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PROBABILITY MEASURES IN INFINITE DIMENSIONS∗
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Abstract. In this paper we study algorithms to find a Gaussian approximation to a target
measure defined on a Hilbert space of functions; the target measure itself is defined via its density
with respect to a reference Gaussian measure. We employ the Kullback–Leibler divergence as a
distance and find the best Gaussian approximation by minimizing this distance. It then follows
that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a
natural function space setting for the underlying calculus of variations problem. We introduce a
computational algorithm which is well-adapted to the required minimization, seeking to find the
mean as a function, and parameterizing the covariance in two different ways: through low rank
perturbations of the reference covariance and through Schrödinger potential perturbations of the
inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic
PDEs and to a conditioned diffusion process. These Gaussian approximations also serve to provide
a preconditioned proposal distribution for improved preconditioned Crank–Nicolson Monte Carlo–
Markov chain sampling of the target distribution. This approach is not only well-adapted to the
high dimensional setting, but also behaves well with respect to small observational noise (resp.,
small temperatures) in the inverse problem (resp., conditioned diffusion).
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relative entropy
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1. Introduction. Probability measures on infinite dimensional spaces arise in
a variety of applications, including the Bayesian approach to inverse problems [34]
and conditioned diffusion processes [19]. Obtaining quantitative information from
such problems is computationally intensive, requiring approximation of the infinite
dimensional space on which the measures live. We present a computational approach
applicable to this context: we demonstrate a methodology for computing the best
approximation to the measure, from within a subclass of Gaussians. In addition
we show how this best Gaussian approximation may be used to speed up Monte
Carlo–Markov chain (MCMC) sampling. The measure of “best” is taken to be the
Kullback–Leibler (KL) divergence, or relative entropy, a methodology widely adopted
in machine learning applications [5]. In a recent paper [28], KL-approximation by
Gaussians was studied using the calculus of variations. The theory from that paper
provides the mathematical underpinnings for the algorithms presented here.

1.1. Abstract framework. Assume we are given a measure μ on the separable
Hilbert space (H, 〈·, ·〉, ‖·‖) equipped with the Borel σ-algebra, specified by its density
with respect to a reference measure μ0. We wish to find the closest element ν to μ,
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with respect to KL divergence, from a subset A of the Gaussian probability measures
on H. We assume the reference measure μ0 is itself a Gaussian μ0 = N(m0, C0) on
H. The measure μ is thus defined by

(1.1)
dμ

dμ0
(u) =

1

Zμ
exp
(− Φμ(u)

)
,

where we assume that Φμ : X → R is continuous on some Banach space X of full
measure with respect to μ0, and that exp(−Φμ(x)) is integrable with respect to μ0.
Furthermore, Zμ = E

μ0 exp
(−Φμ(u)

)
ensuring that μ is indeed a probability measure.

We seek an approximation ν = N(m,C) of μ which minimizes DKL(ν‖μ), the KL
divergence between ν and μ in A. Under these assumptions it is necessarily the
case that ν is equivalent1 to μ0 (we write ν ∼ μ0) since otherwise DKL(ν‖μ) = ∞.
This imposes restrictions on the pair (m,C), and we build these restrictions into our
algorithms. Broadly speaking, we will seek to minimize over all sufficiently regular
functions m, whilst we will parameterize C either through operators of finite rank, or
through a function appearing as a potential in an inverse covariance representation.

Once we have found the best Gaussian approximation we will use this to improve
upon known MCMC methods. Here, we adopt the perspective of considering only
MCMC methods that are well-defined in the infinite dimensional setting, so that they
are robust to finite dimensional approximation [11]. The best Gaussian approximation
is used to make Gaussian proposals within MCMC which are simple to implement,
yet which contain sufficient information about Φμ to yield significant reduction in
the autocovariance of the resulting Markov chain, when compared with the methods
developed in [11].

1.2. Relation to previous work. In addition to the machine learning appli-
cations mentioned above [5], approximation with respect to KL divergence has been
used in a variety of applications in the physical sciences, including climate science [15],
coarse graining for molecular dynamics [22, 32], and data assimilation [3]. Our ap-
proach is formulated so as to address infinite dimensional problems.

Improving the efficiency of MCMC algorithms is a topic attracting a great deal
of current interest, as many important PDE based inverse problems result in target
distributions μ for which Φμ is computationally expensive to evaluate. One family
of approaches is to adaptively update the proposal distribution during MCMC, [1,
2, 17, 31]. We will show that our best Gaussian approximation can also be used to
speed up MCMC and, although we do not interweave the Gaussian optimization with
MCMC in this paper, this could be done, resulting in algorithms similar to those
in [1, 2, 17, 31]. Indeed, in [1, 2] the authors use KL divergence (relative entropy)
in the form DKL(μ||ν) to adapt their proposals, working in the finite dimensional
setting. In our work, we formulate our strategy in the infinite dimensional context,
and seek to minimize DKL(ν||μ) instead of DKL(μ||ν). Either choice of divergence
measure has its own advantages, discussed below.

In [24], the authors develop a stochastic Newton MCMC algorithm, which resem-
bles our improved preconditioned Crank–Nicolson MCMC (pCN-MCMC) Algorithm
5.2 in that it uses Gaussian approximations that are adapted to the problem within
the proposal distributions. However, while we seek to find minimizers of KL in an
offline computation, the work in [24] makes a quadratic approximation of Φμ at each
step along the MCMC sequence; in this sense it has similarities with the Riemannian
manifold MCMC methods of [16].

1Two measures are equivalent if they are mutually absolutely continuous.
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KL ALGORITHMS A2735

As will become apparent, a serious question is how to characterize, numerically,
the covariance operator of the Gaussian measure ν. Recognizing that the covariance
operator is compact, with decaying spectrum, it may be well-approximated by a low
rank matrix. Low rank approximations are used in [24, 33], and in the earlier work [14].
In [14] the authors discuss how, even in the case where μ is itself Gaussian, there are
significant computational challenges motivating the low rank methodology.

Other active areas in MCMC methods for high dimensional problems include the
use of polynomial chaos expansions for proposals [25], and local interpolation of Φμ to
reduce computational costs [10]. For methods which go beyond MCMC, we mention
the paper [13] in which the authors present an algorithm for solving the optimal
transport PDE relating μ0 to μ.

1.3. Outline. In section 2, we examine these algorithms in the context of a
scalar problem, motivating many of our ideas. The general methodology is intro-
duced in section 3, where we describe the approximation of μ defined via (1.1) by a
Gaussian, summarizing the calculus of variations framework which underpins our al-
gorithms. We describe the problem of Gaussian approximations in general, and then
consider two specific parameterizations of the covariance which are useful in practice,
the first via finite rank perturbation of the covariance of the reference measure μ0,
and the second via a Schrödinger potential shift from the inverse covariance of μ0.
Section 4 describes the structure of the Euler–Lagrange equations for minimization,
and recalls the Robbins–Monro algorithm for locating the zeros of functions defined
via an expectation. In section 5 we describe how the Gaussian approximation found
via KL minimization can be used as the basis for new MCMC methods, well-defined
on function space and hence robust to discretization, but also taking into account
the change of measure via the best Gaussian approximation. Section 6 contains il-
lustrative numerical results, for a Bayesian inverse problem arising in a model of
groundwater flow, and in a conditioned diffusion process, prototypical of problems in
molecular dynamics. We conclude in section 7.

2. Scalar example. The main challenges and ideas of this work can be exempli-
fied in a scalar problem, which we examine here as motivation. Consider the measure
με defined via its density with respect to the Lebesgue measure:

(2.1) με(dx) =
1

Zε
exp
(−ε−1V (x)

)
dx, V : R → R.

ε > 0 is a small parameter. Furthermore, let the potential V be such that με is
non-Gaussian. As a concrete example, take

(2.2) V (x) = x4 + 1
2x

2.

We now explain our ideas in the context of this simple example, referring to algorithms
which are detailed later; additional details are given in Appendix A.

In order to link to the infinite dimensional setting, where Lebesgue measure is
not defined and Gaussian measure is used as the reference measure, we write με via
its density with respect to a unit Gaussian μ0 = N(0, 1):

dμε

dμ0
=

√
2π

Zε
exp
(−ε−1V (x) + 1

2x
2
)
.

We find the best fit ν = N(m,σ2), optimizing DKL(ν‖μ) over m ∈ R and σ > 0,
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noting that ν may be written as

dν

dμ0
=

√
2π√

2πσ2
exp
(− 1

2σ2 (x−m)2 + 1
2x

2
)
.

The change of measure is then

(2.3)
dμε

dν
=

√
2πσ2

Zε
exp
(−ε−1V (x) + 1

2σ2 (x−m)2
)
.

For potential (2.2), DKL, defined in full generality in (3.2), can be integrated analyt-
ically, yielding

(2.4) DKL(ν||με) = 1
2ε

−1
(
2m4 +m2 + 12m2σ2 + σ2 + 6σ4

)− 1
2+logZε−log

√
2πσ2.

In subsection 2.1 we illustrate an algorithm to find the best Gaussian approximation
numerically while subsection 2.2 demonstrates how this minimizer may be used to
improve MCMC methods. See [27] for a theoretical analysis of the improved MCMC
method for this problem. That analysis sheds light on the application of our method-
ology more generally.

2.1. Estimation of the minimizer. The Euler–Lagrange equations for (2.4)
can then be solved to obtain a minimizer (m,σ) which satisfies m = 0 and

(2.5) σ2 = 1
24

(√
1 + 48ε− 1

)
= ε− 12ε2 +O(ε3).

In more complex problems,DKL(ν‖μ) is not analytically tractable and only defined via
expectation. In this setting, we rely on the Robbins–Monro algorithm (Algorithm 4.1)
to compute a solution of the Euler–Lagrange equations defining minimizers. Figure
1 depicts the convergence of the Robbins–Monro solution towards the desired root at
ε = 0.01, (m,σ) ≈ (0, 0.0950) for our illustrative scalar example. It also shows that
DKL(ν‖μ) is reduced.

2.2. Sampling of the target distribution. Having obtained values of m and
σ that minimize DKL(ν‖μ), we may use ν to develop an improved MCMC sampling
algorithm for the target measure με. We compare the performance of the standard
pCN method of Algorithm 5.1, which uses no information about the best Gaussian
fit ν, with the improved pCN Algorithm 5.2, based on knowledge of ν. The improved
performance, gauged by acceptance rate and autocovariance, is shown in Figure 2.

All of this is summarized by Figure 3, which shows the three distributions με,
μ0, and KL optimized ν, together with a histogram generated by samples from the
KL-optimized MCMC Algorithm 5.2. Clearly, ν better characterizes με than μ0, and
this is reflected in the higher acceptance rate and reduced autocovariance. Though
this is merely a scalar problem, these ideas are universal. In all of our examples, we
have a non-Gaussian distribution we wish to sample from, an uninformed reference
measure which gives poor sampling performance, and an optimized Gaussian which
better captures the target measure and can be used to improve sampling.

3. Parameterized Gaussian approximations. We start in subsection 3.1 by
describing some general features of the KL distance. Then in subsection 3.2 we dis-
cuss the case where ν is Gaussian. Subsections 3.3 and 3.4 describe two particular
parameterizations of the Gaussian class that we have found useful in practice.
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(c) Minimization of DKL

Fig. 1. Convergence of mn and σn towards the values found via deterministic root finding for
the scalar problem with potential (2.2) at ε = 0.01. The iterates are generated using Algorithm 4.1,
Robbins–Monro applied to KL minimization. Also plotted are values of KL divergence along the
iteration sequence. The true optimal value is recovered, and KL divergence is reduced. To ensure
convergence, mn is constrained to [−10, 10] and σn is constrained to [10−6, 103].

3.1. General setting. Let ν be a measure defined by

(3.1)
dν

dμ0
(u) =

1

Zν
exp
(− Φν(u)

)
,

where we assume that Φν : X → R is continuous on X. We aim to choose the best
approximation ν to μ given by (1.1) from within some class of measures; this class
will place restrictions on the form of Φν . Our best approximation is found by choosing
the free parameters in ν to minimize the KL divergence between μ and ν. This is
defined as

(3.2) DKL(ν‖μ) =
∫
H

log

(
dν

dμ
(u)

)
ν(du) = E

ν log

(
dν

dμ
(u)

)
.

Recall thatDKL(·‖·) is not symmetric in its two arguments and our reason for choosing
DKL(ν‖μ) relates to the possibility of capturing multiple modes individually; mini-
mizing DKL(μ‖ν) corresponds to moment matching in the case where A is the set of
all Gaussians [5, 28]. The moment matching form was also employed in the finite di-
mensional adaptive MCMC method of [1, 2]. An advantage of DKL(ν‖μ) is that it can
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Fig. 2. Acceptance rates and autocovariances for sampling from (2.1) with potential (2.2) at
ε = 0.01. The curves labeled ν correspond to the samples generated using our improved MCMC,
Algorithm 5.2, which uses the KL optimized ν for proposals. The curves labeled μ0 correspond to
the samples generated using Algorithm 5.1, which relies on μ0 for proposals. Algorithm 5.2 shows
an order of magnitude improvement over Algorithm 5.1. For clarity, only a subset of the data is
plotted in the figures.

Fig. 3. Distributions of με (target), μ0 (reference), and ν (KL-optimized Gaussian) for the
scalar problem with potential (2.2) at ε = 0.01. Posterior samples have also been plotted, as a
histogram. By inspection, ν better captures με, leading to improved performance. Bins have width
Δx = 0.025.

capture detailed information about individual modes of μ, in contrast to DKL(μ‖ν).
See [28] for an elementary example with multiple modes.

Provided μ0 ∼ ν, we can write

(3.3)
dμ

dν
(u) =

Zν

Zμ
exp
(−Δ(u)

)
,

where

(3.4) Δ(u) = Φμ(u)− Φν(u).

Integrating this identity with respect to ν gives

(3.5)
Zμ

Zν
=

∫
H

exp
(−Δ(u)

)
ν(du) = E

ν exp
(−Δ(u)

)
.

D
ow

nl
oa

de
d 

02
/1

5/
16

 to
 1

37
.2

05
.5

0.
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

KL ALGORITHMS A2739

Combining (3.2) with (3.3) and (3.5), we have

(3.6) DKL(ν‖μ) = E
νΔ(u) + log

(
E
ν exp

(−Δ(u)
))

.

The computational task in this paper is to minimize (3.6) over the parameters that
characterize our class of approximating measures A, which for us will be subsets
of Gaussians. These parameters enter Φν and the normalization constant Zν . It is
noteworthy, however, that the normalization constants Zμ and Zν do not enter this
expression for the distance and are, hence, not explicitly needed in our algorithms.

To this end, it is useful to find the Euler–Lagrange equations of (3.6). Imagine
that ν is parameterized by θ and that we wish to differentiate J(θ) := DKL(ν‖μ)
with respect to θ. We rewrite J(θ) as an integral with respect to μ, rather than ν,
differentiate under the integral, and then convert back to integrals with respect to ν.
From (3.3), we obtain

(3.7)
Zν

Zμ
= E

μeΔ.

Hence, from (3.3),

(3.8)
dν

dμ
(u) =

eΔ

EμeΔ
.

Thus we obtain, from (3.2),

(3.9) J(θ) = E
μ

(
dν

dμ
(u) log

(
dν

dμ
(u)

))
=

E
μ
(
eΔ(Δ− logEμeΔ)

)
EμeΔ

and

J(θ) =
E
μ
(
eΔΔ

)
Eμ
(
eΔ
) − logEμeΔ.

Therefore, with D denoting differentiation with respect to θ,

DJ(θ) =
E
μ
(
eΔΔDΔ

)
Eμ
(
eΔ
) − E

μ
(
eΔΔ

)
E
μ
(
eΔDΔ

)
(
Eμ
(
eΔ
))2 .

Using (3.8) we may rewrite this as integration with respect to ν and we obtain

(3.10) DJ(θ) = E
ν(ΔDΔ)− (EνΔ)(EνDΔ).

Thus, this derivative is zero if and only if Δ and DΔ are uncorrelated under ν.

3.2. Gaussian approximations. Recall that the reference measure μ0 is the
Gaussian N(m0, C0). We assume that C0 is a strictly positive-definite trace class op-
erator on H [7]. We let {ej, λ2

j}∞j=1 denote the eigenfunction/eigenvalue pairs for C0.
Positive (resp., negative) fractional powers of C0 are thus defined (resp., densely de-

fined) on H by the spectral theorem and we may define H1 := D(C
− 1

2
0 ), the Cameron–

Martin space of measure μ0. We assume that m0 ∈ H1 so that μ0 is equivalent to
N(0, C0), by the Cameron–Martin theorem [7]. We seek to approximate μ given in
(1.1) by ν ∈ A, where A is a subset of the Gaussian measures on H. It is shown
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in [28] that this implies that ν is equivalent to μ0 in the sense of measures and this
in turn implies that ν = N(m,C), where m ∈ E and

(3.11) Γ := C−1 − C−1
0

satisfies

(3.12)
∥∥C 1

2
0 ΓC

1
2
0

∥∥2
HS(H)

< ∞;

here HS(H) denotes the space of Hilbert–Schmidt operators on H.
For practical reasons, we do not attempt to recover Γ itself, but instead introduce

low dimensional parameterizations. Two such parameterizations are introduced in this
paper. In one, we introduce a finite rank operator, associated with a vector φ ∈ R

n. In
the other, we employ a multiplication operator characterized by a potential function
b. In both cases, the mean m is an element of H1. Thus, minimization will be over
either (m,φ) or (m, b).

In this Gaussian case the expressions for DKL and its derivative, given by equa-
tions (3.6) and (3.10), can be simplified. Defining

(3.13) Φν(u) = −〈u−m,m−m0〉C0 +
1
2 〈u−m,Γ(u−m)〉 − 1

2‖m−m0‖2C0
,

we observe that, assuming ν ∼ μ0,

dν

dμ0
∝ exp

(−Φν(u)
)
.(3.14)

This may be substituted into the definition of Δ in (3.4), and used to calculate J and
DJ according to (3.9) and (3.10). However, we may derive alternate expressions as
follows. Let ρ0 = N(0, C0), the centered version of μ0, and ν0 = N(0, C) the centered
version of ν. Then, using the Cameron–Martin formula,

(3.15) Zν = E
μ0 exp(−Φν) = E

ρ0 exp(−Φν0) =
(
E
ν0 exp(Φν0)

)−1

= Zν0 ,

where

(3.16) Φν0 = 1
2 〈u,Γu〉.

We also define a reduced Δ function which will play a role in our computations:

(3.17) Δ0(u) ≡ Φμ(u+m)− 1
2 〈u,Γu〉.

The consequence of these calculations is that, in the Gaussian case, (3.6) is

DKL(ν||μ) = E
νΔ− logZν0 + logZμ

= E
ν0 [Δ0] +

1
2‖m−m0‖2C0

+ logEν0 exp( 12 〈u,Γu〉) + logZμ.
(3.18)

Although the normalization constant Zμ now enters the expression for the objective
function, it is irrelevant in the minimization since it does not depend on the unknown
parameters in ν. To better see the connection between (3.6) and (3.18), note that

(3.19)
Zμ

Zν0

=
Zμ

Zν
=

E
μ0 exp(−Φμ)

Eμ0 exp(−Φν)
= E

ν exp(−Δ).
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Working with (3.18), the Euler–Lagrange equations to be solved are

DmJ(m, θ) = E
ν0DuΦμ(u +m) + C−1

0 (m−m0) = 0,(3.20a)

DθJ(m, θ) = E
ν0 (Δ0 DθΔ0)− (Eν0Δ0)(E

ν0DθΔ0) = 0.(3.20b)

Here, θ is any of the parameters that define the covariance operator C of the Gaussian
ν. Equation (3.20a) is obtained by direct differentiation of (3.18), while (3.20b) is
obtained in the same way as (3.10). These expressions are simpler for computations
for two reasons. First, for the variation in the mean, we do not need the full covariance
expression of (3.10). Second, Δ0 has fewer terms to compute.

3.3. Finite rank parameterization. Let P denote orthogonal projection onto
HK := span{e1, . . . , eK}, the span of the first K eigenvectors of C0, and define Q =
I − P. We then parameterize the covariance C of ν in the form

(3.21) C−1 =
(
QC0Q

)−1
+ χ, χ =

∑
i,j≤K

γijei ⊗ ej.

In words, C−1 is given by the inverse covariance C−1
0 of μ0 on QH, and is given

by χ on PH. Because χ is necessarily symmetric it is essentially parameterized by
a vector φ of dimension n = 1

2K(K + 1). We minimize J(m,φ) := DKL(ν‖μ) over
(m,φ) ∈ H1 × R

n. This is a well-defined minimization problem as demonstrated in
Example 3.7 of [28] in the sense that minimizing sequences have weakly convergent
subsequences in the admissible set. Minimizers need not be unique, and we should
not expect them to be, as multimodality is to be expected, in general, for measures μ
defined by (1.1). Problem-specific information may also suggest better directions for
the finite rank operator, but we do not pursue this here.

3.4. Schrödinger parameterization. In this subsection we assume that H
comprises a Hilbert space of functions defined on a bounded open subset of R

d.
We then seek Γ given by (3.11) in the form of a multiplication operator so that
(Γu)(x) = b(x)u(x). While minimization over the pair (m,Γ), with m ∈ H1 and Γ in
the space of linear operators satisfying (3.12), is well-posed [28], minimizing sequences
{mk,Γk}k≥1 with (Γku)(x) = bk(x)u(x) can behave very poorly with respect to the

sequence {bk}k≥1. For this reason we regularize the minimization problem and seek
to minimize

Jα(m, b) = J(m, b) + α
2 ‖b‖2r,

where J(m, b) := DKL(ν‖μ) and ‖·‖r denotes the Sobolev spaceHr of functions on R
d

with r square integrable derivatives, with boundary conditions chosen appropriately
for the problem at hand. The minimization of Jα(m, b) over (m, b) ∈ H × Hr is
well-defined; see section 3.3 of [28].

4. Robbins–Monro algorithm. In order to minimize DKL(ν‖μ) we will use
the Robbins–Monro algorithm [4, 23, 26, 30]. In its most general form this algorithm
calculates zeros of functions defined via an expectation. We apply it to the Euler–
Lagrange equations to find critical points of a nonnegative objective function, defined
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via an expectation. This leads to a form of gradient descent in which we seek to
integrate the equations

ṁ = −DmDKL, θ̇ = −DθDKL,

until they have reached a critical point. This requires two approximations. First,
as (3.20) involve expectations, the right-hand sides of these differential equations are
evaluated only approximately, by sampling. Second, a time discretization must be
introduced. The key idea underlying the algorithm is that, provided the step length
of the algorithm is sent to zero judiciously, the sampling error averages out and is
diminished as the step length goes to zero. Minimization of KL by Robbins–Monro
was also performed in [1, 2] for DKL(μ||ν), in the case of finite dimensional problems.

4.1. Background on Robbins–Monro. In this section we review some of the
structure in the Euler–Lagrange equations for the desired minimization of DKL(ν‖μ).
We then describe the particular variant of the Robbins–Monro algorithm that we use
in practice. Suppose we have a parameterized distribution, νθ, from which we can
generate samples, and we seek a value θ for which

(4.1) f(θ) ≡ E
νθ [Y ] = 0, Y ∼ νθ.

Then an estimate of the zero, θ�, can be obtained via the recursion

(4.2) θn+1 = θn − an

M∑
m=1

1
M Y (n)

m , Y (n)
m ∼ νθn , i.i.d.

(where i.i.d. is independently and identically distributed). Note that the two approx-
imations alluded to above are included in this procedure: sampling and (Euler) time
discretization. The methodology may be adapted to seek solutions to

(4.3) f(θ) ≡ E
ν [F (Y ; θ)] = 0, Y ∼ ν,

where ν is a given, fixed, distribution independent of the parameter θ. (This setup
arises, for example, in (3.20a), where ν0 is fixed and the parameter in question is
m.) Letting Z = F (Y ; θ), this induces a distribution ηθ(dz) = ν(F−1(dz; θ)), where
the preimage is with respect to the Y argument. Then f(θ) = E

ηθ [Z] with Z ∼ ηθ,
and this now has the form of (4.1). As suggested in the extensive Robbins–Monro
literature, we take the step sequence to satisfy

(4.4)
∞∑

n=1

an = ∞,
∞∑
n=1

a2n < ∞.

A suitable choice of {an} is thus an = a0n
−γ , γ ∈ (1/2, 1]. The smaller the value of γ,

the more “large” steps will be taken, helping the algorithm to explore the configuration
space. On the other hand, once the sequence is near the root, the smaller γ is, the
larger the Markov chain variance will be. In addition to the choice of the sequence an,
(4.1) introduces an additional parameter, M , the number of samples to be generated
per iteration. See [4, 8] and references therein for commentary on sample size.

The conditions needed to ensure convergence, and what kind of convergence, have
been relaxed significantly through the years. In their original paper, Robbins and
Monro assumed that Y ∼ μθ were almost surely uniformly bounded by a constant
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independent of θ. If they also assumed that f(θ) was monotonic and f ′(θ�) > 0,
they could obtain convergence in L2. With somewhat weaker assumptions, but still
requiring that the zero be simple, Blum developed convergence with probability one
[6]. All of this was subsequently generalized to the arbitrary finite dimensional case;
see [4, 23, 26].

As will be relevant to this work, there is the question of the applicability to the
infinite dimensional case when we seek, for instance, a mean function in a separable
Hilbert space. This has also been investigated; see [12, 35] along with references
mentioned in the preface of [23]. In this work, we do not verify that our problems
satisfy convergence criteria; this is a topic for future investigation.

A variation on the algorithm that is commonly applied is the enforcement of
constraints which ensure {θn} remain in some bounded set; see [23] for an extensive
discussion. We replace (4.2) by

(4.5) θn+1 = ΠD

[
θn − an

M∑
m=1

1
M Y (n)

m

]
, Y (n)

m ∼ νθn , i.i.d.,

where D is a bounded set, and ΠD(x) computes the point in D nearest to x. This
is important in our work, as the parameters must induce covariance operators. They
must be positive definite, symmetric, and trace class. Our method automatically
produces symmetric trace-class operators, but the positivity has to be enforced by a
projection.

The choice of the set D can be set either through a priori information as we do
here, or determined adaptively. In [9, 35], each time the iterate attempts to leave the
current constraint set D, it is returned to a point within D, and the constraint set
is expanded. It can be shown that, almost surely, the constraint is expanded only a
finite number of times.

4.2. Robbins–Monro applied to KL. We seek minimizers of DKL as sta-
tionary points of the associated Euler–Lagrange equations, (3.20). Before applying
Robbins–Monro to this problem, we observe that we are free to precondition the
Euler–Lagrange equations. In particular, we can apply bounded, positive, invertible
operators so that the preconditioned gradient will lie in the same function space as the
parameter; this makes the iteration scheme well-posed. For (3.20a), we have found
premultiplying by C0 to be sufficient. For (3.20b), the operator will be problem spe-
cific, depending on how θ parameterizes C, and also if there is a regularization. We
denote the preconditioner for the second equation by Bθ. Thus, the preconditioned
Euler–Lagrange equations are

0 = C0E
ν0DuΦμ(u+m) + (m−m0),(4.6a)

0 = Bθ [E
ν0(Δ0 DθΔ0)− (Eν0Δ0)(E

ν0DθΔ0)] .(4.6b)

We must also ensure that m and θ correspond to a well-defined Gaussian; C must
be a covariance operator. Consequently, the Robbins–Monro iteration scheme is the
following.

Algorithm 4.1.

1. Set n = 0. Pick m0 and θ0 in the admissible set, and choose a sequence {an}
satisfying (4.4).
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2. Update mn and θn according to

mn+1 = Πm

[
mn − an

{
C0

(
M∑
�=1

1
M ·DuΦμ(u�)

)
+mn −m0

}]
,

(4.7a)

θn+1 = Πθ

[
θn − anBθ

{
M∑
�=1

1
M ·Δ0(u�)DθΔ0(u�)

−
(

M∑
�=1

1
M ·Δ0(u�)

)(
M∑
�=1

1
M ·DθΔ0(u�)

)}]
.

(4.7b)

3. n → n+ 1 and return to 2.
Typically, we have some a priori knowledge of the magnitude of the mean. For

instance, m ∈ H1([0, 1];R1) may correspond to a mean path, joining two fixed end-
points, and we know it to be confined to some interval [m,m]. In this case we choose

(4.8) Πm(f)(t) = min{max{f(t),m},m}, 0 < t < 1.

For Πθ, it is necessary to compute part of the spectrum of the operator that θ induces,
check that it is positive, and, if it is not, project the value to something satisfactory.
In the case of the finite rank operators discussed in section 3.3, the matrix γ must
be positive. One way of handing this, for symmetric real matrices, is to make the
following choice:

(4.9) Πθ(A) = X diag{min{max{λ, λ}, λ}}XT ,

where A = X diag{λ}XT is the spectral decomposition, and λ and λ are constants
chosen a priori. It can be shown that this projection gives the closest, with respect
to the Frobenius norm, symmetric matrix with spectrum constrained to [λ, λ] [20].2

5. Improved MCMC sampling. The idea of the Metropolis–Hastings variant
of MCMC is to create an ergodic Markov chain which is reversible, in the sense of
Markov processes, with respect to the measure of interest; in particular, the measure
of interest is invariant under the Markov chain. In our case we are interested in the
measure μ given by (1.1). Since this measure is defined on an infinite dimensional
space it is advisable to use MCMC methods which are well-defined in the infinite
dimensional setting, thereby ensuring that the resulting methods have mixing rates
independent of the dimension of the finite dimensional approximation space. This
philosophy is explained in the paper [11]. The pCN algorithm is perhaps the simplest
MCMC method for (1.1) meeting these requirements. It has the following form.

Algorithm 5.1.

Define aμ(u, v) := min{1, exp(Φμ(u)− Φμ(v)
)}.

1. Set k = 0 and Pick u(0).
2. v(k) = m0 +

√
(1 − β2)(u(k) −m0) + βξ(k), ξ(k) ∼ N(0, C0).

3. Set u(k+1) = v(k) with probability aμ(u
(k), v(k)).

2Recall that the Frobenius norm is the finite dimensional analog of the Hilbert–Schmidt norm.
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4. Set u(k+1) = u(k) otherwise.
5. k → k + 1 and return to 2.

This algorithm has a spectral gap which is independent of the dimension of the
discretization space under quite general assumptions on Φμ [18]. However, it can
still behave poorly if Φμ, or its gradients, are large. This leads to poor acceptance
probabilities unless β is chosen very small so that proposed moves are localized; either
way, the correlation decay is slow and mixing is poor in such situations. This problem
arises because the underlying Gaussian μ0 used in the algorithm construction is far
from the target measure μ. This suggests a potential resolution in cases where we have
a good Gaussian approximation to μ, such as the measure ν. Rather than basing the
pCN approximation on (1.1), we base it on (3.3); this leads to the following algorithm.

Algorithm 5.2.

Define aν(u, v) := min{1, exp(Δ(u)−Δ(v)
)}.

1. Set k = 0 and Pick u(0).
2. v(k) = m+

√
(1− β2)(u(k) −m) + βξ(k), ξ(k) ∼ N(0, C).

3. Set u(k+1) = v(k) with probability aν(u
(k), v(k)).

4. Set u(k+1) = u(k) otherwise.
5. k → k + 1 and return to 2.

We expect Δ to be smaller than Φ, at least in regions of high μ probability. This
suggests that, for given β, Algorithm 5.2 will have better acceptance probability than
Algorithm 5.1, leading to more rapid sampling. We show in what follows that this is
indeed the case.

6. Numerical results. In this section we describe our numerical results. These
concern both a solution of the relevant minimization problem, to find the best Gaus-
sian approximation from within a given class using Algorithm 4.1 applied to the two
parameterizations given in subsections 3.3 and 3.4, together with results illustrat-
ing the new pCN Algorithm 5.2 which employs the best Gaussian approximation
within MCMC. We consider two model problems: a Bayesian inverse problem arising
in PDEs, and a conditioned diffusion problem motivated by molecular dynamics.
Some details on the path generation algorithms used in these two problems are given
in Appendix B.

6.1. Bayesian inverse problem. We consider an inverse problem arising in
groundwater flow. The forward problem is modeled by the Darcy constitutive model
for porous medium flow. The objective is to find p ∈ V := H1 given by the equation

−∇ · (exp(u)∇p
)
= 0, x ∈ D,(6.1a)

p = g, x ∈ ∂D.(6.1b)

The inverse problem is to find u ∈ X = L∞(D) given noisy observations

yj = �j(p) + ηj ,

where �j ∈ V ∗, the space of continuous linear functionals on V . This corresponds to
determining the log permeability from measurements of the hydraulic head (height of
the water table). Letting G(u) = �(p(·;u)), the solution operator of (6.1) is composed
with the vector of linear functionals � = (�j)

T . We then write, in vector form,

y = G(u) + η.
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We assume that η ∼ N(0,Σ) and place a Gaussian prior N(m0, C0) on u. Then the
Bayesian inverse problem has the form (1.1) where

Φ(u) :=
1

2

∥∥Σ− 1
2

(
y − G(u))∥∥2.

We consider this problem in dimension one, with Σ = γ2I, and employing point-
wise observation at points xj as the linear functionals �j . As prior we take the
Gaussian μ0 = N(0, C0) with

C0 = δ

(
− d2

dx2

)−1

,

restricted to the subspace of L2(0, 1) of periodic mean zero functions. For this prob-
lem, the eigenvalues of the covariance operator decay like j−2. In one dimension we
may solve the forward problem (6.1) on D = (0, 1), with p(0) = p− and p(1) = p+

explicitly to obtain

(6.2) p(x;u) = (p+ − p−)
Jx(u)

J1(u)
+ p−, Jx(u) ≡

∫ x

0

exp(−u(z))dz,

and

(6.3) Φ(u) =
1

2γ2

�∑
j=1

|p(xj ;u)− yj |2.

Following the methodology of [21], to compute DuΦ(u) we must solve the adjoint
problem for q:

(6.4) − d

dx

(
exp(u)

dq

dx

)
= − 1

γ2

�∑
j=1

(p(xj ;u)− yj)δxj , q(0) = q(1) = 0.

Again, we can write the solution explicitly via quadrature:

q(x;u) = Kx(u)− K1(u)Jx(u)

J1(u)
,

Kx(u) ≡
�∑

j=1

p(xj ;u)− yj
γ2

∫ x

0

exp(−u(z))H(z − xj)dz.

(6.5)

Using (6.2) and (6.5),

(6.6) DuΦ(u) = exp(u)
dp(x;u)

dx

dq(x;u)

dx
.

For this application we use a finite rank approximation of the covariance of the
approximating measure ν, as explained in subsection 3.3. In computing with the finite
rank matrix (3.21), it is useful, for good convergence, to work with B = γ−1/2. The
preconditioned derivatives, (4.6), also require DBΔ0, where Δ0 is given by (3.17).
To characterize this term, if v =

∑
i viei, we let v = (v1, . . . vN )T be the first N

coefficients. Then for the finite rank approximation,

(6.7) Φν0(v) =
1

2

〈
v, (C−1 − C−1

0 )v
〉
=

1

2
vT (γ − diag(λ−1

1 , . . . λ−1
N ))v.
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Then using our parameterization with respect to the matrix B,

(6.8) DBΔ0(v) = DB(Φ(m+ v)− Φν0(v)) =
1

2

[
B−1v(B−2v)T +B−2v(B−1v)T

]
.

As a preconditioner for (4.6b) we found that it was sufficient to multiply by λN .
We solve this problem with ranks K = 2, 4, 6, first minimizing DKL, and then

running the pCN Algorithm 5.2 to sample from μy. The common parameters are
• γ = 0.1, δ = 1, p− = 0, and p+ = 2;
• there are 27 uniformly spaced grid points in [0, 1);
• (6.2) and (6.5) are solved via trapezoidal rule quadrature;
• the true value of u(x) = 2 sin(2πx);
• the dimension of the data is four, with samples at x = 0.2, 0.4, 0.6, 0.8;
• m0 = 0 and B0 = diag(λn), n ≤ rank;
• ∫ ṁ2 is estimated spectrally;
• 105 iterations of the Robbins–Monro algorithm are performed with 102 sam-
ples per iteration;

• a0 = .1 and an = a0n
−3/5;

• the eigenvalues of σ are constrained to the interval [10−4, 100] and the mean
is constrained to [−5, 5];

• pCN Algorithms 5.1 and 5.2 are implemented with β = 0.6, and 106 iterations.
The results of the DKL optimization phase of the problem, using the Robbins–

Monro Algorithm 4.1, appear in Figure 4. This figure shows the convergence of mn

in the rank 2 case; the convergence of the eigenvalues of B for ranks 2, 4, and 6; and
the minimization of DKL. We only present the convergence of the mean in the rank 2
case, as the others are quite similar. At the termination of the Robbins–Monro step,
the Bn matrices are

Bn =

(
0.0857 0.00632
− 0.105

)
,(6.9)

Bn =

⎛
⎜⎜⎝
0.0864 0.00500 −0.00791 −0.00485
− 0.106 0.00449 −0.00136
− − 0.0699 −0.000465
− − − 0.0739

⎞
⎟⎟⎠ ,(6.10)

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0870 0.00518 −0.00782 −0.00500 −0.00179 −0.00142
− 0.106 0.00446 −0.00135 0.00107 0.00166
− − 0.0701 −0.000453 −0.00244 9.81× 10−5

− − − 0.0740 −0.00160 0.00120
− − − − 0.0519 −0.00134
− − − − − 0.0523

⎞
⎟⎟⎟⎟⎟⎟⎠
.(6.11)

Note there is consistency as the rank increases, and this is reflected in the eigenvalues
of the Bn shown in Figure 4. As in the case of the scalar problem, more iterations of
Robbins–Monro are computed than are needed to ensure convergence.

The posterior sampling, by means of Algorithms 5.1 and 5.2, is described in
Figure 5. There is good posterior agreement in the means and variances in all cases,
and the low rank priors provide not just good means but also variances. This is
reflected in the high acceptance rates and low auto covariances; there is approximately
an order of magnitude in improvement in using Algorithm 5.2, which is informed by
the best Gaussian approximation, and Algorithm 5.1, which is not.
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(a) mn(x) for rank 2 at particular iterations

102 103 104 105

Iteration n

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
ig

en
va

lu
es

of
B

n

ν Rank 2
ν Rank 4
ν Rank 6
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Fig. 4. Convergence of the Robbins–Monro Algorithm 4.1 applied to the Bayesian inverse
problem. (a) shows the convergence of mn in the case of rank 2, while (b) shows the convergence of
the eigenvalues of Bn for ranks 2, 4 and 6. (c) shows the minimization of DKL. The observational
noise is γ = 0.1. The figures indicate that rank 2 has converged after 102 iterations; rank 4 has
converged after 103 iterations; and rank 6 has converged after 104 iterations.

However, notice in Figure 5 that the posterior, even when ± one standard devi-
ation is included, does not capture the truth. The results are more favorable when
we consider the pressure field, and this hints at the origin of the disagreement. The
values at x = 0.2 and 0.4, and to a lesser extent at 0.6, are dominated by the noise.
Our posterior estimates reflect the limitations of what we are able to predict given our
assumptions. If we repeat the experiment with smaller observational noise, γ = 0.01
instead of 0.1, we see better agreement, and also variation in performance with respect
to approximations of different ranks. These results appear in Figure 6. In this smaller
noise case, there is a two order magnitude improvement in performance.

6.2. Conditioned diffusion process. Next, we consider measure μ given by
(1.1) in the case where μ0 is a unit Brownian bridge connecting 0 to 1 on the interval
(0, 1), and

Φ =
1

4ε2

∫ 1

0

(
1− u(t)2

)2
dt,

a double well potential. This also has an interpretation as a conditioned diffusion [29].

Note that m0 = t and C−1
0 = − 1

2
d2

dt2 with D(C−1
0 ) = H2(I) ∩H1

0 (I) with I = (0, 1).
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(a) Log permeability u(x) (b) Pressure p(x)
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Fig. 5. Behavior of MCMC Algorithms 5.1 and 5.2 for the Bayesian inverse problem with
observational noise γ = 0.1. The true posterior distribution, μ, is sampled using μ0 (Algorithm 5.1)
and ν, with ranks 2, 4 and 6 (Algorithm 5.2). The resulting posterior approximations are labeled
μ; μ0 (Algorithm 5.1) and μ; ν rank 2, (Algorithm 5.2). The notation μ0 and ν rank K is used
for the prior and best Gaussian approximations of the corresponding rank. The distributions of
u(x), in (a), for the optimized ν rank 2 and the posterior μ overlap, but are still far from the truth.
The results for ranks 4 and 6 are similar. (c) and (d) compare the performance of Algorithm 5.2
when using ν rank K for the proposal, with K = 2, 4, and 6, against Algorithm 5.1. ν rank 2
gives an order of magnitude improvement in posterior sampling over μ0. There is not significant
improvement when using ν ranks 4 and 6 over using rank 2. Shaded regions enclose ± one standard
deviation.

We seek the approximating measure ν in the form N(m(t), C) with (m,B) to be
varied, where

C−1 = C−1
0 + 1

2ε2B

and B is either constant, B ∈ R, or B : I → R is a function viewed as a multiplication
operator. Here, the eigenvalues of the covariance operator decay like j−2.

We examine both cases of this problem, performing the optimization, followed
by pCN sampling. The results were then compared against the uninformed prior,
μ0 = N(m0, C0). For the constant B case, no preconditioning on B was performed,
and the initial guess was B = 1. For B = B(t), a Tikhonov–Phillips regularization
was introduced,

(6.12) Dα
KL = DKL +

α

2

∫
Ḃ2dt, α = 10−2.

D
ow

nl
oa

de
d 

02
/1

5/
16

 to
 1

37
.2

05
.5

0.
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2750 F. J. PINSKI, G. SIMPSON, A. M. STUART, H. WEBER

(a) Log permeability u(x) (b) Pressure p(x)
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Fig. 6. Behavior of MCMC Algorithms 5.1 and 5.2 for the Bayesian inverse problem with
observational noise γ = 0.01. Notation as in 5. The distribution of u(x), shown in (a), for both
the optimized rank 6 ν, and the posterior μ overlap, and are close to the truth. Unlike the case
of γ = 0.1, (c) and (d) show improvement in using ν rank 6 within Algorithm 5.2, over ranks 2
and 4. However, all three cases of Algorithm 5.2 are at least two orders of magnitude better than
Algorithm 5.1, which uses only μ0. Shaded regions enclose ± one standard deviation.

For computing the gradients (4.6) and estimating DKL,

DmΦ(v +m) = 1
2ε2 (v +m)[(v +m)2 − 1],(6.13a)

DBΦν0(v) =

{
1

4ε2

∫ 1

0
v2dt, B constant,

1
4ε2 v

2, B(t).
(6.13b)

No preconditioning is applied for (6.13b) in the case that B is a constant, while in
the case that B(t) is variable, the preconditioned gradient in B is

{
−α d2

dt2

}−1

(Eν0(Δ0DθΔ0)− E
ν0 (Δ0)E

ν0 (DθΔ0)) +B.

Because of the regularization, we must invert −d2/dt2, requiring the specification of
boundary conditions. By a symmetry argument, we specify the Neumann boundary
condition, B′(0) = 0. At the other endpoint, we specify the Dirichlet condition
B(1) = V ′′(1) = 2, a “far field” approximation.
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(a) mn(t) at particular iterations
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Fig. 7. Convergence of the Robbins–Monro Algorithm 4.1 applied to the conditioned diffusion
problem in the case of constant inverse covariance potential B. (a) shows evolution of mn(t) with
n; (b) shows convergence of the Bn constant.

The common parameters used are
• the temperature ε = 0.05;
• there were 99 uniformly spaced grid points in (0, 1);
• as the endpoints of the mean path are 0 and 1, we constrained our paths to
lie in [0, 1.5];

• B and B(t) were constrained to lie in [10−3, 101], to ensure positivity of the
spectrum;

• the standard second order centered finite difference scheme was used for C−1
0 ;

• trapezoidal rule quadrature was used to estimate
∫ 1

0
ṁ2 and

∫ 1

0
Ḃ2dt, with

second order centered differences used to estimate the derivatives;
• m0(t) = t, B0 = 1, B0(t) = V ′′(1), the right endpoint value;
• 105 iterations of the Robbins–Monro algorithm are performed with 102 sam-
ples per iteration;

• a0 = 2 and an = a0n
−3/5;

• pCN Algorithms 5.1 and 5.2 are implemented with β = 0.6, and 106 iterations.
Our results are favorable, and the outcome of the Robbins–Monro Algorithm 4.1 is
shown in Figures 7 and 8 for the additive potentials B and B(t), respectively. The
means and potentials converge in both the constant and variable cases. Figure 9
confirms that in both cases, DKL and Dα

KL are reduced during the algorithm.
The important comparison is when we sample the posterior using these as the

proposal distributions in MCMC Algorithms 5.1 and 5.2. The results for this are given
in Figure 10. Here, we compare both the prior and posterior means and variances,
along with the acceptance rates. The means are all in reasonable agreement, with
the exception of the m0, which was to be expected. The variances indicate that
the sampling done using μ0 has not quite converged, which is why it is far from
the posterior variances obtained from the optimized ν’s, which are quite close. The
optimized prior variances recover the plateau between t = 0.2 to t = 0.9, but could not
resolve the peak near 0.1. Variable B(t) captures some of this information in that it
has a maximum in the right location, but of a smaller amplitude. However, when one
standard deviation about the mean is plotted, it is difficult to see this disagreement
in variance between the reference and target measures.
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(a) mn(t) at particular iterations.
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Fig. 8. Convergence of the Robbins–Monro Algorithm 4.1 applied to the conditioned diffusion
problem in the case of variable inverse covariance potential B(t). (a) shows mn(t) at particular n.
(b) shows Bn(t) at particular n.
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Fig. 9. Minimization of Dα
KL (for B(t)) and DKL (for B) during Robbins–Monro Algorithm 4.1

for the conditioned diffusion problem. Also plotted is a comparison of B and B(t) for the optimized
ν distributions.

In Figure 11 we present the acceptance rate and autocovariance, to assess the
performance of Algorithms 5.1 and 5.2. For both the constant and variable potential
cases, there is better than an order of magnitude improvement over μ0. In this case,
it is difficult to distinguish an appreciable difference in performance between B(t)
and B.

7. Conclusions. We have demonstrated a viable computational methodology
for finding the best Gaussian approximation to measures defined on a Hilbert space
of functions, using the KL divergence as a measure of fit. We have parameterized
the covariance via low rank matrices, or via a Schrödinger potential in an inverse co-
variance representation, and represented the mean nonparametrically, as a function;
these representations are guided by knowledge and understanding of the properties
of the underlying calculus of variations problem as described in [28]. Computational
results demonstrate that, in certain natural parameter regimes, the Gaussian approx-
imations are good in the sense that they give estimates of mean and covariance which
are close to the true mean and covariance under the target measure of interest, and
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Fig. 10. Behavior of MCMC Algorithms 5.1 and 5.2 for the conditioned diffusion problem.
The true posterior distribution, μ, is sampled using μ0 (Algorithm 5.1) and ν, for both constant
and variable potentials, B and B(t), (Algorithm 5.2). The resulting posterior approximations are
denoted by μ;μ0 (Algorithm 5.1), and μ; νB and μ; νB(t) (Algorithm 5.2). The curves denoted
μ0, and ν B and ν B(t), are the prior and best fit Gaussians. For both optimized ν’s, there is
good agreement between the means and the posterior mean. The variances are consistent, but the
posterior shows a peak near t = 0.1 that is not captured by ν distributions. With the exception of
μ0, there is good general agreement amongst the distributions of u(t). Shaded regions enclose ± one
standard deviation.

that they consequently can be used to construct efficient MCMC methods to probe
the posterior distribution.

One point we highlight again is our choice to minimize DKL(ν||μ) instead of
DKL(μ||ν). While the latter will be effective at moment matching, the former allows
for the detailed approximation of individual modes. For problems where one is in-
terested in such local structure, this is of great value. For sampling a multimodal
μ, we conjecture that a Gaussian mixture proposal, with each component obtained
from optimizing DKL(νi||μ) (each νi corresponding to each mode) may offer greater
MCMC speedup than the proposal obtained by moment matching.

Regarding the efficiency of our approach, as an MCMC sampler, consideration
must be given to the cost of computing the best Gaussian fit. If n iterations of
Robbins–Monro are run, each iteration will require M samples (as in (4.5)), corre-
sponding to, approximately, M times as much work as n iterations of MCMC. The
M samples are needed for the estimation of the covariance in (3.20b). This cost may
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Fig. 11. Performance of MCMC Algorithms 5.1 and 5.2 for the conditioned diffusion problem.
When μ0 is used for proposals in Algorithm 5.1, the acceptance rate is far beneath either best fit
Gaussian, ν B and ν B(t), within Algorithm 5.2. Variable B(t) provides nominal improvement over
constant B.

be mitigated by the performance gain of the algorithm when sampling the target
measure, μ. Moreover, when viewed as a preconditioning strategy, it will only be
necessary to iterate Robbins–Monro for sufficiently long so as to improve upon the
uninformed proposal algorithm. The Robbins–Monro minimization of KL could be
combined with MCMC to adaptively improve the proposal, as in [1, 2, 17, 31].

There are many candidates for constructing proposal distributions with high ac-
ceptance rates. One would be to compute the MAP estimator and then to use (pos-
sibly a low rank approximation of) the Hessian of the objective function at the MAP
point to form a Gaussian approximation. However, our approach benefits from being
framed in terms of a variational principle. We are assured of having the optimal dis-
tribution within an admissible set. This can always be improved upon by expanding,
or adapting, the admissible set.

Further work is needed to explore the methodology in larger scale applications
and to develop application-specific parameterizations of the covariance operator. With
respect to analysis, it would be instructive to demonstrate improved spectral gaps for
the resulting MCMC methods with respect to observational noise (resp., temperature)
within the context of Bayesian inverse problems (resp., conditioned diffusions).

Appendix A. Scalar example. In this section of the appendix we provide
further details relating to the motivational scalar example from section 2. One of
the motivations for considering such a problem is that many of the calculations for
DKL(ν‖μ) are explicit. Indeed if ν = N(m,σ2) is the Gaussian which we intend to fit
against μ, then

DKL(ν||μ) = E
ν
[
V (x)− 1

2σ2 |x−m|2]+ logZμ − logZν

= E
ν0 [V (y +m)]− 1

2 + logZμ − log σ − log
√
2π

= E
ν0 [V (y +m)]− log σ +Constant.

(A.1)

The derivatives then take the simplified form

DmDKL = E
ν0 [DyV (y +m)],(A.2a)

DσDKL = E
ν0 [V (y +m)σ−3(y2 − σ2)]− σ−1.(A.2b)
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For some choices of V (x), including (2.2), the above expectations can be computed
analytically, and the critical points of (A.2) can then be obtained by classical root
finding. Thus, we will be able to compare the Robbins–Monro solution against a
deterministic one, making for an excellent benchmark problem.

The parameters used in these computation are
• 106 iterations of the Robbins–Monro with 102 samples per iterations;
• a0 = .001 and an = a0n

−3/5;
• m0 = 0 and σ0 = 1;
• m is constrained to the interval [−10, 10];
• σ is constrained to the interval [10−6, 103];
• 106 iterations of pCN, Algorithms 5.1, 5.2, are performed with β = 1.

While 106 iterations of Robbins–Monro are used, Figure 1 indicates that there is
good agreement after 103 iterations. More iterations than needed are used in all of
our examples, to ensure convergence. With appropriate convergence diagnostics, it
may be possible to identify a convenient termination time.

Appendix B. Sample generation. In this section of the appendix we briefly
comment on how samples were generated to estimate expectations and perform pCN
sampling of the posterior distributions. Three different methods were used

B.1. Bayesian inverse problem. For the Bayesian inverse problem presented
in section 6.1, samples were drawn from N(0, C), where C was a finite rank pertur-
bation of C0, C

−1
0 = δ−1(−d2/dx2) equipped with periodic boundary conditions on

[0, 1). This was accomplished using the KL series expansion (KLSE) and the fast
Fourier transform (FFT). Observe that the spectrum of C0 is

(B.1) ϕn(x) =

{√
2 sin(2π n+1

2 x), n odd,√
2 cos(2π n

2x), n even,
λ2
n =

⎧⎨
⎩

δ

(2π
n+1
2 )2

, n odd,

δ

(2π
n
2 )2

, n even.

Let xn and μ2
n denote the normalized eigenvectors and eigenvalues of matrix B of

rank K. Then if u ∼ N(0, C), ξn ∼ N(0, 1), i.i.d., the KLSE is

(B.2) u =

K∑
�=1

{
K∑

n=1

μnξnx
n
�

}
ϕ�(x) +

∞∑
�=K+1

λ�ξ�ϕ�(x).

Truncating this at some index, N > K, we are left with a trigonometric polynomial
which can be evaluated by FFT. This will readily adapt to problems posed on the
d-dimensional torus.

B.2. Conditioned diffusion with constant potential. For the conditioned
diffusion in section 6.2, the case of the constant potential B can easily be treated, as
this corresponds to an Ornstein–Uhlenbeck (OU) bridge. Provided B > 0 is constant,
we can associate with N(0, C) the conditioned OU bridge

(B.3) dyt = ε−1
√
Bytdt+

√
2dwt, y0 = y1 = 0,

and the unconditioned OU process

(B.4) dzt = ε−1
√
Bztdt+

√
2dwt, z0 = 0.

Using the relation

(B.5) yt = zt − sinh(
√
Bt/ε)

sinh(
√
B/ε)

z1,
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if we can generate a sample of zt, we can then sample from N(0, C). This is accom-
plished by picking a time step Δt > 0, and then iterating:

(B.6) zn+1 = exp{−ε−1
√
BΔt}zn+ ηn, ηn ∼ N(0, ε/

√
B(1− exp(−2ε−1

√
BΔt))).

Here, z0 = 0, and zn ≈ znΔt. This is highly efficient and generalizes to d-dimensional
diffusions.

B.3. Conditioned diffusion with variable potential. Finally, for the condi-
tioned diffusion with a variable potential B(t), we observe that for the Robbins–Monro
algorithm, we do not need the samples themselves, but merely estimates of the ex-
pectations. Thus, we employ a change of measure so as to sample from a constant B
problem, which is highly efficient. Indeed, for any observable O,

(B.7) E
ν0 [O] = E

ν̄ [O dν0
dν̄ ] =

E
ν̄ [O exp(−Ψ)]

Eν̄ [exp(−Ψ)]
.

Formally,

(B.8)
dν0
dν̄

∝ exp

{
− 1

4ε2

∫ 1

0

(B(t)− B̄)z2t dt

}
,

and we take B̄ = maxt B(t) for stability.
For pCN sampling we need actual samples from N(0, C). We again use a KLSE,

after discretizing the precision operator C−1 = C−1
0 +B(t) with appropriate boundary

conditions, and computing its eigenvalues and eigenvectors. While this computation is
expensive, it is only done once at the beginning of the posterior sampling algorithm.
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