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Linear Instability Implies Spurious Periodic Solutions
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We analyse discrete approximations of reaction-diffusion-convection equations
and show that linearized instability implies the existence of spurious periodic
solutions in the fully nonlinear problem. The result is proved by using ideas from
bifurcation theory. Using singularity theory we provide a precise local description
of the spurious solutions. The results form the basis for an analysis of the range of
discretization parameters in which spurious solutions can exist, their magnitude,
and their spatial structure. We present a modified equations approach to
determine criteria under which spurious periodic solutions exist for arbitrarily
small values of the time-step. The theoretical results are applied to a specific
example.

1. Introduction

IN this paper we analyse numerical methods for reaction-diffusion-convection
equations of the form

w, = wxx + Xh(w, wz) for x e (0 ,1) and t > 0, (1.1)

with boundary and initial conditions

w(0,t) = w(l,t) = 0, w(x,0) = wo(x). (1.2)

We study explicit finite difference schemes for (1.1-2). The spatial mesh is defined
by the points Xj=jAx for j = O,...,J, where JAx = l. The temporal mesh is
defined by the points tn = n At. Let w" denote our approximation to w(xj, tn).
Then, for r = At/Ax2, the explicit numerical methods considered here are of the
form

wn+x = wn + r6iwn + A Atg{y^_u wf, wj+l; Ax) for j = 1,...,/ - 1, (1.3)

with boundary and initial conditions

M>S = w? = 0, wf = wo(jAx). (1.4)

Here dlwi = wJ+i — 2wj + yvi_i. We assume that the nonlinear function
g{a, b, c; Ax) is smooth (as governed by h) and chosen so that (1.3-4) forms a
consistent approximation to (1.1-2). The precise choice of approximation is left
open to allow for both centred and, where appropriate, upwind approximations
to the convective term.

We show, under fairly minimal assumptions, the existence of spurious periodic
solutions (in n) to the finite difference equations (1.3-4). Our technique is to
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4 6 6 ANDREW STUART

consider (1.3-4), with a value of At close to that which makes the scheme linearly
unstable (a term made precise in Definition 3.1), and to apply techniques from
bifurcation theory to establish the existence of a branch of solutions continuous in
At, with period two in n; see Corollary 4.1. Using singularity theory, we show
that the bifurcation is generically of pitchfork type, with At as the parameter; see
Theorem 4.2. We also introduce a modified equations technique for analysing the
existence and form of spurious solutions far away from the bifurcation point, as
At—»0; see Conjecture 4.1.

We illustrate this phenomenon by means of a very simple example. If we
choose h(w, wx) = 8w2, set Ax = i (/ = 2), define n = 8 At, and let w" = w", then
the numerical scheme (1.3-4) becomes a simple map: R -*• R with the form

where, for the obvious centred scheme,

F(w) = w — fiw + ukw2. (1-5)

Such maps are discussed in Guckenheimer & Holmes (1983). Period two
solutions satisfy the coupled equations

q=F(p) and p = F(q).

By solving explicitly, we find that genuine period two solutions (that is p =£ q) are
given by

Thus /x = 2 is a bifurcation point at which nontrivial periodic solutions branch
from the trivial solution w" = 0. Furthermore, the bifurcation is of pitchfork type:
for (i < 2 there are no real nontrivial periodic solutions, whilst for \i > 2 there are
two (the second corresponding to interchanging p and q in the first). The value
H = 2 (that is, At = i) is precisely the value at which the numerical scheme found
by linearizing about the steady solution w" = 0 becomes asymptotically unstable.
It is termed a flip or period doubling bifurcation point (see Guckenheimer &
Holmes, 1983).

The behaviour of this simple model is not a product of the particular choice of
nonlinearity, nor of the large value taken for Ax. In general, we show that if the
numerical scheme (1.3-4) possesses steady (n-independent) solutions then there
are / — 1 critical values of At, predicted by linear theory, at which a branch of
period two solutions in n bifurcates from the steady solution. Each branch of
solutions is continuous in the parameter At and we show, by means of techniques
from singularity theory, that the bifurcation is necessarily of pitchfork type. Often
the periodic solution branching from the smallest critical value of At (that at
which the scheme becomes linearly unstable) will have most effect on the
dynamics of the discretization. However, depending on the magnitude and spatial
structure of the initial data, it is possible for other solutions to have a significant
effect.
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SPURIOUS PERIODIC SOLUTIONS 467

It should be emphasized at this point that the period two solutions are spurious
and purely a product of the discretization. It might be argued that, since the
solutions bifurcate at values of At close to (or for some branches, far above) the
linear stability limit, they will be irrelevant in practice. However, particularly if
the bifurcation is subcritical, it is possible that a branch of spurious solutions
will extend to values of At used in practice. The behaviour of a dynamical system
such as (1.3-4) is intimately related to the existence of steady, periodic, and
quasi-periodic motions, be they stable or unstable. (See Stuart (1989b) for an
example of how spurious steady solutions affect dynamical behaviour of a
discretization.) Thus the presence of the spurious periodic solutions at values of
At used in practical computation can seriously degrade the performance of the
numerical approximation. The analysis presented here forms the basis for an
investigation of the range of At in which spurious periodic solutions exist, their
magnitude, and their spatial structure. The rigorous proof of existence of periodic
orbits is also useful since it draws attention to the fact that, for nonlinear
problems, the manifestation of practical instability is not necessarily the un-
bounded or enormous growth of a measured quantity (as it is for linear
problems), but may be bounded behaviour of moderate relative scale. This is
particularly relevant if the bifurcation is supercritical: in this case, a period two
solution on the branch emanating from the linear stability limit attracts all initial
data which are sufficiently close to it. Thus bounded behaviour of period two in n,
observed as n—>°°, is symptomatic of an explicit numerical method for a non-
linear problem operating above the linear stability limit. The boundedness results
from a balance between the linear instability mechanism and the nonlinear terms,

There are several scattered results proving the existence of periodic orbits in
numerical schemes operating close to their linearized stability limits (Griffiths &
Mitchell, 1988; Mitchell & Schoombie, 1989; Sleeman et al., 1988). However,
much of that work is concerned with specific nonlinearities and assumes the
existence of a trivial steady solution. Underlying all these results is a general
theorem along the lines of

linearized instability => periodic solutions in nonlinear discretizations,

where the linearization is taken about any steady solution of the difference
equations and the nonlinearity is arbitrary (excepting smoothness assumptions).
For the discretization (1.3-4), this result follows from Corollary 4.1 with i =J — 1
so that At is close to the value — 2/t]j-i(k) at which the scheme is linearly
unstable (see Definition 3.1).

The explanation of the theorem is best understood in a bifurcation theoretic
context: at the critical value for linear instability, the Frechet derivative of a
suitably extended nonlinear problem (containing two steps of the discretization) is
singular when evaluated at the steady solution and the null-space is spanned by
vectors determined by the unstable eigenvector(s) from the linear theory. Since
the Frechet derivative is singular we cannot invoke the implicit function theorem
and branching of solutions is suggested. Of course, various technical assumptions
are required to make these notions into a precise theorem; in particular, detailed
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468 ANDREW STUART

properties of the derivatives of the nonlinear discretization are required—the
dimension of the null-space of the first derivative is crucial. For our main results,
we have chosen to concentrate solely on equations (1.1-2) and their discretiza-
tions, for the sake of clarity. With trivial modifications the theory contained here
extends to inhomogeneous Dirichlet, Neumann, and Robin boundary conditions
and, with a little more care, to periodic boundary conditions. In addition, as
indicated above, the idea of the proof applies to finite difference discretizations of
arbitrary time-dependent ODEs and PDEs. The bifurcation analysis presented is
complementary to the asymptotic approach introduced by Newell (1977) and
detailed further in Stuart (1989a). More complicated periodic and quasi-periodic
structures arising in discretizations of ODEs are discussed in Sleeman et al. (1988)
and Yamaguti & Ushiki (1981). The general theory of the period doubling route
to chaos in iterated maps on R" (of which (1.3-4) is an example) is discussed
in Collet et al. (1981).

We are concerned with the practical stability of the numerical method (1.3-4):
the method is studied for fixed (but small) values of the mesh-spacings.
Specifically we fix Ax throughout our analysis (so that we have a problem of fixed
dimension) and consider At as a bifurcation parameter. Although we vary At for
the purposes of analysis, our interest is in the behaviour of the dynamical system
(1.3-4) for any given, fixed values of At and Ax (which might correspond, for
example, to the minimum attainable values in a practical computation). This
notion of stability is distinct from convergence stability (Lopez-Marcos &
Sanz-Serna, 1988) which concerns the limit as the mesh-spacings shrink to zero.
(The convergence stability of linear diffusion-convection equations is detailed in
Morton (1980).) Practical stability is of particular importance in applications where
the asymptotic properties of a time-dependent PDE are sought as r ^ » . The
relationship between practical and convergence stability is discussed in Section 5.

In Section 2 we reformulate (1.3-4) as a perturbation of a steady solution.
Section 3 contains a full discussion of the linear theory for (1.3-4) when
linearized about a steady solution. In Section 4 we describe the nonlinear theory,
proving the existence of period two solutions and calculating the normal form
governing their existence. We also introduce a modified equations interpreta-
tion which gives criteria for the existence of spurious periodic solutions at
arbitrarily small values of At. In Section 5 we describe an application of the
theory to the stability and qualitative behaviour of a particular reaction-diffusion
equation for which periodic solutions exist at arbitrarily small values of At.

2. The steady state

Throughout this and the following two sections we assume the existence of a
steady (n-independent) solution of (1.3-4). This solution satisfies

0 = r62
xWj + A Atg(W,.u Wj, Wj+l; Ax) for / = 1,...,/ - 1, (2.1)

Wo = Wj = 0. (2.2)

We introduce perturbations from this steady state by setting w" = Wt + u" and
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SPURIOUS PERIODIC SOLUTIONS 469

obtain the equations

together with boundary and initial conditions

u3 = u; = 0, uJ = w

We have defined, for; = 1,...,/ - 1,

+ Uj_lt ujt

/ = 1,. . . , /-1, (2.3)

(2.4)

, + u,+1;Ac)

(2.5)
The functions /(;', a, b, c) have the following properties in terms of
g(a, b,c;Ax):
(i) /(/,0,0,0) = 0, (2.6)

>*/(/, 0, 0, 0) ^ &g(Wj-u Wp WJ+l; Ax)
da' dbm d<? da' dbm d<?(u) for k = I + m + s. (2.7)

Thus «; = 0 satisfies (2.3). Furthermore, the derivatives of the nonlinear map
defined by (2.3-4) may be evaluated at u" = 0 by use of (2.7).

3. linear theory

In this section we analyse the linearization of (2.3-4) about zero. This
linearization, If], satisfies

UJ+l=UJ + rdlU] + A At[fa(j, 0, 0, 0)f/^, +fb(J, 0, 0, 0)1/; +fe(J, 0, 0, 0)t/;+1],
(3.1)

with boundary and initial conditions
ff Jjn n riO / • A_\ 11/ ex -)\
i/Q — Cy — u , Cy — "TD̂ y ^**/ — "/• \P-^-)

We solve these equations by separation of variables, setting U" = xn<t>j- We find
that Xn = £"> where | satisfies the matrix eigenvalue problem

(3.3)

Here <f> = [<pi,..., <pj-i]T and the matrix A is tridiagonal and given by
"D, t/, 0 • •• 0

L j D 2 U2 0 • • • 0

0 Lj .00
0 ••• / . ' • 0
0 • • • • . ' £/,_
0 • • • Ly_! Dj_

The elements of this matrix are defined by

Dj = ^ 5 + A/6(/, 0, 0, 0), f/y = —i + A/C(y, 0, 0, 0),

Ll = —1 + Xfa(j, 0,0,0).

We now prove a result about the eigenvalues of A which we use in Section 4.

(3.4)
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470 ANDREW STUART

THEOREM 3.1 Let Lj+l/U,>0, for j = 1,..., J - 2. Then the matrix A has J-l
real, distinct eigenvalues r\, and corresponding eigenvectors fa given by (3.6-7).

Notes. The assumption on the positivity of Lj+JUj is standard. If the differential
equation is symmetric (that is, does not involve wx), the assumption is usually
satisfied. If the differential equation is not symmetric, the assumption is often
equivalent to a restriction on the size of Ax, although for schemes in which a
natural upwinding direction is known a priori this may not be necessary. The
method of symmetrization we employ in the proof is motivated by Price et al.
(1966); it is the discrete analogue of symmetrization for Sturm-Liouville
operators.

Proof. The matrix A is symmetrized by setting B = E~lAE, where £ =
diag [ei,...,ey_i] with e, = 1 and

for 7 =

The matrix B is tridiagonal and has the form

Dr (I

- 2 .

0
0

0

0

0

D2 (t/2L3)i 0

(l/2L3)*

0

0

0

0
(3.5)

Since B is real and symmetric it has real eigenvalues. Furthermore, since the
off-diagonal elements are strictly positive, the eigenvalues are necessarily distinct
(Conte & de Boor, 1980: page 205). Thus we may write

BV, = TMft fori = l , . . . , / - l , (3.6)

where the ffr are real and distinct. Consequently we have, for i = 1,...,/ - 1

A<f>, = ffc6 where fa = Etf>,. (3.7)

This completes the proof. •

COROLLARY 3.1 Let LJ+JUJ > 0, for j = 1,...,/ - 2. Then the matrix AT has J-l
real distinct eigenvalues r), and corresponding eigenvectors <(tf given by (3.6-8).

Proof. We have B = EAJE~l and the eigenvalues and eigenvectors of AT satisfy,
for / = 1,...,/ — 1,

where • (3.8)

Notice that the matrix A depends on A, but is independent of At. Hence the
eigenvalues r), also depend on A and are independent of At. It will be useful to
order the eigenvalues and, without loss of generality, we assume that
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SPURIOUS PERIODIC SOLUTIONS 4 7 1

We can now solve the eigenvalue problem (3.3). We find the eigenvalues

(3.9)

where the fj, satisfy (3.6). Since the eigenvectors ^ , defined by (3.6-7),
correspond to distinct eigenvalues, we deduce that they span the space of vectors
on R J - 1 and hence that we can obtain a solution of the linear problem (3.1-2),
subject to arbitrary initial conditions, as a linear combination of the fa. We set
IT = [lf[,..., IFj-iY and obtain the solution of (3.1-2) in the form

O" = 5>£7* . (3-10)

for constants d, determined by the initial conditions.
Thus we deduce from (3.10) that, if |£,| < 1 for all i, then U"-*0 as /!-*<».

Since IT represents perturbations from the steady-state solution, this indicates
that, if |£/ |<1 for all /, then the steady-state solution is stable to infinitesimal
disturbances. However, if |^,| > 1 for some i, then arbitrary small disturbances
including the mode 0, will grow unboundedly with n. Since the T), are real, the
critical values | | / | = 1 occur, by (3.9), for

r/,(A) = O and 4r = - 2 / I J , ( A ) . (3.11)

The first condition, rj/(A) = 0, determines the values of X at which steady
bifurcation occurs in the nonlinear problem, since it does not involve At. These
values reflect a genuine property of the differential equation (assuming that the
underlying steady solution about which we linearize is not spurious) and are not
the subject of this paper. The second condition, At = — 2/TJ,(A), arises from the
case £( = — 1 and has no analogue in the underlying differential equation.

DEFINITION 3.1 Let L,+JUj > 0 for; = 1,...,/ - 2. We say that if §, < - 1 for some
i then the scheme (2.3-4) is linearly unstable in the neighbourhood of the steady
solution (2.1-2). This definition follows from (3.10). By (3.9) we deduce from the
ordering of the eigenvalues of A that (2.3-4) is linearly unstable for At >
-2/7/y_i(A), assuming that r/y_,(A)<0.

In the fully nonlinear problem, linearized instability corresponds to the bifurca-
tion of orbits of period two in n, as we show in the following section.

4. Nonlinear theory

In this section we show that (2.3-4) possesses small amplitude solutions which
are of period two in n. This proves that, close to steady solutions, (1.3-4) has
solutions of period two in n. We provide a local description of the periodic
solutions of small amplitude and describe a modified equations technique for the
study of large amplitude periodic solutions.

We emphasize again that we consider Ax as fixed (so that the dimension of the
problem is fixed) and At is taken as a bifurcation parameter. Period two solutions
of (2.3-4) satisfy the 2(/ — l)-dimensional system of nonlinear algebraic
equations

F(u, At, A) - v = 0 and F(v, At, A) - u = 0, (4.1)
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4 7 2 ANDREW STUART

where u = [u1,..., «y_i]T and v = [v1,...,vJ_1]
T. The vector function F has /th

component, for / = 1,...,/ — 1, given by

Fj(u, At, X) = uj + rdfy + A Atf(j, «,-i, My, «/+i), (4.2)

with the understanding that Uo = u0 = u, = u, = 0 in the definitions of Ft and Fj_x.
Thus F denotes a mapping: R7"1 x R2-» R7"1.

We may write (4.1) as a single system of nonlinear equations in the form

G{V,At,X) = Q, (4.3)

where t/ = («, v). (Here, and in similar contexts following, (u, v) denotes the
stacked column vector with first / — 1 components made up of u and second J — \
components made up of v.) The function G denotes a mapping: R2*7"1* x R2—*•
gj2(/-i) j n t n e r e m a in ( jer of this paper we will use dkG(Ul,..., Uk) to denote the
ifcth Frechet derivative of G(U, At, A), a multilinear map: R2*^-1) x R2-» R2*7"1).
Similarly dkF(iii,...,uk) denotes the kth derivative of F(u, At, A). Notice that, by
(2.6) and (4.2), we have G(0, At, A) = 0 for all values of At and A. We wish to
determine the values of At at which nontrivial solutions branch from the trivial
solution. We shall show that these are precisely the values determined by (3.11).
By the implicit function theorem, branching can only occur when the first
derivative, dG (the Jacobian), is singular at l/ = 0. This is the basis of the
following theorem.

THEOREM 4.1 Assume that r/y(A)=£O for j = 1,...,/— 1, where r\j satisfies (3.6),
and that Ly+,/t/y>0 for j = l,...,J-2, as in Theorem 3.1. Then the point
At = -2/r;/(A) is a bifurcation point for the nonlinear system (4.3). Furthermore, if
the functions f(J, a, b, c) possess m (>2) continuous partial derivatives with
respect to a, b, and c, then there exist Cm~1 functions

(«(/*), t>00) = K-to. *i)
for <j>i defined by (3.7) and real \i near zero such that

Notes, (i) The assumption that r/y(A) ¥=0 is made for two reasons: firstly, for; = i,
to ensure that the critical value of At exists as defined and secondly, for / =£ i, to
force the Frechet derivative of G to have a one-dimensional null-space at
At= -2/T),(X). When the derivative has an even-dimensional null-space, con-
siderably more work is required to establish whether or not bifurcation actually
occurs. As described in the previous section, the case r//A) = O corresponds to
steady bifurcation, and by excluding that case we are excluding the possibility of
simultaneous steady and periodic bifurcation; the interaction of steady and
periodic modes is analysed by different techniques in Stuart (1989a).

(ii) The assumption on LJ+JUJ is strictly necessary. If this condition is not
satisfied then the eigenvalues of A, and hence of the Frechet derivative of G, may
become complex. In this case periodic orbits can bifurcate from the steady
solution but their period will not be two. Quasi-periodic orbits are also possible;
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SPURIOUS PERIODIC SOLUTIONS 473

see the discussion of Hopf bifurcation in iterated maps in Guckenheimer &
Holmes (1983: Section 3.5).

(iii) The smoothness assumptions on the functions f(j, a, b, c) may not actually
hold globally, but only in some neighbourhood of a = b = c = 0. Since the
theorem concerns the local behaviour of solutions, the difficulty can be
circumvented by defining Cm extensions of the functions /.

(it/) Notice the local structure of the solution: to O(fi) the components satisfy
u = — v. This is a consequence of the linear solution (3.10): for At near At, we
have the growth rate §, =» — 1 which causes oscillations between time-steps.

(v) For the theorem to be of practical interest we require positive values of
At,, which necessitates negative values of r/,. In general, some r), will be negative,
since explicit discretizations of dissipative PDEs are usually stiff so that A has
some large negative eigenvalues. This is especially so when Ax is small. The most
important T), is the negative one of largest magnitude, T)J_U since this corresponds
to the value of At at which the scheme (1.3-4) becomes linearly unstable (see
Definition 3.1). Thus we have the theorem

linear instability ^> spurious periodic solutions.

(vi) In the case of negative At, (1.3-4) corresponds to an implicit discretization
of a non-linear backwards heat equation; such equations can have a unique
solution, due to the nonlinearity, and are relevant to finding the ar-limit set of
(1.1-2).

Proof. The theorem is a direct application of Theorem 5.3 in Chow & Hale
(1982). First we need to establish that G defines an m times differentiable
mapping: R2*'"" X R2-> U2^-^. This follows directly from the assumptions on the
smoothness of /. Secondly we need to show that dG has a one-dimensional
null-space at f/ = 0 and At= -2/t],(k). We now demonstrate this fact.

The Frechet derivative dG is singular when there exists a non-zero <P satisfying

dG(4>) = 0. (4.4)

Splitting 4> into two (/ — l)-element vectors in the obvious way, <P = (0, $), we
see from (4.1-3) that, at U = 0, (4.4) is equivalent to solving

+, (4.5)
(I + AtA)</> = 6, (4.6)

since the linearization of F at U = 0 is the matrix / + AtA Equations (4.5-6) are
themselves equivalent to

(27 + AtA)(AtA)<f> = 0.

The two linear operators commute, so we deduce that either Atf> = 0 or
(21 + AtA)<p = 0. Our assumption r/y =£ 0 ensures that the first of these possibilities
cannot occur. (This possibility corresponds to solutions of (4.5-6) for which
0 = <(>. As such it is not related to genuine period two behaviour but rather to the
period one (steady) solutions embedded in (4.3)—see note (i) on Theorem 4.1.)
The second possibility corresponds to 0 = — ̂ . The matrix (21 + At A) is singular
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474 ANDREW STUART

whenever At = -2/rj^X), where rj, are the eigenvalues of A (see Section 3).
Furthermore, by Theorem 3.1, the eigenvalues are distinct, with eigenvectors fa
defined by (3.7).

This shows that, at U = 0 and At = -2/fj,(A), the operator dG is singular with a
one-dimensional null-space spanned by * / = ( - ^ , ^ < ) . This completes the
proof. •

As a direct result of Theorem 4.1 we have the following.

COROLLARY 4.1 Let W = [Wu..., W,_,]T defined by (2.1-2) be a steady (n-
independent) solution of (1.3—4) and define w" = [*>",..., w"_jf. Then, under the
same assumptions as Theorem 4.1, (1.3-4) possesses periodic solutions of the form

w- = W + i[l + ( - 1 ) > + \[\ + (-l)n+1]v,

for At= -2/Tii(X) + O(\n\) and real fi near zero. Here u, v, and TJ,(A) are as
defined in Theorem 4.1.

Theorem 4.1 proves the existence of orbits of period two in (2.3—4) and hence,
by the corollary, in (1.3-4). Furthermore, the theorem asserts the local existence
of smooth branches of solutions, continuous in At, near to the bifurcation points.
However, it does not tell us much about the local shape of the solution branches.
In particular it is of interest to determine the nature of the singularity at a given
bifurcation point. This is accomplished by singularity theory. What this theory
tells us is that there is a function g(fi, At) whose zeros describe the local
behaviour of the solutions in a (sufficiently small, but finite) neighbourhood of a
bifurcation point. Here u is precisely the amplitude from the statement of
Theorem 4.1. Moreover the theory tells us how to compute derivatives of this
function g in terms of the derivatives of G at that bifurcation point. In the next
theorem we will show that, for At =» —2/r/,(A), solutions of (4.3) have a local
structure determined by

gilt, At) = Bifx
3 + C,n[At + 2/IJ,(A)] = 0. (4.7)

This result is independent of the specific details of the nonlinearity. The structure
(4.7) is known as a pitchfork bifurcation. The reason for this terminology is clear
from Fig. 4.1.

Notice that the solution [i = 0 satisfies (4.7) for all values of the parameter At.
This is a reflection of the trivial (zero amplitude) solution of equation (4.3). The
two nonzero solutions represent nontrivial solutions of (4.3), and hence period
two solutions of (2.3-4), that bifurcate from the trivial solution at At = —2/r),(k).
Of crucial interest to the numerical analyst is how the nontrivial solution branch
behaves away from the bifurcation point. Let us consider the bifurcation point
with i = J- 1 which corresponds to the linear stability limit (see Definition 3.1).
If BJ-JCJ-I > 0 the bifurcation is subcritical and spurious periodic solutions exist
locally for values of At below the linearized stability limit. Even if BJ_1/CJ^1<0,
it is possible for the branch to turn around and for periodic solutions to exist
below the linearized stability limit. For all the solution branches, an important
question is 'where do the branches go to in the space R2(-'~1) x R (considering A
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B/C <0 B/C >0

475

- 2 / r , , (A)

FIG. 4.1. The pitchfork bifurcation (4.7).

as fixed)?' since the magnitude and form of the spurious solutions, and the ranges
of At in which they exist, determine classes of initial data for (1.3-4) for which
the numerical method will produce spurious results. Global bifurcation theory
(Hutson & Pym, 1980) tells us that the continuous branches of solutions can do
one of two things: either move off to infinity in the space R2(/~1) x R or return to
meet the trivial solution at another bifurcation point (see Fig. 4.2). A branch
cannot simply cease to exist and remain bounded at the same time.

Clearly it is advantageous to design schemes (1.3-4) so that none of the
branches of periodic solutions extend back to values of At used in practice. In
general it may not be possible to do this a priori. None the less, the analysis here
shows that an a posteriori test can be designed to determine whether a given
scheme has spurious solutions likely to interfere with practical computations. This
can be done simply by solving (4.3) numerically to determine the range of At in
which the spurious solutions exist and to ascertain their magnitude and spatial
structure. The solution of a 2(/ — l)-dimensional system of parameter-dependent
nonlinear equations is generally a nontrivial task. However, since starting points
are known, continuation can be used in a fairly straightforward way to follow the
branches. We apply this approach to a specific example in Section 5.

Fio. 4.2. Possible global behaviour of solution branches.
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4 7 6 ANDREW STUART

In the following theorem we sharpen the local estimates of the behaviour of the
solution branches at the bifurcation points and justify our claim that (4.7) is the
normal form governing the existence of solutions. These sharp estimates are
needed to initiate the continuation procedures suggested above.

THEOREM 4.2 Under the same assumptions as Theorem 4.1, the solutions of (4.3)
in the neighbourhood of At = —2/r]t(X), are described locally by the normal form
(4.7) where

B, =

Here F and all its derivatives are evaluated at the bifurcation point u = v = 0,
At = —2lr]i(\). Also 4»i is the eigenvector of A corresponding to eigenvalue r/̂ A)
and <tf is the eigenvector of AT corresponding to eigenvalue TJ,(A); see (3.6-8).
(•, • )N denotes the usual inner product on UN.

Note. The proof employs the singularity-theoretic formulation of the Liapunov-
Schmidt reduction for finite-dimensional problems. We will refer to formulae
(3.23) in Chapter I of Golubitsky and Schaeffer (1985), which will be abbreviated
to GS from now on, meaning Chapter I unless specified otherwise. The formulae
describe how to calculate various derivatives of g in terms of derivatives of G. We
emphasize that our notation is different: their 0 corresponds to our G. Note that,
throughout this proof, all derivatives are evaluated at the bifurcation point
U=(u, v) = 0 and At=—2/r]i(k). The proof utilizes the symmetry inherent in
equations (4.1), and hence (4.3), to simplify the formulae given in GS. The
relevant symmetry is the fact that, if U = (u,v) satisfies (4.3), then so does
U = (y,u).

Proof. To show the local equivalence of the function g(n, At) to the normal form
(4.7) it is necessary to show only that the partial derivatives of g satisfy

8^=8^=8^ = 0, gW M#0, **„#<), (4.8-9)

for n = 0 and At = -2r//(A) (see GS: Chapter II).
That gM = 0 follows automatically from the fact that we are at a bifurcation

point (see GS: formula (3.23a)). That g^, = 0 follows automatically from the fact
that the trivial solution G = 0 satisfies (4.3) for all values of At, meaning that
G^^O at the bifurcation point (see GS: formula (3.23d)). We now show that
gw ~ 0- This requires a little more work.

In the following, L denotes the Frechet derivative of G evaluated at the
bifurcation point U = 0 and At = —2/r/((A). Thus L is singular. Let <P, span the
null-space of L and let 4>f span (range L)^. We may write d2G(<Pt, <Pt) as
(d2F(-4,, -$,), d2F(<t>it fa)), since, from the proof of Theorem 4.1, *,=
(—(pi, fa), where fa satisfies (3.7), and since G is defined by the two components
in equation (4.1). The bilinear operator satisfies d2F(—$, —̂ >) = d2F(<j>, <f>), for
any vector 0, by definition. Thus we have the result that

d2G{<P,, * ( ) = (d2F(<j>h fc), d2F(^, «,)). (4.10)
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SPURIOUS PERIODIC SOLUTIONS 477

Now, the vector 4>* spans (range L)x and hence spans the null-space of LT. By
modifying the arguments in the proof of Theorem 4.1 it may be shown that

• • = ( -*• .* / • ) , (4.11)

where (f>* is the eigenvector of AJ with corresponding eigenvalue TJ,, denned by
(3.8). Combining (4.10-11) shows that

and hence, by GS (formula (3.23b)), that g^ = 0.
We now compute expressions for gWM and g^. These are provided by GS

(formulae (3.23c) and (3.23e)), noting that (3.23e) is simplified because GAt = Q
at the bifurcation point, as we discussed above. These formulae give

( *,))>2(/_I), (4.12)

Here E denotes the projection onto the range of L Since L is singular, the action
of the generalized inverse is interpreted as finding the unique element orthogonal
to #,.

These expressions for the derivatives simplify into inner products on R7"1 due
to the symmetries inherent in (4.3). For example, dG^Oi) = (-Aft, Afa) =

(-h, fa). Thus, by (4.11), we obtain

*,)(,_!). (4.13)

We also find that

d3G(*h *„ • , ) = (-d3F(fa, fa, fa), d3F(fa, fa, fa)).
Thus

(<!>,•, d3G(4>,, *„ *,)>2(7-i) = 2<tf, d3F(fa, fa, fa))u-iy (4.14)

It remains only to invert L on its range. The second part of the inner product
(4.12) for gMWi involves solving

LT = d2G(<P,,<I>t),

since the right-hand side is automatically in range L For r=(ylt y2) this is
equivalent to solving

x ~Yi = d2F(fa, fa), - y , + [/ - 2A/r,,(k)]y2 = d2F(fa, fa),

since the operator L is defined by (4.5-6) with At = —2lr\,(X). The unique
solution (in the sense of generalized inverses) is

Yi = Yi = -\m^)A-ld2F{fa, fa), (4.15)

which yields (f, <P/)2(/-i) = 0 as required. Note that A is uniquely invertible by
the assumption r/y(A) & 0, for / = 1,...,/ - 1. Thus

h r) = (d2F(-fa, Y l), d2F(fa, Yl)).
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478 ANDREW STUART

Combining this and (4.12), (4.14), and (4.15) we find that

/-o- (4-16)

It is possible, for specific nonlinearities, that (4.9) may not hold and that a higher
order singularity than that represented by the normal form (4.7) governs the
existence of solutions near to the nonlinearity. However, for arbitrary non-
linearities we claim that (4.9) holds generically since, in general, (4.13) and (4.16)
yield nonzero derivatives. We justify this claim fully in the following section
where we consider a specific class of problems with normal form (4.7).

From the formulae (4.13) and (4.16) and the linearity of the bilinear form d2F
we can use a Taylor expansion to show that g is locally equivalent to the normal
form (4.7) with B( and C, as defined in the statement of the theorem. This
completes the proof. •

We have constructed branches of spurious periodic solutions of (4.3) in the
neighbourhood of the trivial solution. As mentioned earlier, global bifurcation
theory tells us that these branches either move off to infinity or return to meet the
trivial solution at another bifurcation point. We now discuss a question which is
of particular importance to the numerical analyst: can a branch of spurious
periodic solutions extend back to arbitrarily small values of At? If so, what is the
form of such periodic solutions? We shall discuss this point from the perspective
of modified equations. The philosophy of modified equations is to find a related
differential equation which has (some of) the same properties as the discretization
(see Griffiths and Sanz-Serna, 1986); we show that the existence of spurious
periodic solutions for small At is intimately related to the question of the
existence of solutions to a pair of coupled, singularly perturbed boundary value
problems.

We observe that if solutions of (4.3) exist for arbitrarily small values of At then
they will necessarily be of large norm: at At = 0 the only solutions of (4.3) are
arbitrary solutions of the form u = v and it is straightforward to show that other
solution branches cannot cross the line At = 0. Thus, as At—*0, solution branches
must approach infinity in norm (if they exist at all).

Since spurious periodic solutions vary on a scale comparable with the temporal
grid, the discretizations (4.1-2) representing periodic solutions do not correspond
to any continuous, time-dependent process. On the other hand, periodic solutions
(in ri), with spatial structure varying on a scale significantly larger than the spatial
grid, do correspond to a continuous steady process. This process can be recovered
by taking the limit

Ar-*0, At fixed (4.17)

in equations (4.1-2). If we also assume that the steady solution, about which we
perturb in Section 2, is not spurious and corresponds, in the limit Ax—*0, to a
continuous function W(x), then we find a pair of coupled differential equations
when the limit (4.17) is taken. These are

At{Uxx + k[h(W + u,Wx + ux)-h(W, Wx)]} + u-v = 0,

At{Vxx + X[h(W + v, Wx + vx) -h(W, Wx)]} + v-u = 0,
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SPURIOUS PERIODIC SOLUTIONS 479

with boundary conditions u(0) = u(0) = u(l) = u(l) = 0. Since W(x) is a steady
solution of (1.1-2), these equations simplify if we set U(x) = W(x) + u(x) and
V{x) = W(x) + v(x). We obtain the modified equations

+ \h(U, Ux)] + U-V = 0, (4.18)

+ Xh(V, Vx)] + V-U = 0, (4.19)

with boundary conditions

1/(0) = V(0) = f/(l) = V(l) = 0. (4.20)

Note that (4.18-20) are independent of W(x) so that the existence of large
norm spurious solutions for arbitrarily small values of At is independent of the
existence of steady solutions of (1.3-4). We now make the following conjecture.

CONJECTURE 4.1 / / solutions of the differential equations (4.18-20) exist for
At« 1 then solutions of (4.1-2) (that is, spurious periodic solutions of (1.3-4))
will exist in the same parameter regime and have a spatial structure similar to that
of the solutions of the differential equations.

The question of the existence of solutions of (4.18-20) is clearly a difficult one
in general and we do not address it in detail. We know that, for At«1, such
solutions are necessarily of large norm and the precise scale will be set by a
balance between the leading order, non-diffusive, behaviour of Atkh(U, Ux),
AtXh(V, Vx), and U - V, for large U and V. Whether or not solutions of this form
exist will depend on whether or not it is possible to fit diffusive boundary and
interior layers between the solutions set by the leading order balance. This is a
nontrivial question that has been partially answered for second-order elliptic
differential equations in R" (see Norbury (1985) and the references cited there).

As a specific example we consider the case h(w, wx) = w?, p>\. Away from
boundary or interior layers the large norm solutions of (4.18-20) satisfy

At Up + U-V = 0, AtV + V-U = 0.

This sets the scale of the large norm solutions: U and V are of O(Atv^~p)).
Furthermore we see that nontrivial solutions are not possible if p is even, since
At(Up + V) = 0. We examine the particular case p = 3, which reduces to
consideration of a single second-order equation, in the following section; this
example goes some way towards substantiating Conjecture 4.1.

5. Applications of the theory

We consider (1.1-2) in the case where h(wlt w2) is a pure cubic function of its
two arguments. Thus the function g{a, b, c; Ac) in the discretization (1.3-4) is
also a pure cubic in the arguments a, b, and c. By (2.7), the same may then be
said of/(/ , a, b, c).

We linearize about the trivial solution, zero. Thus the matrix A in (3.4) is
itself symmetric with constant diagonal and off-diagonal elements given by
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480 ANDREW STUART

D, = —21 Ax2 and Ut = Lt = IIAx2. The eigenvalues of this matrix are, for i =

4 sin2 (/ji/2/)
1i = ^ 2 — ' (5-1)

with corresponding eigenvectors to having /th component

4>j = sin (HI / / / ) . (5.2)

Notice that rj; < 0 for all i = 1,...,/ — 1; see note (v) on Theorem 4.1. By Theorem
4.1, the critical values of At at which periodic solutions bifurcate are given by

For 4 / = Atj + O{\n\), the periodic solutions of (2.3-4) are of the form u" = u
and un+l = v, where «" = [u7,...,u"_1]

T. By Theorem 4.1 and equation (5.2) we
have the /th components of u and t> of the form, to O^2),

Uj = -\i sin (inj/J) and uy = /i sin (inj/J). (5.4)

For nontrivial solutions, the relationship between /x and 4f; is given by (4.7) as

At = At, - B,n2ICh (5.5)

with B, and Ct defined in Theorem 4.2.
The matrix A is symmetric so that <t»f = 0(. Thus, by Theorem 4.2, we calculate

that
y-i

C,= -8sin2(iJi/27) £ sin2 (injU)lAx2.

Since /i is a pure cubic function of its arguments we deduce that the second
derivatives of F are all zero at « = 0 and hence, using the summetry of A,

i- (5-6)

The calculation of B, depends upon a specific choice of nonlinearity. As a
particular example we choose a source term of the form

h(w, wx) = w3.

Using a centred difference approximation we obtain

g(Wj-t, Wj, wJ+1; Ax) = wf.

Since we are considering a neighbourhood of the trivial solution we find, from
(2.5), that

f(j,ui-1,uj,u/+1) = u]. (5.7)

Using (5.2), the definition of the third derivative is
y-i Qip

, to, to) = £ a a - sin (ink/J) sin (in///) sin (inm/J),
k.l,m~\ OUk dUt dUm
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SPURIOUS PERIODIC SOLUTIONS 481

with F(u, At, A) evaluated at u = 0, and At = Ath By (4.2) and (5.7) we find that
the yth element of d3F(fa, fa, fa) is given, at u = 0 and At = Atit by

d3F(fa, fa, fa)t = 6A At, sin3 (inj/J).

Thus, from (5.3) and (5.6), we find that

Hence (5.5) gives us

At = At,+
A As4 Sy-i1 sin4 (inj/J)

8 sin4
 ( IJI /27) Ey-/ sin2 (5.8)

Together, equations (5.4) and (5.8) provide a complete local description (/*«1)
of nontrivial periodic solutions of (1.3-4), with h(w, wx) = w3, in the neighbour-
hood of the zero solution (ju = 0.)

We use this local description to initiate a continuation procedure which tracks
the branches of period two solutions away from the bifurcation points. Figure 5.1
shows the l2 norm of the solutions of (4.3) and (5.7) graphed against At'1, in the
case A = - l and Ac = 0.1. Thus, by (5.8), the bifurcation is subcritical (which

300

FIG. 5.1. The bifurcation diagram for solutions of (4.3); A = —1.
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482 ANDREW STUART

appears as supercritical since we are plotting against At ') and there are nine
bifurcation points given by (5.3). The numerical solution of (4.3) is simplified in
this case since, by symmetry, there are solutions with u = — v. The solutions
plotted are by no means the only solutions—we have plotted only those solutions
lying on the continuous branches coming out of the bifurcation points and
possessing the symmetry u = -v. There are many other solutions which also exist
for At«\. In general, period two solutions are of the form u? = a, + (-l)Hb,.
The solutions which retain the symmetry u = —v correspond to solutions with
at = 0. We have not tested numerically for the existence of solutions with ay # 0
since we have forced the symmetry u = — v on our computations. The solutions
shown in Fig. 5.1 retain the nodal properties of the eigenfunctions (5.4), which
describe the local structure of the solutions near the bifurcation points, along the
branches; there are also solutions for which this property is not preserved.

It is instructive to compare Fig. 5.1 with the bifurcation diagram for the purely
linear problem with A = 0. This is shown in Fig. 5.2, where periodic solutions
of arbitrary norm exist at the points given by (5.3). This follows from (3.10) with
appropriate choice of the dt. For the linear problem it is necessary to operate
numerical schemes to the right of the branch of periodic solutions emanating from
the smallest critical value of At (that is to use small enough At) to obtain

30
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50 100 150
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200 250 300

FIG. 5.2. The bifurcation diagram for solutions of (4.3); A = 0.
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SPURIOUS PERIODIC SOLUTIONS 483

meaningful solutions. Similarly, for the nonlinear problem, it is necessary to
operate numerical schemes below (in some average sense), and to the right of,
the lowest branch of periodic solutions in Fig. 5.1. In contrast to the linear
problem, this curve predicts a maximum allowable At which is solution
dependent—the amplitude and spatial structure of the solutions affects the critical
value of At. The dependence of numerical stability on the underlying continuous
solution being sought is central to the definition of convergence stability proposed
in Lopez-Marcos and Sanz-Serna (1988). Figure 5.1 provides a quantitative
interpretation of this dependence in the context of practical stability.

The results show that periodic solutions exist for arbitrarily small values of At;
as discussed above, the branches all tend to infinity in norm as At-*0.
Furthermore, Conjecture 4.1, about the relationship between spurious periodic
solutions and solutions of (4.18-20) for At«l, is borne out. In this case,
W(x) = 0 and u(x) = -v{x), so that (4.18-20) simplify to give

A/(u« + hi3) + 2u = 0,

with boundary conditions u(0) = u(l) = 0. The nonlinearity sets a scale of
O(A^) and so we define a new variable u = At^u. We obtain the differential

50

40
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100 100
/ = 4

- 1 0 0

Fio. 5.3. Spurious periodic modes; Ax = 0-1.
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484 ANDREW STUART

FIG. 5.4. Spurious periodic modes; Ax = 0-01.

equation

with boundary conditions

(5.9)

0. (5.10)

For A<0, the properties of the solutions Q are well documented. If
l)2zvl<At<2/k27t2 there are precisely k nontrivial solutions (modulo re-

Sectional symmetry). The solutions lie on continuous branches (in At) and have
0, l,2r..,k — 1 zeros respectively. The number of zeros is preserved along each
branch and, for At = 2/(k +1)2^2, a new branch of solutions with A: zeros
bifurcates from the trivial solution. As At—»0 the solutions approach a simple
form: a solution with n zeros consists of n + 1 plateaus on which &{x) = ±(-2/A)*
(the nondiffusive balance) joined to each other by n interior transition layers and
to the points x = 0, 1 by boundary layers (Norbury, 1985).

We expect the spurious periodic solutions in Fig. 5.1 to have a form similar to
the solutions of the differential equation (5.9-10) for At«\. This is indeed the
case and the spurious periodic modes have amplitude of O(At~^). Figure 5.3
shows the form of the spurious solutions Uj of (4.3), for At«l, on the branches
which bifurcate from At = At,, for i = 1, 2, 3, 4. (The components of vt are found
by setting Vj = —uj). The numerical method is unable to resolve the boundary and
transition layers accurately for this value of Ax (0.1) but the qualitative features
are as in the differential equation. Figure 5.4 is similar to Fig. 5.3 but involves the
value Ar = 0.01; again the solutions are similar in form to the solutions of the
singularly perturbed differential equation.

6. Condnsions

We have analysed the qualitative behaviour of discretizations of reaction-
diffusion-convection equations. A question of central importance in the numeri-
cal approximation of time-evolving problems is whether or not the simulation
produces the same asymptotic behaviour as the underlying continuous problem,
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for fixed but small values of the mesh-spacings. The answer to this question is
closely related to the existence of spurious steady, periodic, and quasi-periodic
solutions generated by discretization. Here we have concentrated on analysing
the existence of spurious periodic motions.

We have shown that linear instability (where the linearization is about any
steady solution of the difference equations) implies the existence of spurious
periodic solutions in the fully nonlinear problem. We have concentrated on
explicit time-discretizations of the equations but the ideas generalize in a fairly
straightforward way to implicit methods with a linear stability limit.

The analysis is based on a local construction, via bifurcation theory, of the
spurious periodic solutions near to the critical values of At at which they bifurcate
from the steady solution. An important question is whether or not the periodic
solutions can exist for arbitrarily small values of the time-step and what form they
then take; this is of interest since it indicates the ranges of At and the sizes and
forms of initial data that are likely to lead to spurious numerical behaviour.

We have described a modified equations approach which yields a sufficient
criterion for the existence of spurious solutions at arbitrarily small At. The
modified equations are a pair of coupled, singularly perturbed boundary value
problems. These equations can be studied by singular perturbation techniques.
The nonlinearity sets a scale (in terms of the temporal mesh-spacing) at which
spurious behaviour can occur and the solutions of the modified equations describe
the spatial structure of modes which are most likely to excite spurious behaviour.

Our work has been restricted to a specific class of equations in one spatial
dimension. However, the methods and ideas extend to more general classes and
higher spatial dimensions. The combination of local bifurcation theory and the
modified equations provide a fairly comprehensive analysis of spurious periodic
solutions from small to large norm and this approach can be applied to problems
other than (1.1-2).

A question that we have not addressed in detail but which is very important,
and requires further study, is the following: what classes of initial data will be
affected by the spurious periodic solutions we have constructed? It is reasonable
to expect that, for given At, initial data close in magnitude and form to the
periodic solutions that exist at that value of At, will lead to spurious results.
However, for general initial data, the question is open and indeed it is not well
defined until a precise meaning is attached to the word 'affected'—this will
depend upon whether transient or asymptotic properties are the ultimate goal of
the numerical simulations. The problem is also difficult since arbitrary vectors in
R", for n > 1, are noncomparable and estimates based on norm alone (see Fig.
5.1) can be misleading. This may be overcome in specific applications by working
in a cone appropriate to the problem.
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