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Long-Time Asymptotics of the Filtering Distribution for Partially Observed
Chaotic Dynamical Systems*
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Abstract. The filtering distribution is a time-evolving probability distribution on the state of a dynamical
system given noisy observations. We study the large-time asymptotics of this probability distribution
for discrete-time, randomly initialized signals that evolve according to a deterministic map ¥. The
observations are assumed to comprise a low-dimensional projection of the signal, given by an operator
P, subject to additive noise. We address the question of whether these observations contain sufficient
information to accurately reconstruct the signal. In a general framework, we establish conditions
on ¥ and P under which the filtering distributions concentrate around the signal in the small-noise,
long-time asymptotic regime. Linear systems, the Lorenz ’63 and '96 models, and the Navier—Stokes
equation on a two-dimensional torus are within the scope of the theory. Our main findings come
as a by-product of computable bounds, of independent interest, for suboptimal filters based on new
variants of the 3DVAR filtering algorithm.
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1. Introduction. The evolution of many physical systems can be successfully modeled by
a deterministic dynamical system for which the initial conditions may not be known exactly.
In the presence of chaos, uncertainty in the initial conditions will be dramatically amplified
even in short time intervals. However, when observations of the system are available, they may
be used to ameliorate this growth in uncertainty and potentially lead to accurate estimates of
the state of the system. In this work we provide sufficient conditions on the observations of
a wide class of dissipative chaotic differential equations that guarantee long-time accuracy of
the estimated state variables. The equations covered by our theory include the Lorenz 63 and
’96 models as well as the Navier—Stokes equation on a two-dimensional torus. The importance
of these model problems within geophysical applications is highlighted in [22], and their use
for testing the efficacy of filtering algorithms is exemplified in [21], [17].

It is often natural to acknowledge the uncertainty on the initial condition by viewing it
as a probability distribution which is propagated by the dynamics. Whenever a new obser-
vation of the state variables becomes available, this distribution is updated to incorporate
it, reducing uncertainty. This process is performed sequentially in what is known as filter-
ing [8]. Unfortunately, in almost all situations of applied relevance—with the exception of
finite state signals and the linear Gaussian case—the analytical expression for these filtering
distributions involves integrals that cannot be computed in closed form. It is thus necessary
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to employ a numerical algorithm to sequentially approximate the filtering distributions. In
order to develop good algorithms, a thorough understanding of the properties of these dis-
tributions is desirable. The interplay between properties of the filtering distributions and
those of their numerical approximations is perhaps best exemplified by the case of filter sta-
bility and particle filtering: the long-time behavior of particle filtering algorithms depends
crucially on the filtering distributions’ sensitivity to their initial condition [9], [7], [19]. The
main result of this paper shows long-time concentration of the filtering distributions towards
the true underlying signal for partially observed chaotic dynamics. The proofs combine the
asymptotic boundedness of a new suboptimal filter with the mean-square optimality of the
mean of the filtering distribution as an estimator of the signal [32]. All of our examples rely on
synchronization properties of dynamical systems. This tool underlies the study of noise-free
data assimilation initiated in [10] for the Lorenz ’63 and the Navier—Stokes equation. The
paper [10] motivated studies of the 3DVAR filter (three-dimensional variational method) for
a variety of dissipative chaotic dynamical systems, conditioned on noisy observations, in [3]
(Navier—Stokes), [16] (Lorenz ’63), and [15] (Lorenz '96). The 3DVAR filter from meteorol-
ogy [20], [23] is a method which, iteratively in time, solves a quadratic minimization problem
representing a compromise between matching the model and the data. Here we study the
filtering distribution itself, using modifications of the 3DVAR filter which exploit dissipativity
to obtain upper bounds on the error made by the optimal filter. We also provide a unified
methodology for the analysis. Furthermore, whereas previous work in [3], [15] required the
observation noise to have bounded support, here only finite variance is assumed.

The suboptimal modified 3SDVAR filter that we use in our analysis can also be interpreted
using ideas from nonlinear observer theory [31], [29]. Its asymptotic boundedness is proved
by a Lyapunov-type argument. Although more sophisticated suboptimal filters could be used
to gain insight into the filtering distributions, our choice of modified nonlinear observers is
particularly well-suited to deal with high (possibly infinite) dimensional signals, as indicated
by the fact that the theory includes the Navier—Stokes equation. Filtering in high dimensions
is not, in general, well-understood. For example, the question of whether some form of particle
filtering could be robust with respect to dimension has received much recent attention [27], [24],
[1]. By understanding properties of the filtering distribution in high and infinite dimensions
we provide insight that may inform future development of particle filters.

This paper is organized as follows. In section 2 we set up the notation and formulate the
questions we address in the rest of this paper. Section 3 reviews the 3DVAR algorithm from
data assimilation and its relation to more general nonlinear observers from the control theory
literature. A new truncated nonlinear observer is also introduced. In section 4 we prove long-
time asymptotic results for these suboptimal filters, and thereby deduce long-time accuracy
of the filtering distributions. Section 5 contains some applications to relevant models, and we
close in section 6.

2. Set-up. Filtering problems are naturally formulated within the framework of hidden
Markov models. The general setting that we consider is that of a Markov chain {v;,y;};>0,
where {v;};>0 is the signal process and {y; };>0 is the observation process. We assume through-
out that yp = 0 so that yg gives no information on the initial value of the signal and that, for
each j > 1, y; is a noisy observation of v;. We are interested in the value of the signal, but
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Figure 1. Graphic representation of the dependence structure assumed throughout this paper. Conditional
on vo, ...,v;, the distribution of vj+1 is completely determined by v; via a deterministic map V; therefore, the
signal process forms a Markov chain. Similarly, conditional on {v;};>0, {y;};j>1 is a sequence of independent
random variables such that the conditional distribution of y; depends only on vj.

have access only to outcomes of the observation process. We suppose that both take values in
a separable Hilbert space H = (H, (-,-),| - |) and that the signal is randomly initialized with
distribution pg, vg ~ po. We assume further that there is a deterministic map ¥ such that

(2.1) vj41 = ¥(v;) forj >0,

and therefore all the randomness in the signal comes from its initialization.
The observation process is given by

(2.2) yj = Pvj +ew; forj>1,

where P denotes some linear operator that projects the signal onto a proper subspace of H,
{w;};>1 is an independently and identically distributed (i.i.d.) noise sequence (independent
of vy), and € > 0 quantifies the strength of the noise. A graphic representation of the as-
sumed dependence structure is given in Figure 1. We define Q = I — P. For mathematical
convenience, and contrary to usual convention, we see both observations and noise as taking
values in the same space H as the signal, with the standing assumptions Qy; = 0, Qw; = 0,
and Pw; = wy a.s.! Thus Q is a projection operator onto the unobserved part of the system.
For j > 0, we let Y; := o(y;, i < j) be the o-algebra generated by the observations up to the
discrete time j.

Note that the law of {vj,y;};>0 is completely determined by four elements: the law of
v, the map ¥, the law of wy, and the observation operator P. We will denote by P the law
of {v;,y;};>0 and by E the corresponding expectation. It will be assumed throughout that
E|vg|? < oo and that the observation noise satisfies Ew; = 0 and E|w;|* < 0o. For convenience
and without loss of generality we normalize the latter so that E|w;|* = 1.

The main object of interest in filtering theory is the conditional distributions of the signal
at discrete time 7 > 1 given all observations up to time j. These are known as filtering
distributions and will be denoted by

pi(+) = Plo; € [j].

The mean v; of the filtering distribution p; is known as the optimal filter

= Eluyivy) = [ vuy(a)

More generally, when an operator T : H — H acts on the observations it should be implicitly understood
that T : H — H satisfies T' = PT. Moreover, it will often be assumed that T|P : PH — PH is positive definite
and therefore the operator 7! : H — # should be interpreted as satisfying PT ! = T~ * |P7 QT '=o0.
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By the mean-square minimization property of the conditional expectation [32], this filter is
optimal in the sense that, among all Y;-measurable random variables, it is the only one—up
to equivalence—that minimizes the L? distance to the signal v;:

(2.3) Elv; — 9| <Elv; — 2;/* V Yj-measurable z;.

In other words, v; is the best possible estimator (in the mean-square sense) of the state of
the signal at time j given information up to time j. The optimal filter is usually, like the
filtering distributions, not analytically available. However, by studying suitable suboptimal
filters {2;};>0 and using (2.3) we can find sufficient conditions under which the optimal filter
is close to the signal in the long-time horizon. We thus provide sufficient conditions under
which the observations counteract the potentially chaotic behavior of the dynamical system
and allow predictability on infinite time horizons.

The main objective of this paper is to investigate the long-time asymptotic behavior of the
filtering distribution for discrete-time chaotic signals arising from the solution to a dissipative
quadratic system with energy-conserving nonlinearity
(2.4) % + Av + B(v,v) = f,
which is observed at discrete times t; = jh, j > 1, and h > 0. The bilinear form B(, -) will be
assumed throughout to be symmetric. We denote by ¥; the one-parameter solution semigroup
associated with (2.4), i.e., for vg € H, Wy(vp) is the value at time ¢ of the solution to (2.4)
with initial condition vg. Furthermore, we introduce the abbreviation ¥ = W¥y,.

Our theory—developed in section 4—relies on two assumptions that we now state and
explain.

Assumption 2.1.

1. (Absorbing ball property.) There are constants rg, 7 > 0 such that

(2.5) Wy (o) |* < exp(—rit)|vo|* + ro(1 — exp(—r1t)), ¢ >0.

Therefore, setting r = /2rg, the ball B := {u € H : |u| < r} is absorbing and forward
invariant for the dynamical system (2.1).

2. (Squeezing property.) There is a function V : H — [0, 00) such that V'(-)1/2 is a Hilbert
norm equivalent to | - |, a bounded operator D, an absorbing set By = {u € H : V(u)'/? <
R} D B, and a constant a € (0,1) such that for all u € B, v € By,

V((I — DP)(¥(v) — \If(u))) < aV(v —u).

The absorbing ball property concerns only the signal dynamics. It is satisfied by many
dissipative models of the form (2.4)—see section 5. The squeezing property involves both the
signal dynamics and the observation operator P. It is satisfied by several problems of interest
provided that the assimilation time h is sufficiently small and that the “right” parts of the
system are observed; see again section 5 for examples. We remark that several forms of the
squeezing property can be found in the dissipative dynamical systems literature. They all
refer to the existence of a contracting part of the dynamics. Their importance for filtering
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has been explored in [10], [3], and [5]. It also underlies the analysis in [12] and [15], as we
make apparent here. We have formulated the squeezing property to suit our analyses and with
the intention of highlighting its similarity to detectability for linear problems, as explained
in subsection 4.2. The function V will represent a Lyapunov type function in section 4. For
all the chaotic examples in section 5 the operator D will be chosen as the identity, but other
choices are possible. As we shall see, the absorbing ball property is not required when a global
form of the squeezing property, as may arise for linear problems, is satisfied.

We will construct suboptimal filters {m;};>o that are forced to lie in By . By the absorbing
ball property the signal v; is contained, for large j and with high probability, in the forward-
invariant ball B. Therefore, intuitively, the squeezing property can be applied, for large j, to
mj; € By, v € B.

The main result of this paper, Theorem 4.8, shows that, when Assumption 2.1 holds, the
optimal filter accurately tracks the signal. Specifically we show that there is a constant ¢ > 0,
independent of the noise strength €, such that
(2.6) lim sup E|v; — ;] < ce?.

]-)OO
Note that (2.6) not only guarantees that in the low noise regime the optimal filter (i.e.,
the mean of the filtering distribution) is—on average—close to the signal, but also that the
variance of the filtering distribution is—on average—small. Indeed, since

!

it follows by taking expectations and using linearity of the trace operator that

~

var[v;|Y;] = E | (v; — ;) ® (v; — 0)

Trace E var[v;|Y;] = E|v; — 3%,
and therefore, (2.6) implies
lim sup Trace E var[v;|Y;] < ce?.
j—o0
We hence see that (2.6) guarantees that the variance of the filtering distributions scales as the
size of the observation noise, like O(e?). Thus the initial uncertainty in the initial condition
which is O(1) is reduced, in the large-time asymptotic, to uncertainty of O(e): the observations

have overcome the effect of chaos. Small variance of the long-time filtering distribution had
been previously proposed as a condition for successful data assimilation [4].

3. Suboptimal filters. The aim of this section is to introduce a suboptimal filter designed
to track dynamics satisfying Assumption 2.1. This filter is based on the 3DVAR algorithm from
data assimilation and nonlinear observers from control applications. We give the necessary
background on these in subsection 3.1 before introducing the new filter in subsection 3.2.

3.1. 3DVAR filter. The 3DVAR filter approximates the filtering distribution p;41 by a
Gaussian N(z;41,C) whose mean can be found recursively starting from a deterministic point
zo € H by solving the variational problem

. 1) — 2 1 _ 2
(31 zga= mgrmnz{gtcﬁ P 0(z)| + 5z [T - P2)| }
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where C} is a fixed model covariance that represents the lack of confidence in the model ¥,
and I is the covariance operator of the observation noise wy.
The covariance C of the 3DVAR filter is determined by the Kalman update formula

c 1= q;l +pPIr-1p,

It is immediate from (3.1) that z; is Y;-measurable for all j > 0, and it can be shown [18]
that the solution z;11 to this variational problem satisfies

(32) zjt1 = (I = KP)¥(zj) + Kyj41,
where K is the Kalman gain
K = CyPT(PCyPT + 1)L,

The 3DVAR filter was introduced, and has been widely applied, in the meteorological
sciences [23], [20]. Long-time asymptotic stability and accuracy properties—that guarantee
that the means z; become close to the signal v;—have recently been studied for the Lorenz ’63
model [16] subject to additive Gaussian noise, and the Lorenz '96 and Navier—Stokes equation
observed subject to bounded noise [15], [3].

It will be convenient to allow for other choices of operator K in the above definition, and
consider the more general recursion

(33) Zi+1 = ([ — DP)\IJ(Z]‘) + Dyj+1,

where D is some linear operator that we are free to choose as desired. Filters of the form
(3.3) are known as nonlinear observers [31], [29]. The 3DVAR filter can be seen as an instance
of these where the operator D is determined by model and noise covariances, and by the
observation operator. We now derive a recursive formula for the error made by nonlinear
observers when approximating the signal. To that end note, first, that the signal {v;};>0
satisfies

Vj4+1 = (I — DP)\I’(Uj) + DP\I’(Uj).

Second, using (2.2) at time j+ 1, combined with the assumption that Pw;i1 = wj41, we have

Zj41 = (I — DP)\I’(Z]) + DP\I’(U]) + 6DP’LUj+1.

Therefore, substracting the previous two equations, we obtain that the error 0; = v; — z;
satisfies
(3.4) §j+1 = — DP)(¥(v;) — ¥(2j)) — eDPwj 1.

Despite their simplicity nonlinear observers are known to accurately track the signal under
suitable conditions [29], [31]. Equation (3.4) plays a central role in such analysis, and will
underlie our analysis too. It demonstrates the importance of the operator (I — DP)V in the
propagation of error; this operator combines the properties of the dynamical system, encoded
in ¥, with the properties of the observation operator P.
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3.2. Nonlinear observers and truncated nonlinear observers. In the remainder of this
section we introduce a truncated nonlinear observer that is especially tailored to exploit the
absorbing ball property of the underlying dynamics.

Given a nonempty closed convex subset C C H, take mg € C and, for j > 0, define the
C-truncated nonlinear observer m;y1 by

(3.5) mj1 = Fe((I = DP)¥(mj) + Dy; 11 ),

where Pp is the orthogonal (with respect to a suitable inner product) projection operator onto
the set C; this is well-defined for any nonempty closed convex set [26]. In the next section
we will analyze the long-time behavior of this filter when C is chosen as By, and the inner
product is induced by V'/2 (see Assumption 2.1). The main advantage of this truncated filter
is that m; € By for all j > 0, and large uninformative observations y; corresponding to large
realizations of the observation noise w; will not hinder the performance of the filter. Examples
of other truncated stochastic algorithms can be found in [13].

4. Stochastic stability of suboptimal filters and filter accuracy. In this section we prove
long-time accuracy of certain suboptimal filters under different assumptions on the underlying
dynamics and observation model. These results are used to establish long-time concentration
of the filtering distributions. We start in subsection 4.1 by recalling the Lyapunov method
for proving asymptotic boundedness of stochastic algorithms. In subsection 4.2 we employ
this method to show asymptotic accuracy of nonlinear observers when a global form of the
squeezing property is satisfied, as happens for certain linear problems. Finally, in subsection
4.3 we use truncated nonlinear observers to deal with chaotic models where only the weaker
Assumption 2.1 holds.

4.1. The Lyapunov method for stability of stochastic filters. Consider a Markov chain
{6j}j>0 and think of it as the random sequence of errors made by some filtering procedure.
The next result, from [29], underlies much of the analysis in the following subsections.

Lemma 4.1. Let 5} and 532» be two realizations of the H-valued random variable 6; and set
Aj = 5]1- — 5]2-. Suppose that there is a function V : H — [0,00) such that:

1. V(0) =0, V(z) > 0|z|? for all x € H and some 6 > 0.
2. There are real numbers K >0 and o € (0,1) such that for all Aj € H,

EV(A;41)[A;] < K+ aV(Aj).

Then, for any a € H,

j—1
OE[|A;1%|A0 = a] < &IV (a) + K ) o
=0
Therefore, regardless of the initial state Ag,
K
limsupE|A]? < ——.
]—)oop | J| — 0(1 _ Oé)
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4.2. Filter accuracy with global squeezing property. The following results show that
if, for some suitable operator D, the map (I — DP)V satisfies a global Lipschitz condition,
then it is possible to use nonlinear observers to deduce long-time accuracy of the filtering
distributions. Although such a global condition does not typically hold for dissipative chaotic
dynamical systems arising in applications, the following discussion serves as a motivation for
the more general theory in subsection 4.3. Moreover, the results in this subsection are of
interest in their own right. In particular they are enough to deal with the important case of
linear signal dynamics.

Theorem 4.2. Assume that there is a Hilbert norm V(-)Y/2 in H, equivalent to |- |, and a
bounded operator D and constant o € (0,1) such that

V<(I — DP)(¥(v) — \I/(u))) <aV(v—u) YuveH.

Define {zj}j>0 by (3.3). Then there is a constant ¢ > 0, independent of the noise strength e,
such that
limsup E|v; — ;| < ce?.
J—00
Proof. By assumption, V satisfies the first condition in Lemma 4.1. Set §; = v; — z;. Then,
using (3.4) and the independence structure,

E[V(5;41)|5,] = E [V((I — DP)(W(v;) = ¥(2))) — eDuwj 1 ) M
= B[V (( - DP)(W(vy) - ¥(2)))) 8] + BV (Dwjp)
<E[V (I = DP)(W(v;) - 0(z))) (@] + e
< aV(s;) + O,
where C' > 0 is independent of ¢, and to obtain the first inequality we used equivalence of
norms and the fact that D is bounded. Thus the second condition in Lemma 4.1 holds and
the proof is complete. |
The following corollary is an immediate consequence of the L? optimality property of the

optimal filter (2.3).
Corollary 4.3. Under the hypothesis of the previous theorem

lim sup E|v; — ;] < c€?, lim sup Trace E var[v; |Y;] < ce?.
j—o0 Jj—oo

In the remainder of this subsection, we apply, for the sake of motivation, the previous
theorem to the case of linear finite dimensional dynamics. We take H = R? and let the signal
be given by

(4.1) Vj41 = L’Uj, j > 1, Vo ~ UQ-

This framework has been widely studied within the control theory community, mostly—but
not exclusively—in the case where both the initial distribution of the signal and the observation
noise are Gaussian. Other than its modeling appeal, this linear Gaussian setting has the
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exceptional feature that the filtering distributions are themselves again Gaussian. Moreover,
their means and covariances can be iteratively computed using the Kalman filter [11]. Since
the optimal filter is the mean of the filtering distribution, the explicit characterization of the
Kalman filter yields an explicit characterization of the optimal filter. Suppose that, for some
given 7y € R? and Cy € R¥™¥?, 1y = N (%, Cy), and suppose further that wy ~ N(0,T). Then
the filtering distributions are Gaussian, p; = N(v;,C}), j > 1, and the means and covariances
satisfy the recursion (see [18])

i)\j-i-l — (I — KJ+1P)L6] + Kj+1yj+17
—1 -1 —2pTpr—1
(4.2) Cipn=Cjpyy te P IR,

where the predictive Kalman covariance Cj;4); and Kalman gain K1 are given by
T
Cj+1|j — LC]L 5
T T | 21n—1
Kj+1 = Cj—i—l‘]P (PCj—i-l‘]P + € F) .
Similar formulae are available when the covariance operator I' is not invertible in the obser-
vation space [18].

Remark 4.4. Tt is clear from (4.2) that the Kalman filter covariance Cj, which is the
covariance of the filtering distribution p;, is deterministic and in particular does not make
use of the observations. It follows from the discussion in section 2 that in the linear Gaussian
setting

lim sup E|v; — 0] < cé?
j—o0
implies
lim sup Trace C; < ce?.
Jj—o00

In the linear setting the global squeezing property in Theorem 4.2 reduces to the control
theory notion of detectability, as we now recall.

Definition 4.5. The pair (L, P) is called detectable if there exists a matrix D such that
p(L — DP) < 1, where p(-) denotes spectral radius.

We remark that the condition p(L — DP) < 1 guarantees the existence of a Hilbert norm
in R? in which the linear map defined by the matrix L — DP is contractive. It, therefore,
yields a global form of the squeezing property. Note that detectability may hold for unstable
dynamics with p(L) > 1. However, the observations need to contain information on the un-
stable directions. It is not necessary that these are directly observed, but only that we can
retrieve information from them by exploiting any rotations present in the dynamics. This
is the interpretation of the matrix D in the definition. The next result states the abstract
global theorem of the previous section in the setting of linear dynamics. Our aim in including
it here is to make apparent the connection between classical control theory [14], ideas from
data assimilation concerning the 3DVAR filter [3], [12], [15], and the new results for chaotic
systems observed with unbounded noise in section 4.3.

Theorem 4.6. Assume that H = R? and ¥(v) = Lv with L € R, Then if the pair (L, P)

© 2015 STAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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is detectable there is a constant ¢ > 0 independent of the noise strength € such that

. ~ 12 2
limsup Efv; —vj]° < ce”,
J—00

and consequently in the linear Gaussian setting

lim sup Trace C; < ce?.
j—o0

Proof. By the Hautus lemma [28] the pair (L, P) is detectable if and only if

Rank (AI; L> =d

for all A with |A| > 1 or, in other words, if Ker(Al — L) NKer(P) = {0} for all A\ with [A| > 1.
Using this characterization of detectability it is immediate from the identity

Ker(A — L)NKer(PL) = Ker(A — L) NKer(P), X#0,

that (L, P) is detectable if and only if (L, PL) is detectable. Now by hypothesis (L, P) is
detectable and so there exists a matrix D such that p(([ — DP)L) < 1. Hence the linear map
defined in R? by the matrix (I — DP)L is globally contractive in some Hilbert norm. The
result follows from Theorem 4.2 and Corollary 4.3. |

4.3. Filter accuracy for chaotic deterministic dynamics. In this section we study filter
accuracy for signals satisfying Assumption 2.1. Our analysis now makes use of truncated
nonlinear observers (3.5), which are forced to lie in the absorbing ball By. The idea is that
once the signal gets into the absorbing ball, projecting the filter into By reduces the distance
from the signal, as measured by the Lyapunov function V. This is the content of the following
lemma. Pp, x denotes the point (in the V1/2 norm) closest to = € H in the set By. Therefore,

Pg,x = Rl/zﬁzm for = ¢ By .

Lemma 4.7. Let VY/2(-) be a Hilbert norm and let R > 0. Set By := {b € H : V(b) < R}
as in Assumption 2.1. Then,

(4.3) V(Pg,x —b) <V(x—b), x € H,be By.

Proof. The case © € By is obvious so we assume V(z) > R. Let (-,-)y denote the inner
product associated with the norm V1/2. We claim that

(4.4) (Pg,x —b, x — Pg,xz)y > 0.

© 2015 STAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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Indeed, we have

(Pg,x —b, x — Pg,x)y =

> (1 - %) <R1/2V1/2(a;) - V1/2(b)V1/2(a;)) .

Now, R > V(b) because b € By, and the claim is proved.

Finally, note that (4.4) implies V(Pp, x —b) < V(x —b). To see this recall the elementary
fact that for arbitrary z1,z9 € H we have that (x1,z2)y > 0 implies V(z1) < V(21 +x2), and
choose w1 := Pg,x — b and 22 := 2 — Pg, . [ |

Using the fact established in Lemma 4.7 we are now in a position to prove positive re-
sults about the truncated nonlinear observer, and hence the optimal filter, in the long-time
asymptotic regime.

Theorem 4.8. Suppose that Assumption 2.1 holds. Let {m;};>o be the sequence of By -
truncated nonlinear observers given by (3.5). Then there is a constant ¢ > 0, independent of
the noise strength €, such that

: 2 2
limsup E|v; — mj;| < ce”.
J—00

Consequently,

lim sup E|v; — ;] < c€?, lim sup Trace E var[v; |Y;] < ce?.
Jj—00 j—00

Proof. By Lemma 4.9 below, for arbitrary § > 0 there is J > 0 such that, for every j > J,
(4.5) / V(’Uj — mj)d]P’ <.
{vs¢B}

Now, for j > J we have by the absorbing ball property that v; € B implies that v;;1 € B,
and hence by Lemma 4.7

/ V(vjt1 — mjyr)dP
{vs€B}
< /{vJeB} V((I — DP)(¥(v;) — ¥(z)) — eijH)d]p
) /{vJeB} V(D /{vJEB} V<(I - DP)(¥(v;) - ‘I’(mj)))d]P

- AUJGB} <€wj+1’ (I B DP) (\I[(vj) B \I[(mj))>VdP'

© 2015 STAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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Using the independence structure the last term vanishes, and for the second term we can
employ the squeezing property with v; € B, m; € By to deduce

/ V(vj1 —mji1)dP < ce® + a/ V(vj —mj)dP.
{vseB} {vseB}

Since « € (0,1), Gronwall’s lemma starting from J gives (for a different constant ¢ > 0)

(4.6) lim sup/ V(vj11 —mjs1)dP < ce?.
{vse€B}

j—00
Finally, combining (4.5) and (4.6) yields

limsup EV (v; — mj) < ce® + 6,

Jj—00

1/2 and | - | are assumed to be equivalent,

and since § > 0 was arbitrary and the norms V'(-)
the proof is complete. |

The following lemma is used in the preceding proof.

Lemma 4.9. Let § > 0. Then, with the notation and assumptions of the previous theorem,

there is J = J(9) such that, for every j > J,
/ V('Uj — m])d]P’ <.
{v,¢B}

Proof. First, by the assumed equivalence of norms there is 6 > 0 such that V(-)1/2 < 6] -|.
Second, using the absorbing ball property it is easy to check that Plv; ¢ B] can be made
arbitrarily small by choosing J large enough. Therefore, since we work with the standing
assumption that E|vg|? < oo, it is possible to choose .J large enough so that

/ 02|vol* + R? + 2RO|vo|dP < 6.
{vs¢B}

Then, for j > J,

/ V(vj —my)dP < / V (v) + V(mj) + 2V (v;) Y2V (m;) /2 dP
{vs¢B} {vs¢B}
< / V (vj) + R® + 2RV (v;)'/2dP
{vs¢B}
S/ 0%|v;|* + R* + 2R0|v;|dP
{vs¢B}
< / 0%|vo|* + R* + 2RO|vo|dP < 6,
{vs¢B}

where we used that, for j > J and vy ¢ B, |v;] < |vg] by (2.5). [ |

© 2015 STAM and ASA. Published by SIAM and ASA under the terms of the Creative Commons 4.0 license
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5. Application to relevant models.

5.1. Finite dimensions (Lorenz ‘63 and '96 models). We study first the finite dimen-
sional case H = R?. Our aim is to introduce a general setting for which Assumption 2.1 holds,
and thus the theory of the previous section can be applied. In order to do so we need to
introduce suitable norms, and some conditions on the general nonlinear dissipative equation
(2.4). We start by setting | - | to be the Euclidean norm, and V(-) = |P - |2 + | - |2

Next, we introduce a set of hypotheses on the general system (2.4), and the observation
matrix P.

Assumption 5.1.

1. (Au,u) > |u|?> Vu € H.

2. (B(u,u),u) =0 Vu € H. (Energy conserving nonlinearity.)

3. There is ¢; > 0 such that 2|(B(u, ), a)| < c1|Pul|u||a| Vu,u € H.

4. There is ¢o > 0 such that |B(u, )| < es|ul|t| Yu,u € H.

5. There are c3 > 0 and ¢4 > 0 such that (Au, Pu) > c3|Pul? — cy|ul?.

Assumptions 5.1.1, 5.1.2, and 5.1.4 are satisfied by various important dissipative equations,
including the Lorenz ’63 [10] (as used in [16]) and Lorenz ’96 models [15]. Assumptions
5.1.3 and 5.1.5 are fulfilled when the “right” parts of the system are observed. Examples
of observation matrices P that fit our theory are given—both for the Lorenz ’63 and 96
models—in subsections 5.1.1 and 5.1.2.

The first two items of Assumption 5.1 are enough to ensure the absorbing ball property
Assumption 2.1. Indeed, if these conditions hold, then taking the inner product of (2.4) with
v gives

__‘0‘2 + <A'U,’U> + (B('U,’U),’U> = <f7 'U>
or p
ol ol < [£P
Finally, Gronwall’s lemma yields Assumption 2.1.1 with ro = |f|?> and r; = 1, and the absorb-
ing ball
(5.1) B:={ueH:|u <r:=V2|f]}

We now show that the squeezing property is also satisfied provided that the time h between
observations is sufficiently small. The proof is based on the analysis of the Lorenz 63 model
n [10]. Recall that @ = I — P is the operator that projects onto the unobserved part of the
system.

Lemma 5.2. Suppose that Assumption 5.1 holds and let ' > 0. Then there is h* > 0
with the property that for all h < h*, v € B, and u € H with |u — v| < 1/, there exists
a=a(r') € (0,1) such that

V(Q(\I'(v) - \I’(u))) < aV(v—u).
Proof. Denote dyp = u — v and 6(t) = ¥y(u) — ¥y(v). Lemma 5.3 shows that

10(6)[2 < by (t)|60|* + ba(t)| P02,
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where by(t) and by(t) are also defined in Lemma 5.3. Therefore, noting that V(Q4(t)) =
Qo) < [a(t)P?,

V(Qd(t)) < max{bi(t),b2(t)}V (o).

Since b1(0) = 1, b2(0) = 0, and b}(0) = —1 < 0, it follows that, for all sufficiently small ¢,
max {b1(t),b2(t)} € (0,1), and the lemma is proved. [ |
The following result has been used in the proof.

Lemma 5.3. Suppose that the notation and assumptions of the previous lemma are in force,
and that |6g| < r'. Then, for t € [0,h),

PO < [Pool? + (ka(e™ = 1) + ks (e — 1)) 6o

and

6()[* < k(1 —e™")|Pdol
kt _ o=t

e ert _ e—t
R = e e e B e R LS

where k and k;, 1 < i < 5, are constants defined in the proof, and ks and ks depend on 1.
Therefore,

(5.2) |P§(t)|* < a1 (t)|do]* + | Po|?
and
(5.3) 6()[* < b1(t)[d0]* + ba(t)| Pdol?,

where the functions ay, by, and by are defined in the obvious way from the expressions above.
Proof. First, it is not difficult to check (see, for example, [12]) that Assumptions 5.1.1,
5.1.2, and 5.1.3 imply that there exists a constant k > 0 such that, for u € H, v € B, and
t>0,
8 < e™]dol.
Next, using the definition of ¢ and the symmetry of B(:,-) it is possible to derive from [16]
the error equation

do
(5.4) =+ A5+ 2B(v,8) + B(3,8) = 0.

Taking the inner product with 4, we obtain

1d

24 (A 2(B —
2dtlél + (A4,6) +2(B(v,6),6) =0,

and therefore,
1d

1 1
S 1612 + 182 < carlol|Po| < 16 + 53| Po?,
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ie.,

d|6|?
(5.5) % + |6)? < c3r?|Po)°.

We now bound |P§|%. Taking the inner product of (5.4) with P6,

%%m? + (A5, PS) + 2(B(v, ), P6) + (B(5,6), P§) = 0.
Hence,
1d 9
< 2¢97|8||PS| + cad]?| P
and
1d 2 2 2 2
§E|P5| + 3| Po|* < eq|d|” + 2¢2r|0|| PO| + c2|0|*| Pd|
< ca|0|? + 2¢o7|8]| PO| + ¢2|6]e¥ 21| Pé|
2 c 1 c
< 2, %4 2962 @ 2, L 2kt 252, @ 2
< eyld| +03627‘ 0] + 5 | P4 +263026 r1o° + 5 |PS|”,
i.e.,

d 2 400 1 o ) q2
%]Pé\ < <2C4 + c—3c2r + acze B2 ) 16)°.
On integrating from 0 to ¢ and using that |5(t)|? < |do|?e*,

4 .22
2c4 + Zcom

PO < |Poof? + ( .

(ekt . 1) + C%’rlz (e2kt _ 1) ’5 ‘2
2]€C3 0
= [Poo? + (ka(e™ = 1) + k(™ — 1)) |6 2.
where the last equality defines k4 and k5. This proves (5.2). Then, going back to (5.5),
d
132+ 102 < 2 {|Poof? + (ka(e" = 1) + ks(e™ = 1)) [50]2}
After denoting k1 = c%rz, ko = k1k4, and k3 = k1k5 the inequality above becomes
d
10 410 < ka[Poof + (@(ekt — 1) + kg(e* — 1)) 150]%.
Finally, Gronwall’s lemma gives (5.3). |

The previous lemmas show that Assumption 5.1 implies the squeezing property Assump-
tion 2.1.2 provided that the assimilation time h is sufficiently small. Indeed, taking

(5.6) By :={ueH: V' <V2r}
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with 7 as in (5.1) we have that |u —v| < (1 + v/2)r for u € B, v € By, and we are in the
setting of Lemma 5.2 with 7’ = (1 + /2)r. Moreover, the requirement B C By in 2.1.2 is also
fulfilled. Therefore, the following result is a direct application of Theorem 4.8.

Theorem 5.4. Assume that the signal dynamics are defined via a general dissipative dif-
ferential equation on R* with quadratic energy-conserving nonlinearity of the form (2.4), and
that Assumption 5.1 is satisfied. Then there is h* > 0 such that Assumption 2.1 is also sat-
isfied for all h < h*. Therefore, if {m;};j>o0 denotes the sequence of By -truncated nonlinear
observers given by (3.5) and (5.6), then there is a constant ¢ > 0, independent of the noise
strength €, such that, for all discrete assimilation time h < h*,

limsup E|v; — m;|* < ce?.
j—00
Consequently,
limsup E|v; — 0] < ee?, lim sup Trace E var[v;|Y;] < ce?.
j—o0 Jj—00

5.1.1. Lorenz '63 model. A first example of a system of the form (2.4) is the Lorenz '63

model, which corresponds to a three-dimensional problem defined by (2.4) with

a —a 0
A=|a 1 0|,
0 0 b
0 0
B(u,ﬂ) = (U12~L3—|—U3Z~L1)/2 R f= 0
—(ulﬂg + UQﬂl)/2 —b(r + a)

The standard parameter values are (a,b, ) = (10,8/3,28). Define the projection matrix

1 00
P={0 00
0 00

It is then immediate from the definitions that the first, second, and fourth items of Assumption
5.1 are satisfied [10]. A verification of the third and fifth items can be found in the proof of
Theorem 2.5 of [10].

To provide insight, in Table 1 we show a Monte Carlo estimate of the mean square error
(MSE) E|m; — v;|? made by a truncated nonlinear observer with different values of the obser-
vation noise strength €. The results suggest that the MSE of this suboptimal filter decreases
as O(€?), in agreement with our theoretical analyses. This provides an upper bound for the
error made by the optimal filter. It is worth mentioning that the values of h for which we
observe accurate signal reconstruction are often far larger than the upper limits required by
our theory.

Remark 5.5. An accuracy result for the Lorenz ’63 model, similar to Theorem 5.4 above,
was established in [16] using the 3DVAR algorithm. Indeed truncation is not needed for this
model since a global form of the squeezing property Assumption 2.1.2 holds (with v € B, u €
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Table 1
Bounds in the MSE given by the truncated nonlinear observer for the Lorenz 63 model. Only the first
coordinate is observed. The assimilation time step is h = 0.01 and the signal was filtered up to time T = 5. The
MSE was computed using 20 initializations of vo ~ N(0,1I); for each of these initializations five observation
sequences were generated using Gaussian noise. The MSE shown is the Monte Carlo average of the filter error
at time T' over all these stmulations.

€ MSE
1 1.59

0.1 | 1.3 x 1072
0.01 | 4.93 x 10~*

Table 2
Same experiment as in Table 1, now for the Lorenz 96 model with the observation operator (5.7).

€ MSE
1 1.11

0.1 | 1.08 x 1072
0.01 | 3.36 x 10~*

5.1.2. Lorenz '96 model. Another system that satisfies the assumptions introduced in
this section is the Lorenz '96 model, which is of the form (2.4) with the choices A = Ijxq,
where we assume d € 3N, forcing term

and bilinear form

UUg + UUg — UqUg—1 — Ugld—1
B(u, i) = —= | Gj—1Uig1 + Ui—1Ti41 — Ui—2Ui—1 — Ui—2Ti—1

Ug—1U1 + Ug—1U1 — Ug—2Ug—1 — Ug—2Ug—1

Define the projection matrix P by replacing every third column of the identity matrix Ijxqg
by the zero column vector

(57) P = [617 €9, 07 €4, €5, 07 o ] .

For a proof that the first, second, and fourth items of Assumption 5.1 are satisfied, see
Property 2.1.1 in [15]. The third item results from combining Property 2.1.1 and Property
2.2.2 in [15]. Finally, since A = I, the fifth item holds with ¢3 = 1,¢4 = 0.

As for the Lorenz '63 model, we show a Monte Carlo estimate of the error made by a

truncated nonlinear observer in Table 2. Again the error decreases as €.
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5.2. Infinite dimensions (Navier-Stokes equation). It is well-known [2] that the incom-
pressible Navier—Stokes equation on the torus T? = [0,1] x [0,1] can be written in the form
(2.4) as we now recall.

Let H be the space of zero-mean, divergence-free, vector-valued polynomials u from T? to
R2. Let H be the closure of H with respect to the L? norm. Finally, let Py : (L%(T?))2 — H
be the Leray—Helmholtz orthogonal projector [30]. Then, the operator A and the symmetric
bilinear form B in (2.4) are given by

Au = —vPgA, B(u,v) = %PH[u - Vo] + %PH[’U - Vu,

where v is the viscosity.

We assume that f € H so that Py f = f. In the periodic case considered here, A = —vA
with domain D(A) = H?(T?) N H. Moreover, the solution to the Navier—Stokes equation (see
below for the precise definition) can be written as a Fourier series

v= kaeikx, K= {2—7T(n1,n2) :n; € Z,(n1,n2) # (0,0)} .

L
kek

The Fourier coefficients encode the divergence-free property and hence may be written as
vg = vkt /|k| for scalar coefficients v}, where |- | is the Euclidean norm, and for k = (k1, ko)
k+ = (ko, —k1). We now define the observation operator P = Pj in the general observation

model (2.2) as
Py = Z upeF®,
|k[2<X

and set Qy = I — P). Several choices of noise fit our theory, and a natural one is given by

(5.8) wy =Y Ge,

[kI2<A

where & ~ N (0, (k2n(\)) ") and n(X) == #{k : k2 < A}.

We have already defined L? divergence-free functions as an appropriate closure of H, and
denoted this space by H; we now define H' divergence-free functions as the closure of H with
respect to the H' norm, and we denote this space H. It is in # that we will apply our general
theory. We define a norm in H,

full3 == k],

kek

which is equivalent to the H' norm. Note that with this definition E|jw:[/3,, = 1.

The following theorem—see [30], [6], or [25]—guarantees the existence and uniqueness of
strong solutions to this problem with initial conditions in H.

Proposition 5.6. Let ug € H and f € H. Then (2.4) has a unique strong solution

ue L>((0,7);H) N L*((0,T); D(A)) and ‘fl—? € L*((0,7), H)
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for any T > 0. Furthermore, this solution is in C([0,T];H) and depends continuously on the
nitial data ug in the H norm.

Take |-| = V()2 = |- || 2 - It is not difficult to prove the absorbing ball property for the
Navier—Stokes equation with initial conditions in #H [25]. Indeed there is 6 = 6(v) > 0 such
that, for every u € H, |Au|? > 0|u|?>. Then Assumption 2.1.1 is satisfied with rq = |f|?6? and
r1 = 6. We hence set

(5.9) B:{ueHz|u|§r::\/§%}.

The following squeezing property is taken from [3], which uses the analysis in [10].

Lemma 5.7. For every r' > 0 there are constants o = «a(r') € (0,1) and A\, = \(r') > 0
with the property that, for X\ > )\, there exists h* = h*(r', \) such that, for all u,v € B(r') :=
{zeH: V(z)/? <"}, and assimilation time h < h*,

V(QA(\IJ(U) - \If(u))) < aV(v—u).

The previous lemma yields Assumption 2.1.2. for sufficiently small assimilation time h
by choosing By = B and v’ = 2r. The next result is then a straightforward application of
Theorem 4.8.

Theorem 5.8. Take |- | and V as above, and let {m;};>o be the sequence of By -truncated
nonlinear observers with By = B given by (5.9). Then there are h*, A, > 0, such that for all
h < h* and A > A\, Assumption 2.1 is satisfied, and therefore, there exists a constant ¢ > 0,
independent of the noise strength €, such that

: 2 2
limsup E|v; — m;| < ce”.
J—00

Consequently,

limsup E|v; — 0] < ee?, lim sup Trace E var[v;|Y;] < ce”.
]—)OO j—}OO
6. Conclusions. We conclude by summarizing our work and highlighting future directions.

e Noisy observations can be used, in the long-time asymptotic regime, to compensate
for uncertainty in the initial conditions of unstable or chaotic dynamical systems.

e It would be interesting to study similar questions in continuous time, and to investigate
the impact of other sources of uncertainty, such as those arising from incomplete
knowledge of the parameters in the model.

e We have determined conditions on the dynamics and observations under which the
optimal filter accurately tracks the signal (and the variance of the filtering distributions
becomes small) in the long-time asymptotic.

e These properties of the true filtering distribution are potentially useful for the design
of improved algorithmic approximations of the filtering distributions.

e We have introduced a modification of the 3DVAR filter as a tool to prove our results.
This new filter is potentially of interest in its own right as a practical algorithm.
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