1
min ∈ Lr(R∞), amax ∈ Lr(R∞), and a ∈ Lr(R∞, Ct(D)) for all r ∈ [1,∞).

Other, smoother covariance kernels, such as the Gaussian kernel

c(x, y) = σ2 exp
[
−‖x− y‖22 /λ2

]
or the kernels from the Matérn family, also satisfy the assumptions of Lemmas 2.4 and 2.5,
but they lead to a significantly higher spatial regularity t ≥ 1/2 of a.
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2.1.3. Finite-dimensional approximation. In simulations, it is often necessary to use a
finite-dimensional approximation of the unknown u. Given the parametrization (2.6), this can
be achieved by simply truncating the series at finite truncation order J or through best N -
term approximations [7, 49]. For simplicity, we here choose the former and make the following
assumption in the remainder of this paper.

Assumption A1 (finite truncation order). Suppose the coefficients {γj}∞j=J+1 are all equal
to zero, for some finite J ∈ N, such that

(2.8) u(x; ξ) = u(x; ξJ) = m0(x) +
J∑
j=1

γjξjφj(x),

where ξJ := {ξj}Jj=1 ∈ R
J .

An important question is how one should optimally choose the truncation order J in (2.8),
and the answer typically involves a trade-off between choosing J sufficiently large to retain
a required accuracy and sufficiently small to avoid an unnecessarily large computational cost
associated to sampling from u. We will in this paper assume that J ∈ N is given and will not
explicitly discuss how to choose J . We refer the interested reader to the works [4, 36, 48, 27].

The series (2.8) defines a linear mapping P : RJ → X with P (ξJ) = u, and we will define
the prior measure μ0 on X as the pushforward under P of a suitable measure P defined on
the coefficient space R

J , equipped with the Borel product σ-algebra. For the uniform priors
considered in section 2.1.1, the measure P is the product measure

(2.9) P(dξJ) =
J∏
j=1

dξj
2
.

For the Gaussian priors in section 2.1.2, we have

(2.10) P(dξJ) =

J∏
j=1

1√
2π

exp[−ξ2j /2] dξj .

Corollary 2.6. Suppose Assumption A1 holds. Then (i) Lemmas 2.2 and 2.3 hold; and (ii) if
{φj}Jj=1 and {γ2j }Jj=1 are chosen as the first J elements of {φj}∞j=1 and {γ2j }∞j=1 in Lemma 2.4,
respectively, then Lemmas 2.4 and 2.5 hold.

Proof. Part (i) follows directly from Lemmas 2.2 and 2.3, since the parametrization (2.8)
is just a special case of (2.6). Part (ii) is proved in [4].

Remark 2.7 (alternative approximations). The truncated parametrization (2.8) is not the
only way to obtain an approximation of u from which we can easily produce samples for
simulation. In the case of Gaussian priors, knowledge of the covariance kernel c allows us to
assemble the covariance matrix of the Gaussian vector [u(x1), u(x2), . . . , u(xn)] for any n ∈ N

and {xi}ni=1 ⊆ D, and we can hence use methods based on factorizations of the covariance
matrix, such as [17], to sample from u at a finite number of locations in the domain D. In
applications such as the elliptic problem discussed in section 2.2, this is usually sufficient, since
typically quadrature methods are used to compute the numerical approximation discussed in
section 3. For more details, we refer the interested reader to [28, 29, 47].
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2.2. Model elliptic problem. We consider the model inverse problem of determining the
distribution of the diffusion coefficient of a divergence form elliptic PDEs from observations
of a finite set of noisy continuous functionals of the solution. Let D ⊂ R

d for d = 1, 2, or 3,
be a bounded Lipschitz domain, and denote by ∂D its boundary. The forward problem which
underlies the inverse problem of interest here is to find the solution p(·; ξJ ) of the following
linear elliptic PDE:

(2.11) −∇ · (k(x; ξJ )∇p(x; ξJ)) = f(x) in D, p(·; ξJ ) = 0 on ∂D,

for given functions k(·; ξJ ) ∈ C(D) and f ∈ H−1(D). Although all results in this section
apply also in the case of infinite-dimensional parameter vectors ξ, we restrict our attention to
finite-dimensional ξJ for consistency.

The variational formulation of (2.11) is to find p(·; ξJ) ∈ H1
0 (D) such that

(2.12) b(p, q; ξJ ) = L(q) for all q ∈ H1
0 (D),

where the bilinear form b and the linear functional L are defined as usual, for all v,w ∈ H1
0 (D)

by

(2.13) b(v,w; ξJ ) =

∫
D
k(x; ξJ)∇v(x) · ∇w(x) dx and L(w) = 〈f,w〉H−1(D),H1

0 (D).

We say that p(·; ξJ) is a weak solution to (2.11) iff p(·; ξJ) ∈ H1
0 (D) and p(·; ξJ) satisfies (2.12).

In the inverse problem, we take the coefficient k to be a function of the unknown u, in
which case both the coefficient k and the solution p depend on the random sequence ξJ . When
the dependence on ξJ of k and p is irrelevant, we will simply write k = k(x) and p = p(x).
With the unknown function u(·; ξJ ) as in section 2.1, we choose

• k(·; ξJ ) = u(·; ξJ ), in the case of the uniform priors described in section 2.1.1, and
• k(·; ξJ ) = k∗ + exp(u(·; ξJ )), in the case of Gaussian priors, for some given continuous

nonnegative function k∗ ≥ 0.
By Lemmas 2.2 and 2.5, both these choices ensure that the diffusion coefficient k(·; ξJ ) in
(2.12) is strictly positive on D, P-almost surely. In terms of the notation in previous sections,
the Banach space X is the space of continuous functions C(D) as before. The forward map
G is defined by G(u) = p, i.e., it maps the unknown function u(·; ξJ ) to the solution p(·; ξJ).
(Note that the definition of G differs between the two choices k = u and k = k∗ + exp(u).)
We take the Banach space V as the Sobolev space H1

0 (D).
The existence and uniqueness of the weak solution p(·; ξJ) are ensured by the Lax–Milgram

theorem. As in previous sections, let kmin(ξJ ) and kmax(ξJ) be such that

0 < kmin(ξJ) ≤ k(x; ξJ ) ≤ kmax(ξJ) <∞ for almost all x ∈ D and for ξJ P-almost surely.

For uniform priors, kmin(ξJ) and kmax(ξJ) are independent of ξJ . If k∗(x) > 0 for all x ∈ D,
then kmin(ξJ) is also independent of ξJ in the Gaussian case.

Definition 2.8. We will refer to the coefficient k as uniformly elliptic (respectively, uni-
formly bounded) when kmin(ξJ) (respectively, kmax(ξJ)) is independent of ξJ .
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The following is a direct consequence of the Lax–Milgram lemma and Lemmas 2.2 and
2.5.

Lemma 2.9. For P-almost all ξJ ∈ R
J , there exists a unique weak solution p(·; ξJ) ∈ H1

0 (D)
to the variational problem (2.12) and

∣∣p(·; ξJ)∣∣H1(D)
≤

‖f‖H−1(D)

kmin(ξJ)
.

Furthermore, p ∈ Lr
P
(RJ ,H1

0 (D)) for all r ∈ [1,∞). If k is uniformly elliptic, then the result
holds also for r = ∞.

In order to conclude on the well-posedness of the posterior distribution μy, we furthermore
have the following result on the continuity of the forward map G.

Lemma 2.10. The map G : X → V , G(u) = p, is continuous.

Proof. Denote by p1 and p2 two weak solutions of (2.12) with the same right-hand side f
and with coefficients k1 and k2, respectively. Let kmin and kmax be such that

0 < kmin ≤ ki(x) ≤ kmax <∞ for almost all x ∈ D,

for i = 1, 2. Then it follows from the variational formulation (2.12) that

|p1 − p2|H1(D) ≤
‖f‖H−1(D)

k2min

‖k1 − k2‖C(D).

In the case k = u, the continuity of G now follows immediately. In the case k = exp(u), the
continuity of G follows from the continuity of the exponential function.

We then have the following corollary to Proposition 2.1, which follows immediately from
Lemmas 2.2, 2.4, and 2.10, together with the continuity of the observation operator H.

Corollary 2.11. For the forward map G defined by G(u) = p, the posterior measure μy is
absolutely continuous with respect to the prior measure μ0, with Radon–Nikodym derivative
(2.2).

Remark 2.12 (piecewise continuous coefficients). Although we here restrict our attention
to the case of continuous random coefficients, the theory extends to the piecewise continu-
ous case where a further source of randomness can be introduced in the partitioning of the
computational domain D into subdomains. The well-posedness of the posterior distribution
in this case was shown in [20]. The regularity and spatial discretization error (as discussed in
section 3) were analyzed in [48, 47].

3. Finite element discretization. In this section, we analyze the error introduced in the
computation of the prior expectations Z and Q by a finite element approximation of the
forward map G. We consider only standard, continuous, piecewise linear finite elements on
polygonal/polyhedral domains in detail. To this end, denote by {Th}h>0 a shape-regular family
of simplicial triangulations of the Lipschitz polygonal/polyhedral domain D, parametrized by
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their mesh width h := maxτ∈Th diam(τ). Associated with each triangulation Th we define the
space

(3.1) Vh :=
{
qh ∈ C(D) : qh|τ linear for all τ ∈ Th and qh|∂D = 0

}
of continuous, piecewise linear functions on D that vanish on the boundary ∂D.

The finite element approximation to (2.12), denoted by ph, is now the unique function in
Vh that satisfies

(3.2) b(ph, qh; ξJ) = L(qh) for all qh ∈ Vh,

where the bilinear form b and the functional L are as in (2.13). Note that, in particular, this
implies that ph satisfies the same bound as in Lemma 2.9:

(3.3) |ph(·; ξJ )|H1(D) ≤ ‖f‖H−1(D)/kmin(ξJ ) .

The approximate forward map Gh : X → V is then defined by Gh(u) = ph, and we denote the
resulting approximations of Z and Q, respectively, by

Zh = Eμ0 [θ(Gh(u))] and Qh = Eμ0 [ψ(Gh(u))].

A standard technique to prove convergence of finite element approximations of functionals
is to use a duality argument, similar to the classic Aubin–Nitsche trick used to prove optimal
convergence rates for the L2 norm. In the context of the elliptic PDE (2.11) with random
coefficients, this analysis was performed in [48]. We here summarise the main results of the
error analysis and show that if the observation operator H and the functional of interest φ
are smooth enough, the finite element error in the prior expectations Zh and Qh converges at
the optimal rate.

Let v,w ∈ H1
0 (D). Given a functional F : H1

0 (D) → R, we denote by DvF (w) its Fréchet
derivative at w, applied to v. With p and ph as before, we define

DvF (p, ph) =

∫ 1

0
DvF (p+ λ(ph − p)) dλ,

and |DvF |(p, ph) =
∫ 1

0
|DvF (p + λ(ph − p))|dλ,

which in some sense are averaged derivatives of F on the path from p to ph. Let us now define
the following dual problem: find z ∈ H1

0 (D) such that

(3.4) b(q, z; ξJ ) = DqF (p, ph) for all q ∈ H1
0 (D).

Denote the finite element approximation of the dual solution z by zh ∈ Vh. It then follows from
the fundamental theorem of calculus, Galerkin orthogonality of the primal problem (2.12), and
then boundedness of the bilinear form b that

|F (p)−F (ph)| = |b(p−ph, z; ξJ )| = |b(p−ph, z−zh; ξJ)| ≤ kmax(ξJ) |p−ph|H1(D) |z−zh|H1(D).



502 R. SCHEICHL, A. M. STUART, AND A. L. TECKENTRUP

In order to prove convergence of the finite element error |F (p) − F (ph)|, it hence suffices
to prove convergence of |p − ph|H1(D) and |z − zh|H1(D). For our further analysis, we make
the following assumption on the smoothness of the maps φ and H. Examples of functionals
satisfying Assumption A2 are discussed in [48] and include linear functionals, powers of linear
functionals, and boundary fluxes.

Assumption A2 (differentiability). Let φ and Hi, i = 1, . . . ,m, be continuously Fréchet
differentiable on the path {p + λ(p − ph)}λ∈[0,1], and suppose that there exist t∗ ∈ [0, 1], q∗ ∈
[1,∞] and Cφ, CH ∈ Lq∗

P
(RJ) such that f ∈ Ht∗−1(D),

|Dvφ|(p, ph) ≤ Cφ(ξJ)‖v‖H1−t∗ (D), and |DvHi|(p, ph) ≤ CH(ξJ)‖v‖H1−t∗ (D)

for all v ∈ H1
0 (D) and almost all ξJ ∈ R

J .

Now let F = φ or F = Hi for some i ∈ {1, . . . ,m}. To get well-posedness of the primal
problem (2.12) and the dual problem (3.4), as well as the existence and uniqueness of the
solutions p(·; ξJ) ∈ H1

0 (D) and z(·; ξJ ) ∈ H1
0 (D) for almost all ξJ ∈ R

J , it is sufficient to
assume that Assumption A2 holds with t∗ = 0. However, in order to prove convergence of
the finite element approximations, it is necessary to require stronger spatial regularity of p
and z, which requires Assumption A2 to hold for some t∗ > 0. We have the following result
from [5, 48]. The assumptions on D being polygonal and convex are purely to simplify the
presentation. Proposition 3.1 also holds for piecewise smooth or for nonconvex domains, but
typically with stronger restrictions on the range of s.

Proposition 3.1. Let D be a Lipschitz polygonal, convex domain, let k ∈ Lr∗
P
(RJ , Ct(D))

and k−1
min ∈ Lr∗

P
(RJ) for some t ∈ (0, 1] and r∗ ∈ [1,∞], and let Assumption A2 hold with t∗ = t

and q∗ = r∗. Then, the solutions p and z of (2.12) and (3.4) are both in Lr
P
(RJ ,H1+s(D))

for any s < t and r < r∗. The result also holds for r = r∗ or for s = t, if r∗ = ∞ or t = 1,
respectively.

We will now show that the functionals θ and ψ appearing in the prior expectations Z and
Q, respectively, satisfy the bounds in Assumption A2 provided φ andH satisfy Assumption A2,
as well as the growth conditions in Assumption A3 below.

Assumption A3 (boundedness). Suppose there are constants M1,M2 > 0, and n1, n2 ∈ N,
such that

(3.5) |φ(v)| ≤M1

(
1 + |v|n1

H1(D)

)
and |H(v)| ≤M2

(
1 + |v|n2

H1(D)

)
for all v ∈ H1

0 (D).

Recall the product and chain rules for Fréchet derivatives for functionals F1, F2 : H1
0 (D) →

R and a function f : R → R:

Dv(F1F2)(w) = F2(w)DvF1(w) + F1(w)DvF2(w) and Dv(f ◦ F1)(w) = DDvF1(w)f(F1(w)).

We then have the following result.

Lemma 3.2. Let Assumption A2 hold with t∗ ∈ [0, 1] and q∗ ∈ [1,∞], and suppose Assump-
tion A3 holds. Then

|Dvθ|(p, ph) ≤ Cθ(ξJ )‖v‖H1−t∗ (D) and |Dvψ|(p, ph) ≤ Cψ(ξJ)‖v‖H1−t∗ (D)
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for all v ∈ H1
0 (D) and for ξJ P-almost surely, where Cθ(ξJ) and Cψ(ξJ) are in Lr

P
(RJ) for all

r ∈ [1, q∗) If k is uniformly elliptic, then the result holds also for r = q∗.

Proof. First, we use the chain rule and product rule for Fréchet derivatives to obtain

Dvθ(w) = Dv

(
exp

[
− 1

2σ2η

m∑
i=1

(yi −Hi(w))
2

])
= −θ(w) 1

σ2η

m∑
i=1

DvHi(w)(yi −Hi(w)).

Denoting pλ = p+ λ(ph − p), we then have

|Dvθ|(p, ph) =
∫ 1

0
|Dvθ(pλ)| dλ ≤

∫ 1

0
θ(pλ)

1

σ2η

m∑
i=1

|DvHi(pλ)| |yi −Hi(pλ))|dλ.

By the definition of θ in (2.3), we have θ(pλ) ≤ 1 for all λ ∈ [0, 1]. By Assumption A3, it
follows that

|yi −Hi(pλ))| ≤ C(1 + |pλ|n2

H1(D)
) ≤ C(1 + ‖f‖n2

H−1(D)
k−n2
min (ξJ))

for some (generic) constant C independent of the mesh size h and random parameter ξJ . It
then follows that

|Dvθ|(p, ph) ≤
C

σ2η
(1 + ‖f‖n2

H−1(D)
k−n2
min (ξJ))

m∑
i=1

|DvHi|(p, ph).

With Cθ(ξJ) =
mC
σ2η

(1+‖f‖n2

H−1(D)
k−n2
min (ξJ))CH(ξJ), it then follows from Assumption A2 that

|Dvθ|(p, ph) ≤ Cθ(ξJ)‖v‖H1−t∗ (D).

Next, using the product rule for Fréchet derivatives, together with the result just proved,
we have

Dvψ(w) = θ(w)Dvφ(w) − φ(w) θ(w)
1

σ2η

m∑
i=1

DvHi(w)(δi −Hi(w)).

With pλ as before, it then follows that

|Dvψ|(p, ph) =
∫ 1

0
|Dvψ(pλ)| dλ

≤
∫ 1

0
θ(pλ)

[
|Dvφ(pλ)|+ φ(pλ)

1

σ2η

m∑
i=1

|DvHi(pλ)| |δi −Hi(pλ)|
]
dλ.

Now θ(pλ) ≤ 1 for all λ ∈ [0, 1]. By Assumption A3, it follows that

|φ(pλ)| max
i∈{1,...,m}

|yi −Hi(pλ))| ≤ C(1 + |pλ|n2

H1(D)
)2 ≤ C(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ))

for some (generic) constant C independent of the mesh size h and random parameter ξJ . It
then follows that

|Dvψ|(p, ph) ≤ |Dvφ|(p, ph) +
C

σ2η
(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ))

m∑
i=1

|DvHi|(p, ph).
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With Cψ(ξJ ) = Cφ(ξJ) +
mC
σ2η

(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ))CH(ξJ), it then follows that

|Dvψ|(p, ph) ≤ Cψ(ξJ)‖v‖H1−t∗ (D).

Finally, recall that by Lemmas 2.2 and 2.5, we have k−1
min(ξJ) ∈ L∞

P
(RJ) if k is uniformly

elliptic, and k−1
min(ξJ) ∈ Lq

P
(RJ) for any 1 ≤ q < ∞, otherwise. Hence, it follows from

Assumption A2, together with Hölder’s and Minkowski’s inequalities, that Cθ(ξJ) and Cψ(ξJ)
are in Lr

P
(RJ) for all r ∈ [1, q∗). If k is uniformly elliptic, we can also set r = q∗.

Bounds on the finite element errors |θ(p)− θ(ph)| and |ψ(p) − ψ(ph)| now follow directly
from Proposition 3.1 and Lemma 3.2.

Theorem 3.3. Under the assumptions of Proposition 3.1 and Lemma 3.2 with t ∈ (0, 1] and
r∗ ∈ [1,∞], we have

‖θ(p)− θ(ph)‖Lr
P
(RJ ) ≤ Ck,f,θ,D h2s, and ‖ψ(p) − ψ(ph)‖Lr

P
(RJ ) ≤ Ck,f,ψ,D h2s

for any s < t and r < r∗. The constants Ck,f,θ,D and Ck,f,ψ,D are independent of h. If r∗ = ∞,
we can also bound the L∞

P
norms. If t = 1, we can set s = 1.

Proposition 3.1, Lemma 3.2, and Theorem 3.3 hold, without any additional assumptions,
also for infinite-dimensional parameter vectors ξ ∈ R

∞ [5, 48].

4. Sampling methods. In this section, we briefly recall the main ideas behind MC,
MLMC, and QMC estimators to compute the prior expectation Qh = Eμ0 [ψ(ph)]. The esti-
mators for Zh = Eμ0 [θ(ph)] are defined analogously. We also provide bounds on the sampling
error of the estimators, which will become useful for bounding the mean square error (MSE)
in section 5. For more details, we refer the reader to [41, 6, 36, 27].

4.1. Monte Carlo estimators. The standard MC estimator for Qh is

(4.1) Q̂MC
h,N =

1

N

N∑
i=1

ψ(ph(·; ξ(i)J )),

where ξ
(i)
J is the ith sample of ξJ from the distribution P, and N independent samples are

computed in total. The estimator (4.1) is an unbiased estimator of Qh with variance

(4.2) V[Q̂MC
h,N ] =

V[ψ(ph)]

N
.

4.2. Multilevel Monte Carlo estimators. The main idea of MLMC is simple. Linearity
of the expectation operator implies that

Eμ0 [ψ(ph)] = Eμ0 [ψ(ph0)] +

L∑
�=1

Eμ0 [ψ(ph�)− ψ(ph�−1
)],

where {h�}L�=0 are the mesh widths of a sequence of increasingly fine triangulations Th� with
hL = h, the finest mesh width, and k1 ≤ h�−1/h� ≤ k2 for all 
 = 1, . . . , L and some
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1 < k1 ≤ k2 < ∞. The multilevel idea is now to estimate each of the terms independently
using an MC estimator. Setting for convenience Y ψ

0 = ψ(ph0) and Y
ψ
� = ψ(ph�)−ψ(ph�−1

) for

 = 1, . . . , L, we define the MLMC estimator as

(4.3) Q̂ML
h,{N�} =

L∑
�=0

Ŷ ψ,MC
�,N�

=

L∑
�=0

1

N�

N�∑
i=1

Y ψ
� (·; ξ(i,�)J ),

where importantly the quantity Y ψ
� (·; ξ(i,�)J ) uses the same sample ξ

(i,�)
J on both meshes. The

estimator (4.3) is an unbiased estimator of Qh with variance

(4.4) V

[
Q̂ML
h,{N�}

]
=

L∑
�=0

V[Y ψ
� ]

N�
≤ C

L∑
�=0

h4s�
N�

,

where the last inequality follows from Theorem 3.3, with a constant C independent of {h�}L�=0

and with 0 ≤ s < t ≤ 1, as defined in Proposition 3.1.
When defining the MLMC estimator (4.3), one can in fact also use level-dependent trun-

cation levels J�. This approach was analyzed in [48] and can lead to further significant gains
in terms of computational cost.

4.3. Quasi-Monte Carlo estimators. QMC methods are classically formulated as quadra-
ture rules over the unit cube [0, 1]J for some J ∈ N. Treating ξJ as a deterministic parameter
vector distributed according to the product uniform or Gaussian measure, respectively,

(4.5) Eμ0 [ψ(ph)] =

∫
[0,1]J

ψ(ph(·; (Φ−1
J (v))))dv,

where ξJ = Φ−1
J (v) denotes the inverse cumulative normal applied to each entry of v in the

Gaussian case. In the uniform case, Φ−1
J is the simple change of variables mapping vj to

2vj − 1. We will use a randomly shifted lattice rule to approximate the integral (4.5). This
takes the form

(4.6) Q̂QMC
h,N =

1

N

N∑
i=1

ψ
(
ph
(
·; ξ̃(i)J

))
, where ξ̃

(i)
J := Φ−1

J

(
frac

(
iz

N
+Δ

))
,

z ∈ {1, . . . , N−1}J is a generating vector, Δ is a uniformly distributed random shift on [0, 1]J ,
and “frac” denotes the fractional part function, applied componentwise. To ensure that every
one-dimensional projection of the lattice rule has N distinct values we furthermore assume
that each component zj of z satisfies gcd(zj , N) = 1 (cf. [16]).

The variance of the QMC estimator (4.6) is given by

(4.7) V

[
Q̂QMC
h,N

]
= EΔ

[(
Eμ0 [ψ(ph)]− Q̂QMC

h,N

)2]
.

To bound it, we make the following assumption on the integrand ψ(ph).
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Assumption A4. Let c1 > 0 be a constant independent of J and let bj := γj‖φj‖C0(D) for

j ∈ N. We assume that, for any multi-index ν ∈ {0, 1}J with |ν| =
∑

j≤J νj ,∣∣∣∣∣∂|ν|ψ(ph)∂ξνJ

∣∣∣∣∣ ≤ Ck,f,ψ,D
c
|ν|
1 |ν|!

kmin(ξJ)

J∏
j=1

b
νj
j .

For linear functionals ψ on H1
0 (D), this has been proved in [36] and in [27] for the uniform

and the Gaussian cases, respectively. In both cases, we can choose c1 = 1/ ln 2. However, in
the Bayesian setting, both ψ and θ are inherently nonlinear functionals of p. Nevertheless, if
φ and H are linear functionals of p, and k is uniformly elliptic, Assumption A4 can be proved
by using the classical Faà di Bruno formula [10], a multidimensional version of the chain rule.
A proof for θ in the case m = 1 can be found in Appendix A. We omit the proof for ψ or for
m > 1. A proof for general analytic functionals φ and H of p would be even more technical
and require the use of generalizations of Faà di Bruno’s formula to Fréchet derivatives. For
this reason, we simply work under Assumption A4.

In the case of uniform priors, Assumption A4 was proved to hold in [14] using arguments
from complex analysis and the holomorphy of ph as a function of ξJ .

Lemma 4.1. Suppose Assumption A4 holds and the sequence {bj}∞j=1 is in lq(R∞) for some
q ∈ (0, 1]. Then, a randomly shifted lattice rule can be constructed via a component-by-
component algorithm in O(JN logN) cost, such that

V

[
Q̂QMC
h,N

]
≤
{
Cψ,q,δ N

−1/δ , if q ∈ (0, 2/3],

Cψ,q N
−(1/q−1/2), if q ∈ (2/3, 1)

for any δ ∈ (1/2, 1], independently of J . For q = 1 and under further assumptions given in
[27, Theorem 20] and [36, Theorem 6.4], we have V[Q̂QMC

h,N ] ≤ Cψ N
−1/2.

Proof. The proof follows those in [36, 27] with suitable changes to the product and order
dependent weights if c1 �= 1/ ln 2.

It is even possible to combine QMC sampling and multilevel estimation and the gains are
complementary [37, 35], but we will not include these estimators or their analysis here.

5. Mean square error and computational complexity. We will now use the results from
sections 3 and 4 to bound the MSE of estimators for the ratio Q/Z. To this end, let us
denote by Ẑh and Q̂h one of the MC type estimators discussed in section 4 for Zh and Qh,
respectively. Let us define the MSE

(5.1) e
(
Q̂h

/
Ẑh

)2
= E

[(
Q

Z
− Q̂h

Ẑh

)2
]
.

For MC and MLMC estimators, the expectation in the expression (5.1) above is with respect
to the prior measure μ0 on X. For QMC estimators, it is with respect to the random shift Δ.
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Rearranging the MSE and using the triangle inequality, we have

e
(
Q̂h

/
Ẑh

)2
=

1

Z2
E

[(
Q− Q̂h + (Q̂h/Ẑh)

(
Ẑh − Z

))2]
≤ 2

Z2

(
E

[
(Q̂h −Q)2

]
+ E

[
(Q̂h/Ẑh)

2(Ẑh − Z)2
])

.(5.2)

Our further analysis depends on the integrability of Q̂h
/
Ẑh, and we thus consider separately

the cases of uniformly and nonuniformly elliptic coefficients k.

5.1. Uniformly elliptic case. In the case where the coefficient k is uniformly elliptic, we
have the following result on the integrability of Q̂h/Ẑh. The assumptions on φ and H are more
general than Assumption A3 and allow for very general nonlinear growth. Since, in general,
ẐML
h,{N�} could be negative, we require stronger assumptions in the case of MLMC estimators.

In particular, we require the assumptions of Theorem 3.3 to hold with r = ∞, which means
that the coefficient k needs to be uniformly bounded as well as uniformly elliptic. The analysis
of MLMC in Lemma 5.1 below therefore does not apply in the case of Gaussian priors.

Lemma 5.1. Suppose k is uniformly elliptic and there are two constants M1,M2 > 0, such
that

|φ(v)| ≤M1 and |H(v)| ≤M2 for all v ∈ H1
0 (D) with |v|H1(D) ≤ ‖f‖H−1(D)/kmin.

Then Q̂MC
h,N

/
ẐMC
h,N ∈ L∞

P
(RJ) and Q̂QMC

h,N

/
ẐQMC
h,N ∈ L∞

Δ ([0, 1]J ) with L∞-norms bounded inde-
pendently of h and N .

If in addition h0 is sufficiently small and the assumptions of Theorem 3.3 hold with r = ∞,
we also have Q̂ML

h,{N�}/Ẑ
ML
h,{N�} ∈ L∞

P
(RJ) with L∞-norm bounded independently of {h�}, {N�},

and L.

Proof. Using the definition of Q̂MC
h,N in (4.1), as well as the bound in (3.3) and the fact

that θ(v) ≤ 1 for all v ∈ H1
0 (D), it follows that

|Q̂MC
h,N | =

∣∣∣∣∣ 1N
N∑
i=1

φ(ph(·; ξ(i)J ))θ(ph(·; ξ(i)J ))

∣∣∣∣∣ ≤M1

and

ẐMC
h,N =

1

N

N∑
i=1

θ
(
ph(·; ξ(i)J )

)
≥ exp

(
−|y|2 +mM2

2

2σ2η

)
=: b > 0 .

Since the upper bound on Q̂MC
h,N and the lower bound on ẐMC

h,N are independent of the random

samples {ξ(i)J }Ni=1, the claim of the lemma follows for MC estimators. The proof for QMC
estimators is identical.

For MLMC estimators, an upper bound on Q̂ML
h,{N�} follows as before. On the other hand,

to bound ẐML
h,{N�} we can use Theorem 3.3, which implies that

ẐML
h,{N�} ≥ b−

L∑
�=1

Ch2s�
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for a constant C independent of {h�}. If we choose h0 sufficiently small such that
∑∞

�=1 h
2s
� <

b/C, this lower bound on ẐML
h,{N�} is positive and independent of {h�}, {N�}, and L. The claim

of the lemma then follows also for MLMC estimators.

Using Lemma 5.1 and Hölder’s inequality, it then follows from (5.2) that

e
(
Q̂h

/
Ẑh

)2
≤ 2/Z2 max

{
1, ‖Q̂h/Ẑh‖2L∞

} (
E

[
(Q− Q̂h)

2
]
+ E

[
(Z − Ẑh)

2
])

.

Thus, the MSE of the ratio Q̂h
/
Ẑh can be bounded by the sum of the MSEs of Q̂h and Ẑh.

Using the fact that, for Qh the mean of the estimator Q̂h,

(5.3) E

[
(Q− Q̂h)

2
]
= (E[Q−Qh])

2 + V

[
Q̂h

]
and the results from sections 3 and 4, this gives the following bounds on the MSEs.

Theorem 5.2. Suppose the relevant assumptions of Proposition 3.1 and Lemmas 4.1 and
5.1 hold in each case. Then

e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ CMC

(
N−1 + h4s

)
,

e
(
Q̂QMC
h,N

/
ẐQMC
h,N

)2
≤ CQMC

(
N−1/δ + h4s

)
,

e
(
Q̂ML
h,{N�}

/
ẐML
h,{N�}

)2
≤ CML

(
L∑
�=0

h4s�
N�

+ h4s

)

for some 1/2 < δ ≤ 1 and for some 0 < s ≤ 1, related to the spatial regularity of the data (cf.
Proposition 3.1), and for constants CMC, CQMC, and CML independent of h,N, {h�}, {N�},
and L.

We note that the convergence rates of the MSEs in Theorem 5.2 are identical to the
convergence rates obtained for the individual prior estimators Q̂h and Ẑh.

5.2. Nonuniformly elliptic case. If the functionals φ and H are uniformly bounded, in
the sense that

(5.4) |φ(v)| ≤M1 and |H(v)| ≤M2 for all v ∈ H1
0 (D) and |θ(p)− θ(ph)| ≤M3h

for some constants M1,M2,M3 > 0, then the analysis in Lemma 5.1 carries over to the
nonuniformly elliptic case, with only minor modifications in the proof.

For more general functionals φ and H, the analysis is significantly more difficult and we
are only able to analyze MC estimators. We restrict to functionals φ and H that satisfy the
polynomial growth conditions in Assumption A4. Then we can follow an approach similar to
[19] to obtain the following integrability result on Q̂MC

h,N/Ẑ
MC
h,N .

Lemma 5.3. Suppose that φ and H satisfy Assumption A4 and that the same N i.i.d.

samples {ξ(i)J }Ni=1 are used in the estimators Q̂MC
h,N and ẐMC

h,N . Then Q̂MC
h,N

/
ẐMC
h,N ∈ Lr

P
(RJ) and

‖Q̂MC
h,N

/
ẐMC
h,N‖Lr

P
(RJ ) can be bounded independent of h and N for all 1 ≤ r <∞.
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Proof. To simplify the presentation, let us denote pih = ph(·; ξ(i)J ). Then, due to (3.3) and

(3.5) we can bound θ(p
(i)
h ) > 0, P-almost surely. Hence, it follows from (4.1) that

(5.5)

∣∣∣∣∣Q̂MC
h,N

ẐMC
h,N

∣∣∣∣∣ =
∣∣∣∣∣ 1
N

∑N
i=1 φ(p

i
h)θ(p

i
h)

1
N

∑N
i=1 θ(p

i
h)

∣∣∣∣∣ ≤ max
1≤i≤N

|φ(pih)|.

Using the same argument as in the proof of [19, Lemma 1], for any convex and nondecreasing
function ρ : R+ → R+, we have

ρ

(
E

[
max
1≤i≤N

∣∣φ(pih)∣∣r]) ≤ E

[
ρ
(

max
1≤i≤N

∣∣φ(pih)∣∣r)] ≤ N∑
i=1

E

[
ρ
(∣∣φ(pih)∣∣r)] .

Choosing ρ(x) = |x|r̃/r for some r ≤ r̃ <∞ and using (3.5) we have∥∥∥ max
1≤i≤N

|φ(pih)|
∥∥∥
Lr
P
(RJ )

≤ ‖φ(ph)‖Lr̃
P
(RJ )N

1/r̃ ≤M1

(
1 + ‖f‖n2

H−1(D)
‖k−1

min‖
n2

L
n2 r̃
P

(RJ )

)
N1/r̃ .

The term in the bracket is finite due to Lemma 2.5, and the claim of the lemma now follows
if we choose r̃ ≥ lnN .

Theorem 5.4. Suppose the assumptions of Proposition 3.1 and Lemma 5.3 hold. Then

e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ CMC

(
N−1 + h4s

)
for some 0 < s ≤ 1 related to the spatial regularity of the data (cf. Proposition 3.1) and for a
constant CMC > 0 independent of h and N .

Proof. Since Q̂MC
h,N

/
ẐMC
h,N is not in L∞

P
(RJ) in this case, we apply the Cauchy–Schwarz

inequality to the second term on the right-hand side of (5.2) to obtain

(5.6) e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ 2

Z2

(
E

[
(Q̂MC

h,N −Q)2
]
+ ‖Q̂MC

h,N

/
ẐMC
h,N‖2L4

P
(RJ )‖Ẑ

MC
h,N − Z‖2L4

P
(RJ )

)
.

To bound ‖ẐMC
h,N − Z‖L4

P
(RJ ) we apply the triangle inequality and consider separately ‖Zh −

Z‖L4
P
(RJ ) and ‖ẐMC

h,N − Zh‖L4
P
(RJ ). The former is bounded by Ch2s due to Theorem 3.3.

To bound the latter, let Xi := θ(ph(·; ξ(i)J ), i = 1, . . . , N . Since the range of θ is [0, 1],

this is a sequence of i.i.d. random variables with finite mean m := Zh, finite variance σ2X :=
E[(θ(ph)−Zh)2], and finite central fourth moment τ4X := E[(θ(ph)−Zh)4]. A direct calculation
gives

‖ẐMC
h,N − Zh‖4L4

P
(RJ ) = E

[(
X̂N −m

)4]
=

3(N − 1)σ4X/2 + τ4X
N3

≤ 3σ4X/2 + τ4X/N

N2
.

Thus, the result follows from (5.6) together with Theorem 3.3 and Lemma 5.3.
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The proofs of Lemma 5.3 and Theorem 5.4 can potentially also be extended to the case
of QMC estimators. However, it seems impossible to satisfy Assumption A4 in the case of
nonuniformly elliptic coefficients k, and so we did not pursue this any further.

The analysis in the case of multilevel MLMC is complicated by the fact that the multilevel
estimator ẐML

h,{N�} can take on negative values. This precludes the approach in the proof of
Lemma 5.3. The existence of moments of a ratio of random variables where the denominator
is not strictly positive has been the subject of research since the 1930s [3, 22, 32, 40, 34, 23]
and is a problem not yet fully solved. A possible approach to show the existence of moments
of the ratio Q̂ML

h,{N�}
/
ẐML
h,{N�} could be to use the central limit theorem in [8], which shows that

the individual MLMC estimators are asymptotically normally distributed as the number of
levels and the number of samples per level tend to infinity. Hinkley [32] then gives an explicit
expression of the cumulative distribution function of the ratio of two correlated normal random
variables, together with its limiting normal distribution, as the denominator tends to a normal
random variable with nonzero mean and zero variance.

5.3. Computational ε-cost. Based on the bounds on the MSEs given in Theorems 5.2 and
5.4, we now analyze the computational complexity of the various estimators of our quantity
of interest Q/Z. We are interested in bounding the ε-cost, i.e., the cost required to achieve a
MSE of order ε2. Since the convergence rates of the MSE are the same as for the individual
estimators Q̂h and Ẑh, bounds on the computational ε-cost can be proved as in [48, 27].

We denote by C� the cost of obtaining one sample of θ(ph�) and/or ψ(ph�). This cost will
typically also depend on the truncation parameter J , but we will not make this dependence
explicit here. We furthermore denote by CMC, CML, and CQMC the computational cost of the

ratio estimator Q̂h/Ẑh based on MC, MLMC, and QMC estimators, respectively.

Theorem 5.5. Let the conclusions of Theorem 5.2 or 5.4 hold and suppose

C� ≤ Cγh
−γ
� for some γ > 0.

Then for any ε < e−1, there exist a constant CML > 0, a value L ∈ N and a sequence {N�}L�=0,
such that

e
(
Q̂ML
h,{N�}/Ẑ

ML
h,{N�}

)2
≤ ε2 and CML ≤

⎧⎨⎩
CMLε−2, if s < γ/4,
CMLε−2(log ε)2, if s = γ/4,

CMLε−γ/2s, if s > γ/4,

where 0 < s ≤ 1 is related to the spatial regularity of the data (cf. Proposition 3.1). Further-
more, there exist positive constants CMC and CQMC and values of h and N , such that

e
(
Q̂MC
h,N/Ẑ

MC
h,N

)2
≤ ε2 and CMC ≤ CMC ε−2−γ/2s,

e
(
Q̂QMC
h,N /ẐQMC

h,N

)2
≤ ε2 and CQMC ≤ CQMC ε−2δ−γ/2s for some 1/2 < δ ≤ 1.

Theorem 5.5 shows that MLMC and QMC can outperform standard MC in terms of the
growth rate of the ε-cost. However, both QMC and MLMC also require stronger assumptions
than MC (cf. section 4).
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6. Numerical examples. We now study the performance of the ratio estimators on a
typical model problem. As the forward model, we take the elliptic equation

(6.1) −∇ · (k(x; ξJ ))∇p(x; ξJ )) = 0, in D = (0, 1)2,

subject to the deterministic, mixed boundary conditions p|x1=0 = 1, p|x1=1 = 0 and zero Neu-
mann conditions on the remainder of the boundary. The prior distribution on the coefficients
ξJ is Gaussian, as in section 2.1.2, and k is a (truncated) log-normal random field. We choose
the exponential covariance function (2.7) with r = 1, correlation length λ = 0.3, and variance
σ2 = 1. The mean m0 is chosen to be 0. In this case, the assumptions of Proposition 3.1 hold
for any t < 1/2.

For the spatial discretization, we use standard, continuous, piecewise linear finite elements
on a uniform triangular mesh. The stiffness matrix is assembled using the trapezoidal rule for
quadrature. The mesh hierarchy for the MLMC estimator is generated by uniform refinement
of a uniform grid with coarsest mesh width h0 = 1/8, and h�−1/h� = 2 for all 
 = 1, . . . , L.

The quantity of interest φ is the outflow over the boundary at x1 = 1. To obtain optimal
convergence rates of the finite element error, we compute φ(ph) as

φ(ph) = −
∫
D
k(x; ξJ )∇wh(x) · ∇ph(x; ξJ))dx

for a suitably chosen weight function wh with wh|x1=0 = 0, wh|x1=1 = 1 [48]. In particular,
we choose wh ∈ Vh to be one at the nodes of the finite element mesh on the boundary x1 = 1
and zero at all other nodes.

The data y is generated from the solution of (6.1) with a random sample ξJ from the
prior distribution, on a fine reference mesh with h∗ = 1/256. The observation functional H is
taken as a local average pressure, representing a regularized point evaluation. To obtain m-
dimensional data y, we take the uniform finite element mesh on [0, 1]2 with grid size 1/(

√
m+1)

and evaluate the local average pressure at the m interior nodes in this mesh. The average
is taken over the six elements of the finite element mesh with h∗ = 1/256 adjacent to that
node. We furthermore add observational noise to the data y, which is a realization of an
m-dimensional normal random variable with mean zero and covariance σ2ηI.

To generate samples of k, we use a truncated Karhunen–Loève expansion [25], i.e., we
truncate the infinite expansion (2.6) at a finite order JKL = 1400. An alternative that
allows to sample from the infinite expansion (2.6) would be the circulant embedding method
[17, 28, 29].

For the QMC estimators, we choose a lattice rule with product weight parameters γj =
1/j2 and one random shift. The generating vector for the rule used is available from Frances
Kuo’s website (http://web.maths.unsw.edu.au/∼fkuo/) as “lattice-39102-1024-1048576.3600.”
We point out here that this generating vector is a standard, off-the-shelf generating vector,
rather than a generating vector specifically constructed for the weights implicitly defined in
Assumption A4 and Lemma 4.1. In practice we found this generating vector to work well,
even though the convergence rates in Lemma 4.1 were not proved for this particular choice.

6.1. Mean square error. We start by investigating the discretization error, the sampling
error, and the MSE of the ratio estimators for a fixed number of observations m = 9 and a
fixed level of observational noise σ2η = 0.09.

http://web.maths.unsw.edu.au/~fkuo/
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Figure 1. Convergence w.r.t. h of the discretization errors |Qh/Zh −Q2h/Z2h|, |Qh −Q2h| and |Zh −Z2h|
(top left), as well as convergence w.r.t. N of the sampling errors E[( ̂Qh/ ̂Zh − Qh/Zh)

2]1/2, E[( ̂Qh − Qh)
2]1/2

and E[( ̂Zh − Zh)
2]1/2 for MC (top right), QMC (bottom left), and MLMC (bottom right), respectively. The

dotted and dashed reference slopes are −1 and −1/2, respectively.

Figure 1 shows the discretization error and the sampling errors of the different estimators.
The top left plot shows the discretization error |Qh/Zh −Q2h/Z2h|, as well as the individual
discretization errors |Qh − Q2h| and |Zh − Z2h|. We see these errors decay linearly in h, as
predicted by Theorem 3.3.

The other three plots show the sampling error E[(Q̂h/Ẑh − Qh/Zh)
2]1/2, as well as the

individual sampling errors E[(Q̂h −Qh)
2]1/2 and E[(Ẑh − Zh)

2]1/2, for MC (top right), QMC
(bottom left), and MLMC (bottom right). The mesh size h is fixed at h = 1/16, and the
“exact” expected values Qh and Zh are estimated with MLMC with a very large number of
samples. For MC and QMC, N on the horizontal axis represents the number of samples.
For MLMC, N represents the equivalent number of solves on the finest grid h = 1/16 that
would lead to the same cost as the MLMC estimator. This means that for a given N , the cost
of all three estimators is the same. The number of samples N� in the MLMC estimator was

chosen proportional to h
−(4s+γ)/2
� ≈ h−2

� , as suggested by the optimization in [26, 6], assuming
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Figure 2. Computational cost of ratio estimators ̂Qh/ ̂Zh to achieve a RMSE e( ̂Qh/ ̂Zh) of ε, using the

same random samples in ̂Qh and in ̂Zh (left) and using different random samples in ̂Qh and in ̂Zh (right),
respectively.

s ≈ 1/2 and γ ≈ 2. We show results for ratio estimators with the same random samples used
in Q̂h and Ẑh, referred to as dependent estimators, as well as ratio estimators with different
random samples used in Q̂h and Ẑh, referred to as independent estimators. For MC and
MLMC, we observe a convergence rate of N−1/2. For QMC, we observe a convergence rate
which is significantly faster than order N−1/2 and almost order N−1.

Figure 2 compares the computational costs of the different estimators to achieve an RMSE
of ε. The computational cost of the estimators was computed as Nh−2 for the MC and
QMC estimators and as N0h

−2
0 +

∑L
�=1N�(h

−2
� + h−2

�−1) for the MLMC estimator. The bias
|Qh/Zh − Q/Z| was estimated from the values of |Qh/Zh − Q2h/Z2h| shown in Figure 1. As
predicted by Theorem 5.2 with γ ≈ 2 and s ≈ 1/2, the cost of the MC estimator grows with
about ε−4, the cost of the QMC estimator grows with about ε−3, and the cost of the MLMC
estimator grows with about ε−2.

6.2. Dependency on m and σ2
η. Finally, we look at the dependency of the sampling error

on the number of observations m and on the noise level σ2η . For large values of m and small
values of σ2η , we expect the posterior distribution μy to concentrate on a small region of the
parameter space. The ratio estimators sample from the prior distribution and do not make
use of this fact. We expect the sampling errors to grow with increasing m and decreasing σ2η.
To ameliorate this problem, one can under certain assumptions rescale the parameter space
before applying the ratio estimators; see, e.g., [43] for details.

Figure 3 shows the sampling error of ratio estimators based on using the same samples
in Q̂h and Ẑh. We observe a mild growth of the sampling errors both with increasing m and
decreasing σ2η , but the growth is not dramatic and all estimators appear to be robust over
a large range of practically interesting values. The fact that the sampling error for MLMC
based estimators grows more quickly than for MC and QMC based estimators is at least partly
caused by the fact that V[ψh0 ] and V[ψh1 −ψh0 ] become of the same size for small σ2η or large

m, making the choice N� = Ch−2
� less and less optimal. Experiments with estimators based
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Figure 3. Sampling errors E[( ̂Qh/ ̂Zh −Qh/Zh)
2]1/2 as a function of noise level σ2

η (left) and as a function
of number of observations m (right), respectively.

on using independent samples in Q̂h and Ẑh also showed growth of sampling errors for small
σ2η and large m, in fact much faster than in the case of dependent estimators.

7. Conclusions and further work. In Bayesian inverse problems, the goal is often to com-
pute the expected value of a quantity of interest under the posterior distribution. For sampling
based approaches, one has to overcome the difficulty that the posterior distribution is typically
intractable, in the sense that direct sampling from it is unavailable since the normalization
constant is unknown. We considered here an approach based on Bayes’ theorem that computes
an estimate of the normalization constant and estimates the posterior expectation as the ratio
of two prior expectations. To compute the prior expectations, we considered the sampling
based approaches of MC, QMC, and MLMC estimators. For a model elliptic inverse problem,
we provided a full convergence and complexity analysis of the resulting ratio estimators. Our
theory shows that asymptotically the complexity of computing the posterior expectation with
this approach is the same as computing prior expectations, and this result is also confirmed
numerically for a typical model problem in uncertainty quantification.

It would be interesting to compare the performance of the ratio estimators considered in
this work to MCMC and multilevel Markov chain Monte Carlo (MLMCMC) methods [33, 18].
Especially in the case of small noise level σ2η or large number of observations m, MCMC based
approaches might explore the posterior distribution more efficiently. In terms of the ε-cost of
estimators, the analysis and simulations in [18] show that the computational cost of a standard
MCMC estimator grows at the same rate as a ratio estimator based on MC, and the cost of
an MLMCMC estimator will grow at the same rate as a ratio estimator based on MLMC. The
constants appearing in these estimates, for MCMC based approaches, depend on quantities
like the acceptance rate, autocorrelation, and possibly the dimension of the parameter space.
For the high-dimensional problems considered in this work, these constants might be very
large.
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Appendix A. Proof of Assumption A4 for θ for linear and scalar H. Let m = 1, let H
be a linear functional on V = H1

0 (D), and let k∗min := minx∈D k
∗(x) > 0 and thus kmin(ξJ) ≥

k∗min > 0 for all ξJ ∈ R
J . Let us assume without loss of generality that y = 0 and σ2η = 1, and

for simplicity let ξ = ξJ ∈ R
J . Then, θ(ph(·; ξ) = g(h(ξ)) with g(ζ) := exp(−ζ2/2) ≤ 1 and

h(ξ) := H(ph(·; ξ)). To simplify the presentation, we write gn := dng
dζn (h(ξ)) and hμ := ∂|μ|h

∂ξμ (ξ)

where μ is a multi-index in {0, 1}J .
Let C be a generic constant independent of J , ν, and ξ. First note that due to (3.3) and

the linearity of H

|h(ξ)| ≤ ‖H‖H−1(D)|ph|H1
0 (D) ≤

‖H‖H−1(D)‖f‖H−1(D)

k∗min

=: κ∗.

Then, we have gn(ζ) = (−1)nHn(ζ)g(ζ), where Hn is the nth Hermite polynomial, and so

(A.1) |gn(h(ξ))| ≤ Cmax{1, |h(ξ)|n} g(h(ξ)) ≤ Cmax{1, κn∗} .

Moreover, it was shown in [27, Theorem 16] that, for linear H,

(A.2) |hμ(ξ)| ≤ κ∗
|μ|!

(ln 2)|μ|

J∏
j=1

b
μj
j .

Now, Faa di Bruno’s formula for the special case where ν ∈ {0, 1}J and where h(ξ) is
scalar (cf. [10, Corollary 2.10]) states that

θν =

|ν|∑
r=1

gr
∑
P (r,ν)

r∏
i=1

hμ(i) ,

where

P (r,ν) :=

{
μ(1), . . . ,μ(r) : 0 ≺ μ(1) ≺ · · · ≺ μ(r) and

r∑
i=1

μ(i) = ν

}
and ≺ indicates some unique linear ordering of multi-indices (see [10, p. 505] for an example).
And so, using (A.1) and (A.2), we get

|θν | ≤ C

∣∣∣∣∣∣
|ν|∑
r=1

max{1, κr∗}
∑
P (r,ν)

r∏
i=1

⎛⎝κ∗ |μ(i)|!
(ln 2)|μ(i)|

J∏
j=1

b
μ
(i)
j

j

⎞⎠∣∣∣∣∣∣
≤ C

(
max{κ∗, κ2∗}

ln 2

)|ν|
⎛⎝ |ν|∑
r=1

∑
P (r,ν)

r∏
i=1

|μ(i)|!

⎞⎠
︸ ︷︷ ︸

=:ρν

J∏
j=1

b
νj
j

since all elements of P (r,ν) satisfy
∑r

i=1μ
(i) = ν and

∑r
i=1 |μ(i)| = |ν|. It remains to bound

ρν . We give a simple but fairly crude bound.
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First note that, for each element (μ(1), . . . ,μ(r)) ∈ P (r,ν), the moduli |μ(i)|, i = 1, . . . , r,
form a partition of n := |ν|. Hence, instead of partitioning the summands in ρν into the
subsets P (r,ν), we can also sum over all possible partitions k1, . . . , kr of n with 1 ≤ r ≤ n.
The partition function p(n) is the number of possible partitions of n. It is bounded by
exp(π

√
2n/3) [13]. For each partition k1, . . . , kr of n, the number of possible elements in

P (r,ν) that satisfy |μi| = ki can be bounded by(
n

k1

)(
n− k1
k2

)(
n−

∑2
i=1 ki

k3

)
. . .

(
n−

∑r−1
i=1 ki

kr

)
=

n!

k1!k2! . . . kr!
.

Elements of P (r,ν), where |μi| = |μj | for some i �= j, are counted twice in this bound. Since∏r
i=1 |μ(i)|! = k1!k2! . . . kr!, we finally get the bound

ρν ≤ p
(
|ν|
)
|ν|! ≤ exp

(
π

√
2|ν|
3

)
|ν|! .

Hence, there exists a constant cp > 1 such that Assumption A4 holds with c1 := cpmax{κ∗, κ2∗}
/ ln 2.
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[21] D. Elfverson, F. Hellman, and A. Målqvist, A multilevel Monte Carlo method for computing failure
probabilities, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 312–330.

[22] E. Fieller, The distribution of the index in a normal bivariate population, Biometrika, 24 (1932), pp. 428–
440.

[23] C. Galeone and A. Pollastri, Confidence intervals for the ratio of two means using the distribution
of the quotient of two normals, Statist. Trans., 13 (2012), pp. 451–472.

[24] R. N. Gantner and M. D. Peters, Higher Order Quasi-Monte Carlo for Bayesian Shape Inver-
sion, Technical report 2016-42, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2016;
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