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Abstract The level set approach has provenwidely success-
ful in the study of inverse problems for interfaces, since its
systematic development in the 1990s. Recently it has been
employed in the context of Bayesian inversion, allowing for
the quantification of uncertainty within the reconstruction of
interfaces. However, the Bayesian approach is very sensitive
to the length and amplitude scales in the prior probabilis-
tic model. This paper demonstrates how the scale-sensitivity
can be circumvented by means of a hierarchical approach,
using a single scalar parameter. Together with careful con-
sideration of the development of algorithms which encode
probabilitymeasure equivalences as the hierarchical parame-
ter is varied, this leads to well-defined Gibbs-based MCMC
methods found by alternating Metropolis–Hastings updates
of the level set function and the hierarchical parameter.
These methods demonstrably outperform non-hierarchical
Bayesian level set methods.
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1 Introduction

1.1 Background

The level set method has been pervasive as a tool for the
study of interface problems since its introduction in the 1980s
Osher and Sethian (1988). In a seminal paper in the 1990s,
Santosa demonstrated the power of the approach for the study
of inverse problemswith unknown interfaces Santosa (1996).
The key benefit of adopting the level set parametrization
of interfaces is that topological changes are permitted. In
particular for inverse problems thenumber of connected com-
ponents of the field does not need to be known a priori. The
idea is illustrated in Fig. 1. The type of unknown functions
that we might wish to reconstruct are piecewise continuous
functions, illustrated in the bottom rowby piecewise constant
ternary functions. However in the inversion, we work with
a smooth function, shown in the top row and known as the
level set function, which is thresholded to create the desired
unknown function in the bottom row. This allows the inver-
sion to be performed on smooth functions, and allows for
topological changes to be detected during the course of algo-
rithms. After Santosa’s paper there were many subsequent
papers employing the level set representation for classical
inversion, and examples include (Burger 2001; Tai and Chan
2004; Chung et al. 2005; Dorn and Lesselier 2006), and the
references therein.

In many inverse problems arising in modern day science
and engineering, the data are noisy and prior regularizing
information is naturally expressed probabilistically since it
contains uncertainties. In this context, Bayesian inversion
is a very attractive conceptual approach Jari (2005). Early
adoption of the Bayesian approach within level set inversion,
especially in the context of history matching for reser-
voir simulation, includes the papers Xie et al. (2011), Ping
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Fig. 1 Four continuous scalar fields (top) and the corresponding
ternary fields formed by thresholding these fields at two levels (bottom).
The smooth function in the top row is known as the level set function

and is used in the inversion procedure. The discontinuous function in
the bottom row is the physical unknown

and Zhang (2014), Lorentzen et al. (2012), and Lorentzen
et al. (2012). In a recent paper Iglesias et al. (2016) the
mathematical foundations of Bayesian level set inversion
were developed, and a well-posedness theorem established,
using the infinite-dimensional Bayesian framework devel-
oped in Stuart (2010), Lasanen (2012), Lasanen (2012),
and Dashti and Stuart (2016). An ensemble Kalman filter
method has also been applied in the Bayesian level set setting
Iglesias (2016) to produce estimates of piecewise constant
permeabilities/conductivities in groundwater flow/electrical
impedance tomography (EIT) models.

For linear Bayesian inverse problems, the adoption of
Gaussian priors leads to Gaussian posteriors, formulae for
which can be explicitly computed (Franklin 1970; Lehti-
nen et al. 1999; Mandelbaum 1984. However the level set
map, which takes the smooth underlying level set func-
tion (top row, Fig. 1) into the physical unknown function
(bottom row, Fig. 1), is non-linear; indeed it is discontinu-
ous. As a consequence, Bayesian level set inversion, even
for inverse problems which are classically speaking ‘linear,’
does not typically admit closed form solutions for the pos-
terior distribution on the level set function. Thus, in order to
produce samples from the posterior arising in the Bayesian
approach,MCMCmethods are oftenused. Since theposterior
is typically defined on an infinite-dimensional space in the
context of inverse problems, it is important that the MCMC
algorithms used are well defined on such spaces. A formu-
lation of the Metropolis–Hastings algorithm on general state
spaces is given in Tierney (1998). A particular case of this

algorithm, well suited to posterior distributions on function
spaces and Gaussian priors, is the preconditioned Crank–
Nicolson (pCN) method introduced (although not named
this way) in Beskos et al. (2008). As the method is defined
directly on a function space, it has desirable properties related
to discretization—in particular the method is robust with
respect to mesh refinement (discretization invariance)—see
Cotter et al. (2013) and the references therein. On the other
hand, the need for hierarchical models in Bayesian statis-
tics, and in particular in the context of non-parametric (i.e.,
function space) methods in machine learning, is well estab-
lished Bishop (2006). However, care is needed when using
hierarchical methods in order to ensure that discretization
invariance is not lost Agapiou et al. (2014). In this paper we
demonstrate how hierarchical methods can be employed in
the context of discretization-invariant MCMC methods for
Bayesian level set inversion.

1.2 Key contributions of the paper

The key contribution of this paper is in computational
statistics: we develop a Metropolis Hastings method with
mesh-independent mixing properties that makes an order of
magnitude of improvement in the Bayesian level set method
as introduced in Iglesias et al. (2016).

Study of Fig. 1 suggests that the ability of the level set
representation to accurately reconstruct piecewise continu-
ous fields depends on two important scale parameters:
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– the length scale of the level set function, and its relation
to the typical separation between discontinuities;

– the amplitude scale of the level set function, and its rela-
tion to the levels used for thresholding.

If these two scale parameters are not set correctly, then
MCMC methods to determine the level set function from
data can perform poorly. This immediately suggests the
idea of using hierarchical Bayesian methods in which these
parameters are learned from the data. However, there is
a second consideration which interacts with this discus-
sion. From the work of Tierney Tierney (1998) it is known
that absolute continuity of certain measures arising in the
definition of Metropolis–Hastings methods is central to
their well-definedness, and hence to discretization-invariant
MCMC methods Cotter et al. (2013). In fact it appears algo-
rithms defined on infinite-dimensional spaces have spectral
gaps that are bounded independently of the mesh, and so
their convergence rates are bounded below in the limit Hairer
et al. (2014). The key contribution of our paper is to show
how enforcing absolute continuity links the two scale para-
meters, and hence leads to the construction of a hierarchical
Bayesian level set method with a single scalar hierarchical
parameter which deals with the scale and absolute continuity
issues simultaneously, resulting in effective sampling algo-
rithms.

The hierarchical parameter is an inverse length scale
within aGaussian randomfield prior for the level set function.
In order to preserve absolute continuity of different priors on
the level set function as the length-scale parameter varies, and
relatedly to make well-defined MCMC methods, the mean
square amplitude of this Gaussian random field must decay
proportionally to a power of the inverse length scale. It is thus
natural that the level values used for thresholding should obey
this power law relationship with respect to the hierarchical
parameter. As a consequence the likelihood depends on the
hierarchical parameter, leading to a novel form of posterior
distribution.

We construct this posterior distribution and demonstrate
how to sample from it using a Metropolis-within-Gibbs
algorithm which alternates between updating the level set
function and the inverse length scale. As a second con-
tribution of the paper, we demonstrate the applicability
of the algorithm on three inverse problems, by means of
simulation studies. The first concerns reconstruction of a
ternary piecewise constant field from a finite noisy set of
point measurements: in this context, the Bayesian level set
method is very closely related to a spatial probit model
Rasmussen and Williams (2006). This relation is discussed
in Sect. 2.4. The other two concern reconstruction of the
coefficient of a divergence form elliptic PDE from mea-
surements of its solution; in particular, groundwater flow
(in which measurements are made in the interior of the

domain) and EIT (in which measurements are made on the
boundary).

1.3 Structure of the paper

In Sect. 2 we describe a family of prior distributions on the
level set function, indexed by an inverse length-scale para-
meter, which remain absolutely continuous with respect to
one another when we vary this parameter; we then place
a hyperprior on this parameter. We describe an appropri-
ate level set map, dependent on the length-scale parameter
because length and amplitude scales are intimately connected
through absolute continuity of measures, to transform these
fields into piecewise constant ones, and use this level set
map in the construction of the likelihood. We end by show-
ing existence andwell-posedness of the posterior distribution
on the level set function and the inverse length-scale para-
meter. In Sect. 3 we describe a Metropolis-within-Gibbs
MCMC algorithm for sampling the posterior distribution,
taking advantage of existing state-of-the-art function space
MCMC, and the absolute continuity of our prior distributions
with respect to changes in the inverse length-scale parame-
ter, established in the previous section. Section 4 contains
numerical experiments for three different forward models: a
linear map comprising pointwise observations, groundwater
flow, and EIT; these illustrate the behavior of the algo-
rithmand, in particular, demonstrate significant improvement
with respect to non-hierarchical Bayesian level set inver-
sion.

2 Construction of the posterior

In Sect. 2.1 we recall the definition of the Whittle-Matérn
covariance functions, and define a related family of covari-
ances parametrized by an inverse length-scale parameter τ .
We use these covariances to define our prior on the level
set function u, and also place a hyperprior on the para-
meter τ , yielding a prior P(u, τ ) on a product space. In
Sect. 2.2 we construct the level set map, taking into account
the amplitude scaling of prior samples with τ , and incor-
porate this into the forward map. The inverse problem is
formulated, and the resulting likelihood P(y|u, τ ) is defined.
Finally in Sect. 2.3 we construct the posterior P(u, τ |y) by
combining the prior P(u, τ ) and likelihood P(y|u, τ ) using
Bayes’ formula. Well-posedness of this posterior is estab-
lished.

2.1 Prior

As discussed in the introduction it can be important, within
the context of Bayesian level set inversion, to attempt to
learn the length scale of the level set function whose level
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sets determine interfaces in piecewise continuous reconstruc-
tions. This is because we typically do not know a priori the
typical separation of interfaces. It is also computationally
expedient to work with Gaussian random field priors for the
level set function, as demonstrated in Iglesias et al. (2016),
Dunlop and Stuart (2015). A family of covariances parame-
terized by length scale is hence required.

A widely used family of distributions, allowing for con-
trol over sample regularity, amplitude, and length scale, are
Whittle-Matérn distributions. These are a family of station-
ary Gaussian distributions with covariance function

cσ,ν,�(x, y) = σ 2 2
1−ν

Γ (ν)

( |x − y|
�

)ν

Kν

( |x − y|
�

)
,

where Kν is the modified Bessel function of the second kind
of order ν Matérn (2013), Stein (2012). These covariances
interpolate between exponential covariance, for ν = 1/2, and
Gaussian covariance, for ν → ∞. As a consequence, the reg-
ularity of samples increases as the parameter ν increases. The
parameter � > 0 acts as a characteristic length scale (some-
times referred to as the spatial range) and σ as an amplitude
scale (σ 2 is sometimes referred to as the marginal variance).
On R

d , samples from a Gaussian distribution with covari-
ance function cσ,ν,� correspond to the solution of a particular
stochastic partial differential equation (SPDE). This SPDE
can be derived using the Fourier transform and the spectral
representation of covariance functions—the paper Lasanen
et al. (2014) derives the appropriate SPDE for the covariance
function above:

1√
β�d

(I − �2�)(ν+d/2)/2v = W, (1)

where W is a white noise on R
d , and

β = σ 2 2
dπd/2Γ (ν + d/2)

Γ (ν)
.

Computationally, implementation of this SPDE approach
requires restriction to a bounded subset D ⊆ R

d , and hence
the provision of boundary conditions for the SPDE in order
to obtain a unique solution. Choice of these boundary con-
ditions may significantly affect the autocorrelations near the
boundary. The effects for different boundary conditions are
discussed in Lasanen et al. (2014). Nonetheless, the com-
putational expediency of the SPDE formulation makes the
approach very attractive for applications and, if necessary,
boundary effects can be ameliorated by generating the ran-
dom fields on larger domains which are a superset of the
domain of interest.

From (1) it can be seen that the covariance operator cor-
responding to the covariance function cσ,ν,� is given by

Dσ,ν,� = β�d(I − �2�)−ν−d/2. (2)

The fact that the scalar multiplier in front of the covariance
operator Dσ,ν,� changes with the length scale means that the
family of measures {N (0,Dσ,ν,�)}�, for fixed σ and ν, are
mutually singular. This leads to problems when trying to
design hierarchical methods based around these priors. We
hence work instead with the modified covariances

Cα,τ = (τ 2 I − �)−α,

where τ = 1/� > 0 now represents an inverse length scale,
and α = ν + d/2 still controls the sample regularity. To
be concrete we will always assume that the domain of the
Laplacian is chosen so that Cα,τ is well defined for all τ ≥ 0;
for example, we may choose a periodic box, with domain
restricted to functions which integrate to zero over the box,
Neumann boundary conditions on a box, again with domain
restricted to functions which integrate to zero over the box,
or Dirichlet boundary conditions.We have the following the-
orem concerning the family of Gaussians {N (0, Cα,τ )}τ≥0,
proved in Appendix.

Theorem 1 Let D = T
d be the d-dimensional torus, and

fix α > 0. Define the family of Gaussian measures μτ
0 =

N (0, Cα,τ ), τ ≥ 0. Then

(i) for d ≤ 3, the {μτ
0}τ≥0 are mutually equivalent;

(ii) if u ∼ μτ
0 , then μτ

0-a.s. we have u ∈ Hs(D) and u ∈
C	s
,s−	s
(D) for all s < α − d/2.1

(iii) if u ∼ μτ
0 and v ∼ N (0,Dσ,ν,�), then

E‖u‖2 ∝ τ d−2α · E‖v‖2

with constant of proportionality independent of τ.

Remark 1 (a) Proof of this theorem is driven by the smooth-
ness of the eigenfunctions of the Laplacian subject to
periodic boundary conditions, together with the growth
of the eigenvalues, which is like j2/d . These proper-
ties extend to Laplacians on more general domains and
with more general boundary conditions, and to Lapla-
cians with lower order perturbations, and so the above
result still holds in these cases. For discussion of this in
relation to (ii) see Dashti and Stuart (2016); for parts (i)
and (iii) the reader can readily extend the proof given in
Appendix.

(b) The proportionality in part (iii) above could be simpli-
fied if it were the case that E‖v‖2 were independent
of τ . However, since we restrict to a bounded domain

1 i.e., the function has s weak (possibly fractional) derivatives in the
Sobolev sense, and the 	s
th classical derivative isHölderwith exponent
s − 	s
.
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D ⊂ R
d , boundary effects mean that this is not neces-

sarily true. Neumann boundary conditions, for example,
inflate the variance up to a distance of approximately
�
√
8ν = √

8ν/τ from the boundary Lindgren and Rue
(2015). Nonetheless, at points x ∈ D sufficiently far
away from the boundary we have E|v(x)|2 ≈ σ 2 inde-
pendently of x . At these points we would hence expect
that, for u ∼ μτ

0,

E|u(x)|2 ∝ τ d−2α.

Note also that numerically, we may produce samples on
a larger domain D∗ that contains the domain of interest
D, in order to minimize the boundary effects within D.

Let X = C(D) denote the space of continuous real-valued
functions on domain D. In what follows we will always
assume that α − d/2 > 0 in order that the measures have
samples in X almost surely. Additionally we shall write
Cτ in place of Cα,τ when the parameter α is not of inter-
est.

In Sect. 2.2, we pass the inverse length-scale parame-
ter τ to the forward map and treat it as an additional
unknown in the inverse problem. We therefore require a
joint prior P(u, τ ) on both the level set field and on τ .
We will treat τ as a hyper-parameter, so that P(u, τ ) takes
the form P(u, τ ) = P(u|τ)P(τ ). Specifically, we will take
the conditional distribution P(u|τ) to be given by μτ

0 =
N (0, Cτ ), and the hyperprior P(τ ) to be any probability
measure π0 on R

+, the set of positive reals; in practice
it will always have a Lebesgue density on R

+. The joint
prior μ0 on X × R

+ is therefore assumed to be given
by

μ0(du, dτ) = μτ
0(du)π0(dτ). (3)

Non-zero means could also be considered via a change of
coordinates. Discussion of prior choice for the hierarchi-
cal parameters in latent Gaussian models may be found in
Fuglstad et al. (2015).

2.2 Likelihood

In the previous subsection we defined a prior distribution μ0

on X×R
+. We now define a way of constructing a piecewise

constant field from a sample (u, τ ). In Iglesias et al. (2016),
where the Bayesian level set method was introduced, the
piecewise constant field was constructed purely as a function
of u as follows. Let n ∈ N and fix constants −∞ = c0 <

c1 < . . . < cn = ∞. Given u ∈ X , define Di (u) ⊆ D
by

Di (u) = {x ∈ D | ci−1 ≤ u(x) < ci }, i = 1, . . . , n

so that2 D = ⋃n
i=1 Di (u) and Di (u) ∩ Dj (u) = ∅ for

i �= j , i, j ≥ 1. Then given κ1, . . . , κn ∈ R, define the map
F : X → Z by

F(u) =
n∑

i=1

κi1Di (u). (4)

Thus F maps the level set field to the geometric field, which
is the field of interest, even though inference is performed
on the level set field. We may take Z = L p(D), the space
of p-integrable functions on D, for any 1 ≤ p ≤ ∞.
F(u) then defines a piecewise constant function on D; the
interfaces defined by the jumps are given by the level sets
{x ∈ D | u(x) = ci }.
Remark 2 One of the constraints of this construction, dis-
cussed in Iglesias et al. (2016), is that in order for F(u) to
pass from κi to κ j , it must pass through all of κi+1, . . . , κ j−1

first. Thus this construction cannot represent, for example, a
triple junction. This also means that that it must be known a
priori that, for example, level i is typically found near levels
i − 1 and i + 1, but unlikely to be found near levels i + 3 or
i + 4. This is potentially a significant constraint; we discuss
how this may be dealt with in the conclusions.

This construction is effective for a fixed value of τ , but
in light of Theorem 1(iii), the amplitude of samples from
N (0, Cα,τ ) varies with τ . More specifically, since d − 2α <

0 by assumption, samples will decay towards zero as τ

increases. For this reason, employing fixed levels {ci }ni=0 and
then changing the value of τ during a sampling method may
render the levels out of reach. We can compensate for this
by allowing the levels to change with τ , so that they decay
towards zero at the same rate as the samples.

From Theorem 1(iii) and Remark 1(b) we deduce that
samples u from N (0, Cα,τ ) decay towards zero at a rate
of approximately τ d/2−α with respect to τ . This suggests
allowing for the following dependence of the levels on the
length-scale parameter τ :

ci (τ ) = τ d/2−αci , i = 1, . . . , n. (5)

In order to update these levels, we must pass the parameter
τ to the level set map F . We therefore redefine the level set
map F : X×R

+ → Z as follows. Let n ∈ N, fix initial levels
−∞ = c0 < c1 < cdots < cn = ∞ and define ci (τ ) by (5)
for τ > 0. Given u ∈ X and τ > 0, define Di (u, τ ) ⊆ D by

Di (u, τ ) = {x ∈ D | ci−1(τ ) ≤ u(x) < ci (τ )},
i = 1, . . . , n, (6)

2 For any subset A ⊂ R
d we will denote by A its closure in R

d .
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so that D = ⋃n
i=1 Di (u, τ ) and Di (u, τ ) ∩ Dj (u, τ ) = ∅

for i �= j , i, j ≥ 1. Now given κ1, . . . , κn ∈ R, we define
the map F : X × R

+ → Z by

F(u, τ ) =
n∑

i=1

κi1Di (u,τ ). (7)

We can now define the likelihood. Let Y = R
J be the

data space, and let S : Z → Y be a forward operator. Define
G : X × R

+ → Y by G = S ◦ F . Assume we have data
y ∈ Y arising from observations of some (u, τ ) ∈ X × R

+
under G, corrupted by Gaussian noise η ∼ Q0 := N (0, Γ )

on Y :

y = G(u, τ ) + η. (8)

We now construct the likelihood P(y|u, τ ). In the Bayesian
formulation, we place a prior μ0 of the form (3) on the pair
(u, τ ). Assuming Q0 is independent of μ0, the conditional
distribution Qu,τ of y given (u, τ ) is given by

dQu,τ

dQ0
(y) = exp

(
− Φ(u, τ ; y) + 1

2
|y|2Γ

)
, (9)

where the potential (or negative log-likelihood) Φ : X ×
R

+ → R is defined by

Φ(u, τ ; y) = 1

2
|y − G(u, τ )|2Γ (10)

and | · |Γ := |Γ −1/2 · |.
Denote Im(F) ⊆ Z the image of F : X × R

+ → Z .
In what follows we make the following assumptions on S :
Z → Y .

Assumption 1 (i) S is continuous on Im(F).
(ii) For any r > 0 there exists C(r) > 0 such that for any

z ∈ Im(F) with ‖z‖L∞ ≤ r , |S(z)| ≤ C(r).

In the next subsectionwe show that, under the above assump-
tions, the posterior distribution μy of (u, τ ) given y exists,
and study its properties.

2.3 Posterior

Bayes’ theorem provides a way to construct the posterior dis-
tribution P(u, τ |y) using the ingredients of the prior P(u, τ )

and the likelihood P(y|u, τ ) from the previous two subsec-
tions. Informally we have

P(u, τ |y) ∝ P(y|u, τ )P(u, τ )

∝ exp (−Φ(u, τ ; y)) μτ
0(u)π0(τ ),

after absorbing y−dependent constants from the likelihood
into the normalization constant. In order tomake this formula
rigorous some care must be taken, since μτ

0 does not admit a
Lebesgue density. The following is proved in Appendix.

Theorem 2 Let μ0 be given by (3), y by (8) and Φ be given
by (10). Let Assumptions 1 hold. If μy(du, dτ) is the regular
conditional probability measure on (u, τ )|y, then μy � μ0

with Radon–Nikodym derivative

dμy

dμ0
(u, τ ) = 1

Z
exp

(− Φ(u, τ ; y)),
where, for y almost surely,

Z :=
∫
X×R+

exp
(− Φ(u, τ ; y))μ0(du, dτ) > 0.

Furthermore μy is locally Lipschitz with respect to y, in the
Hellinger distance: for all y, y′ with max{|y|Γ , |y′|Γ } < r ,
there exists a C = C(r) > 0 such that

dHell(μ
y, μy′

) ≤ C |y − y′|Γ .

This implies that, for all f ∈ L2
μ0

(X ×R
+; E) for separable

Banach space E,

‖E
μy

f (u, τ ) − E
μy′

f (u, τ )‖E ≤ C |y − y′|.

To the best of our knowledge this form of Bayesian poste-
rior distribution, in which the prior hyper-parameter appears
in the likelihood because it is natural to scale a threshold-
ing function with that parameter, for algorithmic reasons,
is novel. A different form of thresholding is studied in the
paper Bolin and Lindgren (2015) where boundaries defin-
ing regions in which certain events occur with a specified
(typically close to 1) probability is studied.

2.4 Relation to probit models

The Bayesian level set method has a close relation with an
ordered probitmodel in the case that the state space X is finite
dimensional. Suppose that X = R

N , then neglecting the
length-scale parameter, the data ylevel in the level set method
are assumed to arise via

ylevel = G(F(u)) + η, η ∼ N (0, Γ ),

where F denotes the original thresholding function as defined
by (4). In an ordered probit model, the data yprob are assumed
to arise via3

3 The thresholding function F is defined pointwise, so can be consid-
ered to be defined on either RN or R, with F(u)n = F(un).
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yprob = G(z),

zn = F(un + εn), εn ∼ N (0, 1), n = 1, . . . , N .

Note that in the case of probit, the noise is applied before
the thresholding F so that the geometric field takes values
in the discrete set {κ1, . . . , κn}. In contrast in the case of
the level set model the noise is applied after thresholding.
If G is linear then the probit model results in categorical
data, while in the level set case the data can take any real
value. Depending on the forward model either probit or level
set may be more appropriate: the former in cases where
the data are genuinely discrete and interpolation between
phases does not have a meaning, such as categorical data,
and the latter when they are continuous, such as when cor-
rupted by measurement noise. The two models could also
be combined, which may be interesting in some applica-
tions. In the small noise limit the models are seen to be
equivalent.

Placing a prior upon u leads to a well-defined posterior
distribution in both cases. Dimension-robust sampling of
both distributions can be performed using a prior-reversible
MCMCmethod, such as the preconditioned Crank–Nicolson
(pCN)methodCotter et al. (2013). The spatial version of pro-
bit, that is when X is a function space rather than R

N , is of
interest to study further.

Once we introduce the hierarchical length-scale depen-
dence, significant problems arise in terms of sampling the
probit posterior in high dimensions, due to the issues asso-
ciated with measure singularity discussed above. With the
level set method it is possible to circumvent through the
choice of prior and rescaling discussed in this section; a
well-defined Metropolis-within-Gibbs sampling algorithm
on function space is outlined in the next section.

3 MCMC algorithm for posterior sampling

Having constructed the posterior distribution on (u, τ )|y, we
are now facedwith the task of sampling this probability distri-
bution. We will use the Metropolis-within-Gibbs formalism,
as described in for example Robert and Casella (2013), Sect.
10.3. This algorithm constructs theMarkov chain (u(k), τ (k))

with the structure

– u(k+1) ∼ K
τ (k),y(u(k), ·),

– τ (k+1) ∼ L
u(k+1),y(τ (k), ·),

where K
τ,y is a Metropolis–Hastings Markov kernel rever-

sible with respect to u|(τ, y) and L
u,y is a Metropolis–

Hastings Markov kernel reversible with respect to τ |(u, y).
The Metropolis–Hastings method is outlined in chapter 7 of
Robert and Casella (2013). See Geirsson et al. (2015) for

related blocking methodologies for Gibbs samplers in the
context of latent Gaussian models.

In defining the conditional distributions, and theMetropo-
lis methods to sample from them, a key design principle is
to ensure that all measures and algorithms are well defined
in the infinite-dimensional setting, so that the resulting algo-
rithms are robust tomesh refinementCotter et al. (2013). This
thinking has been behind the form of the prior and posterior
distributions developed in the previous section, as we now
demonstrate.

In Sect. 3.1 we define the kernel K
τ,y and in Sect. 3.2

we define the kernel L
u,y . Then in the final Sect. 3.3 we put

all these building blocks together to specify the complete
algorithm used.

3.1 Proposal and acceptance probability for u|(τ, y)

Samples from the distribution of u|(τ, y) can be produced
using a pCNMetropolisHastingsmethodCotter et al. (2013),
with proposal and acceptance probability as follows:

1. Given u, propose

v = (1 − β2)1/2u + βξ, ξ ∼ N (0, Cτ ).

2. Accept with probability

α(u, v) = min
{
1, exp

(
Φ(u, τ ; y) − Φ(v, τ ; y))}

or else stay at u.

3.2 Proposal and acceptance probability for τ |( y, u)

Producing samples of τ |(u, y) is more involved, since we
must first make sense of this conditional distribution. To do
this, define the three measures η0, ν0, and ν on X × R

+ × Y
by

η0(du, dτ, dy) = μ0
0(du)π0(dτ)Q0(dy),

ν0(du, dτ, dy) = μτ
0(du)π0(dτ)Q0(dy),

ν(du, dτ, dy) = μτ
0(du)π0(dτ)Qu,τ (dy).

Here Q0 = N (0, Γ ) is the distribution of the noise, and
Qu,τ is as defined in (9). Then we have the chain of absolute
continuities ν � ν0 � η0, with

dν0
dη0

(u, τ, y) = dμτ
0

dμ0
0

(u) =: L(u, τ ),

dν

dν0
(u, τ, y) = dQu,τ

dQ0
(y) = exp

(
−Φ(u, τ ; y) + 1

2
|y|2Γ

)
,

and so by the chain rule we have ν � η0 and

dν

dη0
(u, τ, y) = dQu,τ

dQ0
(y) · dμ

τ
0

dμ0
0

(u) =: ϕ(u, τ, y).
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We use the conditioning lemma, Theorem 3.1 in Dashti and
Stuart (2016), to prove the existence of the desired condi-
tional distribution.

Theorem 3 Assume that Φ : X × R
+ × Y → R is η0

measurable and η0-a.s. finite. Assume also that, for (u, y)
μ0
0 × Q0-a.s.,

Zπ :=
∫
R+

exp
(− Φ(u, τ ; y))L(u, τ ) π0(dτ) > 0.

Then the regular conditional distribution of τ |(u, y) exists
under ν, and is denoted by πu,y . Furthermore, πu,y � π0

and, for (u, y) ν-a.s,

dπu,y

dπ0
(τ ) = 1

Zπ

exp
(− Φ(u, τ ; y))L(u, τ ).

Proof The conditional random variable τ |(u, y) exists under
η0, and its distribution is justπ0 sinceη0 is a productmeasure.
Theorem 3.1 in Dashti and Stuart (2016) then tells us that
the conditional random variable τ |(u, y) exists under ν. We
denote its distribution πu,y . Define

c(u, y) =
∫
R+

ϕ(u, τ, y)π0(dτ)

= exp

(
1

2
|y|2Γ

)∫
R+

exp
(− Φ(u, τ ; y))L(u, τ )π0(dτ).

Now since exp
( 1
2 |y|2Γ

) ∈ (0,∞) μ0
0 × Q0-a.s., we deduce

that c(u, y) > 0 μ0
0 × Q0-a.s. by the μ0

0 × Q0-a.s. positivity
of Zπ . By the absolute continuity ν � η0, we deduce that
c(u, y) > 0 ν-a.s. Therefore, again by Theorem 3.1 in Dashti
and Stuart (2016), we have πu,y � π0 and, for (u, y) ν-a.s.,

dπu,y

dπ0
(τ ) = 1

c(u, y)
ϕ(u, τ, y)

= 1

Zπ

exp
(− Φ(u, τ ; y))L(u, τ ).

��
Remark 3 Above we have used μ0

0 as a reference measure,
and the function L(u, τ ) enters our expression for the pos-
terior. But any μλ

0 will suffice since the entire family of
measures {μτ

0}τ≥0 are equivalent to one another. A straight-
forward calculation with the chain rule gives

dπu,y

dπ0
(τ ) = 1

Zπ,λ

dμτ
0

dμλ
0

(u) exp
(− Φ(u, τ ; y))

= 1

Zπ,λ

Lλ(u, τ ) exp
(− Φ(u, τ ; y)).

We now wish to sample from πu,y using a Metropolis–
Hastings algorithm. We assume from now on that π0 admits

a Lebesgue density, so that πu,y also admits a Lebesgue den-
sity. Abusing notation and usingπu,y, π0 to denote Lebesgue
densities as well as the corresponding measures we have

πu,y(τ ) ∝ exp
(− Φ(u, τ ; y))L(u, τ )π0(τ ).

Take a proposal kernel Q(τ, dγ ) = q(τ, γ ) dγ . Define the
two measures ρ, ρT on (R × R,B(R) ⊗ B(R)) by

ρ(dτ, dγ ) = πu,y(dτ)Q(τ, dγ )

∝ exp
(− Φ(u, τ ; y))L(u, τ )π0(τ )q(τ, γ ) dτdγ,

ρT (dτ, dγ ) = μ(dγ, dτ).

Then under appropriate conditions on π0 and q, these two
measures are equivalent. Define r(τ, γ ) to be the Radon–
Nikodym derivative

r(τ, γ ) := dρT

dρ
(τ, γ )

= exp
(
Φ(u, τ ; y) − Φ(u, γ ; y))× dμγ

0

dμτ
0
(u)

× π0(γ )q(γ, τ )

π0(τ )q(τ, γ )
.

The general form of the Metropolis–Hastings algorithm, as
for example given in Tierney (1998), says that we produce
samples from πu,y by iterating the follow two steps:

1. Given τ , propose γ ∼ Q(τ, dγ ).
2. Accept with probability α(τ, γ ) = n

{
1, r(τ, γ )

}
, or else

stay at τ .

In order to implement this algorithm, we need an expres-

sion for the Radon–Nikodym derivative
dμγ

0
dμτ

0
(u). Denote by

{λ j (τ )} j≥1 the eigenvalues of the covariance Cτ , and {ϕ j } j≥1

their corresponding eigenvectors. Note that because of the
structure of the family {Cτ }τ≥0, the eigenvectors are inde-
pendent of τ . Using Proposition 3, we see that

dμγ
0

dμτ
0
(u) =

∞∏
j=1

λ j (τ )1/2

λ j (γ )1/2

× exp

(
1

2

∞∑
j=1

(
1

λ j (τ )
− 1

λ j (γ )

)
〈u, ϕ j 〉2

)

= exp

(
1

2

[ ∞∑
j=1

(
1

λ j (τ )
− 1

λ j (γ )

)
〈u, ϕ j 〉2

+ log

(
λ j (τ )

λ j (γ )

)])
. (11)
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FromTheorem 1we know thatμτ
0 andμ

γ
0 are equivalent, and

so it must be the case that the expressions for the derivative
above are almost-surely finite. However, this is not immedi-
ately clear from inspection of the expression; thuswe provide
some intuition about why it is so in the following theorem.
The proof is given in Appendix.

Theorem 4 Assume that u ∼ N (0, C0). Then for each τ >

0,

(i)
∞∑
j=1

(
1

λ j (τ )
− 1

λ j (0)

)
〈u, ϕ j 〉2 is almost-surely finite if and

only if d = 1; and

(ii)
∞∑
j=1

[(
1

λ j (τ )
− 1

λ j (0)

)
〈u, ϕ j 〉2 + log

(
λ j (τ )

λ j (0)

)]
is almost-

surely finite if d ≤ 3.

Aconsequence of part (i) of this result is that in dimensions
2 and 3, both the product and the sum in (11) diverge, despite
the whole expression being finite. This means that care is
required when numerically implementing the Gibbs update
of τ.

3.3 The algorithm

Putting the theory above together, we can write down a
Metropolis-within-Gibbs algorithm for sampling the poste-
rior distribution. Recall that we assumed the proposal kernel
Q admitted a Lebesgue density q: Q(τ, dγ ) = q(τ, γ )dγ .

Let {λ j (τ ), ϕ j } j≥1 denote the eigenbasis associated with
Cτ . Define

w(τ, γ ) = exp

(
1

2

∞∑
j=1

[(
1

λ j (τ )
− 1

λ j (γ )

)
〈u, ϕ j 〉2

+ log

(
λ j (τ )

λ j (γ )

)])

and set

ατ (u, v) = min
{
1, exp

(
Φ(u, τ ; y) − Φ(v, τ ; y))},

αu(τ, γ ) = min

{
1, exp

(
Φ(u, τ ; y) − Φ(u, γ ; y))

· w(τ, γ ) · π0(τ )q(τ, γ )

π0(γ )q(γ, τ )

}
.

Fix jump parameter β ∈ (0, 1], and generate {u(k), τ (k)}k≥0

as follows:

Algorithm 1Metropolis-within-Gibbs

1. Set k = 0 and pick initial state (u(0), τ (0)) ∈ X × R
+.

2. Propose v(k) = (1 − β2)1/2u(k) + βξ(k), where ξ (k) ∼ N (0, Cτ ).
3. Set u(k+1) = v(k) with probability ατ(k)

(u(k), v(k)), or else set
u(k+1) = u(k).

4. Propose γ (k) ∼ Q(τ (k), ·).
5. Set τ (k+1) = γ (k) with probability αu(k+1)

(τ (k), γ (k)), or else set
τ (k+1) = τ (k).

6. k → k + 1 and return to 2.

Then {u(k), τ (k)}k≥0 is a Markov chain which is invariant
with respect to μy(du, dτ).

4 Numerical results

We perform a variety of numerical experiments to illustrate
the performance of the hierarchical algorithm described in
Sect. 3.We focus on three different forward models. The first
is pointwise observations composed with the identity—the
simplicity of this model allows us to probe the behav-
ior of the algorithm at low computational cost, and such
models are also of interest in applications such as image
reconstruction—see, for example,Alvarez andMorel (1994),
Sapiro (2006) and the references therein. The other two,
groundwater flow and EIT, are physical models which have
previously been studied extensively, including study of non-
hierarchical Bayesian level set methods Iglesias et al. (2016),
Dunlop and Stuart (2015). A review of studies on inverse
problems associated with EIT is given in Borcea (2002).

The code used for simulations is available on GitHub at
https://github.com/mattdunlop/bayes-hier/releases/v1.0.

4.1 Discretization of the problem

There are two spaces that we must discretize in order to
implement the algorithm. The first is the state space, where
the samples will be generated, and the second is the function
space associated with the evaluation of the forward model.
We briefly outline how this is done.

Our discretization for the state space relies on the
Karhunen–Loéve expansion of the prior. Suppose we wish to
produce samples from a Gaussian measure N (0, C), where
C has associated eigenbasis {λ j , ϕ j } j∈N. Then a sample u
from this distribution may be represented as

u(x) =
∞∑
j=1

√
λ jξ jϕ j (x), ξ j ∼ N (0, 1) i.i.d.

We discretize the space by truncating and approximating this
basis, so that elements of the space are represented as

uN (x) =
N∑
j=1

uN
j ϕN

j (x).
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The inference is then performed on the random variables
{uN

j }Nj=1. Additionally, in the cases we consider, the eigen-
vectors associated with all covariances are given by the
Fourier basis and so we may use the Fast Fourier Transform
for efficient implementation.

The second discretization occurs in the solution of the
differential equations. In the EIT example a finite element
discretization is used, in which the functions are approxi-
mated by expansion in a finite basis. The coefficients of the
expansion of the solution to the PDE in this basis are then
solved for numerically. The basis is chosen such that each
basis element is locally supported—this ensures that matri-
ces arising in the implementation of the method are sparse.

The groundwater flow model uses a finite difference
discretization, in which derivatives are approximated by
difference quotients. For example, given a uniform grid
{xi , y j }Ni, j=1 with spacing xi+1 − xi = δ, we may approxi-
mate

∂h

∂x
(xi , y j ) ≈ h(xi + δ, y j ) − h(xi − δ, y j )

2δ
.

This leads to an approximate solution to the PDE defined on
the grid {xi , y j }Ni, j=1.

Finite element, finite difference and even spectral meth-
ods outlined above can all be used for any PDE examples;
what we use for illustrative purposes in this paper (EIT with
finite element and groundwater flow with finite difference)
are just examples of numerous possible forward models and
discretization combinations.

4.2 Identity map

The first inverse problem is based on reconstruction of a
piecewise constant field from noisy pointwise observations.

4.2.1 The forward model

Let D = [0, 1]2 and define a grid of observation points
{q j }Jj=1 ⊆ D. Let Z = L p(D) for some 1 ≤ p < ∞
and let Y = R

J . The forward operator S : Z → Y is defined
by

S(κ) = (κ(q1), . . . , κ(qJ )).

We are then interested in finding κ , given the prior infor-
mation that it is piecewise constant, and taking a number of
known prescribed values. Let G = S ◦ F : X × R

+ →
Y . We reconstruct (u, τ ) and hence κ = F(u, τ ). The
map S is not continuous, and so Assumptions 1 do not
hold. However, Proposition 2 in Appendix shows that the
map G is uniformly bounded, and almost-surely continuous
under the priors considered. From this the conclusions of

Proposition 1 inAppendix follow, and it is possible to deduce
the conclusions of Theorem 2.

4.2.2 Simulations and results

We study the effect of different length scales, for both hier-
archical and non-hierarchical methods, demonstrating the
advantages of the former over the latter. To this endwe define
τ
†
i = 5i , i = 1, . . . , 10, and generate 10 different true level

set fields u†i ∼ μ
τ
†
i
0 on a mesh of 210 × 210 points. This leads

to 10 sets of data yi , given by

yi = G(u†i , τ
†
i ) + ηi , ηi ∼ N (0, Γ ) i.i.d.,

where we take the noise covariance Γ = 0.22 · I to be white.
The level set map F is defined such that there are 3 phases,
taking the constant values 1, 3, and 5.Themean relative error
on the generated datasets ranges from 6 to 9%.

One of the motivations for developing a hierarchical
method is that little knowledge may be known a priori about
the length scale associatedwith the unknown geometric field.
We therefore sample from each hierarchical posterior distri-
bution associated with each yi using a variety of initial values
for the length-scale parameter. This allows us to check that,
computationally, we can recover a good approximation to the
true length scale even if our initial guess is poor. Specifically,
for each set of data we run 10 hierarchical MCMC simula-
tions started at the different values of τ = τ

†
k , giving a total

of 100 hierarchical MCMC chains. For all chains we place a
relatively flat prior of N (20, 102) on τ . On the prior for the
level set function u, we take Neumann boundary conditions
and fix the smoothness parameter α = 5. The thresholding
levels in the level set map are chosen such that there is an
order one amount of prior mass in all levels—specifically we
take c1 = −0.1 and c2 = 0.1.

We also wish to compare how the hierarchical method
compares with the non-hierarchical method. We therefore
look at the 10 different posterior distributions that arise from
each set of data yi when using each of 10 fixed prior inverse
length scales τ

†
k , which gives another 100 MCMC chains.

We perform all sampling on a mesh of 27 × 27 points to
avoid an inverse crime, discretizing via the discrete Fourier
transform (DFT) and retaining all 214 modes. The observa-
tion grid {q j }100j=1 is taken to be a uniformly spaced grid of 100
points.We use a Gaussian randomwalk proposal distribution
for the length-scale parameter. We make this choice as it is
the canonical starting point for MCMC, and it works in this
case. It is possible, however, that something more sophisti-
cated may be beneficial. We produce 5 × 106 samples for
each chain, and discard the first 106 samples as burn-in when
calculating quantities of interest.
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Fig. 2 (Identity model) The sample mean of τ along each hierarchical
MCMC chain, against the initial value of τ . The different curves arise
from using different data yi

Table 1 (Identity model) The
value of τ used to create the data
yi , and the mean value of τ

across the MCMC chains and
the different initial values of τ

τ † Mean sample
mean of τ

5 6.10

10 10.0

15 15.5

20 21.8

25 24.8

30 30.0

35 35.4

40 44.6

45 50.8

50 40.6

In Fig. 2 we look at the recovery of the true value of τ with
the hierarchical method. For large enough τ0, the mean of τ

after the burn-in period is roughly constant with respect to
varying the initialization point, for each posterior. Thismakes
sense from a theoretical point of view since thesemeans arise
from the same posterior distribution, for a fixed truth, but it
is also reassuring from a computational point of view since
the output is close to independent of the initial guess for the
length scale. There does, however, appear to be an issue with
initializing the value of τ at too low a value, with the value τ

tending to get stuck far from the truth when initialized at= 5.
This effect has been detected in several other experiments
and models—initializing the value of τ much lower than the
true inverse length can cause the parameter to become stuck
in a local minimum. Such an effect has not been observed,
however,when the parameter is initialized significantly larger
than the true value. Table 1 shows that recovery of the true
value of τ is very good for τ † ≤ 35, though becomes slightly

MCMC iterations × 106
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

20

25

30

35

40

45

50

Fig. 3 (Identity model) The trace of τ along the MCMC chain, when
initialized at the 10 different initial values. True inverse length scale is
τ = 15

worse for larger values of τ †. The means here are calculated
without the τ0 = 5 sample means since they are clearly
outliers for most of the posteriors. One possible explanation
for the lack of recovery in the cases τ † = 40, 45, and 50
is to do with the structure of the observation map S. The
observation grid has a length scale associated with it, related
to distances between observation points, and so issues could
arise when trying to detect the length scale of the geometric
field that is significantly shorter than this. Additionally, the
length scales 1/τ are closer for larger τ and so it may be
more difficult to distinguish between particular values.

For brevity we now focus on the case where τ † = 15.
The traces of the values of τ along the hierarchical chains
corresponding to this truth is shown in Fig. 3. After approxi-
mately 106 samples, all chains have become centered around
the true length scale. This convergence appears to be roughly
linear for each chain.

Figure 4 shows the push forwards of the sample means
from the different chains under the level set map, that is,
approximations of F(E(u), E(τ )). This figure also shows
approximations ofE(F(u, τ )) and typical samples of F(u, τ )

coming from the different chains. We see that these con-
ditional means for the hierarchical method appear to agree
with one other. This is reassuring for the reason mentioned
above—they are all estimates of the mean of the same distri-
bution. The figures for the non-hierarchical posteriors admit
greater variation, especially near the boundary for higher val-
ues of τ . Moreover, not all inclusions are detected when the
length-scale parameter is taken to be τ = 5. Note that the
mean from the hierarchical posterior agrees closely with that
from the non-hierarchical posterior using the fixed true length
scale τ = 15. Additionally, even though the means are rea-
sonable approximations to the truth in most cases, the typical
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Fig. 4 Simulations for the identity model. a The true geometric field
used to generate the data y, with true inverse length scale τ = 15.b (Top)
representative samples of F(u, τ )under the hierarchical posterior. (Mid-
dle) approximations of F(E(u),E(τ )). (Bottom) approximations of

E(F(u, τ )). From left-to-right, τ is initialized at τ = 5, 15, 25, 35, 45.
c As in b, using the non-hierarchical method. From left-to-right, τ is
fixed at τ = 5, 15, 25, 35, 45

123



Stat Comput

Fig. 5 (Identity model) approximations of Var(F(u, τ )) using the hierarchical (top) and fixed (bottom) priors, initialized or fixed at τ =
5, 15, 25, 35, 45, from left-to-right. True inverse length scale is τ = 15

Fig. 6 (Identity model) representative samples τ 4 · u (top) and sample
means E(τ 4 · u) (bottom) of the level set function. The rescaling τ 4

means that the above quantities have the same approximate amplitude.

True inverse length scale is τ = 15. (Left) Using the non-hierarchical
method; from left-to-right τ is fixed at τ = 5, 15, 25, 35, 45. (Right)
Corresponding quantities for the hierarchical method

samples are much worse when using the non-hierarchical
method with an incorrect length-scale parameter.

We can also consider the sample variance of the pushfor-
ward of the samples by the level set map, i.e., approximations
of the quantity Var(F(u, τ )). In Fig. 5 we show this quantity
for both the hierarchical and non-hierarchical priors. Note
that for the non-hierarchical priors, the variance increases
both at the boundary and away from the observation points for
larger values of τ . Variance is also higher along the interfaces
and within the central phase, since points in these locations
are more likely to switch between all three phases. The hier-
archical approximations all appear to agree.While the hierar-
chical means are very similar to the non-hierarchical means
using the true length scale, as seen in Fig. 4, the hierarchical
variances are smaller away from the observation points.

Additionally, we look at the level set function u itself in
Fig. 6. In these plots we rescale the level set function by
τα−d/2 = τ 4 so that they are all of approximately the same
amplitude. The means for both the hierarchical and non-

hierarchical methods are again quite similar to one another,
though the difference between the typical samples is much
more stark.

Finally, in Fig. 7, we look at the joint densities of the
inverse length-scale parameter τ and first five Karhunen–
Loève (KL) modes of the level set function u.4 Non-trivial
correlations are evident between τ and each of these modes,
with the support of the densities appearing non-convex. This
is likely related to the non-linear scaling between the length
scale and the amplitude of the level set function under the
prior. Conversely the KL modes, while still correlated with
one another, have simpler joint densities. Note, also, that the
posterior on the length scale is centered close to the true value
of the inverse length-scale parameter τ.

Remark 4 In this section we studied the ability to recover
the true length-scale parameter τ †, given a finite number of

4 KL modes are the eigenfunctions of the covariance operator, here
ordered by decreasing eigenvalue.
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Fig. 7 (Identity model) (diagonal) empirical densities of τ and the first five KL modes of u. (off-diagonal) empirical joint densities. True inverse
length scale is τ = 15

direct noisy observations of the geometric field. The question
arises of how the quality of this recovery depends upon the
spatial resolution of the data. As would be expected, learning
this parameter becomes more difficult when this resolution is
poor due to the lack of information in the data. However, it is
interesting to note that, even in the limit of an infinite number
of distinct observation points, it is unlikely that we would be
able to identify τ † perfectly. This is suggested by a result of
Zhang (2004) which states that, in the context of generalized
linear mixed models, the marginal variance and length-scale
parameters of aMatérn field cannot be consistently estimated

in this limit where as in our case the domain is fixed. This
is in contrast to the case of additional data points increasing
the domain, where consistent estimation is possibleMarshall
and Mardia (1984).

4.3 Identification of geologic facies in groundwater flow

The identification of geologic facies in subsurface flow appli-
cations is a commonexample of a large-scale inverse problem
that involves the recovery of unknown interfaces. In the
case of groundwater flow, for example, the inverse prob-
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lem concerns the recovery of the interface between regions
with different hydraulic conductivity given measurements of
hydraulic head. Geometric inverse problems of this type have
recently received a lot of attention by the research commu-
nityXie et al. (2011), Ping andZhang (2014), Lorentzen et al.
(2012), Lorentzen et al. (2012). Indeed, it has been recog-
nized that the geometry determined by the aforementioned
interfaces constitutes one of the main sources of uncertainty
that must be quantified and reduced by means of Bayesian
inversion.

In the context of groundwater flow, the identification of
interfaces between regions associated with different types
of geological properties can be posed as the recovery of a
piecewise constant conductivity field parameterized with a
level set function. A fully Bayesian level set framework for
the solution of the aforementioned type of inverse problems
has been recently developed in Iglesias et al. (2016). The
MCMCmethod applied in Iglesias et al. (2016) performswell
when the prior of the level set function properly encodes the
intrinsic length scales of the unknown interfaces. Clearly,
in practical applications such length scales are most likely
unknown and their incorrect specification may result in inac-
curate anduncertain estimates of the unknown interfaces. The
purpose of this section is to show that the proposed hierarchi-
cal Bayesian framework enables us to determine an optimal
length scale in the prior of the level set function which, in
turn, captures more accurately the intrinsic length scale of
the unknown interface.

4.3.1 The forward model

We are interested in the identification of a piecewise constant
hydraulic conductivity, denoted by κ , of a two-dimensional
confined aquifer whose physical domain is D = [0, 6] ×
[0, 6]. We assume single-phase steady-state Darcy flow. The
piezometric head, denoted by h(x) (x ∈ D), which describes
the flow within the aquifer can be modeled by the solution
of Bear (1972)

− ∇ · κ∇h = f in D, (12)

where f represents sources/sinks and where boundary con-
ditions need to be specified. For the present workwe consider
the setup from the Benchmark used in Carrera and Neuman
(1986), Hanke (1997), Iglesias and Dawson (2007), Iglesias
et al. (2013), Iglesias (2016), and Iglesias et al. (2016). In
concrete, we assume that f is a recharge term of the form

f (x1, x2) =
⎧⎨
⎩
0 if 0 < x2 ≤ 4,
137 if 4 < x2 < 5,
274 if 5 ≤ x2 < 6.

(13)

and we consider the following boundary conditions

h(x1, 0) = 100,
∂h

∂x1
(6, x2) = 0,

−κ
∂h

∂x1
(0, x2) = 500,

∂h

∂x2
(x1, 6) = 0.

(14)

We consider the inverse problem of recovering κ from
observations {� j (h)}64j=1 of h given by (12)–(14). We assume
we have smoothed point observations given by

� j (h) =
∫
D

1

2πε2
e
− 1

2ε2
(x−q j )

2
h(x) dx,

where ε > 0 and {q j }64j=1 ⊆ D is a grid of 64 observation
points equally distributed on D. Let Z = L p(D) for some
1 ≤ p < ∞ and Y = R

64. Given κ ∈ Z , let h be given by
(12)–(14). Then the forward map S : Z → Y is given by

κ �→ (�1(h), . . . , �64(h)).

We assume that each κi in the definition of the level set map
F is strictly positive. The image of F is contained in the
set of bounded fields on D bounded below by niκi > 0. In
Iglesias et al. (2016) themap S is shown to be continuous and
uniformly bounded on such fields, with respect to ‖ · ‖L p(D)

for some p, and so Assumptions 1 hold. As a consequence
Theorem 2 applies directly.

4.3.2 Simulations and results

In the previous example we illustrate, with a simple model,
the capabilities of the proposed framework to recover a spec-
ified true length scale and a true level set function that
defines a true discontinuous field from which synthetic data
are generated. However, we must reiterate that, in practice,
we wish to recover the true discontinuous field; the level
set function is merely an artifact that we use for the para-
meterization of such a field. In practical applications the
aim of the proposed hierarchical Bayesian level set frame-
work is to infer a length scale alongside with a level set
function which, by means of expression (7), produces a dis-
continuous field that captures the desired piecewise constant
field as accurately as possible and, in particular, the intrin-
sic length-scale separation of the interfaces determined by
the discontinuities of the true geometric field. Therefore,
in order to test our methodology in the applied setting of
groundwater flow, rather than a true level set function, in
this subsection we consider the true hydraulic conductiv-
ity κ† whose logarithm is displayed in Fig. 9a. This κ†

is defined such that it takes the constant values e1.5, e4

and e6.5. This is channelized conductivity typical of fluvial
environments and often used as Benchmarks for subsur-
face flow inversion (Ping and Zhang 2014; Lorentzen et al.
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Fig. 8 (Groundwater flow model) trace plots of τ obtained from six
hierarchical MCMC chains

2012; Xie et al. 2011; Iglesias et al. 2016). Note that the
values that the conductivity can take on the three differ-
ent regions differ by at least one order of magnitude, due
to the logarithmic transformation. While there is indeed an
intrinsic length scale in the channelized structure, this true
conductivity field does not come from a specified level set
prior.

Synthetic data are generated by means of

y = (�1(h
†), . . . , �64(h

†)) + η, η ∼ N (0, Γ ) i.i.d.,

where h† is the solution to (12)-(14) for κ = κ†. Equa-
tions (12)–(14) have been solved with cell-centered finite
differences Arbogast et al. (1997). In order to avoid inverse
crimes, synthetic data are generated on a grid finer (160×160
cells) than the one used for the inversion (80 × 80 cells).
The discretization is performed via the DFT, and we retain
all modes. In addition, Γ is a diagonal matrix given by
Γi,i = 0.0175�i (h†). In other words, we add noise that corre-
sponds to 1.75%of the size of the noise-free observations.On
the prior for the level set functionu, we takeNeumannbound-
ary conditions and fix the smoothness parameter α = 5.

We consider a Gaussian prior N (35, 102) for τ , and use
a Gaussian random walk proposal distribution for this para-
meter. We then apply the hierarchical MCMC method from
subsection 3.3 initialized with the following six different
choices of τ = 1, 10, 30, 50, 70, 90 and a sample of the
prior (with that given τ ) of the level set function u. We thus
produce six MCMC chains of length 4 × 106 and discard
the first 106 as burn-in for the computation of quantities
of interest. The trace plots of τ are displayed in Fig. 8
from which we clearly observe that all chains, regardless
of their initial point, seem to stabilize and produce sam-
ples around τ = 18. In the top row of Fig. 9b we display

the logarithm of some representatives samples of F(u, τ )

under the hierarchical posterior. The middle row of Fig.
9b shows the logarithm of F(E(u), E(τ )), i.e., the pushfor-
ward of the posterior means obtained using the hierarchical
method. The bottom row of Fig. 9b displays the logarithm
of the approximations of E(F(u, τ )). That is, the expected
value of the pushforward samples under the posterior. The
aforementioned results corresponds to five MCMC chains
with τ initialized τ = 10, 30, 50, 70, 90 (the results for
τ = 1 have been omitted). Similarly, Fig. 10 (top) shows the
approximations of the variance of the pushforward samples
of the posterior, i.e., Var

(
F(u, τ )

)
. Clearly, both E(F(u, τ ))

and F(E(u), E(τ )) result in fields that provide a reason-
able approximation of the true geometric field. Note that,
as expected, the largest uncertainty in the distribution of the
pushforward samples is around the interface between the
regionswith different conductivity. In Fig. 11awe show some
representative samples of u (top) and approximations toE(u)

(bottom). In these plots, as before, we rescale the level set
function by τα−d/2 = τ 4 so that they are all of approximately
the same amplitude. In Fig. 12 we display the empirical den-
sities of τ and the first five KLmodes of u. A key observation
is that, although the true hydraulic conductivity is not gen-
erated by thresholding a Gaussian random field, and hence
there is no “true” length scale, the posterior nonetheless set-
tles on a narrow range of values of τ which are consistent
with the data.

From the aforementioned results we can also clearly see
that the hierarchical MCMC algorithm produces similar out-
comes regardless of the initialization of the inverse of the
length scale τ , reflecting ergodicity of the Markov chain.
The results from τ = 1 are not shown but they are very
similar to the ones from other chains. As with the results
from the previous subsection, the similarity in outcomes
between all six chains is not surprising as these are aimed
at sampling from the same posterior distribution; but the
fact that this posterior distribution on τ concentrates near
to a single value is of particular interest because it shows
that the true geometric field has an intrinsic length scale,
even though it was not constructed via the map F(u, τ ).

Furthermore, this similarity of outcomes between chains
showcases the main advantage of the proposed framework
with respect to the non-hierarchical one. Indeed, as stated
earlier, the proposed method has the ability to recover a
distribution for the intrinsic length scale which gives rise
to reasonably accurate estimates (i.e., F(E(u), E(τ )), and
E(F(u, τ ))) of the true geometric field. We now present the
numerical results from applying a non-hierarchical MCMC
algorithm in which the inverse of length scale τ is fixed.
We consider again six MCMC chains as before with the
(now fixed) values of τ = 1, 10, 30, 50, 70, 90 that we
used to initialized the hierarchical chains used before. Anal-
ogous results to the ones presented for the hierarchical
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Fig. 9 Simulations for the groundwater flowmodel. a (Left) logarithm
of the true hydraulic conductivity field used to generate the data y.
(Right) true pressure field and the grid of observation points. b (Top)
logarithm of representative samples of F(u, τ ) under the hierarchical
posterior. (Middle) logarithm of the approximations of F(E(u),E(τ )).

(Bottom) logarithm of the approximations of E(F(u, τ )). From left-
to-right, τ is initialized at τ = 10, 30, 50, 70, 90. c As in b, using
the non-hierarchical method. From left-to-right, τ is fixed at τ =
10, 30, 50, 70, 90

123



Stat Comput

Fig. 10 (Groundwater flow
model) approximations of
Var

(
F(u, τ )

)
using the

hierarchical (top) and the
non-hierarchical (bottom)
MCMC

Fig. 11 (Groundwater flow
model) representative samples
and sample means of the level
set function. The rescaling τ 4

means that the above quantities
have the same approximate
amplitude. True inverse length
scale is τ = 15. a (Top)
representative samples of the
rescaled level set function τ 4 · u
and (bottom) approximations of
E(τ 4 · u) using the hierarchical
method. From left-to-right, τ is
initialized at
τ = 10, 30, 50, 70, 90. b As in
a, using the non-hierarchical
method. From left-to-right, τ is
fixed at τ = 10, 30, 50, 70, 90

method can be found in the bottom panels of Fig. 9 as
well as the bottom of Figs. 10 and 11. Clearly, the lack
of properly prescribing the intrinsic length scale in the
non-hierarchical method results in inaccurate estimates of
the true geometric field. We clearly observe that for τ ≥
30 the estimates of the truth given by F(E(u), E(τ )) and
E(F(u, τ )) are substantially inaccurate and the uncertainty
measured by Var

(
F(u, τ )

)
is large. The non-hierarchical

MCMC for τ = 1 did not converge; the results are not
shown. The non-hierarchical MCMC only provides reason-
able estimates for τ = 10 and τ = 30. However, we can
visually appreciate that these results are still suboptimal

when compared to the results from the hierarchical frame-
work.

4.4 Electrical impedance tomography

Finally we consider the electrical impedance tomogra-
phy (EIT) problem. This problem has previously been
approachedwith anon-hierarchicalBayesian level setmethod
Dunlop and Stuart (2015). In this subsection we show that
the hierarchical approach outperforms the non-hierarchical
approach in the case where the true conductivity is a binary
field, given the same number of forward model evaluations.
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Fig. 12 (Groundwater flow model) (diagonal) empirical densities of τ and the first five KL modes of u. (off-diagonal) empirical joint densities

4.4.1 The forward model

EIT is an imaging technique which attempts to infer the
internal conductivity of a body from boundary voltage mea-
surements. Typical applications include medical imaging, as
well as subsurface imaging where it is known as electrical

resistivity tomography (ERT). We utilize the complete elec-
trode model (CEM), proposed in Somersalo et al. (1992).
This is a physically accurate model which has been shown to
agree with experimental data up to measurement precision.
The strong form of the PDE governing the model is given
by
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Fig. 13 (EIT model) the trace of τ along the MCMC chain, when
initialized at the 5 different values τ = 10, 30, 50, 70, 90

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (κ(x)∇v(x)) = 0 x ∈ D∫
el

κ
∂v

∂n
dS = Il l = 1, . . . , L

κ(x)
∂v

∂n
(x) = 0 x ∈ ∂D \⋃L

l=1 el

v(x) + zlκ(x)
∂v

∂n
(x) = Vl x ∈ el , l = 1, . . . , L .

Here D ⊆ R
2 is the domain and {el}Ll=1 ⊆ ∂D are elec-

trodes on the boundary upon which currents {Il}Ll=1 are
injected and voltages {Vl}Ll=1 are read. The numbers {zl}Ll=1
represent the contact impedances of the electrodes. The
field κ represents the conductivity of the body and v rep-
resents the potential within the body5. It should be noted
that the solution of this PDE comprises both a potential
v ∈ H1(D) and a vector {Vl}Ll=1 of boundary voltage mea-
surements.

The inverse problemwe consider is the recovery of κ from
a sequence of boundary voltage measurements. A number
of (linearly independent) current stimulation patterns {Il}Ll=1
may be performed to provide more information; we assume
that we perform the maximum M = L − 1 measurements.
Let Z = L p(D) for some 1 ≤ p < ∞ and Y = R

J where
J = LM . We can concatenate the boundary voltage mea-
surements arising from different stimulation patterns to yield
a map S : Z → Y ,

κ �→ (V (1), V (2), . . . , V (M)),

where V (m) = {V (m)
l }Ll=1 ∈ R

L , m = 1, . . . , M .

5 In theEIT literature the conductivity field is often denotedσ ; however,
we have already used this in denoting the marginal variance of random
fields.

For the experiments we work on a circular domain D =
{x ∈ R

2 | |x | < 1}. 16 electrodes are spaced equally
around the boundary providing 50% coverage. All contact
impedances are taken to be zl = 0.01. Adjacent electrodes
are stimulated with a current of 0.1, so that the matrix of
stimulation patterns I = {I ( j)}15j=1 ∈ R

16×15 is given by

I = 0.1 ×

⎛
⎜⎜⎜⎜⎜⎜⎝

+1 0 · · · 0
−1 +1 · · · 0

0 −1
. . . 0

...
...

. . . +1
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Wedefine our forwardmapG : X×R
+ → R

J byG = S◦F .
As in the groundwater flow example, assume that each κi in
the definition of the level set map is strictly positive. We do
not have a continuity result for the map S on L p for any 1 ≤
p < ∞. However, the almost-sure continuity of the map G
can be seen via a modification of the proof of Proposition 3.5
in Dunlop and Stuart (2015) to include the parameter τ ; this
modification is almost identical to the proof of Proposition 1
given in the appendix. The uniformboundedness ofG follows
from a result in Dunlop and Stuart (2015) similarly. Hence as
was the case with the identity map example, the conclusions
of Proposition 1 follow, and we can deduce the conclusions
of Theorem 2.

4.4.2 Simulations and results

We fix a true conductivity κ†, shown in Fig. 14. As with the
groundwater flow experiments, this is constructed explicitly
and does not have a true value of τ associated with it. We
generate data y as

y = S(κ†) + η, η ∼ N (0, Γ ),

where we take the noise covariance Γ = 0.00022 · I to
be white. The mean relative error on the generated data is
approximately 12%. The data are generated using a mesh
of 43264 elements and simulations are performed using a
mesh of 10816 elements, in order to avoid an inverse crime.
Forward solves are performed using the EIDORS software
Adler and Lionheart (2006). All level set field samples are
defined on the square [−1, 1]2 and restricted to the domain
D. This has the advantage of allowing for efficient sampling
via the Fast Fourier Transform, though it has the drawback
of introducing possibly non-trivial boundary effects on the
domain; no such effects are observed in our problem, how-
ever. The discretization on the square is performed via the
DFT on a grid of 27 × 27 points, and we retain all modes.

The level set map F is defined such that there are 2
phases, taking the constant values 1 and 10. We take the
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Fig. 14 Simulations for the EIT model. a (Left) true conductivity field
used to generate the data y. (Right) the entries yi of the data vector
y, plotted against i . b (Top) Representative samples of F(u, τ ) under
the hierarchical posterior. (Middle) approximations of F(E(u),E(τ )).

(Bottom) approximations of E(F(u, τ )). From left-to-right, τ is initial-
ized at τ = 10, 30, 50, 70, 90. c As in b, using the non-hierarchical
method. From left-to-right, τ is fixed at τ = 10, 30, 50, 70, 90
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Fig. 15 (EIT model)
approximations of Var(F(u, τ ))

using the hierarchical (top) and
fixed (bottom) priors, with τ

initialized or fixed at
τ = 10, 30, 50, 70, 90, from
left-to-right

20

0

10

Fig. 16 (EIT model) representative samples and sample means of the
level set function. The rescaling τ 4 means that the above quantities have
the same approximate amplitude. True inverse length scale is τ = 15. a
(Top) representative samples of the rescaled level set function τ 4 ·u and

(bottom) approximations of E(τ 4 · u) using the hierarchical method.
From left-to-right, τ is initialized at τ = 10, 30, 50, 70, 90. b As in
a, using the non-hierarchical method. From left-to-right, τ is fixed at
τ = 10, 30, 50, 70, 90

prior level set field mean to be zero, so that in this case F
(and hence Φ) becomes independent of τ . Thus a forward
model evaluation is not required for the Gibbs update of τ ,

and each sample of (u, τ ) using the hierarchicalmethod costs
virtually the same as one of u using the non-hierarchical
method.
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Fig. 17 (EIT model) (diagonal) empirical densities of τ and the first five KL modes of u. (off-diagonal) empirical joint densities

Similarly to the previous experiments, we initialize the
hierarchical sampling from τ = 10, 30, 50, 70, 90 to check
for robustness of themethod.We use a sharper prior on τ than
was used previously. We again use a Gaussian random walk
proposal distribution for τ . We fix the smoothness parameter
α = 5 in the prior for u, and again use Neumann boundary
conditions. We again wish to compare how the hierarchi-
cal method compares with the non-hierarchical method. We
therefore also look at the 5 different posterior distributions
that arise when using each of 5 fixed prior inverse length
scales τ = 10, 30, 50, 70, 90, which gives another 5 MCMC

chains. For both the methods we produce 4×106 samples for
each chain, and discard the first 2 × 106 samples as burn-in
when calculating quantities of interest.

The traces of the values of τ along the hierarchical chains
are shown in Fig. 13. With the exception of the chain ini-
tialized at τ = 10, the chains converge to the sample
approximate value of τ . Unlike in previous experiments, the
traces have a relatively flat period before the approximate
linear convergence to the common length scale. Initializing
τ = 90 requires an additional 106 samples to converge, over
the other converging chains.
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Figure 14 shows the push forwards of the sample means
from different chains under the level set map, along with
approximations ofE(F(u, τ )) and typical samples of F(u, τ )

coming from the different posteriors. In both the hierarchi-
cal and non-hierarchical methods, the chains initialized/fixed
at τ = 10 fail to recover the true conductivity, similarly to
what was observed with the identity map experiments when
initializing at τ = 5. The other chains for the hierarchical
method produce very similar results to one another, while
the effect of fixing the length scale to be too short is apparent
in the figures for the non-hierarchical method.

In Fig. 15 we see approximations to Var(F(u, τ )) under
the different posteriors. In both cases, variance is highest
around the boundaries of the two inclusions. The difference
between the hierarchical and non-hierarchical methods is
more apparent here, with higher variance between the two
inclusions when the length scale is fixed to be too short.

Again, we look at the level set function u itself in Fig. 16.
In these plots, as before, we rescale the level set function
by τα−d/2 = τ 4 so that they are all of approximately the
same amplitude. As in the previous experiments, there is
noticeable contrast between the means for the hierarchical
and non-hierarchicalmethods, and yetmore contrast between
the typical samples.

Finally, in Fig. 17, we show the posterior densities on the
inverse length scale and the first five KL modes, as well as
correlations between them. As with the groundwater flow
example, although there is no “true” inverse length scale, the
data are sufficiently informative to define a small range of
values for this parameter under the posterior.

5 Conclusions

The level set method is an attractive approach to inverse
problems for the detection of interfaces. Furthermore, the
Bayesian approach is particularly desirable when there is a
need to quantify uncertainty. In this paperwe have shown that
Bayesian level set inversion is considerably enhanced by a
hierarchical approach in which the length scale of the under-
lying level set function is inferred from the data. We have
demonstrated this by means of three examples of interest
arising in, respectively, the information, physical and med-
ical sciences; however, many potential applications remain
to be explored and this provides an interesting avenue for
future work.

We also developed the theoretical underpinnings for our
hierarchical method. Our work is based on a Metropolis-
within-Gibbs approach which alternates between updating
the level set function and the length scale. The Metropolis
method we use for the level set field update does not use
derivatives of the log-likelihood, and could be improved by
doing so, using the infinite-dimensional variants on MALA

andHMC(which use first derivative information, see the cita-
tions inCotter et al. (2013)) or themanifoldMALAandHMC
methods, which use higher order derivatives Girolami and
Calderhead (2011). Another interesting direction for future
work is the design of methods with more informed propos-
als which exploit correlations in the level set function and
its length scale. And finally it would be interesting to con-
sider pseudo-marginal methods to sample the hierarchical
parameter alone, as in Filippone and Girolami (2014).

Assuming independence under the prior, it would require
little further work to treat the thresholding levels {ci } and
the values of the thresholded function {κi } as part of the
inference as well; we omitted this here for the sake of clarity.
Such a model may be more realistic, and numerical studies
of such models may prove interesting. Another extension of
interest may be to place a hyperprior upon the regularity
parameter also, which may be useful for improving rates
of convergence van der Vaart and van Zanten (2009). This
is a more challenging task, again related to singularity of
measures. The paper Agapiou et al. (2014) discusses ways in
which this may be done; however, it is still an open question
in terms of theory and optimal algorithms. Additionally, it
may be of interest to overcome the restriction of the ordering
of phases {κi } by means of a vector level set method Tai and
Chan (2004).

Finally we mention that the use of a single length scale
within an isotropic prior is a simple example of more
sophisticated hierarchical approaches which attempt to learn
non-stationary and non-isotropic Calvetti and Somersalo
(2007), Calvetti and Somersalo (2008) features of the level
set function from the data. This provides an interesting oppor-
tunity for future work and for ideas from machine learning
to play a role in the solution of inverse problems for inter-
faces.
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Appendix

Proof of theorems

Proof (Theorem 1)

(i) Note that it suffices to show thatμτ
0 ∼ μ0

0 for all τ > 0.
(Here∼ denotes “equivalent as measures”). It is known
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that the eigenvalues of −� on T
d grow like j2/d , and

hence the eigenvalues λ j (τ ) of Cα,τ decay like

λ j (τ ) � (τ 2 + j2/d)−α, j ≥ 1.

Using Proposition 3 below, we see that μτ
0 ∼ μ0

0 if

∞∑
j=1

(
λ j (τ )

λ j (0)
− 1

)2

< ∞.

Now we have∣∣∣∣λ j (τ )

λ j (0)
− 1

∣∣∣∣ �
∣∣∣∣∣
(
1 + τ 2

j2/d

)−α

− 1

∣∣∣∣∣
≤
∣∣∣∣exp

(
ατ 2

j2/d

)
− 1

∣∣∣∣
≤ C

ατ 2

j2/d
.

Herewe have used that (1+x)−α−1 ≤ exp(αx)−1 for
all x ≥ 0 to move from the first to the second line, and
that exp(x) − 1 ≤ Cx for all x ∈ [0, x0] to move from
the second to third line. Now note that when d ≤ 3,
j−4/d is summable, and so it follows that μτ

0 ∼ μ0
0.

(ii) The case τ = 0 is Theorem 2.18 in Dashti and Stuart
(2016); the general result follows from the equivalence
above.

(iii) Let v ∼ N (0,Dσ,ν,�) where Dσ,ν,� is as given by (2).
Then we have

Dσ,ν,� = β�d(I − �2�)−ν−d/2

= β�d�−2ν−d(�−2 I − �)−ν−d/2

= βτ 2α−d(τ 2 I − �)−α

= βτ 2α−dCα,τ .

Hence, letting u ∼ N (0, Cα,τ ), we see that

E‖u‖2 = tr(Cα,τ )

= 1

β
τ d−2αtr(Dσ,ν,�)

= 1

β
τ d−2α

E‖v‖2.

��
Proof (Theorem 2) Proposition 1 which follows shows that
μ0 and Φ satisfy Assumptions 2.1 in Iglesias et al. (2016),
withU = X ×R

+. Theorem 2.2 in Iglesias et al. (2016) then
tells us that the posterior exists and is Lipschitz with respect
to the data. ��
Proposition 1 Letμ0 be given by (3) andΦ : X ×R

+ → R

be given by (10). Let Assumptions 1 hold. Then

(i) for every r > 0 there is a K = K (r) such that, for all
(u, τ ) ∈ X × R

+ and all y ∈ Y with |y|Γ < r ,

0 ≤ Φ(u, τ ; y) ≤ K ;

(ii) for any fixed y ∈ Y , Φ(·, ·; y) : X × R
+ → R is

continuousμ0-almost surely on the complete probability
space (X × R

+,X ⊗ R, μ0);
(iii) for y1, y2 ∈ Y with max{|y1|Γ , |y2|Γ } < r , there exists

a C = C(r) such that for all (u, τ ) ∈ X × R
+,

|Φ(u, τ ; y1) − Φ(u, τ ; y2)| ≤ C |y1 − y2|Γ .

Proof (i) Recall the level set map F defined by (7) defined
via the finite constant values κi taken on each subset Di

of D. We may bound F uniformly:

|F(u, τ )| ≤ max{|κ1|, . . . |κn|} =: Fmax,

for all (u, τ ) ∈ X ×R
+. Combining this with Assump-

tion 1(ii), it follows that G is uniformly bounded on
X ×R

+. The result then follows from the continuity of
y �→ 1

2 |y − G(u, τ )|2Γ .
(ii) Let (u, τ ) ∈ X × R

+ and let Di (u, τ ) be as defined by
(6), and define D0

i (u, τ ) by

D0
i (u, τ ) = Di (u, τ ) ∩ Di+1(u, τ )

= {x ∈D | u(x)=ci (τ )}, i = 1, . . . , n − 1.

We first show that G is continuous at (u, τ ) when-
ever |D0

i (u, τ )| = 0 for i = 1, . . . , n − 1. Choose
an approximating sequence {uε, τε}ε>0 of (u, τ ) such
that ‖uε − u‖∞ + |τε − τ | < ε for all ε > 0. We will
first show that ‖F(uε, τε)−F(u, τ )‖L p(D) → 0 for any
p ∈ [1,∞). As in Iglesias et al. (2016) Proposition 2.4,
we can write

F(uε, τε) − F(u, τ )

=
n∑

i=1

n∑
j=1

(κi − κ j )1Di (uε,τε)∩Dj (u,τ )

=
n∑

i, j=1
i �= j

(κi − κ j )1Di (uε,τε)∩Dj (u,τ ).

From the definition of (uε, τε),

u(x) − ε < uε(x) < u(x) + ε, τ − ε < τε < τ + ε

for all x ∈ D and ε > 0. We claim that for |i − j | > 1
and ε sufficiently small, Di (uε, τε) ∩ Dj (u, τ ) = ∅.
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First note that

Di (uε, τε) = {
x ∈ D

∣∣ τ d/2−α
ε ci−1 ≤ uε(x) < τ d/2−α

ε ci
}

= {
x ∈ D

∣∣ ci−1 ≤ τα−d/2
ε uε(x) < ci

}
.

Then we have that

Di (uε, τε) ∩ Dj (u, τ )

= {x ∈ D|ci−1 ≤ τα−d/2
ε uε(x) < ci ,

c j−1 ≤ τα−d/2u(x) < c j }.

Now, since u is bounded,

τα−d/2u(x) − O(ε) < τα−d/2
ε uε(x)

< τα−d/2u(x) + O(ε)

and so

Di (uε, τε) ∩ Dj (u, τ ) ⊆
{x ∈ D | ci−1 − O(ε) ≤ τα−d/2u(x) < ci + O(ε),

c j−1 ≤ τα−d/2u(x) < c j }.

From the strict ordering of the {ci }ni=1 we deduce that
for |i − j | > 1 and small enough ε, the right-hand side
is empty. We hence look at the cases |i − j | = 1. With
the same reasoning as above, we see that

Di (uε, τε) ∩ Di+1(u, τ )

⊆ {
x ∈ D

∣∣ ci − O(ε) ≤ τα−d/2u(x) < ci + O(ε)
}

→ {
x ∈ D

∣∣ τα−d/2u(x) = ci
}

= {
x ∈ D

∣∣ u(x) = τ d/2−αci
}

= D0
i (u, τ )

and also

Di (uε, τε) ∩ Di−1(u, τ )

⊆ {
x ∈ D

∣∣ ci−1 − O(ε) < τα−d/2u(x) < ci−1
}

→ ∅.

Assume that each |D0
i (u, τ )| = 0, then it follows that

|Di (uε, τε) ∩ Dj (u, τ )| → 0 whenever i �= j . There-
fore we have that

‖F(uε, τε) − F(u, τ )‖p
L p(D)

=
n∑

i, j=1
i �= j

∫
Di (uε,τε)∩Dj (u,τ )

|κi − κ j |p dx

≤ (2Fmax)
p

n∑
i, j=1
i �= j

|Di (uε, τε) ∩ Dj (u, τ )|

→ 0.

Thus F is continuous at (u, τ ). By Assumption 1(i) it
follows that G is continuous at (u, τ ).
We now claim that |D0

i (u, τ )| = 0 μ0-almost surely
for each i . By Tonelli’s theorem, we have that

E|D0
i (u, τ )|

=
∫
X×R+

|D0
i (u, τ )| μ0(du, dτ)

=
∫
X×R+

(∫
R

1D0
i (u,τ )(x) dx

)
μ0(du, dτ)

=
∫
Rd

(∫
X×R+

1D0
i (u,τ )(x) μ0(du, dτ)

)
dx

=
∫
Rd

(∫ ∞

0

(∫
X
1D0

i (u,τ )(x) μτ
0(du)

)
π0(dτ)

)
dx

=
∫
Rd

(∫ ∞

0
μτ
0({u ∈ X | u(x) = ci (τ )}) π0(dτ)

)
dx .

For each τ ≥ 0 and x ∈ D, u(x) is a real-
valued Gaussian random variable under μτ

0. It follows
that μτ

0({u ∈ X | u(x) = ci (τ )}) = 0, and so
E|D0

i (u, τ )| = 0. Since |D0
i (u, τ )| ≥ 0 we have that

|D0
i (u, τ )| = 0 μ0-almost surely. The result now fol-

lows.
(iii) For fixed (u, τ ) ∈ X × R

+, the map y �→ 1
2 |y −

G(u, τ )|2Γ is smooth and hence locally Lipschitz. ��

Proof (Theorem 4) Recall that the eigenvalues of Cα,τ satisfy
λ j (τ ) � (τ 2 + j2/d)−α . Then we have that

(
λ j (0)

λ j (τ )
− 1

)
� (1 + τ 2 j−2/d)α − 1 = O( j−2/d).

It follows that

∞∑
j=1

(
λ j (0)

λ j (τ )
− 1

)p

< ∞ if and only if d < 2p. (15)

(i) We first prove the ‘if’ part of the statement.We have u ∼
N (0, C0), and so E〈u, ϕ j 〉2 = λ j (0). Since the terms
within the sum are non-negative, by Tonelli’s theorem
we can bring the expectation inside the sum to see that
that

E

∞∑
j=1

(
1

λ j (τ )
− 1

λ j (0)

)
〈u, ϕ j 〉2 =

∞∑
j=1

(
λ j (0)

λ j (τ )
− 1

)
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which is finite if and only if d < 2, i.e., d = 1. It follows
that the sum is finite almost surely.
For the converse, suppose that d ≥ 2 so that the series
in (15) diverges when p = 1. Let {ξ j } j≥1 be a sequence
of i.i.d. N (0, 1) random variables so that 〈u, ϕ j 〉2 has
the same distribution as λ j (0)ξ2. Define the sequence
{Zn}n≥1 by

Zn =
n∑
j=1

(
λ j (0)

λ j (τ )
− 1

)
ξ2j

=
n∑
j=1

(
λ j (0)

λ j (τ )
− 1

)
+

n∑
j=1

(
λ j (0)

λ j (τ )
− 1

)
(ξ2j − 1)

=: Xn + Yn .

Then the result follows if Zn divergeswith positive prob-
ability. By assumption we have that Xn diverges. In
order to show that Zn diverges with positive probability
it hence suffices to show that Yn converges with positive
probability. Define the sequence of random variables
{Wj } j≥1 by

Wj =
(

λ j (0)

λ j (τ )
− 1

)
(ξ2j − 1).

It can be checked that

E(Wj ) = 0, Var(Wj ) = 2

(
λ j (0)

λ j (τ )
− 1

)2

.

The series of variances converges if and only if d ≤ 3,
using (15) with p = 2.We use Kolmogorov’s two series
theorem, Theorem 3.11 in SrinivasaVaradhan (2001), to
conclude that Yn = ∑n

j=1 Wj converges almost surely
and the result follows.

(ii) Now we have

log

(
λ j (τ )

λ j (0)

)
= − log

(
1 −

(
1 − λ j (0)

λ j (τ )

))

=
(
1 − λ j (0)

λ j (τ )

)
+ 1

2

(
1 − λ j (0)

λ j (τ )

)2

+ h.o.t.

Let {ξ j } j≥1 be a sequence of i.i.d. N (0, 1) random vari-
ables, so that again we have that 〈u, ϕ j 〉2 has the same
distribution as λ j (0)ξ2. Then it is sufficient to show that
the series

I =
∞∑
j=1

[(
λ j (0)

λ j (τ )
− 1

)
ξ2j + log

(
λ j (τ )

λ j (0)

)]

is finite almost surely. We use the above approximation
for the logarithm to write

I =
∞∑
j=1

(
λ j (0)

λ j (τ )
− 1

)
(ξ2j − 1)

+
∞∑
j=1

[
1

2

(
1 − λ j (0)

λ j (τ )

)2

+ h.o.t.

]
.

The second sum converges if and only if d < 4, i.e.,
d ≤ 3. The almost-sure convergence of the first term is
shown in the proof of part (i). ��

Proposition 2 Let D ⊆ R
d . Define the constructionmap F :

X × R
+ → R

D by (7). Given x0 ∈ D define G : X × R
+ →

R by G(u, τ ) = F(u, τ )|x0 . Then G is continuous at any
(u, τ ) ∈ X × R

+ with u(x0) �= ci (τ ) for each i = 0, . . . , n.
In particular, G is continuous μ0-almost surely when μ0 is
given by (3). Additionally, G is uniformly bounded.

Proof The uniform boundedness is clear. For the continu-
ity, let (u, τ ) ∈ X × R

+ with u(x0) �= ci (τ ) for each
i = 0, . . . , n. Then there exists a unique j such that

c j−1(τ ) < u(x0) < c j (τ ). (16)

Given δ > 0, let (uδ, τδ) ∈ X × R
+ be any pair such that

‖uδ − u‖∞ + |τδ − τ | < δ.

Then it is sufficient to show that for all δ sufficiently small,
x0 ∈ Dj (uδ, τδ), i.e., that

c j−1(τδ) ≤ uδ(x0) < c j (τδ).

From this it follows that G(uδ, τδ) = G(u, τ ).
Since the inequalities in (16) are strict, we can find α > 0

such that

c j−1 + α < u(x0) < c j (τ ) − α. (17)

Now c j is continuous at τ > 0, and so there exists a γ > 0
such that for any λ > 0 with |λ − τ | < γ we have

c j (λ) − α/2 < c j (τ ) < c j (λ) + α/2. (18)

We have that ‖uδ − u‖∞ < δ, and so in particular,

u(x0) − δ < uδ(x0) < u(x0) + δ. (19)

We can combine (17)–(19) to see that, for δ < γ ,

c j−1(τδ) − δ + α/2 < uδ(x0) < c j (τδ) + δ − α/2

and so in particular, for δ < n{γ, α/2},

c j−1(τδ) < uδ(x0) < c j (τδ).

��
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Radon–Nikodym derivatives in Hilbert spaces

The following proposition gives an explicit formula for the
density of one Gaussian with respect to another and is used
in defining the acceptance probability for the length-scale
updates in our algorithm. Although we only use the proposi-
tion in the case where H is a function space and the mean m
is zero, we provide a proof in the more general case wherem
is an arbitrary element of separable Hilbert space H as this
setting may be of independent interest.

Proposition 3 Let (H, 〈·, ·〉, ‖ · ‖) be a separable Hilbert
space, and let A, B be positive trace-class operators on H.
Assume that A and B share a common complete set of ortho-
normal eigenvectors {ϕ j } j≥1, with the eigenvalues {λ j } j≥1,
{γ j } j≥1 defined by

Aϕ j = λ jϕ j , Bϕ j = γ jϕ j ,

for all j ≥ 1. Assume further that the eigenvalues satisfy

∞∑
j=1

(
λ j

γ j
− 1

)2

< ∞.

Let m ∈ H and define the measures μ = N (m, A) and ν =
N (m, B). Then μ and ν are equivalent, and their Radon–
Nikodym derivative is given by

dμ

dν
(u) =

∞∏
j=1

γ j

λ j
· exp

(
1

2

∞∑
j=1

(
1

γ j
− 1

λ j

)
〈u − m, ϕ j 〉2

)
.

Proof The assumption on summability of the eigenvalues
means that the Feldman–Hájek theorem applies, and so we
know that μ and ν are equivalent. We show that the Radon–
Nikodym derivative is as given above.

Define the product measures μ̂, ν̂ on R
∞ by

μ̂ =
∞∏
j=1

μ̂ j , ν̂ =
∞∏
j=1

ν̂ j ,

where μ̂ j = N (0, λ j ), ν̂ j = N (0, γ j ). As a consequence of a
result of Kakutani, see Prato and Zabczyk (2002) Proposition
1.3.5, we have that μ̂ ∼ ν̂ with

dμ̂

dν̂
(x) =

∞∏
j=1

dμ̂ j

dν̂ j
(x j )

=
∞∏
j=1

γ j

λ j
· exp

(
1

2

∞∑
j=1

(
1

γ j
− 1

λ j

)
x2j

)
.

We associate H with R
∞ via the map G : H → R

∞, given
by

G ju = 〈u, ϕ j 〉, j ≥ 1.

Note that the image of G is �2 ⊆ R
∞, and G : H → �2

is an isomorphism. Since A and B are trace-class, samples
from μ̂ and ν̂ almost surely take values in �2. G−1 is hence
almost surely defined on samples from μ̂ and ν̂. Define the
translation map Tm : H → H by Tmu = u + m. Then by
the Karhunen–Loève theorem, the measures μ and ν can be
expressed as the push forwards

μ = T #
m(G−1)#μ̂, ν = T #

m(G−1)#ν̂.

Now let f : H → R be bounded measurable, then we have

∫
H

f (u) μ(du) =
∫
H

f (u)
[
T #
m(G−1)#μ̂

]
(du)

=
∫
R∞

f (G−1x + m) μ̂(dx)

=
∫
R∞

f (G−1x + m)
dμ̂

dν̂
(x) ν̂(dx)

=
∫
H

f (u)
dμ̂

dν̂
(G(u − m))

[
T #
m(G−1)# ν̂

]
(du)

=
∫
H

f (u)
dμ̂

dν̂
(G(u − m)) ν(du).

From this is follows that we have

dμ

dν
(u) = dμ̂

dν̂
(G(u − m))

=
∞∏
j=1

γ j

λ j
· exp

(
1

2

∞∑
j=1

(
1

γ j
− 1

λ j

)
〈u − m, ϕ j 〉2

)
.

��
Remark 5 The proposition above, in the casem = 0, is given
as Theorem 1.3.7 in Prato and Zabczyk (2002) except that,
there, the factor before the exponential is omitted. This is
because it does not depend on u, and all measures involved
are probabilitymeasures and hence normalized.We retain the
factor as we are interested in the precise value of the deriv-
ative for the MCMC algorithm, in particular its dependence
on the length-scale.
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