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Abstract

prepara-

T For many practical problems it is useful to be able to sample conditioned
il diffusions on a computer (e.g. in filtering/smoothing to sample from the
1 motion conditioned distribution of the unknown signal given the known observa-
motions. tions). We present a recently developed, SPDE-based method to tackle
féez;gz;g, this problem. The method is an infinite-dimensional generalization of
théore;n the Langevin sampling technique.
lds. Pot.
ory. 2nd

6.1 Introduction

In many situations, understanding the behaviour of a stochastic system
is greatly aided by understanding its behaviour conditioned on certain
events. This allows us, for example, to study rare events by conditioning
on the event happening or to analyse the behaviour of a composite sys-
tem when only some of its components can be observed. Since properties
of conditional distributions are often difficult to obtain analytically, it is
desirable to be able to study these distributions numerically. This allows
us to develop meaningful conjectures about the distribution in question
or, in a more applied context, to derive quantitative information about
it. In this text we present a general technique to generate samples from
conditional distributions on infinite-dimensional spaces. We give several
examples to illustrate how this technique can be applied.

Sampling, i.e. finding a mechanism which produces random values
distributed according to a prescribed target distribution, is generally a
difficult problem. There exist many ‘tricks’ to sample from specific dis-
tributions, ranging from very specialized methods, like the Box—Miiller
method for generating one-dimensional standard Gaussian distributed
values, to generic methods, like rejection sampling, which can be applied
to whole classes of distributions. In situations where none of the direct
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methods apply in a useful way, Markov Chain Monte Carlo (MCMC)
methods are commonly applied. These techniques work by construct-
ing a Markov chain (or, more generally, a Markov process) which has
the target distribution as its stationary distribution. Assuming that the
process converges to stationarity fast enough, the states of the Markoy
chain at ‘large’ times can be used as approximate samples from the tar-
get distribution. While MCMC methods are only approximate methods,
they can be used in many situations where no other methods are avail-
able. This is particularly true in high-dimensional problems and thus it
is natural to employ MCMC methods for infinite-dimensional sampling
problems. Indeed, the main tool described in this text is an MCMC
method for distributions on infinite-dimensional spaces.

The stochastic systems of interest here are diffusion processes de-
scribed by stochastic differential equations. The trajectories of these
processes can be considered to be random functions and thus the prob-
ability distributions we consider typically live on function spaces like
L?(I,R%) or C(I,R?%) where I C R is some interval. Thus, in order
to construct an MCMC method for these distributions, we have to find
Markov processes which have prescribed distributions on these function
spaces as their invariant measures. In the context of our framework these
Markov processes are given as solutions of stochastic partial differential
equations (SPDEs), where the interval I is the ‘space’ direction of the
SPDE.

Throughout this text we give several concrete examples of conditioned
diffusions and how to sample from them. A simple case is to condition
the process on its value at a fixed time, so that the reéulting paths
are bridges. Sampling bridges could, for example, be interesting when
studying transitions between meta-stable states of some physical sys-
tem: while these transitions will eventually happen, the times between
transitions might be so big that they ‘never’ occur during an uncondi-
tioned numerical simulation. By conditioning on a transition actually
happening, one can numerically study the transition mechanism.

A second application presented here will be ’smoothing’, i.e. recon-
structing a signal from a noisy observation. Since all information which
is available about such a signal is contained in the conditional distribu-
tion of the signal given the observation, one can solve smoothing prob-
lems by understanding this conditioned distribution.

The text is structured as follows: we start by presenting some well-
known sampling techniques in Section 6.2, namely Metropolis sampling
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and the Langevin method. In Section 6.3 we introduce an infinite-
dimensional generalization of Langevin sampling. Section 6.4 explains
how this technique can be used to study conditioned diffusions in gen-
eral, and Section 6.5 considers the special case of smoothing problems.
Finally, in Section 6.6, we show how the infinite-dimensional Langevin
method can be combined with Metropolis sampling to obtain numer-
ically efficient methods. The conclusion in Section 6.7 contains some
pointers to extensions of the method and open problems.

6.2 Sampling techniques

Sampling is the process of constructing random values, distributed ac-
cording to a prescribed target distribution. Since our aim is to derive
a numerically useful method, we are specifically interested in construc-
tions which can be implemented on a computer. Generating random
values in a computer program is usually done in two steps: first one
uses a pseudo-random number generator to generate ‘random’ values for
some simple distribution (usually the uniform distribution on the unit
interval) and then, in a second step, these values are transformed to
obtain the desired target distribution. In this text we will only consider
the second step, i.e. we will assume the availability of a source of uni-
form or Gaussian distributed random numbers and describe methods to
transform given random values in order to obtain values with the correct
distribution.

We give an overview of some established sampling techniques which
we will use later in the text. Since our aim is to sample distributions
on infinite-dimensional spaces, we restrict the presentation to techniques
which can be applied in this context.

6.2.1 The Metropolis—Hastings algorithm

A commonly used sampling technique is based on the Metropolis—Hastings
algorithm. The idea behind this method is to modify a given Markov
chain, using a rejection mechanism, in order to obtain a Markov chain
with a given stationary distribution. This new Markov chain can then
be used as the basis of an MCMC algorithm.

Theorem 6.1 Let P be the transition kernel of a Markov chain tak-
ing values in some measurable space (X,F,u). Let p be a probabil-
ity measure on X. Assume that u(dy)P(y,dx) is absolutely continuous
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w.r.t. p(dz)P(z,dy) on X x X. Inductively construct a process (Xy ) ey
as follows: forn € N let Y, ~ P(X,_1,-) and U, be uniformly dis.
tributed on [0, 1], where Yy, given X, _1, is conditionally independent of
X4,...,Xn—2 and U, is independent of everything else, and let

{Yn Fl < ol X1, %)

Ky = _
X,_1 otherwise,

where « is the (truncated) Radon—Nikodym derivative

p(dy)P(y, dz)
p(dz)P(z,dy)

a(z,y) =1A

Then (X )nen 18 a Markov chain with stationary distribution pi.

The value a(X,,_1,Y,) is called the acceptance probability at step n,
the value Y, is called a proposal.

This theorem allows us to change the distribution of any Markov chain
which visits a large enough part of the state space, by rejecting some
of the steps, in order to obtain a given stationary distribution. Then,
assuming the resulting Markov chain is ergodic, one can compute expec-
tations w.r.t. the stationary distribution pu, by taking ergodic averages:

N
E.(f) = Jim =" f(X,)
n—l

The usefulness of this method depends strongly on the magnitude of
the acceptance rates: if a(X,_1,Y,) is often very small, convergence of
the ergodic average will be very slow. For practical use, the transition
kernel P has to be chosen in a way such that the acceptance probabilities
are reasonably large.

A special case of the Metropolis—Hastings algorithm is When the tran-
sition kernel P does not depend on X,_;. This corresponds to the
case when the proposals are generated from an i.i.d. sequence. Because
the acceptance probability at step n depends on the value X, _;, the
resulting Markov chain is no longer i.i.d. This method is called the
independence sampler.

The independence sampler can for example be used to sample bridges
of diffusion processes: if the target distribution u is absolutely continu-
ous w.r.t. Brownian bridges, one can use independent Brownian bridges
as proposals. The independence sampler then gives a Markov chain
with the bridge-distribution p as its stationary distribution. See [5] for
a discussion of this method.
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6.2.2 Langevin sampling

Another method to obtain samples from a distribution on R? with a
density w.r.t. Lebesgue measure, called Langevin sampling, is given in
the next theorem.

Theorem 6.2 Let ¢ € C? (Rd,R) be a strictly positive probability density
w.r.t. the Lebesque measure A\. Then the SDE

dX; = Vg p(X,)dt +V2dW;,

where W is a standard Brownian motion, has ¢d\ as its stationary
distribution.

The SDE in the theorem is called the Langevin equation. One obser-
vation which often turns out to be very useful in practice is the fact that,
similar to the situation for the Metropolis—Hastings algorithm, the den-
sity ¢ needs to be known only up to a multiplicative constant: changing
the constant does not change the resulting Langevin equation. :

While this method is known to work well in high dimensions, at first
it seems difficult to extend this technique to more general spaces, since
the theorem uses a densities w.r.t. Lebesgue measure; the latter does
not exist in infinite dimensions. But it transpires that there is a variant
of the idea which can be generalized.

Theorem 6.3 Let L € R¥*¢ be a symmetric matriz such that the SDE
dZ; = LZ; dt + V2 dW,

has a stationary distribution v. Let ¢ € C? (Rd,R) be a strictly positive
probability density w.r.t. v. Then the SDE

where W is standard Brownian motion, has ¢ dv as its stationary dis-
tribution.

A generalization of this theorem to infinite-dimensional spaces, pre-
sented in the next section, forms the basis of our sampling framework.
Later, in Section 6.6, we will see how a discretized version of the Langevin
equation can be used to generate proposals for the Metropolis—Hastings
algorithm, thus combining the two methods presented in this section.
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6.3 Langevin equations on path space

In this section we introduce the infinite-dimensional analogue of the
Langevin equation from Section 6.2.2. The abstract setting is as fol-
lows: the SDEs in Theorem 6.3 are replaced by stochastic evolution
equations taking values in a real Banach space F, continuously embed-
ded into a real separable Hilbert space H. In our applications the space
H will mostly be the space L*([0,1],R?) and E will be some subspace
of C([0, 1], R¥).

6.3.1 Linear equations

In this section we derive a Hilbert space valued, linear SDE to sample
from Gaussian distributions on H. The results of this section can all
be stated and proved in H without reference to the embedded Banach
space E. A more detailed analysis can be found in [9].

Recall that a random variable X taking values in a separable Hilbert
space H is said to be Gaussian if the law of (y, X) is Gaussian for every
y € H. It is called centred if E(y, X) = 0 for every y € H. Gaussian
random variables are determined by their mean m = EX € H and their
covariance operator C: H — H defined by

iy, L2 = IE((y,X —m)(X — m,:c))

For details see e.g. [3]. We denote the Gaussian measure with mean m
and covariance operator C by N (m,C).
We consider the H-valued SDE

dz = Lz dt + V2 dwy, (6.1)

where w is a cylindrical Wiener process on H and £ = —C~!. A process
z is a mild solution of (6.1), if it satisfies

t
z = etz + \/—2—/ e t=3) doy, .
O -4

Since this equation is linear, solutions are Gaussian processes and its
invariant measure is a Gaussian measure on H:

Theorem 6.4 Let p = N(0,C) be a centred Gaussian measure on a sep-
arable Hilbert space H. Then the corresponding evolution equation (6.1)
with L = —C~ ! has continuous H-valued mild solutions. Furthermore,
it has 1 as the unique invariant measure and there exists a constant K

S
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such that for every initial condition xy € H one has

1£(2e) = pllpy < K (14 llzollze) exp(=[CllzL5),
where || - |Tv denotes the total variation distance between measures.

By the theorem, equation (6.1) can be used to sample from centred
Gaussian measures and by considering the process (z; + m);>o we have
a sampling equation for arbitrary Gaussian measures N'(m,C) on H. To
implement this method one has to identify the operator £. The following
example shows how this can be done in the cases which are the focus of
our interest here.

Example 6.1. Consider the R%-valued, linear SDE
dZ, = AZ,du+ BdW,, Zy==z" (6.2)

on the time interval [0, 1], where A, B € R?*? are matrices and = € R¢
is the starting point. The solution is a Gaussian process with mean
m(u) = E(Z,) = e*Az~ and covariance function

*

uUNv
C(u,v) = Cov(Xy,, X,) = e*4 (/ e "TABB*e T4 dr) ev4
0

(see e.g. [10], Section 5.6) for reference). It is easy to check that the
corresponding covariance operator C is given by

(Ca;)(u)z/o C(u,v)z(v)dv

for all u € [0,1], z € L*([0,1],R%) and, assuming BB* is invertible, the
negative of its inverse £ = —C~! is the restriction of the distributional
differential operator

L= (8, + A*)(BB*)"'(8, — A) (6.3)
to the domain
D(L) = {f € H([0,1],R?) | f(0) = 0,8, f(1) = Af(1)}.
Thus, the stationary distribution of
dz = L(z —m)dt + V2 dw; (6.4)
is N'(m,C).
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Since L is a differential operator, we can write (6.4) as an SPDE,
Using the fact that Lm = 0 on (0, 1), this formally leads to the equation

8,2(t,u) = Lz(t,u) + V2 8,w(t,u) V(t,u) € (0,00) x (0,1)
20 =%, Gl = A=t 1) vt € (0, 00)

where 0;w is space-time white noise. By Theorem 6.4, the stationary
distribution of this SPDE coincides with the distribution of the pro-
cess 7.

6.3.2 Semilinear equations

In this subsection we will derive the infinite-dimensional analogue of
Theorem 6.3. Here, the process (z);>o from (6.1) will correspond the
(Z¢)t>0 in Theorem 6.3. The equation for (X;);>o will be replaced by a
semilinear equation of the form

where £ is a linear operator on H, the drift F maps E into E*, w is a
cylindrical Wiener process on H, and the process = takes values in E. As
in the previous subsection, we consider mild solutions of this equation.

For our application of sampling conditioned diffusions, presented in
the next section, we will have a distribution-valued drift function F
which is only defined on the Banach space of continuous functions. Thus
we need the setting described above and cannot use the Hilbert space
based theory as found e.g. in [6]. Proofs of the results presented here
can be found in [8].

We start the presentation by giving the assumptions which we will
require for our results. There are two assumptions on the linear opera-
tor- £:

(A1) The operator L is a self-adjoint, strictly dissipative operator on H
which generates an analytic semigroup S(¢). The semigroup S(t¢) can
be restricted to a Cy-semigroup of contraction operators on F.

(A2) Let H* be the domain of (—L£)*, equipped with the inner product
(,9)a = ((—L£)%z,(—L)*y). Then there exists an a € (0,1/2) such
that H* C FE densely, (—£)72® is nuclear in H, and the Gaussian
measure N (0, (—£)72%) is concentrated on E.

We write H™¢ for the dual of H* and identify H* with H in the usual

|
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way to get the following chain of inclusions:

HY2 s H* S EsHes B* o H™® s HY2

To formulate our conditions on the drift F we will also use the subdif-
ferential of the norm || - ||g, defined as

Ollzllz = {z* € E* | 2"(z) = ||z]|p and z*(y) < |lylle Vy € E}

for every x € E. We require the following conditions.

(A3)

The nonlinearity F': E — E* is Fréchet differentiable with
IF(2)|le- < C(1+|lz|g)Y, and ||DF(z)|p—p- < C1+|z|z)".

for every z € E.

There exists a sequence of Fréchet differentiable functions F},: £ — E
such that

lim ||F,(z) — F(z)||—a =0

n—aoo

for all z € E. For every C > 0 there exists a K > 0 such that for
all z € E with ||z||g < C and all n € N we have ||F,(z)||-o < K.
Furthermore, there is a v > 0 such that

(&%, Fo(z +9)) < —7llzlle

holds for every z* € 0||z||g and every z,y € E with ||z||g > C(1 +
lyllz)™

Our results currently require another, quite technical condition on the
drift F' which is given here as (A5). While this condition looks quite
artificial, it is easy to vérify that it holds for all applications discussed
in this text.

(A5)

For every R > 0, there exists a Fréchet differentiable function Fr: E —
E* such that ‘

FR(SIZ

= {F(x) for |lz]p < R, -

0 for ||z||g > 2R,

and such that there exist constants C .and N with
|Fr(z)||z- + |DFr(2)|le—~E- < CA+R)Y,

for every z € E.
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Definition 6.5 An E-valued and (F;)-adapted process x is called a mild
solution of equation (6.5), if almost surely

¢
;L’t:S(t):co—i—/ S(t—s)F(:cs)d5+zt Vit >0
0

holds where z is the solution of the linear equation (6.1).

The drift F' in (6.5) takes only values in E* while the operator £ will
have a smoothing effect. There is a balance between these two effects
and it is not a priori clear in which space the resulting process takes its
values. The following theorem asserts that our assumptions are strong
enough so that the solution is continuous with values in F.

Theorem 6.6 Let L and F satisfy assumptions (A1)-(A4). Then for
every initial value xy € E the equation (6.5) has a global, E-valued,
unique mild solution.

From Theorem 6.4 we know that the linear equation (6.1) has station-
ary distribution v = N(0,—£L"1). The following theorem, which is the
infinite-dimensional analogue of Theorem 6.3, shows that we can again
get an equation to sample from ¢ dr by adding Vlog ¢ to the drift of
the linear equation.

Theorem 6.7 Let U: E — R be bounded from above and Fréchet dif-
ferentiable. Assume that £ and F = U’ satisfy assumptions (A1)-(A5),
let v=N(0,—L71). Then the probability measure p given by

du(z) = ce’@ du(z),

where ¢ is a normalization constant, is the unique invariant measure
for (6.5).

The following result helps to convert the preceding theorem into useful
numerical methods: properties of the target distribution x can be found
by considering ergodic averages of the solution of the SDE (6.5).

Theorem 6.8 Assume that (A1)-(A5) hold and let p be the invariant
measure for (6.5). Then one has

T—o0

1 (T
lim —/ gp(mt)dt:/ o(z) p(dx), almost surely
T Jo E

for every initial condition xq in the support of u and for every bounded
measurable function ¢: E — R.
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While these theorems are formulated in a way that helps to identify
the stationary distribution of a given stochastic evolution equation, we
will use the equations in the reverse way: starting with a target distri-

U w.r.t. a Gaussian measure v we

bution p with a known density ¢ = e
will construct semilinear SDEs with invariant measure p. From The-
orem 6.7 we know that a possible choice for the drift is F' = (log¢)’,
in direct analogy with the finite-dimensional result from Theorem 6.3.

This procedure is illustrated in the following example.

Example 6.2. Consider the R%-valued SDE
dX, = AX,du+ f(Xy)du+ BdW,, Xo=z~ (6.7)

on the time interval [0, 1], where A, B € R%*4 are matrices, z~ € R? is
the starting point and W is a standard Brownian motion on R¢. In this
situation we can apply the following form of the Girsanov formula.

Lemma 6.9 Let v = L(Z) be the distribution of the solution of the linear
SDE (6.2) and p = L(X) be the distribution of the solution of (6.7).
Assume that (6.7) has a.s. no explosions until time 1 and that B ‘s
invertible. Then p has a density ¢ w.r.t. v on C([O,l],]Rd) which is
given by

@(X) = exp( /0 (BB")f(X.)dX,

- [ (A%, + 370, (BB (X)) du).
0

If f = —BB*VV for some potential V: R* — R, then ¢ can be written
as

@(X) = exp(V (Xo) = V(X1)

- / (AX, + %f(Xu), (BB*)™' f(Xu)) + % div f(Xu) dU)-
0

Proof. Since X (by assumption) and Z (since it solves a linear SDE)
have no explosions, we can apply Girsanov’s theorem [7, Theorem 11A]
to find the densities of £(X) and L£(Z) w.r.t. the distribution of the
Brownian motion £(BW). Taking the ratio of these two densities gives
the first expression for ¢. The second form of ¢ can be found by apply-
ing Ito’s formula to V(X)) and substituting the result into the first part.O

In the following we will assume that f has the required gradient form
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so we can use the second form of ¢ from the lemma (without the stochas-
tic integral). From Example 6.1 we obtain a second-order differentia]
operator £ on L*([0,1],R?) such that

dz = L(z — m)dt + V2 dwy,

where m is the mean of Z, has stationary distribution v. From Theo-
rem 6.7 we see, assuming (A1)—(A5) are satisfied, that we can add the
drift F' = (log )’ to this equation to obtain a C([0,1],R?)-valued SDE
with stationary distribution p. A simple calculation shows

F(z) = (BB*) ' f(z1)6; — V¥(z), vz € C([0,1],R?),

where §; is a Dirac mass at u = 1 and ¥ is given by

W(E) = (AL + 5 £(€), (BB)S(©) + 5 div () VEER'. (68)

Under mild assumptions on A, B and f, the conditions for Theorems
6.6, 6.7 and 6.8 are satisfied and the stationary distribution of

dz; = L(z; — m)dt + F(z;) dt + /2 dw,

coincides with the distribution of the process X. An explicit set of
assumptions on A, B, and f for the result to hold can be found in [8].

Again, we would like to write this equation as a stochastic partial
differential equation. In order to do so, we should just add the drift
F to the SPDE from Example 6.1. One complication is the presence
of the Dirac-term in F'. Since, assuming smooth w for this argument,
the source term (BB*)™! f(x1)d; will lead to a jump of size f(x1) in the
u-derivative of the solution, we can incorporate the Dirac term in the
boundary condition by formally writing the SPDE as

Oz (t;u) = Lz(t,u) — VU(z(t,u)) + V2 dw(t, u)
V(t,u) € (0,00) x (0,1),
z(t,0) =z~, Oyz(t,1) = Az(t,1) + f(z(t,1)) Vt € (0, 00).

6.4 Conditioned diffusions

In the previous sections we have seen how the Langevin sampling method
can be generalized to infinite-dimensional situations and how this can
be used to construct SPDEs which sample from the distribution of a
finite-dimensional diffusion process. In this section we focus on our
main interest of this text, namely on applying the presented techniques
to sample from conditioned diffusion processes.
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Consider the following R?-valued SDE on the time interval [0, 1]:
dX, = AXy du+ f(X.)du+ BdW,, Xo=z". (6.9)

As before, A, B € R%*4 gre matrices, z~ € R? is the starting point, W is
4 standard Brownian motion on R? and we assume that f = —BB*VV
for some potential V': R¢ — R and that B is invertible. Our aim is
to construct an SPDE which has the distribution of X, conditioned on
some event C, as its stationary distribution.

Let Z be the solution of the linear SDE

dZ, = AZ,du+ BdW,, Zy=z", (6.10)

and set m(u) = E(Z(u)|C) for all w € [0,1]. In the cases we consider
here, the event C' is such that £(Z|C) is still Gaussian. The general idea
is to perform a construction consisting of the following steps.

(i) Use the results of Section 6.3.1 to obtain an L*-valued SDE which
has the centred Gaussian measure £(Z — m|C) as its stationary
distribution.

(ii) Use the Girsanov formula and results about conditional distribu-
tions to derive the density of the conditional distribution £(X|C)
w.r.t. L(Z|C). Using substitution, this gives the density of the
shifted distribution £(X —m|C) w.r.t. the centred measure £(Z —
m|C).

(iii) Use the results of Section 6.3.2 and the density from step 2
to derive a C([0,1],R?)-valued SDE with stationary distribu-
tion L(X —m/|C). Shifting the process by m reverses the centring
from step 2 and gives the required sampling equation. Optionally
write the L2-valued SDE as an SPDE.

Combining all these stéps leads to an SPDE which samples from the
conditional distribution £(X|C') in its stationary measure. The details
of the above steps depend on the specific situation under consideration.
We will study one special case in detail in the next section, where we
develop a method for nonlinear filtering by using the Langevin method
to sample from the distribution of some signal given the observations.
In the remainder of this section we illustrate the technique in a simpler
setting.

Example 6.3. We can use the technique described above to construct
an SPDE which samples bridges from

dX, = AX, du+ f(X,)du+ BdW,, Xo=z", Xi=gz", (6.11)
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that is, the stationary distribution of the SPDE coincides with the dis-
tribution of solutions of the SDE (6.9), conditioned on X; = z™.

Step 1: We need to find an SPDE with stationary distribution £(Z|Z; =
zt). Mean and covariance of the conditioned process can be found by
conditioning the random variable (Z(u), Z(v), Z(1)) for u < v < 1 on
the value of Z(1). Since this is a finite-dimensional Gaussian random
variable, mean and covariance of the conditional distribution can be
explicitly calculated. Let m and C be the mean and covariance function
of £L(Z). Then L(Z|Z; = z) is a Gaussian measure with mean

m(u) = m(u) + C(u,1)C(1,1) " (zt — m(1))

and covariance operator C with Cz = [ C(-,v)z(v) dv where the covari-
ance function is given by

C(u,v) = C(u,v) — C(u,1)C(1,1)71C(1, v).

A simple calculation shows that £ = —C~! is again the differential
operator L from (6.3), but this time on the domain

D(L) = {f € H*([0,1},R?) | £(0) =0, f(1) =0}.
Thus the stationary distribution of
dz = Lz dt + V2 dwy
is L(Z —m|Z, = zT) by Theorem 6.4.

Step 2: We have already seen in Example 6.2 that the density of £(X)
w.r.t. £(Z) is given by

1

o) = exp(Va) - V(x) - [ B, du)

with the ¥ from equation (6.8). The following lemma shows that the
density of L(X|X; = z*) w.r.t. £L(Z]Z; = z7) coincides, up to a multi-
plicative constant, with ¢.

Lemma 6.10 Let P, Q be probability measures on SxT where (S, A) and
(T, B) are measurable spaces and let X : SxT — S andY : SxT — T be
the canonical projections. Assume that P has a density ¢ w.r.t. Q and
that the conditional distribution Qx|y=y exists. Then the conditional
distribution Py y—, ewists and is given by

dPxiy—y o _ {ﬁm,y) if c(y) > 0,

€
dQx |y =y 1 otherwise
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where ¢(y) = [s @(z,y)dQx|y—y(z) for ally € T'.

Thus, the density of £L(X —m|X; =27) wrt. L(Z —m|Z; =2T) is

P(X)=c eXp(/O1 (X, —|—mu)du)

for some normalization constant ¢ where W is given by (6.8).

Step 3: Assuming that the conditions for Theorems 6.6, 6.7 and 6.8 are
satisfied, the stationary distribution of

d% = L3 dt — VU(E + m) dt + V2 dw
is then £(X —m|X; = z%). Thus the process z = Z + 1, solving
dz; = L(z; — m)dt — V() dt + V2 dwy, (6.12)

can be used to sample from the target distribution £(X|X; = z™).
Finally, we can rewrite this evolution equation as an SPDE: since the

mean mm satisfies m(0) = z~, m(1l) =z and Lm = 0 on (0,1), we can

formally write (6.12) in the form '

Orz(t,u) = La(t,u) — VU(z(t,u)) + V2 w(t, ),
V(t,u) € (0,00) x (0,1),
#(t,0) =z, =@ 1)=2" Vt € (0,00).

Note that use of this formulation no longer requires knowledge of the
conditioned mean m.

Figure 6.1 shows the result of a numerical simulation which imple-
ments the method derived in Example 6.3 to sample bridges of the pro-
cess (6.11). For the simulation we use the drift

£~ 12 (x+ 12y 8
10 =~ ) =o(qmp Y 6B
A =0, B =1 and the end-points z— = —1 and =7 = +1. To allow the
process to transition a few times between the stable equilibrium points,
we chose u € [0,100]. The upper panel illustrates how one can get an
approximation to a typical sample path of (6.11): it displays u — z(t,u)
for a big value of t. Assuming that the sampling process is already close
to equilibrium, this path should closely resemble a typical bridge path.
The second panel illustrates how statistical properties of the bridges can
be approximated by taking ergodic averages using Theorem 6.8. The
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¥ LM ! ‘ | A 1 “y '”r‘ml i ""l‘l

mean and std. dev.

0 20 40 60 80 100

Fig. 6.1. Illustration of the bridge sampling method from Example 6.3. The
drift f in (6.11) is chosen to be the gradient of a double-well potential with
stable equilibrium points at —1 and 1 and an unstable equilibrium point at ()
(see (6.13)), the process starts in x~ = —1 and is conditioned on ending up
in x¥ = +1. The upper panel shows the value of the Langevin SPDE at time
t = 10° as a function of u. This is an approzimation to a typical bridge path. The
lower panel shows a one-standard-deviation band around the mean of the solution
as a function of u, obtained by taking averages over the interval t € [0, 105].
This gives an approzimation for the mean and standard deviation of the bridge
process (6.11).

line in the centre of the shaded band shows -

4
m(u) = %/0 z(t,u) du

as a function of u for a big value of T'. By Theorenr 6.8 we have m(u) ~
m(u). The width of the band is given by

&(u) = (% /OT (z(t, u) —m(u))"’du)

1/2

Again by Theorem 6.8, 6(u) is approximately equal to the standard
deviation of the bridge at position u.
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6.5 Nonlinear smoothing

In this section we will give a more challenging application of the method
developed in the previous sections: we will describe how nonlinear smooth-
ing problems can be formulated as a problem of sampling conditioned
diffusions and how it can be solved using Langevin sampling.

Let d = m +n with m,n € N and consider a d-dimensional diffusion
process given by

dX, = AX,du+ f(X,)du+ BdW,, Xo=z",

where B is invertible and (BB*)~!f is a gradient. Assume that only
the last n components of this process can be observed and that we
want to gain as much knowledge as possible about the unobserved m
components from one observation of the last n components. We write
X, = (X, x%?) € R™ x R" and call X® the ’signal’ and X® the
'observation’.

While the problem is formally very easy to solve, the solution is just
the conditional distribution £(X®|X®), the task of actually algorith-
mically computing this solution is quite challenging. There are two
commonly used ways of solving this problem: the traditional method,
employed for example in particle filters, is to use the Zakai equation to
construct an approximation to the density of L(X51)|X£2),0_ L uh
The solution we propose here is to construct an SPDE which samples
from the distribution £(X®|X®). Questions about this conditional
distribution can then be answered by considering ergodic averages. It
transpires that this way of solving the smoothing problem can be derived
as a special case of the general technique of sampling from conditioned
diffusions which we presented in section 6.4.

Commonly, finding E(X£1)|X1(,2),O < v < w) is called 'filtering’ and
finding £(X®W|X®) is called ’smoothing’. The standard methods, like
the Kalman filter and particle filter based approaches, proceed by first
solving the filtering problem and then, optionally, solving the smoothing
problem in a second, backward sweep over the data. The method we
propose here directly solves the smoothing problem and thus all obser-
vations must be present from the start of the computation.

6.5.1 Construction of the smoothing SPDE

The construction of the SPDE to sample from the conditional distri-
bution of X1 given X® follows the steps outlined in Section 6.4. We
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start the construction by considering the linear, R™*"-valued SDE
dZ, = AZ, du+ BdW,, Zg=3, (6.14)

which will give our reference measure as before. Since this SDE is linear,
its solution is a Gaussian process, and thus the distribution £(Z")|Z (2))
is also Gaussian. First we have to identify the mean and covariance of
this distribution. The abstract mechanism we use here is given in the
following lemma.

Lemma 6.11 Let H = H;, @ Hs be a separable Hilbert space with pro-
jectors Il;: H — H;. Let (ZW), Z(2)) be an H-valued Gaussian random,
variable with mean m = (my, ms) and positive definite covariance opera-
tor C and define C;; = IL;CIL;. Then the conditional distribution of Z (1)
given Z?) is Gaussian with mean

m1|2 — 61262_21 (Z(z) = m2)
and covariance operator
Cij2 = C11 — C12Cq5 Cor.

If we define as above £ = (—C)~! and formally define £;; = I1; £11,
then a simple formal calculation shows that m;, and C;j; are expected
to be given by

myp =my — L33 L12(Z2%) — my), Cip = —L77" (6.15)

In contrast to the lemma above, the relations (6.15) do not hold in
general (consider for example the case C;j, = 0), but in our.situation
it can be shown that domains for the operators £;; can be chosen so
that all of the given expressions are defined and that the cqonditional
mean and expectation really have the form given in (6.15). Details of
this construction can be found in [9, lemma 4.6]. By Theorem 6.4, the
L?([0,1],R%)-valued SDE

dz; = Lq12 dt + V2 dw;

has L(ZW — mys|Z (2)) as its stationary distribution. We have already
identified the differential operator £ in Section 6.3.1.

Now we can just follow the programme outlined in Section 6.4: the
version of Girsanov formula from Lemma 6.9 gives the density ¢ of
L(X) wrt. £(Z). From Lemma 6.10 we know that the conditional
density ¢y} of XM given X@ differs from z +— o(z, X®) only by
a multiplicative constant which depends only on X®). Thus we have
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Viog w12 = Vilogo(-, X (2)) where V denotes the Fréchet derivative
on C’([O, 1],R?) and V; denotes the Fréchet derivative w.r.t. the first m
components. By Theorem 6.7 the equation

dzy = L1 (zs — my)p) dt + V1 log o(z, X(2)) dt + v2dw;

has L(XM|X®)) as its stationary distribution and thus can be used as
a Monte Carlo method to solve the smoothing problem.

Example 6.4. In the standard smoothing setup the signal X evolves
on its own without reference to the observation. The observation de-
pends both on the signal and on additional noise. To fit this situation
in the framework described above we consider the following case:

0 O By 0
A = B =
(A21 0) i < 0 B22> :

with Ao;1 € R**™ B;; € R™ ™ and By € R®"*™. Furthermore let
V(z,y) = Vi(z) + Va(y) and f = —BB*VV. In this situation, equa-
tion (6.14) can be written as
dxXW = f,(XW)du + By dw®)
dX® = fo,(X?)du + Ay XY du + By dW?

with f1 = _Bllelv‘/l and f2 = —BQQB§2V‘/2.
For this choice of the matrices A and B the differential operator L is

=
<L11 L12> " (8u A§1> (BllBikl 0 > ( au 0 )
L1 Lo 0 0y 0 By B3, =Ay O, "
_ (3u (B11B{1)™'0u — A5 (BnB3,) ™ An A31(Bz2352)_13u>
—0y(B22B3,) 1 An Oy (B2 B3;) ™10y ) .
defined on some appropriate domain. A more detailed analysis, as found

in [9], Section 4, shows that £4; in (6.15) can be taken to be L;; on the
domain

(6.16)

D(‘CH) 1 {f € H2([07 1],Rd) I f(O) = Oaauf(l) a 0}“'
From (6.15) we find that m;, is the solution of

" v yo1f 429
£11 (m1|2 = ml) = —A21(B22322) 1( d'u, — mg) .

@ . A : .
Here d—dZE— only exists as a distribution, but since £y is a second-order

differential operator, the solution m,y is a smooth function.
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The density of L(XW|X®) wrt. £L(ZWM]Z?) can be simplified be-
cause of the simple structure of the matrices 4 and B: we get
T L,
(XWX = coxp( ~vi(x) - 5 [ B AGKD)P
0

+ div f1(XV) du

1
— [ X0, 45, (BuB) ! (X)) du)
0

for some normalization constant ¢ and the density of the target distri-
bution g = L(X® — mugiX(z)) wrt v=L(ZD - m1|2|Z(2)) is p(X —
my2|Y). Thus, for given X () the Fréchet derivative of log (X (1] X®)
18

F(z) = Vi log (x| X®)
= —VVi(z1)0 — V&(z) — A3 (BnB) ' f2(X?)

for all z € C([0,1],R™), where §; is a Dirac mass at u = 1 and

B(6) = 5 (1Bi AOP +divi(6)  VEER™.

With F we have found the drift to be used in Theorem 6.7: the
equation
di, = L dt— V®(F; +myp)dt — A3 (BB3,) ™' f2(X®)) dt
—VVi(&: (1) + mypp(1))d; dt + V2 dw
is ergodic and has £(X® — m;»|X®)) as its stationary distribution.

Defining x; = &; + my)p for all £ > 0 and formally writing the equation
for z as an SPDE again, we find that the SPDE

dx(t,u) = (BuBp) '02z(t,u) — Ve (z(t,u))
dx®
+A45(BnBi) ! (S5 () — £(XPW) - Anz(t,v))
+v28w(t,u) - : (6.17)

with boundary conditions

z(t,0) =0, 8,z(t,1) = fi(=(t,1))

for all t > 0 is the Langevin equation on C’([O, 1],Rm) to sample from
the distribution £(X®|X®). In the derivation above we did not check
whether the conditions (A1), ..., (A5), which are required for our sam-
pling method, are satisfied. In general this depends on the specific choice
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signal and reconstruction
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Fig. 6.2. Illustration of the smoothing method from Example 6.4. The upper
panel shows the true signal (unknown to the algorithm) together with a one-
standard-deviation band around the mean of the sampling SPDE. This band
can be seen as a reconstruction of the signal, but since the observation (not
displayed) incorporates additional noise, a perfect reconstruction is not pos-
sible. The lower panel shows a typical path of the conditional distribution of
the signal, given the observation, obtained by taking the value of the sampling
SPDE at large t.

of f, A and B. A (quite technical) set of conditions such that the theo-
rems apply can be found in [8].

A comparison between the sampling equation derived here and the
equation derived in Example 6.2 to sample from the unconditional dis-
tribution £(X ) reveals that the only difference caused by the condi-
tionihg is the presence of the term

dx®
du

A3 (BnB3) ™ (55— () = L(XO(w) — Ana(t,u)).

The presence of this additional drift term moves the solution of the
sampling SPDE towards paths X" which minimize the ‘energy’ of the
noise required for the second equation in (6.16) to hold.



+ spuie v.s wruSLIALES THe resulting smoothing method for the system,

M = f(xMydu +awl®,  x{M=-1
dx® = xOdu+aw®, xP =0

u u u

dX

where f is the double-well drift from (6.13). The upper panel shoys
the ‘true’ signal X() (unknown to the algorithm), together with a re.
construction obtained by the smoothing method described above. The
displayed band was obtained again as in Example 6.3. Since the observs.
tion (not displayed) contains not only information about the signal, byt
also unknown additional noise, a perfect reconstruction is not possible.
But the figure shows that the reconstruction captures the main featureg
of the signal. Other statistical quantities of the conditional distribution
of the signal, given the observation, like the number of transitions be.
tween the two equilibrium points, can be computed similarly by taking
ergodic averages. The lower panel shows a typical path of the condi-
tional distribution for comparison with the ‘true’ signal in the upper
panel.

6.5.2 Some remarks about smoothing

While the sampling technique developed in the previous section solves
the same problem as traditional filters/smoothers do, it does so in a
very different way: instead of trying to obtain the density of the condi-
tional distribution, our method constructs samples from the conditional
distribution which can be used as the basis of an MCMC algorithm.
Filtering and smoothing are sometimes used in high-dimensional situ-
ations. For example, applications in weather prediction, where filtering
is used to incorporate the observed weather data into a model, now use
values of d which are as big as 10" or 10®. When d is big, a map from
R? to R like the density of L(Xfl(f)lXTS?), 0 < v < u) is a complex object
which is very hard to accurately represent in a computer. A standard
way to deal with this problem, used in particle filter methods, is to
approximate the conditional distribution as a sum of weighted Dirac
masses. Another approach is to approximate the conditional distribu-
tion by a Gaussian, but in high-dimensional situations even storing the
covariance matrix of this Gaussian has a non-negligible cost and some-
times even further approximations are necessary. In comparison, a map
from R to R?, like the paths obtained by the smoothing method dis-
cussed here, is a much more manageable object. Thus the discussed
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method might be advantageous in high dimensions when smoothing is
required and not just filtering.

Another observation to note is that the situation considered in Exam-
ple 6.4 is just one of many possible situations where a Langevin sampling
based filtering method can be derived. Similar constructions are possi-
ble in many situations, for example it is easy to derive a sampling SPDE
to sample from a diffusion conditioned on discrete noisy observations.
See [2] for further examples.

More information about filtering and pointers into the literature can
be found in [1].

6.6 Metropolis—Hastings algorithm on path space

In the previous sections we showed how an infinite-dimensional analogue
of the Langevin equation can be used to sample from the distribution
of conditioned diffusions. One of the main motivations behind this ap-
proach is that it directly translates into an implementable algorithm to
solve these sampling problems. In this section we will discuss some is-
sues which arise in this context. When implementing the method for
practical use one has to numerically solve the sampling SPDE (6.5) and
thus one has to discretise this equation in both ‘space’ v and time ¢. The
two kinds of discretization raise different issues and here we will mostly
focus on the effects of discretizing time.

There are two constraints which affect the choice of time step size At.
Firstly, we are only interested in the stationary distribution of the sam-
pling SPDE and thus, for our purposes, it doesn’t matter if the nu-
merical simulation accurately represents the trajectories of the solution
but we require the invariant measure of the discretized equation to be
close to the invariant measure of the exact equation. And, secondly, we
will use the numerical solution to approximate ergodic averages as in
Theorem 6.8 and thus we need to simulate the solution over long time
intervals. This leads to a trade-off in the choice of the step size At:
small At requires many steps to cover big time intervals and thus makes
the resulting method computationally expensive whereas big At leads
to big discretization error and makes the results less accurate.

One solution to this dilemma is the following idea, described in more
detail in [4]: one can use a discretisation with a big step size At, but
then use a rejection mechanism to compensate for the resulting discreti-
sation error. More specifically, given an approximation Z(t) to the exact
solution x;, a discretized version of the evolution equation gives an ap-
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proximation to the solution at time ¢+ At. But instead of directly using

the computed value §(¢ 4+ At) for the numerical solution, one can use j

as the proposal in a Metropolis—Hastings algorithm and either accept o
reject it as described in Theorem 6.1.

"~ A (partially implicit) Euler method for solving the equation

dz; = La; dt + F(z,) dt + V2 dw, (6.18)

from Section 6.3.2 can be formulated as
Xnt1=Xn + L(0X 11 + (1 — 0)X,) At + F(X,,) At + V26,

where the &, have the same distribution as the increments of the cylindri-
cal Wiener process w. The parameter 6 € [0, 1] controls the implicitness
of the method. We did not include implicitness in the evaluation of
the nonlinear part F' of the drift, to make it easy to solve the iteration
equation for X, .1: one gets

Xn1 = (I = AtL) ™ (I + At (1 —6)L) X,
+ At (I — ALOL) T F(X,) +V2(I — AtOL) 6, (6.19)

It is not a priori clear what space this equation takes values in, since
the cylindrical Wiener process w, and thus its increments, do not live
in the Hilbert space H. However, since —L£~! is trace class (it is the
covariance of a Gaussian measure, see Section 6.3.1), for 6 > 0 the
operator A = (I — At0L)™! is Hilbert-Schmidt and thus the random
increments AE,, take values in H. For this reason we restrict ourselves
to the case 6 > 0 here.

When trying to use X, ;1 as the proposal in a Metropolis algorithm,
there is the following surprising dichotomy.

Theorem 6.12 Let H = L*([0,1],R?) and let £ be a symmetric, neg-
ative definite operator on 'H as in Section 6.3.2. Let u be the invariant
measure of (6.18). Let 6 > 0 and define the transition kernel P on H
by

Pie) )= LIX, | X, = z) Ve H,

where X, 11 is defined by equation (6.19). Then there are two cases:
(a) If 6 # 1/2, then the distributions u(dy)P(y,dz) and p(dz)P(z,dy)
on HxH are singular w.r.t. each other and thus the Metropolis algorithm
cannot be used.
(b) If 0 = 1/2, then the distributions u(dy)P(y,dz) and p(dz)P(z,dy)
on 'H x 'H are equivalent and thus the Metropolis algorithm can be used.
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Fig. 6.3. This figure illustrates how the acceptance rates of the Metropolised
algorithin for a discretized version of the smoothing problem from Ezample 6.4
depend on the time discretization step size At. The different curves correspond
to different space discretizations Au. The upper panel gives the average ac-
ceptance probabilities in equilibrium for 0 = 1/2. In this case the Metropolis-
Hastings algorithm can also be applied to the infinite-dimensional problem.
The lower panel illustrates the case 8 = 0.4, which only makes sense for the
discretized equation. One can see that the method degenerates as Au — 0.

Proof. For X € H let (X), be the quadratic variation of X until time
u. Then, by imitating the proof of [4], Proposition 4.1, for (X,Y) ~
p(dz)P(z,dy) we have
(1—8)y°

(V) = T<X Yu
almost surely. Since under p the quadratic variation is a.s. constant,
this shows that the measures in part (a) are singular whenever (1 —
0)2/60* # 1, i.e. when 0 # 1/2. A proof for part (b) when L is a second
derivative operator with Dirichlet boundary conditions can be found
in [4], Theorem 4.1. An inspection of this proof reveals that it still holds

Vu € [0, 1]

in the more general situation considered here. O

To implement the methods described in this text, the Langevin SPDE
needs to be discretized in ‘space’ as well as in time. Some remarks about
the required space discretization can be found in [4]. For the space-



=
E
E

184 Martin Hairer, Andrew Stuart, Jochen Vof}

discretized equation the dichotomy described in Theorem 6.12 does not
exist, every value of § is possible there. But the effect from the theoren
is still visible: for # # 1/2 one needs to decrease At when Au gets smaller
in order to retain large enough acceptance probabilities. For 6 = 1/9
one can decrease Au without decreasing At. This effect, as it occurs for
the smoothing problem from Example 6.4, is displayed in Figure 6.3.

6.7 Conclusion

In this text we have seen how an infinite-dimensional generalization of
Langevin sampling can be used to generate samples from conditioned
diffusions. We have seen that the presented method can be used as
a common framework to solve very different kinds of sampling prob-
lems, such as generating bridge paths from SDEs and solving smoothing
problems. The same framework can be applied to many more kinds of
problems. For example, one can apply the same kind of technique to
processes indexed by a two-dimensional parameter instead of a single
time variable. This might give rise to techniques which could be applied
in image analysis, for example. It will be interesting to see what future
applications will be developed based on this.

Throughout this text, we concentrated on sampling techniques which
were direct generalizations of the finite-dimensional result from Theo-
rem 6.3. But of course, since we are only interested in the stationary
distribution, the sampling equation is not uniquely determined; many
choices are possible. For example, in the finite-dimensional case the SDE

dX; = LX; dt + Vlog o(X;) dt + V2 dW;
and the 'preconditioned’ SDE

where G is a symmetric, positive matrix, share the same invariant mea-
sure. This relation carries over to the infinite-dimensional situation. By
taking e.g. G = —L~! one obtains a new equation- with very differ-
ent properties: the cylindrical noise is now replaced by a significantly
more regular noise, but the smoothing effect from the operator L is no
longer present. This technique is discussed in [8] and [4]. Other choices
of sampling equations, including second-order equations, are discussed
in [1].

In the further development of the presented sampling techniques, sev-
eral open problems remain. For example, in this text we always as-
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sumed that the densities we obtained from the Girsanov formula can be
rewritten without resorting to a stochastic integral. This restricted the
choice of drift functions for the underlying diffusion processes to func-
tions which are a gradient plus a linear function. It transpires that this
restriction is not easily lifted: the theorems presented here no longer
apply and, while it is easy to formally derive sampling equations, it is
very difficult to even give sense to the resulting equations. A conjecture
about the results in the non-gradient case can be found in [8].

Other open problems include questions about efficient implementation
of the method. This requires numerical solutions of the resulting SPDEs
and a careful choice of step sizes for discretisation is required.
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