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Abstract
We study the inverse problem of estimating a field u“ from data comprising a
finite set of nonlinear functionals of u“, subject to additive noise; we denote
this observed data by y. Our interest is in the reconstruction of piecewise
continuous fields u“ in which the discontinuity set is described by a finite
number of geometric parameters a. Natural applications include groundwater
flow and electrical impedance tomography. We take a Bayesian approach,
placing a prior distribution on u“ and determining the conditional distribution
on u“ given the data y. It is then natural to study maximum a posterior (MAP)
estimators. Recently (Dashti et al 2013 Inverse Problems 29 095017) it has
been shown that MAP estimators can be characterised as minimisers of a
generalised Onsager—Machlup functional, in the case where the prior measure
is a Gaussian random field. We extend this theory to a more general class of
prior distributions which allows for piecewise continuous fields. Specifically,
the prior field is assumed to be piecewise Gaussian with random interfaces
between the different Gaussians defined by a finite number of parameters. We
also make connections with recent work on MAP estimators for linear pro-
blems and possibly non-Gaussian priors (Helin and Burger 2015 Inverse
Problems 31 085009) which employs the notion of Fomin derivative. In
showing applicability of our theory we focus on the groundwater flow and EIT
models, though the theory holds more generally. Numerical experiments are
implemented for the groundwater flow model, demonstrating the feasibility of
determining MAP estimators for these piecewise continuous models, but also
that the geometric formulation can lead to multiple nearby (local) MAP esti-
mators. We relate these MAP estimators to the behaviour of output from
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MCMC samples of the posterior, obtained using a state-of-the-art function
space Metropolis—Hastings method.

Keywords: inverse problems, Bayesian approach, geometric priors, MAP
estimators, EIT, groundwater flow

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Context and literature review

A common inverse problem is that of estimating an unknown function from noisy mea-
surements of a (possibly nonlinear) map applied to the function. Statistical and deterministic
approaches to this problem have been considered extensively. In this paper we focus on the
the study of MAP estimators within the Bayesian approach; these estimators provide a natural
link between deterministic and statistical methods. In the Bayesian formulation, we describe
the solution probabilistically and the distribution of the unknown, given the measurements
and a prior model, is termed the posterior distribution. MAP estimators attempt to work with a
notion of solutions of maximal probability under this posterior distribution and are typically
characterised variationally, linking to deterministic methods.

There are two main approaches taken to the study of the posterior. The first is to
discretise the space, and then apply finite dimensional Bayesian methodology [18]. An
advantage to this approach is the availability of a Lebesgue density and a large amount of
previous work which can then be built upon; but issues may arise (for example computa-
tionally) when the dimension of the discretisation space is increased. An alternative approach
is to apply infinite dimensional methodology directly on the original space, to derive algo-
rithms, and then discretise to implement. This approach has been studied for linear problems
in [12, 25, 27], and more recently for nonlinear problems [10, 21, 22, 33]. It is the latter
approach that we focus on in this paper.

In some situations it may be that point estimates are more desirable, or more computa-
tionally feasible, than the entire posterior distribution. A detailed study of point estimates can
be found in for example [24]. Three different estimates are commonly considered: the pos-
terior mean which minimises % loss, the posterior median which minimises L loss, and
posterior modes which minimise zero-one loss. The former two estimates are unique [28], but
a distribution may possess more than one mode. A consequence of this is that the posterior
mean and median may be misleading in the case of a multi-modal posterior. Posterior modes
are often termed maximum a posteriori (MAP) estimators in the literature.

In this paper we focus on MAP estimation. If the posterior has Lebesgue density p, MAP
estimators are given by the global maxima of p. The problem of MAP estimation in this case
is hence a deterministic variational problem, and has been well-studied [18]. In the infinite-
dimensional setting there is no Lebesgue density, but there has been recent research aimed at
characterising the mode variationally and linking to the classical regularisation techniques
described in, for example, [9] in the case when Gaussian priors are adopted. Non-Gaussian
priors have also been considered in the infinite dimensional setting—in [14] weak MAP
(WMAP) estimators are defined as generalisations of MAP estimators, and a variational
characterisation of them is provided in the case that the forward map is linear, using the
notion of Fomin derivative.
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Figure 1. An example of construction of a piecewise continuous field, using two
continuous fields and two scalar parameters. Here the scalar parameters determine the
points where the interface meets each side of the domain. We work on the space of
continuous fields and parameters, but it is pushforward of these by the construction
map that represents the piecewise continuous field we aim to recover.

In this paper we make a significant extension of the work in [9] to include priors which
are defined by a combination of Gaussian random fields and a finite number of geometric
parameters which define the different domains in which the different random fields apply. We
thereby study the reconstruction of piecewise continuous fields with interfaces defined by a
finite number of parameters. Our motivation for doing so comes from the work in [5], and its
predecessors. In that paper a Bayesian inverse problem for piecewise constant fields, mod-
elling the permeability appearing in a two-phase subsurface flow model, was studied. Such
piecewise continuous fields were also previously studied in a groundwater flow context in
[16], where existence and well-posedness of the posterior distribution were shown. The idea
of single point estimates being misleading is discussed and the existence of multiple local
MAP estimators is shown. We also link our work to that in [14], by characterising the MAP
estimator via the Fomin derivative.

Throughout this paper we focus on two model problems: groundwater flow and electrical
impedance tomography (EIT). Both of these problems are important examples of large scale
inverse problems, with applications of great economic and societal value. MAP estimation in
such problems has been studied previously [2, 4, 17, 31]. However our formulation is quite
general; for brevity we simply illustrate the theory for groundwater flow and EIT, and the
numerics only in the case of groundwater flow.

1.2. Mathematical setting

Let X be a separable Banach space and let A C R¥. X should be thought of as a function space
and A a space of geometric parameters. Given («, a) € X x A, we construct another function
u® € Z, say. Considering the ingredients u and a in the construction of this function u“
separately will be useful in what follows. An example of such a construction is shown in
figure 1.

Suppose we have a (typically nonlinear) forward operator G: X x A — Y, where
Y = R’. If (u, a) denotes the true input to our forward problem, we observe data y € Y given
by

y = Gu, a) + 7,

where 1 ~ N (0, ), I' € R’*/ positive definite, is some centred Gaussian noise on Y.
Modelling everything probabilistically, we build up the joint distribution of (u, a, y) by
specifying a prior distribution 1, X v on (u, a) and an independent noise model on 7. We are
then interested in the posterior 4 on (u, @) given y. Denote |-| the Euclidean norm on R/, and
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Figure 2. Possible sets A; corresponding to example 2.1.
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Figure 3. Possible sets A;, corresponding to example 2.2.
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Figure 4. Possible sets A;, corresponding to example 2.3 in the case p = 1/2.

for any positive definite A € R’*/ denote || == |A"!/2 - | the weighted norm on R’. Under
certain conditions, using a form of Bayes’ theorem, we may write x in the form

p(du, da) o exp(% |G(u, a) — yl%)uo(du)z/o(da).

The modes of the posterior distribution, termed MAP estimators, can be considered ‘best
guesses’ for the state (u, a) given the data y. We now state rigorously what we mean by a
MAP estimator for i, as in [9]. Given (, a) € X x A, denote by B’ (u, a) the ball of radius

6 centred at (u, a).

Definition 1.1

u®, a®) = argmax p(B®(u, a)).

(u,a)eXx A

(MAP estimator). For each § > 0, define
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Figure 5. Possible sets A;, corresponding to example 2.4 in the case K = 11, N = 6.

Any point (i, a) € X x A satisfying

B D)
o0 (B, a%))

is called a MAP estimator for the measure pu.

If this definition is applied to probability measures defined via a Lebesgue density, MAP
estimators coincide with maxima of this density. Here we extend the notion to the study of
piecewise continuous fields.

1.3. Our contribution
The primary contributions of the paper are fourfold:

(i) We develop the MAP estimator theory for infinite dimensional geometric inverse
problems involving discontinuous fields, building on theory in both of the recent papers
[9, 14], and opening up new avenues for the study of MAP estimators in infinite
dimensional inverse problems.

(i1) We explicitly link MAP estimation for these geometric inverse problems to a variational
Onsager—Machlup minimisation problem.

(iii) We show that the theory applies to the groundwater flow model as in [16] and we show
that the theory applies to the EIT problem as in [11].

(iv) We implement numerical experiments for the groundwater flow model and demonstrate
the feasibility of computing (local) MAP estimators within the geometric formulation,
but also show that they can lead to multiple nearby solutions. We relate these multiple
MAP estimators to the behaviour of output from MCMC to probe the posterior.

1.4. Structure of the paper

* In section 2 we describe the forward maps associated with the groundwater flow and EIT
problems, and show that they have the appropriate regularity needed in sections 4-5.

* In section 3 we describe the choice of, and assumptions upon, the prior distribution whose
samples comprise piecewise Gaussian random fields with random interfaces.

* In section 4 we show existence and uniqueness of the posterior distribution.

* In section 5 we define MAP estimators and prove their equivalence to minimisers of an
appropriate Onsager—Machlup functional.

* In section 6 we present numerics for the groundwater flow problem. We consider three
different prior models and investigate maximisers of the posterior distribution.

¢ In section 7 we conclude and outline possible future work in the area.

5
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€

Figure 6. An example domain D, with attached electrodes (¢;)~_,, for the EIT problem.

2. The forward problem

We consider two model problems. Our first problem (groundwater flow) is that of deter-
mining the piecewise continuous permeability of a medium, given noisy measurements of
water pressure (or hydraulic head) within it. The second problem (EIT) is determination of
the piecewise continuous conductivity within a body from boundary voltage measurements.

In what follows, the finite dimensional space A will be a space of geometric parameters
defining the interfaces between different media, and X will be a product of function spaces
defining the values of the permeabilities /conductivities between the interfaces.

We begin in section 2.1 by defining the construction map (u, a) — u® for the piecewise
continuous fields. In sections 2.2 and 2.3 we describe the models for groundwater flow and
EIT respectively, and prove regularity properties of the resulting forward maps; these prop-
erties are required for our subsequent theory.

2.1. Defining the interfaces

Let D C R? be the domain of interest and let A C R¥ be the space of geometric parameters.
Take a collection of set-valued maps A; : A — B(D), i = 1,..., N such that for eacha € A
we have

N
Ai(a) =D, Ai(a) () Aj(a) = @ifi=].
i=1

i=
We assume that each map A; is continuous in the sense that

la — bl — 0 = |4;(a) AA; (b)| — 0,

where A denotes the symmetric difference:

AAB = (A\B) | (B\A).

Let X = C%(D; RY). Given u = (uy,...,uy) € X and a € A we define the function
u € L*(D) by
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N
u* = F(u, a) = Z uily, - 2.1
i=1
Where F : X x A — L% (D) is the construction map.
We give four examples of the functions A; and the sets/interfaces they define.

Example 2.1. Let D = [0, 11>, A = [0, 1]?> and N = 2. We specify points a and b on
either side of the square D and join them with a straight line. We then let A, (a, b) be the
region of D below this line and A, (a, b) = D\A(a, b). Example sets Aa, b) for various
parameters a, b are shown in figure 2.

Example 2.2. Let D =1[0, 11>, A =10, 11> and N =2. Choose a continuous map
H: A — L*([0, 1]) such that H (a, b)(0) = a and H (a, b)(1) = b for all (a, b) € A. Let
Aj(a, b) be the region of D beneath the graph of the curve H(a, b) and let
Ay (a, b) = D\A((a, b). This setup includes the previous example:
H(a, b)(x) = a + (b — a)x defines the appropriate straight lines.

The continuity of A; and A, can be seen by noting that

|A; (a1, b)) AA (az, by)| = |As (a1, b)) AA; (az, b))

1
< j; |H (a1, b)(x) — H(az, by)(x)] dx
< ||H (a1, by) — H (a2, by)||o

and using the continuity of H into L>* ([0, 1]).
For example, one may take H to be given by

H(a, by(x) =a + (b — a)x + xsin(6mx)/10

which can be seen to be continuous into L>*([0, 1]). Example sets A{a, b) for various
parameters a, b, with this choice of H, are shown in figure 4.

Example 2.3. We can generalise the previous example to allow the inclusion of a fault. Let
D=10, 1>, A=1[0, 1> x [—1,1] and N =2. Let p € (0, 1) denote the horizontal
location of the fault. Given H : [0, 1]*> — L>([0, 1]) as in the previous example, define
H: A — L>([0, 1]) by

H(a, b)(x) x € [0, p]

H(a, b, 0)(x) = {C + H(a, b)(x) x € (p, 1]

so that the parameter ¢ determines the (signed) magnitude of the fault. Defining the sets
Ai(a, b, ¢) and A, (a, b, c¢) as the regions of D beneath and above the curve H(a, b, ¢)
respectively, the continuity can be seen in a similar manner to the previous example. Example
sets A;(a, b, c¢) for various parameters a, b, ¢ are shown in figure 3.

Example 2.4. Again working with D = [0, 1], but with a much larger parameter space,
one could also select points at specific x-coordinates and linearly interpolate between them.
Fix K, N € N and set A = ZX | C [0, 1]¥ D*K where Zy_, is the simplex

ENfl = {(yl,.--,nyl) € [O, 1]N71 | 0 < M1 S <y1v71 < 1}
Then given a € A, define the functions f;(a),i = 1,...,N — 1, to be the linear interpolation of

. K
the points (Ij(;ll, a,-j) .Aia),i =1,...,N — 1, is then defined to be the region between the
- =1

7
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graphs of the functions fi(a) and f,_, (a), and Ay (a) = D\ U[N:_ll A, (a). Example sets Aja)
for various parameters a are shown in figure 5.
In order to see the continuity of these maps, we first partition the domain into strips D;,

L .
J <x<—L b -1 k-1
K— 1 K— 1

Dj—{(x, yeD

so that we have
K1
Ai(a) = JAi(@) M D
j=1
It follows from properties of the symmetric difference that

K-1
[Ai (@ AA; (D)| < 1A (@) () DYAMA; () M D).

j=1

It hence suffices to show that the maps A;(-) M D; are continuous for all i, j. This follows
from the same argument as in example 2.2, for sufficiently small |a — b|.

2.2. The Darcy model for groundwater flow

We consider the Darcy model for groundwater flow on a domain D C R, d = 1, 2, 3. Let
k = (x;) denote the permeability tensor of the medium, p the pressure of the water, and
assume the viscosity of the water is constant. Darcy’s law [8] tells us that the velocity is
proportional to the gradient of the pressure:

v=—rVp.
Additionally, a local form of mass conservation tells us that
V-v=f.

Combining these two equations, and imposing Dirichlet boundary conditions for simplicity,
results in the PDE

-V - (kVp)=f inD
p=2g on dD.

This is the PDE we will consider in the forward model, and it gives rise to a solution
map K +— p.

For simplicity we will work in the case where « is an isotropic (scalar) permeability,
bounded above and below by positive constants, and so it can be represented as the image of
some bounded function under a positive continuously differentiable map o : R — R™.

Let V = H'(D), the Sobolev space of once weakly differentiable functions on D [13].
Then given f € H (D), g € H'/?(0D),u € X anda € A, define Pua € V to be the solution
of the weak form of the PDE

{—v (cw)Vp,,)=f inD

2.2
Pa =28 on OD. (2-2)

We are first interested in the regularity of the map R : X x A — V given by R(u, a) = p, .

We first recall what it means for p, , to be a solution of (2.2). Since g € H'/2(0D), by the
trace theorem [13] there exists G € V such that tr(G) = g. The solution p, , of (2.2) is then

given by p,, = q,, + G, where g, , € Hy (D) solves the PDE

8
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V- (0WYVg, ) =f+ V- (@w)VG) inD
qu,a =0 on OD.

(2.3)

The following lemma tells us that the map R is well defined and has certain regularity
properties. Its proof is given in the appendix.
Lemma 2.5. The map R : X x A — V is well-defined and satisfies:
(i) for each (u, a) € X x A,
IR, a)llv < (Ifllv+ + llo @< IGllv)/kmin (@, @) + [[Gllv,
where Ky, (U, a) is given by

Kmin (1, @) = essinf o (u?(x)) > 0;
xeD

(ii) for each a € A, R(-,a) : X — V is locally Lipschitz continuous, i.e. for every r > 0
there exists L(r) > 0 such that, for allu, v € X with||ullx, |v|x < randalla € A, we
have

IR, a) = R(v, @)lly <L) [u— vlx:

(iii) for each u € X, R(u, -) : A — V is continuous.

We now choose a continuous linear observation operator £ : V — R’. For example,
writing £ = (4, ...,%;), we could take

1 >
(p) = [ ———e-lx—Pr2e | =
ti(p) fD Qe p(dx, i=1,....J (2.4)

for some € > 0, so that ¢; approximates a point observation at the point x; € D. Our forward
operator G: X x A — R’ is then defined by G = £ o R, so that it can be written as the
composition

u, a) — u— k=oc* — p— {(p).
From the above regularity of R we can deduce the following regularity properties of our
forward operator G:
Proposition 2.6. Define the map G : X x A — R’ as above. Then G satisfies

(i) For eachr > 0 and u, v € X with ||lu|x, ||v|x < r, there exists C(r) > 0 such that for
all a € A,

G, a) — G, a)] < C(r)|[u — v|x.

(ii) For each u € X, the map G(u, -) : A — R’ is continuous.

Proof.

(i) The map ¢ is defined to be a continuous linear functional, and so in particular is Lipschitz.
Since we have G = ¢ o R the result follows from lemma 2.5(ii).
(ii) This follows from the continuity of ¢ and lemma 2.5(iii). (Il
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2.3. The complete electrode model (CEM) for EIT

EIT is an imaging technique that aims to make inference about the internal conductivity of a
body from surface voltage measurements. Electrodes are attached to the surface of the body,
current is injected, and the resulting voltages on the electrodes are measured. Applications
include both medical imaging, where the aim is to non-invasively detect internal abnormal-
ities within a human patient, and subsurface imaging, where material properties of the sub-
surface are differentiated via their conductivities. Early references include [15] in the context
of medical imaging and [20] in the context of subsurface imaging.

The CEM is proposed for the forward model in [32], and shown to agree with exper-
imental data up to measurement precision. In its strong form, the PDE reads

(V- (k()Vv(x)=0 xe€D

f W ds = I=1,..,L
e 671
L 25
@@ =0 xe oD\ Ue )
on I=1

v(x) + Z]Ii(x)g—v(x) =V, x€e¢,l=1,...,L.
n

The domain D represents the body, and (¢;)-; C OD the electrodes attached to its
surface with corresponding contact impedances (z;)-_ ;. Figure 6 shows an example domain
and attached electrodes. A current /; is injected into each electrode ¢;, and a voltage mea-
surement V; made. Here x represents the conductivity of the body, and v the potential within
it. Note that the solution comprises both a function v € H'(D) and a vector (VZ)IL:1 € RE of
boundary voltage measurements.

A corresponding weak form exists, and is shown to have a unique solution (up to
constants) given appropriate conditions on &, (z)~, and ()L ,—see [32] for details.
Moreover, under some additional assumptions, the mapping  — (V;)-, is known to be
Fréchet differentiable when we equip the conductivity space with the supremum norm [17].

We can apply different current stimulation patterns to the electrodes to yield additional
information. Assume that we have M different (linearly independent) current stimulation
patterns (I*)M_,. This yields M different mappings s — (V™) each with the regularity
above, or equivalently a mapping x — V where V € R’ with J = LM.

Analogously to the Darcy model case, we will consider isotropic conductivities of the
form x = o (1), where o : R — R™ is positive and continuously differentiable. Our forward
operator G: X x A — R’, is then given by the composition

(W, a) = u® — k= o @) — (0, V), (W, VD)) s (v, VD),

We show in the appendix that the map defined in this way has the same regularity as the map
corresponding to the Darcy model.

Proposition 2.7. Define the map G : X x A — R’ as above. Then G satisfies

(i) For eachr > 0 and u, v € X with ||u|x, ||v|x < r, there exists C(r) > O such that for
all a € A,

IG(u, a) — G(v, a)| < C(r)|lu — V|x.

(ii) For each u € X, the map G(u, -) : A — R’ is continuous.

10
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3. Onsager—Machlup functionals and prior modelling

In this section we recall the definition of an Onsager—Machlup functional for a measure which
is equivalent’ to a Gaussian measure. We then introduce the prior measures that we will
consider, first on the function space X, then the geometric parameter space A, and finally the
product space X x A. We conclude the section by extending the definition of Onsager—
Machlup functional so that it is appropriate for the measures we consider here, supported on
fields and geometric parameters which are combined to make piecewise continuous functions.

3.1. Onsager—-Machlup functionals

The Onsager—Machlup functional of a measure is the negative logarithm of its Lebesgue
density when such a density exists, and otherwise can be thought of analogously. We start by
defining it precisely for measures defined via density with respect to a Gaussian, allowing for
infinite dimensional spaces on which Lebesgue measure is not defined. Suppose that i is a
measure equivalent to a Gaussian measure t,. Then the Onsager-Machlup functional for . is
defined as follows.

Definition 3.1 (Onsager-Machlup functional I). Let iz be a measure on a Banach space Z
which is equivalent to 1, where p1, is a Gaussian measure on Z with Cameron—Martin space
E. Let B®(z) denote the ball of radius & centred at z € Z. A functional I : Z — R is called the
Onsager—Machlup functional for p if, for each x, y € E,

. B®

i L) _

810 (B°(y))
and I (x) = oo forx € E.

exp (I (y) — I (x))

Remarks 3.2.

(i) The Onsager—Machlup functional is only defined up to addition of a constant.

(i) If Z is finite dimensional and g admits a positive Lebesgue density p, then
I(x) = —logp(x) for all x € Z. In light of the previous remark, this is true even if p
is not normalised.

(iii) Let Z = R” be finite dimensional, and let i1, = N (0, X) be a Gaussian measure on Z. Let
I' € R™*™ be a positive-definite matrix, A € R"*" and y € R™. Define u by

du ( 1 2)
—(x) xexp| —— |[Ax —
duo() p 2| yIr

so that
d/,l/ 1 2 1 2 )
—(x) x exp| —— |Ax — — = Ixls
0o ox exp( -3 x5 - 3 bR
Then by the previous remark, the Onsager—Machlup functional for p is given by
1 2 10
I1(x) = — |Ax — + — |x
(x) 5 | yIr 2 |x[s

for all x € Z, which is a Tikhonov regularised least squares functional.

2 Two measures v, it on a measurable space (M, M) are equivalent if v(A) =0 if and only if u(A) =0,
for A € M.
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(iv) The preceding example (iii) may be extended to an infinite dimensional setting. Let Z be
a separable Banach space, and let 1, = N (0, Cp) be a Gaussian measure on Z with
Cameron-Martin space (E, (-, )g, ||'|[g). Let T' € R"*™ be a positive-definite matrix,
A : X — R™ a bounded linear operator and y € R™. Define u by

du ( 1 2)
—(x) x exp| —— |Ax — .
duo() Pl—3 | yIr

Then theorem 3.2 in [9] tells us that the Onsager—Machlup functional for x is given by

1 1
I1(x) = = |Ax — y|2 + = ||x||%.
() 2| vl 2||HE

(iv) In this paper, the posterior distribution will be a measure on the product space
Z = X x A. The prior distribution will be an independent product of a Gaussian on X
and a compactly supported measure on A. Due to the assumption of compact support, the
prior will not be equivalent to a Gaussian measure on Z and so the above definition does
not apply; we provide a suitable extension to the definition in section 3.4.

As we are taking a Bayesian approach to the inverse problem, we incorporate our prior
beliefs about the permeability /conductivity into the model via probability measures on X and
A. We will combine these into a prior measure on the product space X x A. We equip this
space with any (complete) norm ||(-,-)|| such that if ||(, a)|| — 0, then |lu|lx — O
and |a| — 0.

3.2. Priors for the fields

We wish to put priors on the fields u;,...,uy € C°(D). We use independent Gaussian mea-
sures u; ~ uf) := N (m;, C;), where the means m; € C°(D), and each covariance operator
Ci: CO(D) — C%(D) is trace-class and positive definite. It follows that the vector
(g, ...tty) ~ py X ... X py =t 1 is Gaussian on X:

N
Lo = N(m, @Ci],
i=1

where m = (my, ...,my) € X. If E; denotes the Cameron—Martin space [10] of ug, then that of
Ho 1s given by

with inner product given by the sum of those of its component spaces.
The Onsager—Machlup functional of 1, is known to be given by

1
) = EHu—mH%u—meE
00 u—m¢e¢eE.

This can be seen, for example, as a consequence of proposition 18.3 in [26].

Remark 3.3. We may assume that the different fields are correlated under the prior, so long
as fi, remains Gaussian on X—this does not affect any of the following theory. Allowing
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correlations between the fields and the geometric parameters under the prior is a more
technical issue however, and so we will assume that these are independent.

Example 3.4. Define the negative Laplacian with Neumann boundary conditions as follows:
A=—-A, DA = {u € H2(D)| % = 0 on OD, f u(x)dx = O}.
v D

Then A is invertible. We can define C; = A~%, where each o; > d/2. Then each C; is trace-
class and positive definite, and samples from each ,ug will be almost surely continuous and so
{1 can be considered as a Gaussian measure on X. Moreover, regularity of the samples will
increase as «; increases, see [10] for details.

3.3. Priors for the geometric parameters

We also want to put a prior measure on the geometric parameters, i.e. we want to choose a
probability measure on A. Since A C R¥ the analysis is more straightforward than the infinite
dimensional case. Let v be a probability measure on A with compact support § C A. We
assume v is absolutely continuous with respect to the Lebesgue measure and that its density p
is continuous on S. Despite being defined on a finite dimensional space, the measure v is not
necessarily equivalent to the Lebesgue measure on the whole of R¥ and so the previous
definition of Onsager—Machlup functional does not apply. We hence must formulate a new
definition for this case.

Since p > 0 on int(S), we can use the continuity of p to calculate the limits of ratios of
small ball probabilities for v on int(S). Let a;, a, € int(S), then

510 v(B%(az)) 610 f p(a)da

B (ar)
1
—— |  p(a)da
— lim 'Béi“‘)' B (@)
510
| BY(ay) | B (a5) p(a)da
_ pla)
p(az)

=exp (log p(ar) — log p(ay)).

If either a; or a, lie outside of S the limit can be seen to be 0 or oo respectively. It hence
makes sense to define the Onsager-Machlup functional for ~ on A\JS as

K(a) = {logp(a) a € int(S)
aé¢s.
For a € 0§, we define K(a) to be the limit of K from the interior:
K@) = — gim logp(b) a € 0S
—da

beint(S)

which is well defined due to the continuity of p on int(S). K is then continuous on the whole
of S.
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Remark 3.5. If we were to define K on JS in the same way that we defined it on A\(’)S , K
would have a positive jump at the boundary related to the geometry of S. This would mean
that K was not lower semi-continuous on S which would cause problems when seeking
minimisers. The definition we have chosen is appropriate: if any minimising sequence
(an)n>1 C int(S) of K has an accumulation point on 95, then v has a mode at that point.

If we have no prior knowledge about the interfaces and A is compact, we could place a
uniform prior on the whole of A. Otherwise we could either choose a prior with smaller
support, or one that weights certain areas more than others.

3.4. Priors on X x A

We assume that the priors on the fields and the geometric parameters are independent, so that
we may take the product measure i, X vy as our prior on X X A. Note that if
F : X x A — L*°(D) denotes the construction map (u, a) — u“ defined earlier by (2.1), then
our prior permeability /conductivity distribution on L*(D) is given by the pushforward’
,u§ = F# (t49 X ). This is much more cumbersome to deal with however, since for example
L> (D) is not separable. It is for this reason we incorporate the mapping F into the forward
map G. Assuming now that the prior p, X v is as described above, we can define the
Onsager—Machlup functional for measures ;2 on X x A which are equivalent to p, X vy.

Definition 3.6 (Onsager—-Machlup functional IT). Let 1 be a measure on X x A equivalent
to iy X vo, where pi, and 1 satisfy the assumptions detailed above. Let B?(u, a) denote the
ball of radius § centred at (u, a) € X x A. A functional 7 : X x A — R is called the
Onsager—Machlup functional for p if,

(i) for each (u, a), (v, b) € E x int(S),

i AW, @)
810 (B (v, b))

=expU (v, b) — I(u, a));
(ii) for each (u, a) € E x 0OS,

I1(u, a) = gim I(u, b);
beint(S)

(iii) I (u, a) = oo foru ¢ E ora & S.

4. Likelihood and posterior distribution

We return to the abstract setting mentioned in the introduction. Let X be a separable Banach
space, A C R¥ and Y = R’. Suppose we have a forward operator G: X x A — Y. If (u, a)
denotes the true input to our forward problem, we observe data y € Y given by

3 Given a measurable map F : (X, X) — (Y, )) between two measurable spaces, the pushforward of a measure 1
on X is the measure F#y, on Y defined by (F#1)(A) = p(F~'(A)) for A € Y. If a random variable u on X has law p,
then the random variable F () on Y has law F#.
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y = Gu, a) + 7,

where  ~ Qg == N (0, I), ' € R’*/ positive definite, is Gaussian noise on Y independent of
the prior.

It is clear that we have y|(u, a) ~ Q,, == N(G(u, a), I'). We can use this to formally
find the distribution of (u, a)|y. First note that

1

Qualdy) = GXP(—<I>(u, a;y) + > Iyl%)@o(dy),

where the potential (or negative log-likelihood) ® : X x A X Y — R is given by
1

P, a3 y) = 5 19w, @) = ¥l 4.1
Hence under suitable regularity conditions, Bayes’ theorem tells us that the distribution y of
(u, a)|y satisfies

p(du, da) o exp (—®(u, a; y)) o (dw)vo(da)
after absorbing the exp (% | yl%) term into the normalisation constant.

We now make this statement rigorous. To keep the situation general, we do not insist that
® takes the form (4.1), and instead assert only that ® satisfies the following assumptions.
Assumptions 4.1. There exists X’ x A’ C X x A such that

(i) for every ¢ > O there is an M;(¢) € R such that for all u € X’ and all a € A’

S, a3 y) > My () — ¢ |Jul};

(ii) for each u € X’ and y € Y, the potential ®(u, -; y) : A’ — R is continuous;

(iii) there exists a strictly positive M, : RT x RT x RT — R monotonic non-decreasing
separately in each argument, such that foreachr > 0,u € X’ anda € A’,and y;, y, € Y
with [y,], [yl < .

[P, a; y) — P(u, a; y,)| < My(r, ||ullx, laDly, — yl:

(iv) there exists a strictly positive Mz : Rt x A x ¥ — R*, continuous in its second
component, such that for each r >0, a € A’ and y €Y, and u, up € X' with
llarllxs ezl <

1P (uy, a3 y) — P(ua, a; y)| < Ms(r, a, y)|juy — uz||x.

These assumptions are used in the proof of existence and well-posedness of the posterior
distribution, which is given in the appendix:

Theorem 4.2 (Existence and well-posedness). Ler assumptions 4.1 hold. Assume that
(g x 19)X' x A) =1, and that (1, x vo)((X' x A') N B) > 0 for some bounded set
B C X x A. Then

(i) @ is py X vy X Qp-measurable;
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(ii) for each y € Y, Z (y) given by
20y = [ exp(=0u, a; 3)) o (du)vo (da)
XxA

is positive and finite, and so the probability measure p”,

, 1
p* (du, da) = Z0) exp(—P(u, a; y)) o (du)vy(da) (4.2)
is well-defined.
(iii) Assume additionally that, for every fixed r > 0, there exists ¢ > 0 with

exp(e |lul3) (1 + My(r, |jullx, la)® € L! ., (X x A; R).

HoX Vo

Then there is C(r) > 0 such that for all y, y' € Y with |y|, |y'| < r,

dyen (¥, 1) < Cly — /|

Remark 4.3. In this paper we are focused on the case when the field prior i, is taken to be
Gaussian. However, the above existence and well-posedness result still holds if, for example,
fto 1s taken to be Besov rather than Gaussian, since a Fernique-type theorem holds for such
priors [10, 23].

We show that for both choices of test models, the potential (4.1) satisfies assump-
tions 4.1:

Proposition 4.4. Let X = CO(D; RN), and let G: X x A — Y denote the forward map
corresponding to either the groundwater flow or EIT problem, as detailed in section 2. Let
y € Y and let T' € R'* be positive definite. Define the potential ® : X x A x Y — R by

1
P, a;y) = 5 G, a) — ylf.
Then & satisfies assumptions 4.1, with X' x A" =X x A.

Proof.

(1) ® > 0 so this is true with M; = 0.

(ii)) Fixu € X' and y € Y. Propositions 2.6 and 2.7 tell us that G(u, -) is continuous for either
choice of test model. The map z — |z — y|> is continuous, and so ®(u, -;y) is
continuous too.

(iii) A consequence of propositions 2.6 and 2.7 is that foreachu € X anda € A, G(u, a) can
be bounded in terms of ||u||y and |a|. The result then follows from the local Lipschitz
property of the map y — |y|2.

(iv) Propositions 2.6 and 2.7 tell us that G(-, a) is locally Lipschitz for either choice of test
model. The map z — |z — y[? is locally Lipschitz, and hence we conclude that ®(-, a; y)
is locally Lipschitz, with Lipschitz constant independent of a. g

With a choice of prior as described in section 3, we can therefore apply theorem 4.2 in
the cases where the forward map is one of the two described in section 2 and the observational
noise is Gaussian. In this case, the constant M, (r, ||u||x, |a|) appearing in assumptions 4.1(iii)
is independent of ||u||x and |a|, and so the integrability condition (iii) in theorem 4.2 always

16
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holds via Fernique’s theorem. The condition on positivity of a bounded set can be seen by
taking, for example, B = B'(0) x S, where S is the (compact) support of v.

5. MAP estimators

In section 5.1 we characterise the MAP estimators for the posterior  in terms of the Onsager—
Machlup functional for p. In section 5.2 we relate this Onsager—Machlup functional to the
Fomin derivative of u, with reference to the work [14].

5.1. MAP estimators and the Onsager—Machlup functional

Throughout this section we assume that 4 is given by (4.2). Furthermore we assume that y,
has mean zero for simplicity. Additionally, when we assume that assumptions 4.1 hold, we
will assume that X’ x A’ = X x A.

Suppressing the dependence of  on the data y since it is not relevant in the sequel, we
define the functional 7 : X x A — R by

I(u,a) =®Ww, a) +J (W) + K(a), 6.1

where J, K are as defined in sections 3.2 and 3.3 respectively. In this section we attain the
following three results concerning I and p, which are proved in the appendix.

Theorem 5.1. Let assumptions 4.1 hold. Then the function I defined by (5.1) is the
Onsager—Machlup functional for u, where the Onsager—Machlup functional is as defined in
definition 3.6.

Theorem 5.2. Let assumptions 4.1 hold. Then there exists (i, a) € E x S such that
1(#, a) = inf{I (u, a)|lu € E, a € S}.

Furthermore, if (u,, a,),>1 is a minimising sequence satisfying I (u,, a,) — I (i, a), then
there is a subsequence (u,,, a,, >1 converging to (it, a) (strongly) in E x §.

Theorem 5.3. Let assumptions 4.1 hold. Assume also that there exists an M € R such that
D(u, a) = M for any (u, a) € X x A.

(i) Let (u®, a®) = argmax p(B®(u, a)). There is a (i, @) € E x S and a subsequence of
(u,a)EXx A
W®, a®)s=o which converges to (ii, a) strongly in X x A.
(ii) The limit (i1, @) is a MAP estimator and minimiser of I.

A consequence of theorem 5.3 is that, under its assumptions, MAP estimators and
minimisers of the Onsager—Machlup functional are equivalent. The proof of this corollary is
identical to that of corollary 3.10 in [9]:

Corollary 5.4. Under the conditions of theorem 5.3 we have the following.

(i) Any MAP estimator minimises the Onsager—Machlup functional I.
(ii) Any (u*, a*) € E x S which minimises the Onsager-Machlup functional I is a MAP
estimator for the measure o given by (4.2).
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5.2. The Fomin derivative approach

In recent work of Helin and Burger [14], the concept of MAP estimators was generalised to
wMAP estimators using the notion of Fomin differentiability of measures. The definition of
wMAP estimators is such that if i is a MAP estimator then it is a wMAP estimator, but not
necessarily vice versa. Under certain assumptions, they show that wMAP estimators are
equivalent to minimisers of a particular functional. The assumptions do not hold in our case,
since our forward map is nonlinear and our prior j, X vy is not necessarily convex, however
the functional agrees with our objective functional /. Thus in what follows we provide a link
between the Fomin derivative of the posterior i+ and our objective functional 1.

The Fomin derivative of a measure on a Banach space X equipped with its Borel o-
algebra B(X) is defined as follows.

Definition 5.5. A measure A on X is called Fomin differentiable along the vector z € X if,
for every set A € B(X), there exists a finite limit

AA + 12) — A(A)
t

The Radon—Nikodym density of d,A with respect to A is denoted ﬁ?, and is called the
logarithmic derivative of A along z.

d. A (A) = lim
t—0

Example 5.6.

(i) Let v, be a measure on R* with Lebesgue density p, supported and continuously
differentiable on § C R¥. Then for any a € int(S) and b € R¥ we have

Vp(a)
p(a)

p(a) = b = Oylog p(a).

(ii) Let p, be a Gaussian measure on a Banach space X with Cameron—Martin space
(E, {~,-)g). Then for any u € X and h € E we have

Zu(u) = —<1/l, h)E

This follows from the Cameron—Martin and dominated convergence theorems.
(iii) Again using the Cameron—Martin and dominated convergence theorems, we see that with
v and p, as above, for any (u, a) € X x int(S) and (h, b) € E x Rk,

HoX V) Ak
By @, @) = B;° + B

We can use the above example to characterise the Fomin derivative of our posterior
distribution p, given by (4.2).

Theorem 5.7. Assume that ® : X x A — R is bounded measurable with uniformly
bounded derivative, and assume that p is continuously differentiable on S. Then for each
(u, a) € X x int(S) and (h, b) € E x Rk, we have

55’,1;) (u, a) =— Opp® W, a) — (u, k) + Oplogp(a)
= — a(h,b)l(u, Cl).

Therefore, (il, @) is a critical point of I if and only ifﬁé”h’b) (@, @) = O forall (h, b) € E x Rk,
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Proof. We use result (2.1.13) from [3], which tells us that if ) is a measure differentiable
along z and fis a bounded measurable function with uniformly bounded partial derivative J,f,
then the measure f - A is differentiable along % as well and

d.(f-N) =0f A+ f-d\

We apply this result with A = 1, X v, f = exp(—®)/Z and z = (u, a). Note that f satisfies
the assumptions of (2.1.13) due to the assumptions on ®. The result then follows using
example 5.6 (iii) above. O

6. Numerical experiments

In this section we perform some numerical experiments related to the theory above for a
variety of geometric models, in the case of the groundwater flow forward map introduced in
section 2.2. We both compute minimisers of the relevant Onsager—Machlup functional (i.e.
MAP estimators), and we sample the posterior distribution using a state-of-the-art function
space Metropolis—Hastings MCMC method. We then relate the samples to the MAP esti-
mators. From these numerical experiments we observe the following behaviour of the pos-
terior distribution.

(1) The posterior distribution can be highly multi-modal, especially when the parameterised
geometry is non-trivial. This is evident from the sensitivity of the minimisation of the
objective functional on its initial state, and the behaviour of MCMC chains initiallised at
these calculated minimisers.

(i) When the geometry is incorrect the fields attempt to compensate, which presumably
contributes to the existence of multiple local minimisers of the objective functional; this
occurs in both the MAP estimation and the MCMC samples. A consequence is that many
of the local minimisers lack the desired sharp interfaces. These minimisers could
however be used to suggest more appropriate geometric parameters for the initialisation.

(iii) The mixing rates of MCMC chains have a strong dependence upon which local
minimiser they are initialised at: acceptance rates can vary wildly when the initial state is
changed but all other parameters are kept fixed. This provides some insight into the shape
of the posterior distribution.

(iv) Though often there are many local minimisers, they can be separated into classes of
minimisers sharing similar characteristics, such as close geometry. MCMC chains
typically tend to stay within these classes, which can be observed by monitoring the
closest local minimiser to an MCMC chain’s state at each step. This suggests that the
posterior can possess several clusters of nearby modes.

One conclusion we can draw from the above points is that there are often many different
geometries that are consistent with the data. This is not necessarily an effect of noise on the
measurements, and the effect may persist as the noise level goes to zero, since it is unknown if
these geometric parameters are uniquely identifiable in general.

6.1. Test models

We consider three different geometric models: a two parameter, two layer model; a five
parameter, three layer model with fault; and a five parameter channelised model.

In what follows, as in example 3.4, we define the negative Laplacian with Neumann
boundary conditions:
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Figure 7. The definition of the geometric parameters a = (a!, a®) in model 1.

Figure 8. The definition of the geometric parameters a = (a', a?, a

model 2.

3,a% ad®) in

A=—A, DA) = {uGHZ(D)|%—00n 8D,fu(x)dx—0}.
dv D

Recall that if u ~ N (0, A~%) with a > d/2, then u is almost surely continuous [10].

6.1.1. Model 1 (two layer). This model is described in example 2.1. The geometric

parameters a = (a', a?) are defined as in figure 7. For simulations, we use the choice of prior
IU’O = N(ls A71'4) X N(_I’ A71.8)7
vo =U([0, 1) x U ([0, 1]).

20
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Figure 9. The definition of the geometric parameters a = (a', a?, a’, a*, @’) in

model 3.

,a

Table 1. The relative error on the data, when each measurement is perturbed by an
instance of N (0, 0.012) noise.

Model number Mean relative error (%) Range of relative errors (%)

1 0.5 0.02-3.5
0.9 0.1-4.0
3 0.3 0.1-1.0

6.1.2. Model 2 (three layer with fault). This model is described in [16], where it is labelled test
model 1. The geometric parameters a = (a', a2, a®, a*, a°) are defined as in figure 8, with the

fault occurring at x = 0.55. For simulations, we use the choice of prior

fo=N(2,24714) x N(0, A18) x N(=2,24 14,
vo=U(S) x U(S) x U([-0.3, 0.3]),

where S C [0, 1]? is the simplex S = {(x, ) |0 < x < 1, x <y < 1}.

6.1.3. Model 3 (channel). This model is described in [16], where it is labelled fest model 2.
The geometric parameters a = (a', a?, a’, a*, @°) are defined as in figure 9. Here
a', a?, a®, a*, @’ represent the channel amplitude, frequency, angle, initial point and width

respectively. For simulations, we use the choice of prior
po=N(1, A1) x N(—1, A7),
vo=U([0, 1) x U([m, 4r]) x U([—m/4, =/4]) x U([0, 11) x U([0, 0.4]).

For each model, we fix a true permeability (u', a’) as a draw from the corresponding
prior distribution, generated on a mesh of 256> points. For the forward model, we take the
coefficient map o (-) = exp(-). We observe the pressure on a grid (x;)?>, of 25 uniformly

spaced points, via the maps (2.4) with ¢ = 0.05. We add i.i.d. Gaussian noise N (0, 7?) to
each observation, taking v = 0.01. The resulting relative errors on the data can be seen in

21
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table 1. Small relative errors of this size typically make the posterior distribution hard to
sample as they lead to measure concentration phenomena; MAP estimation can thus be
particularly important.

6.2. MAP estimation

Based on the theory in section 5, we can calculate MAP estimators by minimising the
Onsager—Machlup functional for the posterior distribution. We compute local minimisers of
the Onsager—Machlup functional using the following iterative alternating method.

Algorithm 6.1.

(1) Choose an initial state (ug, ag) € X x A.

(2) Update the geometric parameters simultaneously using the Nelder—Mead algorithm.

(3) Update each field individually using a line-search in the direction provided by the Gauss—
Newton algorithm.

4) Goto 2.

The Nelder—Mead and Gauss—Newton algorithms are discussed in [30], in sections 9.5
and 10.3 respectively. Since we do not update the fields and geometric parameters simulta-
neously, it is possible that this algorithm will get caught in a saddle point: consider for
example the function f: R x R — R, f(x, y) = xy, at the point (0, 0), being minimised
alternately in the coordinate directions. Hence once the algorithm stalls, we propose a large
number of random simultaneous updates in an attempt to find a lower functional value. If this
is successful, we return to step (2) of the algorithm. We terminate the algorithm once the
difference between successive values of ® is below TOL = 10 °. Calculations are performed
on a mesh of 64 points in order to avoid an inverse crime.

To ensure that we explore the support of the posterior distribution, we choose a variety of
initial states (ug, ag) € X x A for the minimisation such that I (1, ag) < oo in the con-
tinuum setting. To this end, we let ay be a draw from the prior distribution 1/, and take u to
lie in the Cameron—Martin space of 1. Specifically, if a component of u € X has prior
distribution N (m, A~“), we take the corresponding component of u, to be a draw from
N (m, A=©=4/2)_ Output of the algorithm is shown in figures 10-12.

We first comment on the minimisers of the Onsager—Machlup functional for model 1.
Generally the geometric parameters are closely recovered regardless of the initialisation state,
though there is more variation in the fields. In the simulations where the geometry is inac-
curate, for example simulations 7, 17 and 46, the fields can be seen to be compensating by
forming a ‘soft’ interface where the true interface is.

The minimisers associated with model 2 admit much more variation, though it is possible
to partition them into smaller subsets of minimisers which share similar characteristics to one
another, as mentioned in point (iv) at the beginning of the section. The clustering of the
different minimisers is performed by eye, classifying them according to similar geometric
parameters. Additionally we have an other class, containing the minimisers which do not
appear similar to one another nor appear to fit into any other class. We see later with MCMC
simulations that these states do still act as local maximisers of the posterior probability.

The minimisers of the Onsager—Machlup functional for model 3 show even more var-
iation than those for model 2, with the geometry in half of the minimisers not even being
close to the true geometry. In the cases where the geometry is drastically wrong the fields
have again attempted to compensate. This behaviour is particularly evident in the other class,
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Figure 10. (Model 1) The true log-permeability field (top), and 50 local minimisers
arising from minimisation initialised at draws from a smoothed prior distribution.
Simulation 12 has the lowest functional value, with I (u{?sp, apiap) = 2847.
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Figure 11. (Model 2) The true log-permeability field (top), and 50 local minimisers
arising from minimisation initialised at draws from a smoothed prior distribution.
Simulation 7 has the lowest functional value, with I (uyjap, aypap) = 2567. The
minimisers have been divided into classes based on similar characteristics.

and is echoed in the MCMC simulations later. The other class here is much larger than for
model 2, though as with model 2 these states do appear to act as distinct local maximisers of
the posterior probability.

This multi-modality of the posterior distribution is not unexpected. The paper [5] con-
siders the history matching problem in reservoir simulation, in which inference is done jointly
on both geometric and permeability parameters in the IC fault model. Though the forward
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Figure 12. (Model 3) The true log-permeability field (top), and 50 local minimisers
arising from minimisation initialised at draws from a smoothed prior distribution.
Simulation 20 has the lowest functional value, with I (uZhp, afinp) = 2117. The
minimisers have been divided into classes based on similar characteristics.

map and observation maps are different in our model, we observe the same clustering of
nearby local MAP estimators, and increased multi-modality as the dimension of the parameter
space increases. In [5] it is observed that the global minimum often does not correspond to the
truth, especially in the presence of measurement noise, and so all local minimisers of the
Onsager—Machlup functional should be sought before drawing conclusions about the per-
meabilities—this appears to be the case in our model as well. We note that MCMC can be
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useful in identifying a range of such minimisers, in view of the links established in the next
subsection between MCMC and MAP estimation.

6.3. MCMC and local minimisers

We now observe the behaviour of MCMC chains initialised at these local minimisers of the
Onsager—Machlup functional. We use a Metropolis-within-Gibbs algorithm for the sampling,
alternating between preconditioned Crank—Nicolson updates for the fields, see [6] for details,
and random walk metropolis updates for the geometric parameters. Again, simulations are
performed on a mesh of 642 points in order to avoid an inverse crime. 10° samples are taken
for each chain, with the initial 2 x 10* discarded as burn-in. The conditional means calcu-
lated from the samples are shown in figures 13-15.

We monitor the value that ® takes along the chain (4™, a®™), and compare it with the
value ® takes on the local minimisers (tisp, @igap). This is shown in figures 16—18, with the
horizontal lines being the different values of ® (u;1,p, aisap). Note that it makes no sense to
monitor the value that the objective functional / takes along the chain as the fields almost
surely do not lie in the corresponding Cameron—Martin spaces, and so [/ is almost surely
infinite along the chain in the continuum setting.

In addition, we monitor which minimiser the chain is nearest at each step, in the per-
meability space. Specifically, we look at

m,, = argmin ||F @™, a®™) — F (uisap» aiap)|li2o)s 6.1)
i

where F : X x A — L*(D) is the construction map (2.1) from the state space to the
permeability space. We make the choice of the L* norm over the L™ norm for the
permeability space to avoid over-penalising incorrect geometry. A selection of traces of m,,
are shown in figures 19-21. These illustrate that even though some of the local minimisers are
very far from from the true log-permeability, they do indeed act as local maximisers of the
posterior probability. Moreover, they show the interaction between the different classes of
minimisers in the cases of models 2 and 3. Specifically, they show that the MCMC chains can
easily move within these classes, but moving between classes is more difficult.

We now discuss the above monitored quantities, and their relation to MAP estimators, on
a model-by-model basis. Despite the slight variation in the fields of the minimisers from
model 1, the conditional means arising from the MCMC are nearly all identical. Simulation
23 stands out from the rest due to its slightly incorrect geometry—this effect can be seen in
the trace plot of ®, figure 16, where the value of ® remains larger than the simulations started
elsewhere. The traces of ® for all other initialisations behave similarly to one another, taking
similar misfit values after 2 x 10* samples. From figure 19, it can be seen that the MCMC
chains considered all spend a lot of time close to MAP estimator 38, despite this not being the
estimator with the lowest functional value.

For model 2, typically the conditional means within the different classes are very similar
to one another. Classes A and C resemble each other, and class B has compensated for
incorrect geometry with the centre field. Faults have developed in class D, though there is still
some compensation in the field. The centre field and a small fault has appeared in class E, but
again the fields are compensating. The geometric parameters for the permeabilities in the
other class remain relatively unchanged, but the fields have more freedom to attain a lower
misfit than in the Onsager—Machlup functional minimisation due to the lack of regularisation
term. Figure 17 shows evidence for a number of local minima with a large data misfit value @,
with some chains appearing to remain stuck in their vicinity. The four chains visible in
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Figure 13. (Model 1) The true log-permeability field (top), and the conditional mean
arising from MCMC chains initialised at the corresponding local minimisers above.

27



Inverse Problems 32 (2016) 105003 M M Dunlop and A M Stuart

o 3

[©]
»
=

=
N

L%

A
AT
Al

LN
e

~ P

——

-
- el
Class B
7h @' e 5o~
el pll vl wd® ralll
Class C
wdl o B A
Class D
B 38]] [a0}

»J

N\
.

5]
an

ALY |-

Figure 14. (Model 2) The true log-permeability field (top), and the conditional mean
arising from MCMC chains initialised at the corresponding local minimisers above. We
group them into the same classes as the local minimisers.
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figure 17 (top) correspond to chains 49, 47, 45 and 43, from highest to lowest ® value, all
lying in the other class—despite their significantly incorrect geometry, the corresponding
MAP estimators appear to be genuine local maximisers of the posterior probability.

In the channelised model, model 3, there is yet more variation between local minimisers.
Here the compensation effect by the fields is even more apparent in the conditional means,
especially in the other class. From figure 18 it appears that the local minima are much sharper
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Figure 15. (Model 3) The true log-permeability field (top), and the conditional mean
arising from MCMC chains initialised at the corresponding local minimisers above. We
group them into the same classes as the local minimisers.

and more sparsely distributed than the previous two models. Again the chains with the largest
® values were initialised at minimisers in the other class, suggesting the existence of many

posterior modes with incorrect geometry.

The mixing of the MCMC chains varies heavily based on the initialisation points of the
chains: with the same jump parameters for the field and geometric parameter proposals,
acceptance rates vary largely based on which minimiser the chain was started from. This
indicates that some of the minima are much sharper than others. This is also evident from the
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Figure 16. (Model 1) The evolution of ¢ as the MCMC chains progress. The horizontal
lines represent the value of each local minimiser under ®. Nearly all of the simulations
find a small value of ¢ almost immediately, but simulation 23 remains caught in the
local minimiser for some time before it follows.

traces of m,, defined above, figures 19-21, especially in model 3. Note also from these figures
that the nearest local minimum typically lies in the same class as the initialisation state,
though jumps between classes are possible. Though not shown, in model 2, whenever the
initial state lies in class A, then the nearest minimiser always lies in class A.

7. Conclusions and future work

We have made a new contribution to the recently developed theory of MAP estimation in
infinite dimensions [9, 14]. We link MAP estimation to a variational Onsager—Machlup
functional. The work is focused on priors for piecewise Gaussian random fields, with random
interfaces parameterised finite-dimensionally. Such fields arise naturally in applications such
as groundwater flow and EIT, and these are used to illustrate the theory and numerics. The
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Figure 17. (Model 2) The evolution of ¢ as the MCMC chains progress. The horizontal
lines represent the value of each local minimiser under ®. The majority of the
simultions find a small value of ¢ almost immediately, but numerous fail to reach there,
settling in local minima. The shape of these minima can be seen in figure 14, and
generally correspond to those in the same class as the initial state.
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Figure 18. (Model 3) The evolution of ¢ as the MCMC chains progress. The horizontal
lines represent the value of each local minimiser under ®. The majority of the
simultions find a small value of ¢ almost immediately, but numerous fail to reach there,
settling in local minima. The shape of these minima can be seen in figure 15, and
generally correspond to those in the same class as the initial state.
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Figure 19. (Model 1) The trace of m,, as defined by (6.1), when the chain is initialised at
a variety of minimisers—specifically numbers 1, 2,...,8.
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Figure 20. (Model 2) The trace of m,, as defined by (6.1), when the chain is initialised at
a variety of minimisers—specifically numbers 7, 14, 21, 28, 35, 39, 46 and 50. The
different classes are alternately shaded.

34



Inverse Problems 32 (2016) 105003

MM

Dunlop and A M Stuart

Nearest minimiser

Nearest minimiser

Nearest minimiser

Nearest minimiser

50
45
40
35
30
25
20
15
10

5

0

50
45
40
35
30
25

20
15,
10

45
40

35
30
25
20
15
10,

90|
45
40
35
30
25
20
15
10

1 2 3 4 5 6

Sample number

8 9 10
x10*

Nearest minimiser

L )
o oo

Nearest minimiser
- - NN w [9)

(4, =] (9, o » o o
S92 S

0 ' ' ' ' L '

o 1 2 3 4 5 6

Sample number

50 v v T T T T

NN W W
O O

=]

Nearest minimiser

o

o

o

% 1 2 3 4 5 6

Sample number

Nearest minimiser

15,
10F

0 L L L L L L

0 1 2 3 4 5 6
Sample number

7 8 9 10
x10*
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work opens up several new avenues for investigation. A major theoretical direction is to fully
reconcile the approaches in [9, 14]; the work in this paper suggests that this may be possible.
On the applications side an important new direction would be to consider problems in which
the geometric parameters are no longer independent from the fields a priori. A possible
extension could be to treat the geometric parameters as hyperparameters for the fields under
the prior. This would allow, for example, the fields to have specific boundary conditions at the
interfaces, which may be more physically appropriate in some contexts. A related hierarchical
model was considered in [29], in which prior samples were piecewise white; this could be
extended to allow for spatial correlations in the continuum setting. Computationally an
exciting direction is to build upon definitions of MAP estimators to develop hybrid algorithms
which fully exploit local minimiser structure of the Onsager—Machlup functional
within MCMC.
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Appendix
In this appendix we provide proofs of the results given in the paper.

A.1. Results from section 2

Before we prove lemma 2.5 we require the following lemma.

Lemma AA. Let (X, F, ) be a measure space and f € L'(X, F, p). Let B, C F be a
sequence of measurable subsets of X with 1(B,) — 0 as n — oo. Then

f f)pu@dx) -0 asn — oo.
B,

Proof. Write f, (x) = f (x)1p,(x). We have that f, — O in measure: for any 6 > 0,
p({x € X |1f,(0)]>6}) < p({x € X | |f,(0)] = 0}) < pu(B,) — 0.

Now suppose that ||f,||;! does not tend to zero. Then there exists 6 > 0 and a subsequence
(fy, k=1 such that ||f, [[;0 > 6 for all k > 1. This subsequence still converges to zero in
measure, and so admits a further subsequence that converges to zero almost surely. We can
bound this subsequence above uniformly by f, and so an application of the dominated
convergence theorem leads to a contradiction. The result follows. (]

Proof of lemma 2.5. Showing that R is well-defined is equivalent to showing that PDE
(2.3) has a unique solution for all (#, a) € X x A. Since u® € L>*(D) it is bounded, and so by
the continuity and positivity of o there exist Kmin, Kmax > 0 With Kpin < 0 (U%) < Kpax - The
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associated bilinear form is hence bounded and coercive. The right-hand side can be seen to lie
in H1(D) since G € H'(D) and o (u%) < Kmax, and so a unique solution exists by Lax—
Milgram.

(1) In its weak form, the PDE (2.3) is given by
j; G UV, - Vo = F(p) — fD oVG -V forall p € V.
Taking ¢ = ¢, , we deduce that
Rt @)V, [ < [ o)V, - Va,,
= 1,0~ [ ow)VG- Vg,
<|fAvllg ol + llo@l=VG2IVq,,ll2

and so we have the estimate

1 Prally <lduallv + Gl
< U Sfllve + o @< [[Gllv)/Kmin > @) + [|Glly-

(ii) Letu, v € X and @ € A. Then p, , — p, , satisfies the PDE
-V (0w, —pn)) = V- -(cw)—oOv))Vp,,) inD
Poa —Poa = 0 on 0D.
Setting kx(u, v, @) = Kmin (@, @) A Emin (v, @), We see

ks, v, IV (p,, — I < j;) ou)V(p,, — )l

= [ @) — o0 VR, ~ p0) - R
<o = o)<V, — 2,2 IV, 2
and so by (i),

[ Pa = Podllv <Py ollvllo@® — o 0| /rxu, v, @)
<llo@® — o (||
X (v + lo @)= IGllv)/ ks (u, @)* + |Gl / ks(u, @)).
Using that the A; are disjoint gives that

N N
U[ZuiﬂAi(zz)] - U[Z"iﬂA,-(a))
i=1 i=1

=llo ) — o~
for some k = k (a). Now suppose that ||u||y, ||v|ly < r. Then the C' property of o yields

o () — o)l < max|o’ ()] - ||ux — vie|lz> < max|o’ ()] - ||u — v||x.
lt]<r It <r

o) — o (||~ =

>

Finally we deal with the sy’ terms:
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ks (U, v, a)7 = [(essinf e*’®) A (essinf "' @) ]~
xeD xeD

< (mino(t) A mino ()~
|t|<r [t|<r

= (mino(¢))7 .
|t <r

We bound the ||o (u?)||>= term similarly. Putting the above bounds together, we have

R, @) = RO, @y =p.0 = Pralv

< r_nﬁilX(miHO(t))’j Al + ||G||v(|1tlllgxff(t) + 1)

j=12 |t<r
x max|o’ ()] - [Ju — v||x
[t|<r

=L@)|u—v|x.

Note that the constant L(r) is uniform in a.
(iii)) We use a similar approach to the previous part. Given u € X and a, b € A, the

difference p, , — p,, satisfies

V- (cWV (P, — Pp) =
Pioa = Pup = 0

V- (0 — ou)Vp,,) inD
on 0D

which leads to the bound
HT(M’ a, b)Hv(pu,a - pu,b)||i2 < L J(ua)lv(pu,a - pu,b)lz
= [ 0w — o)V, ~ ) Vi
<V, — o)l ll(o @) — o @) Vp, 2,

where x+ (U, a, b) = Kpin (U, @) N Emin (1, b). It follows that
(0 @) — o))V, 2 /%+ . a, b).

‘Lvu,a - pu,bHV < ‘

Again by the disjointness of the A; and the C' property of o,

N N
‘ [U (Z“iﬂm(m) id (Z”ih[(b)]]vpu,b
i=1 i=1

(o) — o) Vp, /i =

L2
N
= | D (0 uila,@) — o (Uila,p)VD,,
i=1 12
N
<o Wil g, @) — o Wila, )V, |12
1N1
< Zn@ﬁixu lo' O] - [[uilla,@) — willa, )| VD, ll22
lNl
S Z|,|fiixu lo" 1 - [t lloo 14, @) 24,) VD, 1122
i 1< il
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since |1, — lIp| = lyaz. Now as before we can bound n;l:

ks (u, v, a)~' = [(essinf e' @) A (essinf e*’®)]!
xeD

xeD
<( min oc@® A min o@)!
[t <max [|u; ||~ [t <max [|u; ||~
<( min o@))!.
1< lullx

Putting the above bounds together, we have
R, a) — R, b)|lv = .o — Pl

N
<(min o@) 'Y max |0/ O] - uillo |14, @ a4,0) VP 22
1< ullx i< lluillso
N 1/2
<(min o) 'Y max |o'®)] - ||ul||oo(f |Vpu’h|2) .
1< lullx i— s uillo Ai(@)AA; (D)

The right hand goes to zero as each [A;(a)AA;(b)] — 0 by lemma A.1, since
VDl € L*(D), and so the continuity of R (u, -) follows from the assumed continuity of
the maps A;. ]

Proof of proposition 2.7.

(i) Theorem 2.3 in [17] tells us that the mapping from the conductivity to the weak solution
of (2.5) is Fréchet differentiable with respect to the supremum norm, and hence locally
Lipschitz. Note that the mapping from the solution to the boundary voltage
measurements, (v, V) +— V, is smooth, and the assumptions on o imply that it is
Lipschitz. It hence suffices to show that the mapping u — F (u, a) is Lipschitz for each
ac A Letu,ve X anda € A, then

N
IF(u, a) = F, @)llo <Y llui = villoolla,@w < Cllu — vlx
i=1
and the result follows.

(i1) By corollary 2.8 in [11] and the continuity of o, it suffices to show that a, — a in A
implies that F (u, a,) — F (u, a) in measure. For any p € (1, co) we have that

N
S a) = Fa ol ae< Y [ 1l 1 an o b
i=1

N
< Nuwi|l%, - 1A (@) AA; (@)
i=1

From the assumed continuity of A; () it follows that F («, a,) — F (u, a) in L? for any
p € (1, 00), and hence in measure. O

A.2. Results from section 4

Proof of theorem 4.2.

(i) We first claim that the assumptions on & mean that ®(-,;y): X' x A’ = R is
continuous for each y € Y. Fix y € Y and (4, a) € X’ x A’. Choose any approximating
sequence (#,, dp)p>1 € X’ x A’ such that (u,, a,) — (u, a). Then the assumptions on
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the norm on X x A means that |u, —ully — 0 and |a, —a| — 0. Letting
r > max{||ullx, sup, ||u,||x }, we may approximate
1P (uns an; y) — Pu, a; Y| < |9, an; y) — P, ay; y)l
+ 1P, an; y) — ®(u, a; y)|
Ms(r, ap, Y)|lun — ullx + |, ay; y) — ®(u, a; y)|

<
S (sup Ms(r, ax, y)) - |lup — ullx + [P, a,; y) — u, a; y)l,
keN

where the supremum is finite due the continuity of M3 in its second component. Since ¢
is also continuous in its second component, we see that the right-hand side tends to zero
as (U, ap) — (u, a).

Now as ®(-, 3 ¥) : X’ x A’ — R is continuous and (1 X vp)(X' x A') =1, ®(-, 5 y)is
o X vo-measurable. Setting Z = X' x A’, we can consider ®:Z x Y — R. This is a
Caratheodory function, and it is known that these are jointly measurable, see for example [1].
We conclude that ® is i, x vy X Qp measurable.

(ii) We first show Z(y) is finite. Since p, is Gaussian, by Fernique’s theorem there exists
a > 0 such that

L/;( exp(a ||ul}) py(du) < oco.
Then using assumptions 4.1(i), we have the lower bound

D, a3 y) > My(a) — o ||ul;

from which we conclude that Z (y) < oo.
Now fix r > 0. Let y € Y and take (u, a) € X’ x A’ with max {||u||x, |a|} < r. Then
we have by the local Lipschitz property

|q)(u’ a; y)l < M3(r’ )’)H””X + I(P(()’ a, )’)| < M3(V, a, y)” + Iq)(o? a; y)l

Using the continuity of ® and M; in a, we can maximise the right-hand side over
la| < r to deduce that

[P, a; y)| < K(r,y).

Thus ®(., -; y) is bounded on bounded sets.
Now we can proceed as in [10]. Using that (1, x v0)(X’ x A’) = 1, we have that

Zo) = [ exp(= @, a; y)py vy (da).
X' <A
Set B’ = (X' x A’) N B, and set
R = sup{max {||ulx, |al} |(u, a) € B'}.

We deduce that

sup P(u, a; y) < K(R,y) < o0
(u,a)€B’

and so
Z(y) = j};/ exp(—K (R, y)) pto(du)vp(da) = exp(—K (R, y)) (1o X vo)(B") > 0.
Hence the measure ;¥ is well-defined.
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(iii) The well-posedness of the posterior is proved in virtually the same way as theorem 4.5
in [10]. O

A.3. Results from section 5

Throughout this section, for 6 >0 and (u,a) € X x A, we will denote
T, a) = M(B5 (u, a)). To prove theorems 5.1 and 5.2, we first require two lemmas.

Lemma A.2. Let (uy, ay), (up, az) € E x int(S). Then

li (/JJ() X VO)(Bb\(ul’ al)) o lHu HZ__[ [l H?. p(al)
1m — e2ll2lle =2 llWllE .
510 (py X vo) (B (uz, as)) p(az)
=exp(J(up) + K(az) — J(u) — K(a)).

Proof. We adapt the proof of proposition 18.3 in [26] to first show that
(19 % vo)B (u, an)) ~ el (g > 1o)(B* (0, ar)) as 6 | 0.

The first half of the proof is almost identical to that in [26], though some care must be taken
since we cannot (a priori) separate the integrals over balls in X x A into products of those
over balls in X and A. Using the Cameron—Martin theorem we see that

(1o X vo) (B (uy, ay)) = e*%”"l\\%f el o (du)vy (da).
B (0.a))

Since (u;, —u)y = —(uy, u)z and B°(0, a;) is symmetric about 0 € X, it follows that
1
f elwde 1y, (du) v (da) = f ~ (elwe 4 e=(wme )y (duyvg (da)
B3(0,a7) B3 (0,a) 2
> (o X v0)(BY(0, @)

which gives the inequality

(119 X 10)(BO (uy, ap)) = e 21l (p x 10)(BY(0, ay)). CRY

For the opposite bound, we write (1, -)g as the sum of two functionals z. and z; on E. We aim
to choose z. to be continuous on E, and z; ‘small’ in some sense. Then we have that

(119 x Vo) (B (uy, ay)) = ezl H%Lé(o )ezc(u)ﬂs(”) o (du) v (da)
,dy

1
<exp|—— Hu1||i~ + 8- sup  z.(u)
2 (u,a)€B"(0,a;)

-[(uo < B O @)+ [ e - 1)u0(du)uo<da)],

where we have used the linearity of z. to extract 6 from the supremum. As in [26], using a
result from [34], a special case of the Gaussian correlation conjecture, it follows that for any
C € R and any convex set B C X symmetric about 0,

toB M {u € X |lzs)] > C}) < pyB)pg Izl > O).
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Then for any increasing function ¢ : R, — R, one has
I o, PO D v (da) = . P50y 1 @ @) (da)
= [ o x @) € BO. ap ] 9l ) > 1)
= [ o x U @) € BO. @) z@)] > o7 (0))dr
=j;°°fAuo({ueX|<u, a) € B0, @), |2,G)|>@~ () D vo(daydr
<[ [ ot e X 1w a) € B, ap )iy (2,01 > ¢ 1) modads

= j:o 1o (zs () > 071 (®) (j/; po({u € X | (u, a) € B*(0, al)})Vo(da))dt
(g X 10) (B 0.))

= (g % vo)(B(0, ap)) fo " gz O > (0)dr

= (g X B O, a) [ (2,0 > e
= (ko X v0)(B°(0, al))j; o (lzs ) [) pry (due).
Choosing ¢ (-) = exp(-) — 1 in this formula gives
fB o @51 — 1), (du) o (da) < (g X vo)(B(0, ar)) L (@51 — 1)1, (du).

The space of linear measurable functionals on E, which contains (u, -)g, is the L? closure of
E*. Thus for any € > 0, the functionals z., z; can be chosen in order that the first of them is
continuous and the second of them satisfies the inequality

@t = Dy <.

It follows that for each ¢ > 0 we have

(g % Vo) (B (w1, ar))

1 _
< GXP(_E lurlz + 6+ sup Zc(u))(uo X v9)(B®(0, a))(1 + ¢). 8.2)
(,a)€B' (0.ay)

Since balls are bounded, ¢ > 0 is arbitrary and z. is continuous, we can combine (8.1) and
(8.2) to deduce that there exists M > 0 such that

e~ 2lmli (1, x 1) (BO(0, @) < (g X 10)(B* (uy, ay))
< e tlali Mo x 1) (B2 (0, @)

Now looking at the ratio of measures we see

im (/L() X VO)(BKS(MI’ al)) _ e%H“ZHZE*%HMIH%Z 1im (,uo X VO)(B(S(O, al))
510 (kg X 10)(B® (u3, a3)) 510 (g X 10)(B*(0, az))

We now deal with the geometric parameters. Let a* € int(S) so that p is positive in a
neighbourhood of a* (we may take a* = a; or a, since we assume they lie in int(S)). Then
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(o X vo)(BY(0, ay)) 7 fm(om p(a)py(du)da

(1o X 10)(B(0, az)) f

B%(0,a,

P (@py(du)da

I o P@ @ @y

I o Pl @2 = @) (@) da
,a

p(a)

J e v da)
B%(0,a™)

f plata—ay 11 (du) v (da)
B%(0,a™)

pla)

For sufficiently small 6 both of the integrands are continuous. A mean-value property hence
holds for the integrals, and so we may divide both the numerator and denominator by
(1o X v0)(B®(0, a*)) and take limits to obtain

pla+ aj — a*)l )
o (o X 1) (B0, an) p(a) o
m =
510 (g X v)(B%(0, az))  pla+ as — Cl*)l .
p(a) o
_ p(ay) .
p(az)

We conclude that

li (,u‘() X VO)(Bb(ula al)) _ IH” HZ__lHu HZ p(a])
m = ezl —zllMllg . ——
510 (py X vo) (B (uz, as)) p(az)
=exp(J(u2) + K(az) — J () — K(ap).
(Il

Lemma A.3. Let f, g: A — R be continuous, and (u;, ay), (uz, a;) € E x int(S). Then

iy (1o @00 — elmlp bz . L@ @)
00 [ sy 8 @ o (@) v (da) plar)  gla)

Proof. Let € > 0. Then by the continuity of f and g, and the assumption on the norm on
X x A, there exists 6 > 0 such that

Gl — g  r) By ) gy @HV0 (D)
(8(a2) + &)1y x 10)(B* (uz, az)) f (@) 1y (du) v (da)

Bé(uz,az)
o (f (@) + &) (py X vo)(B®(uy, ay))
T (gar) — &)y X v)(BO(u, a2))

The result now follows by the previous lemma. (]
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Proof of theorem 5.1. Let (uy, @), (us, a;) € E X int(S). The case & = 0 is the result of
lemma A.2. Now proceeding analagously to [9],

T, a) »lz;ﬁ(ul,al) exp(—=®(u, a)) o (du) 1y (da)

Tz, az) f exp(—(u, a)) o (du) v (da)

B (u3,a5)

S PPl @) + B, a)exp(— B, @)y @0ro(da)

Lo R0 @)+ D, @x))exp(—Plus, 4o (da)

Using assumptions 4.1(iv), we have that for any (u, a), (v, b) € X x A,
|D(u, a) — D(v, b)| < Ms3(r, a)|jlu — v||x + |D(v, a) — (v, b)|
where r > max {||u|lx, ||v|]lx}. Now set

Li= max M;(||lul|x + 6, a),
lal<|ai|+6

Ly= max M;(Jluz|lx + 6, a),
lal<|az|+6

which are finite due to the continuity assumption on M3. Then

6
T @) Lt L Pwa) D n.a)
T (uz, ar)

j;ﬁ( )exp(|‘I)(M1, a) — P(u, al)|),uo(du)vo(da)

S X 1Bs, @) — B, @)y (@)

Note that both integrands are continuous in a, and so we may use the previous lemma. Taking
lim sup; , of both sides gives

(]
. ,a
lim sup M < e man+ln,a)
sio J°(uz, az)

A similar method gives that the lim infs|( is bounded below by the RHS and so we have that
for any (uy, a), (uz, az) € E X int(S),

6
lim L @) a1y,
510 T (uz, as)

Noting that / is continuous on E x S, we see that / agrees with the Onsager—Machlup
functional on E x S. Finally note that / (x, @) = co on (X\E) x A and E x (A\S). 0

Remark A.4. Note that the limit above is independent of the choice of norm used on the
product space X x A when referring to the balls. If we use the norm given by

1Ge, @)l = max {{x]|x, lal}

then we have that

B (u, a) = B*(u) x B®(a)
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and so may deduce that, for any choice of norm on X x A,
m (g X vo)(B® (w1, ay)) ~lim (g X v0)(B®(uy) x B®(ay))
510 (pg X vo)(B%(ua, a2)) 510 (g X vo)(B®(u2) x B®(ay))
i FoB @) (B (@)
510 15 (B* (1)) vo(B®(ay))

This will be useful later for separating integrals.

Proof of theorem 5.2. We follow the idea of the proof of theorem 5.4 in [33], which is
based on [7, 19], and first show [ = ® 4+ J 4+ K is weakly lower semicontinuous on E x §.
Let (u,, a,) — (@, @) in E x S. Since S C R¥, weak convergence of the second component is
equivalent to strong convergence. Since f,(X) = 1, E is compactly embedded in X and so
u, — u strongly in X. In the proof of existence of the posterior distribution we showed that ®
is continuous on X X A, and so we deduce that ®(u,, a,) — ®(u, a). Hence P is weakly
continuous on E x S. The functional J is weakly lower semicontinuous on E and K is
continuous on S, and so I is weakly lower semicontinuous on E x .

Now we show I is coercive on E X S. Since E is compactly embedded in X there exists a
C > 0 such that

lullfe < € flullz

Therefore by assumption 4.1(i) it follows that, for any € > 0, there is an M (¢) € R such that
1
I(u,a) > M(e) + (5 — Cs) lul%> + K (a).

Since K is bounded below* by —log ||p|ls, Wwe may incorporate this into the constant term
M (g):

~ 1
I(u, a) > M (e) + (E - CE) [ ue][7:.
By choosing € = 1/4C, we see that there is an M € R such that, for all (u, a) € E x S,
1
I @) = 2 |lullz + M

which establishes coercivity.
Now take a minimising sequence (u,, a,) such that for any 6 > O there exists an
N; = N;(6) such that
MLT <I(u,a,) <I+6 VYn>=N.

From the coercivity it can be seen that the sequence (u,, a,) is bounded in E x S. Since
E x S is a closed subset of a Hilbert space, there exists (i, @) € E x S such that (possibly
along a subsequence) (1, a,) — (@, a) in E x S. From the weak lower semicontinuity of / it
follows that, for any 6 > 0,

I <I@a)<I+6é.

Since ¢ is arbitrary the first result follows.
Now consider the subsequence (u,, a,) — (i, @). The convergence of a,, — a is strong,
so all that needs to be checked is that u,, — & strongly in X. This follows from exactly the

4 Recall in section 3.3 we assumed p to be continuous on the compact set S, and hence bounded.
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same argument as in the proof of theorem 5.4 in [33] (taking a as the second parameter in /
and ®) and so the second result follows. O

Before proving theorem 5.3 we first collect some results on centred Gaussian measures
from [9], specifically lemmas 3.6, 3.7, and 3.9. For u € X, let
T o) = g (B® (w)).

Proposition A.5.
(i) Let 6 > 0 and u € X. Then we have
J o)
T5(0)

where ¢ = exp (%62) and ay is a constant independent of 7 and é.

< ce~ 2l o7,

(ii) Suppose that ii ¢ E, u®)s~o C X and u® converges weakly to i € X as § | 0. Then for
any € > 0 there exists & small enough such that
J o)
J5(0)

(iii) Consider (u®)s~o C X and suppose that u® converges weakly and not strongly to 0 in X
as 6 | 0. Then for any € > 0 there exists & small enough such that

T o@ub)
T50)

<e€

Proof of theorem 5.3.

(i) We first show (1%, a®) is bounded in X x A. The boundedness of the second component
is clear since S is bounded, so it suffices to show that (#°) is bounded in X. This is proved
in the same way as in theorem 3.5 in [9].
In the proof of existence of the posterior measure, theorem 4.2, we show that if » > 0 and
llullx, lal < r, then there exists K(r) >0 such that ®(u, a) < K(r). Letting
¢ = eMe=K) > 0, it follows in the same was as [9] that, given any a € S, for § < 1
we have

Tdw?, a) > ¢ T4, a).

Suppose that (#%) is not bounded in X so that for any R > O there exists 6 such that
lur||x > R, with 6 — 0 as R — co. Then the above bound says that

Tow?, a) _ fio (B® (u%)) ) vo(B®(a)) S ¢
TN0. ) pB0) (B @)
This contradicts proposition A.5(i) above. Therefore there exists R, ég > 0 such that

|, @®)|[xxn <R forany § < .

Hence there exist (i7, @) € X x A and a subsequence of (u?, a5)0<5<5k which converges
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weakly in X x A to (&, a) as 6 | 0. For simplicity of notation we still call this
subsequence (u’, a®).

We now show that (u®, a®) converges strongly to an element of E x S. We first show that
(@, a) e X xS.

Note that any limit point of a® must lie in S. Suppose it did not, and a limit point was
a* ¢ S. Then there exists §7 > 0 such that along a subsequence converging to a*, § < &'
implies a® ¢ S since S is closed. For § < %dist(a*, S) A 6T we then have
B%(a®) N S = @. In particular vy(B®(a®)) = 0 for all such 6, which in turn implies
J%u, a®) = 0 for any u € X contradicting the definition of a®. It follows that we must
have a € S.

We need to show i € E. From the definition of (#°, a®) and the bounds on ® we have for
& small enough and some’ « close to 1,

o e M du vy (da
< T, 0) <a B (ub) ol )Lé((» 0(da)
T J0,0) T ek d d

e Fo(0) j; 2D

d
oo 10 )
o)

— aekh-M

B%(0)

We use proposition A.5(ii). Supposing i ¢ E, for any € > 0 there exists § small enough
such that

s 0 (d10)

S 100

1
We may choose ¢ = B
(0%

LT 0 1
J0.0) 2

which is a contradiction, and so iz € E.
Knowing that (&7, @) € E x § we now show that the convergence is strong. Any
convergence of the second component will be strong and so we just need to show that
u® — @ strongly in X. Suppose the convergence is not strong, then we may use
proposition A.5(iii) on the sequence u® — i. The same choice of ¢ as above leads to the
same contradiction, and so we deduce that # — & strongly in X and the first result is
proved.

(i) We now show that (i7, a) is a MAP estimator and minimises /. As in [9], and the proof of
theorem 5.1, we can use assumptions 4.1(iii) to see that

eM =K to deduce that there exists § small enough such that

6(1,0 0
T @) st L)t ady o a)
J @, a)
[ exp@w, a) — o, a)py(duyrn(da)
B‘K(ué,ué)

I oy PR @ = DG, @)D @ (da) ’

5> Remark A.4 tells us that we can separate the integrals in the limit § | O.
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where

L= max M(||ulx + 6, a),
la|<|a|+6

L,= max M;(||i|x + 6, a).
lal<l|az|+6

Therefore using the continuity of ®, as shown in the proof of existence of the posterior
distribution, and that (1%, a®) — (i, a) strongly in X x A,

7w e Moo
lim sup ————— < lim sup : .
sio J°@@, a) 510 fBﬁ(ﬁ o fo (du) g (da)

Suppose u° is not bounded in E, or if it is, it only converges weakly (and not strongly) in

E. Then ||i|lg < liminfs|o |[u’]|z, and hence for small enough &, ||i|lz < ||u’||e.
Therefore, since i, is centred and ||u® — i|[x — 0, |a® — a| — 0,

duyvo(d f d f d
‘fB’“(u“',a”) Ho(du)vo(da) = lim sup B? (u?) Ho (i) B?(a% vo(da)

510 510
: JZﬁ(M) Holdro(da) : j;a(m Mo(du)j;a(a-) Yo(da)

L oo [, wta
< lim sup B lim sup e
510 f fig (du) 510 f Vo (da)
BY () B (a)
[ @
< lim sup B)
510 f vo(da)
B (@)
éf p(a)da
= lim sup |B‘5(a5)| B@)
1
610 - f p(a)da
1B (@)| V@
=1.

The final equality above follows from the continuity of the integrand and the fact that
la® — a| — 0: both the numerator and the denominator tend to p ().

Since by definition of (u?, a®), J0w?, a®) > J°(i, @) and hence

8(7,0 )
lim inf 059D S

sl Ja, a)
this implies that

(1,0
fim L) (8.3)
slo J(, a)

In the case where (1°) converges strongly to i in E, we see from the proof of lemma A.2 that
we have
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ez llal =l

Since we have u

s (o X BP0, a%) _ (g X v0) (B, a))
(1o % V) (B0, @)~ (1g X 10)(B (1, @)
< obllall—4 e (o X VOB’ (0, a%))
h (1o % v0)(B(0, @)

— i strongly in E we have in particular that ||u®||z — ||i||g. It follows that

5

exllal =3I’ lE=M6 _, 1 a5 § | 0. Now using the continuity of p and the fact that |a® — a| — 0,
an argument similar to that in the proof of lemma A.2 shows that

(1o % 1B, a®)
1m - =
510 (g X 10)(B*(0, @))

We therefore deduce that

Sy Mo (da)
lim =

10 [y gy Mo ()0 (da)

and (8.3) follows again. Therefore (i7, @) is a MAP estimator of the measure .

The proof that (i, @) minimises / is identical to that in the proof of theorem 3.5 in [9]. O
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