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KULLBACK–LEIBLER APPROXIMATION FOR PROBABILITY
MEASURES ON INFINITE DIMENSIONAL SPACES∗

F. J. PINSKI† , G. SIMPSON‡ , A. M. STUART§ , AND H. WEBER§

Abstract. In a variety of applications it is important to extract information from a probability
measure µ on an infinite dimensional space. Examples include the Bayesian approach to inverse
problems and (possibly conditioned) continuous time Markov processes. It may then be of interest
to find a measure ν, from within a simple class of measures, which approximates µ. This problem
is studied in the case where the Kullback–Leibler divergence is employed to measure the quality of
the approximation. A calculus of variations viewpoint is adopted, and the particular case where ν
is chosen from the set of Gaussian measures is studied in detail. Basic existence and uniqueness
theorems are established, together with properties of minimizing sequences. Furthermore, param-
eterization of the class of Gaussians through the mean and inverse covariance is introduced, the
need for regularization is explained, and a regularized minimization is studied in detail. The cal-
culus of variations framework resulting from this work provides the appropriate underpinning for
computational algorithms.
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1. Introduction. This paper is concerned with the problem of minimizing the
Kullback–Leibler divergence between a pair of probability measures, viewed as a prob-
lem in the calculus of variations. We are given a measure µ, specified by its Radon–
Nikodym derivative with respect to a reference measure µ0, and we find the closest
element ν from a simpler set of probability measures. After an initial study of the
problem in this abstract context, we specify to the situation where the reference mea-
sure µ0 is Gaussian and the approximating set comprises Gaussians. It is necessarily
the case that minimizers ν are then equivalent as measures to µ0,1 and we use the
Feldman–Hajek theorem to characterize such ν in terms of their inverse covariance
operators. This induces a natural formulation of the problem as minimization over the
mean, from the Cameron–Martin space of µ0, and over an operator from a weighted
Hilbert–Schmidt space. We investigate this problem from the point of view of the
calculus of variations, studying properties of minimizing sequences, regularization to
improve the space in which operator convergence is obtained, and uniqueness under
a slight strengthening of a log-convex assumption on the measure µ.

In the situation where the minimization is over a convex set of measures ν, the
problem is classical and completely understood [10]; in particular, there is uniqueness
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of minimizers. However, the emphasis in our work is on situations where the set of
measures ν is not convex, such as the set of Gaussian measures, and in this context
uniqueness cannot be expected in general. However, some of the ideas used in [10] are
useful in our general developments, in particular methodologies to extract minimizing
sequences converging in total variation. Furthermore, in the finite dimensional case
the minimization problem at hand was studied by McCann [26] in the context of gas
dynamics. He introduced the concept of “displacement convexity,” which was one of
the main ingredients for the recent developments in the theory of mass transportation
(see, e.g., [1, 33]). Inspired by the work of McCann, we identify situations in which
uniqueness of minimizers can occur even when approximating over nonconvex classes
of measures. Nonetheless, we emphasize that a strong motivation for the methodology
we adopt in this paper is that it allows the possibility of approximating measures
which have several regions of high probability mass and that then nonuniqueness
of the approximating measures is to be expected—we discuss this in the following
section.

Approximation with respect to Kullback–Leibler divergence is not new and in-
deed forms a widely used tool in the field of machine learning [6], with motivation
being the interpretation of Kullback–Leibler divergence as a measure of loss of infor-
mation. Recently the methodology has been used for the coarse-graining of stochastic
lattice systems [22], simple models for data assimilation [2, 3], the study of models
in ocean-atmosphere science [25, 17], and molecular dynamics [21]. However, none of
this applied work has studied the underlying calculus of variations problem, which is
the basis for the algorithms employed. Understanding the properties of minimizing
sequences is crucial for the design of good finite dimensional approximations (see, e.g.,
[4]), and this fact motivates the work herein. The companion paper [27] demonstrates
the use of algorithms for Kullback–Leibler minimization which are informed by the
analysis in this paper.

In section 2 we describe basic facts about Kullback–Leibler minimization in an
abstract setting, and include an example illustrating our methodology, together with
the fact that uniqueness is typically not to be expected when approximating within the
Gaussian class; we also discuss briefly the infinite dimensional problems which have
motivated our work. Section 3 then concentrates on the theory of minimization with
respect to Gaussians. We demonstrate the existence of minimizers and then develop
a regularization theory needed in the important case where the inverse covariance
operator is parameterized via a Schrödinger potential. We also study the restricted
class of target measures for which uniqueness can be expected, and we generalize the
overall setting to the study of Gaussian mixtures. Proofs of all of our results are
collected in section 4, whilst the appendices contain variants on a number of classical
results which underlie those proofs.

2. General properties of Kullback–Leibler minimization. In subsection
2.1 we present some basic background theory which underpins this paper. In subsec-
tion 2.2 we provide an explicit finite dimensional example which serves to motivate
the questions we study in the remainder of the paper.

2.1. Background theory. In this subsection we recall some general facts about
Kullback-Leibler approximation on an arbitrary Polish space. Let H be a Polish space
endowed with its Borel sigma algebra F . Denote by M(H) the set of Borel probability
measures on H, and let A ⊂ M(H). Our aim is to find the best approximation of
a target measure µ ∈ M(H) in the set A of “simpler” measures. As a measure
for closeness we choose the Kullback–Leibler divergence, also known as the relative
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KULLBACK–LEIBLER APPROXIMATION 4093

entropy. For any ν ∈ M(H) that is absolutely continuous with respect to µ it is given
by

(2.1) DKL(ν∥µ) =
∫

H
log

(
dν

dµ
(x)

)
dν

dµ
(x)µ(dx) = Eµ

[
log

(
dν

dµ
(x)

)
dν

dµ
(x)

]
,

where we use the convention that 0 log 0 = 0. If ν is not absolutely continuous with
respect to µ, then the Kullback–Leibler divergence is defined as +∞. The main aims
of this paper are to discuss the properties of the minimization problem

(2.2) argmin
ν∈A

DKL(ν∥µ)

for suitable sets A and to create a mathematical framework appropriate for the de-
velopment of algorithms to perform the minimization.

The Kullback–Leibler divergence is not symmetric in its arguments, and minimiz-
ing DKL(µ∥ν) over ν for fixed µ in general gives a result different from (2.2). Indeed,
if H is Rn and A is the set of Gaussian measures on Rn, then minimizing DKL(µ∥ν)
yields for ν the Gaussian measure with the same mean and variance as µ; see [6,
section 10.7]. Such an approximation is undesirable in many situations, for example
if µ is bimodal; see [6, Figure 10.3]. We will demonstrate by example in subsection
2.2 that problem (2.2) is a more desirable minimization problem which can capture
local properties of the measure µ such as individual modes. Note that the objective
function in the minimization (2.2) can be formulated in terms of expectations only
over measures from A; if this set is simple, then this results in computationally expe-
dient algorithms. Below we will usually choose for A a set of Gaussian measures, and
hence these expectations are readily computable.

The following well-known result gives existence of minimizers for problem (2.2)
as soon as the set A is closed under weak convergence of probability measures. For
the reader’s convenience we give a proof in Appendix A. We essentially follow the
exposition in [14, Lemma 1.4.2]; see also [1, Lemma 9.4.3].

Proposition 2.1. Let (νn) and (µn) be sequences in M(H) that converge weakly
to ν⋆ and µ⋆. Then we have

lim inf
n→∞

DKL(νn∥µn) ≥ DKL(ν⋆∥µ⋆).

Furthermore, for any µ ∈ M(H) and for any M < ∞ the set

{ν ∈ M(H) : DKL(ν∥µ) ≤ M}

is compact with respect to weak convergence of probability measures.
Proposition 2.1 yields the following immediate corollary, which, in particular,

provides the existence of minimizers from within the Gaussian class.
Corollary 2.2. Let A be closed with respect to weak convergence. Then, for

given µ ∈ M(H), assume that there exists ν ∈ A such that DKL(ν∥µ) < ∞. It follows
that there exists a minimizer ν ∈ A solving problem (2.2).

If we know in addition that the set A is convex, then the following classical
stronger result holds.

Proposition 2.3 (see [10, Theorem 2.1]). Assume that A is convex and closed
with respect to total variation convergence. Assume, furthermore, that there exists a
ν ∈ A with DKL(ν∥µ) < ∞. Then there exists a unique minimizer ν ∈ A solving
problem (2.2).
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4094 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

However, in most situations of interest in this paper, such as approximation by
Gaussians, the set A is not convex. Moreover, the proof of Proposition 2.3 does
not carry over to the case of nonconvex A and, indeed, uniqueness of minimizers
is not expected in general in this case (see, however, the discussion of uniqueness
in subsection 3.4). Still, the methods used in proving Proposition 2.3 do have the
following interesting consequence for our setting. Before we state it we recall the
definition of the total variation norm of two probability measures. It is given by

Dtv(ν, µ) = ∥ν − µ∥tv =
1

2

∫ ∣∣∣∣
dν

dλ
(x)− dµ

dλ
(x)

∣∣∣∣ λ(dx),

where λ is a probability measure on H such that ν ≪ λ and µ ≪ λ.
Lemma 2.4. Let (νn) be a sequence in M(H), and let ν⋆ ∈ M(H) and µ ∈

M(H) be probability measures such that for any n ≥ 1 we have DKL(νn∥µ) < ∞ and
DKL(ν⋆∥µ) < ∞. Suppose that the νn converge weakly to ν⋆ and in addition that

DKL(νn∥µ) → DKL(ν⋆∥µ).

Then νn converges to ν⋆ in total variation norm.
The proof of Lemma 2.4 can be found in subsection 4.1. Combining Lemma 2.4

with Proposition 2.1 implies in particular the following.
Corollary 2.5. Let A be closed with respect to weak convergence and µ such

that there exists a ν ∈ A with DKL(ν∥µ) < ∞. Let νn ∈ A satisfy

(2.3) DKL(νn∥µ) → inf
ν∈A

DKL(ν∥µ).

Then, after passing to a subsequence, νn converges weakly to a ν⋆ ∈ A that realizes
the infimum in (2.3). Along the subsequence we have, in addition, that

∥νn − ν⋆∥tv → 0.

Thus, in particular, ifA is the Gaussian class, then the preceding corollary applies.

2.2. A finite dimensional example. In this subsection we illustrate the min-
imization problem in the simplified situation where H = Rn for some n ≥ 1. In this
situation it is natural to consider target measures µ of the form

(2.4)
dµ

dLn
(x) =

1

Zµ
exp

(
− Φ(x)

)

for some smooth function Φ : Rn → R+. Here Ln denotes the Lebesgue measure on
Rn. We consider the minimization problem (2.2) in the case where A is the set of all
Gaussian measures on Rn.

If ν = N(m,C) is a Gaussian on Rn with mean m and a nondegenerate covariance
matrix C, we get

DKL(ν∥µ) = Eν

[
Φ(x)− ⟨x,C−1x⟩

2

]
− 1

2
log
(
detC

)
+ log

(
Zµ

(2π)
n
2

)

= Eν
[
Φ(x)

]
− 1

2
log
(
detC

)
− n

2
+ log

(
Zµ

(2π)
n
2

)
.(2.5)

The last two terms on the right-hand side of (2.5) do not depend on the Gaussian
measure ν and can therefore be dropped in the minimization problem. In the case
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KULLBACK–LEIBLER APPROXIMATION 4095

−1 1

Φ

Fig. 1. The double well potential Φ.

where Φ is a polynomial, the expression Eν
[
Φ(x)

]
consists of a Gaussian expectation

of a polynomial and it can be evaluated explicitly.
To be concrete we consider the case where n = 1 and Φ(x) = 1

4ε (x
2 − 1)2 so

that the measure µ has two peaks: see Figure 1. In this one dimensional situation
we minimize DKL(ν∥µ) over all measures N(m,σ2), m ∈ R, σ ≥ 0. Dropping the
irrelevant constants in (2.5), we are led to minimizing

D(m,σ) := EN(m,σ2)
[
Φ(x)

]
− log(σ)

=

(
Φ(m) +

σ2

2
Φ′′(m) +

3σ4

4!
Φ(4)(m)

)
− log(σ)

=
1

ε

(
1

4
(m2 − 1)2 +

σ2

2
(3m2 − 1) +

3σ4

4

)
− log(σ)

over (m,σ) ∈ R× [0,∞).
In the limit ε → 0, there are critical points at m = ±1, 0 and σ = 0 and a

perturbation expansion demonstrates that these minimizers deform into two different
Gaussian approximations, centered near ±1, for small ε. Numerical solution of the
critical points of D (see Figure 2) illustrates this fact. Furthermore, we see the exis-
tence of three, then five, and finally one critical point as ε increases. For small ε the
two minima near x = ±1 are the global minimizers, whilst for larger ε the minimizer
at the origin is the global minimizer.

2.3. Infinite dimensional motivation. For us there are two primary motiva-
tions for the theory that we have developed here. The first concerns the study of
inverse problems in partial differential equations when given a Bayesian formulation
[32]. This results in the need to determine properties of a probability measure µ on
an infinite dimensional space, the posterior distribution, defined via its density with
respect to another probability measure µ0, the prior distribution. It is common to
use Gaussian random field priors, in which case µ0 is a Gaussian measure. Examples
include determination of the initial condition for the Navier–Stokes equation from
Eulerian or Lagrangian data at later times [8] and determination of the permeability
in a Darcy groundwater flow model from hydraulic head measurements [13]. It is
important to appreciate that the probability distribution µ can have multiple modes,
as in the preceding finite dimensional example. One commonly adopted approach
to Bayesian inverse problems, which is capable of capturing such multiple modes, is
to find the maximum a posteriori (MAP) estimator. This corresponds to identifying
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4096 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Fig. 2. The solid lines denote minima, with the darker line used for the absolute minimum
at the given temperature ε. The dotted lines denote maxima. At ε = 1/6, two stationary points
annihilate one another at a fold bifurcation and only the symmetric solution, with mean m = 0,
remains. However, even for ε > 0.122822, the symmetric mean zero solution is the global minimum.

the center of balls of maximal probability in the limit of vanishingly small radius
[12, 20]; this is linked to the classical theory of Tikhonov–Phillips regularization of in-
verse problems [15]. Another commonly adopted approach is to employ Monte Carlo
Markov chain (MCMC) methods [24] to sample the probability measure of interest.
The method of MAP estimation can be computationally tractable, but it loses im-
portant probabilistic information—it corresponds to finding the best Dirac measure
approximations to the measure and does not include uncertainty around the point at
which the Diracs are centered. In contrast, MCMC methods can, in principle, deter-
mine accurate probabilistic information but may be very expensive. The approach
we advocate here, when adapted to find the best Gaussian approximation ν of the
posterior measure µ, captures not only points of high probability but also the spread
(uncertainty) around them; and the best Gaussian approximation may also be used to
create improved MCMC methods which converge more quickly. These two ideas are
illustrated in the companion paper [27]. We also highlight the fact, which is clearly
illustrated in the preceding finite dimensional example, that minimizing DKL(ν∥µ)
over Gaussian ν allows for the capture of several distinct modes, whilst minimizing
DKL(µ∥ν) over Gaussian ν corresponds to moment matching (see [6, section 10.7])
and will hence combine multiple modes into a single Gaussian approximation. For
inverse problems with multiple modes, the latter is clearly undesirable and the former
becomes a preferred methodology.

The second primary motivation concerns the study of conditioned diffusion pro-
cesses [19]. The paper [28] studies a variety of examples of Brownian dynamics models
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KULLBACK–LEIBLER APPROXIMATION 4097

(gradient flow in a potential with additive white noise) which are conditioned to make
transitions between critical points of the energy. The Onsager–Machlup functional
(the analogue of the MAP estimator in this conditioned diffusion process setting) is
studied, and the Γ-limit is identified in the zero temperature limit. Unfortunately,
because the Onsager–Machlup functional does not capture entropic fluctuations, the
predictions made by the Γ-limit functional can be physically unrealistic; in partic-
ular, when two modes are present in the probability measure, the minimizer of the
Onsager–Machlup functional may incorrectly predict the preferred path between two
critical points. The idea of studying best Gaussian approximations to the measure,
rather than the Onsager–Machlup functional, holds the potential for removing this
undesirable effect.

3. Kullback–Leibler minimization over Gaussian classes. The previous
subsection shows that the class of Gaussian measures is a natural one over which to
minimize, although uniqueness cannot, in general, be expected. In this section we
therefore study approximation within Gaussian classes and variants on this theme.
Furthermore, we will assume that the measure of interest, µ, is equivalent (in the
sense of measures) to a Gaussian µ0 = N(m0, C0) on the separable Hilbert space
(H, ⟨·, ·⟩, ∥ · ∥), with F the Borel σ-algebra.

More precisely, let X ⊆ H be a separable Banach space which is continuously
embedded in H, whereX is measurable with respect to F and satisfies µ0(X) = 1. We
also assume that Φ : X → R is continuous in the topology of X and that exp(−Φ(x))
is integrable with respect to µ0.2 Then the target measure µ is defined by

(3.1)
dµ

dµ0
(x) =

1

Zµ
exp

(
− Φ(x)

)
,

where the normalization constant is given by

Zµ =

∫

H
exp

(
− Φ(x)

)
µ0(dx) =: Eµ0

[
exp

(
− Φ(x)

)]
.

Here and below we use the notation Eµ0 for the expectation with respect to the
probability measure µ0, and we also use similar notation for the expectation with
respect to other probability measures. Measures of the form (3.1) with µ0 Gaussian
occur in the Bayesian approach to inverse problems with Gaussian priors and in the
pathspace description of (possibly conditioned) diffusions with additive noise.

In subsection 3.1 we recall some basic definitions concerning Gaussian measure
on Hilbert space and then state a straightforward consequence of the theoretical de-
velopments of the previous section for A comprising various Gaussian classes. Then,
in subsection 3.2, we discuss how to parameterize the covariance of a Gaussian mea-
sure, introducing Schrödinger potential-type parameterizations of the precision (in-
verse covariance) operator. By example we show that whilst Gaussian measures within
this parameterization may exhibit well-behaved minimizing sequences, the potentials
themselves may behave badly along minimizing sequences, exhibiting oscillations or
singularity formation. This motivates subsection 3.3, where we regularize the mini-
mization to prevent this behavior. In subsection 3.4 we give conditions on Φ which
result in uniqueness of minimizers, and in subsection 3.5 we make some remarks on
generalizations of approximation within the class of Gaussian mixtures.

2In fact, continuity is only used in subsection 3.4; measurability will suffice in much of the paper.
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4098 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

3.1. Gaussian case. We start by recalling some basic facts about Gaussian
measures. A probability measure ν on a separable Hilbert space H is Gaussian if for
any φ in the dual space H⋆ the push-forward measure ν ◦ φ−1 is Gaussian (where
Dirac measures are viewed as Gaussians with variance 0) [11]. Furthermore, recall
that ν is characterized by its mean and covariance, defined via the following (in the
first case Bochner) integrals: the mean m is given by

m :=

∫

H
x ν(dx) ∈ H,

and its covariance operator C : H → H satisfies
∫

H
⟨x, y1⟩⟨x, y2⟩ ν(dx) = ⟨y1, Cy2⟩

for all y1, y2 ∈ H. Recall that C is a nonnegative, symmetric, trace-class operator,
or equivalently

√
C is a nonnegative, symmetric Hilbert–Schmidt operator. In what

follows we will denote by L(H), T C(H), and HS(H) the spaces of linear, trace-class,
and Hilbert–Schmidt operators on H. We denote the Gaussian measure with mean
m and covariance operator C by N(m,C). We have collected some additional facts
about Gaussian measures in Appendix B.

From now on, we fix a Gaussian measure µ0 = N(m0, C0). We always assume that

C0 is a strictly positive operator. We denote the image of H under C
1
2
0 , endowed with

the scalar product ⟨C− 1
2

0 ·, C− 1
2

0 ·⟩, by H1, noting that this is the Cameron–Martin
space of µ0; we denote its dual space by H−1 =

(
H1
)⋆
. We will make use of the

natural finite dimensional projections associated to the operator C0 in several places
in what follows, and so we introduce notation associated to this for later use. Let
(eα,α ≥ 1) be the basis of H consisting of eigenfunctions of C0, and let (λα,α ≥ 1) be
the associated sequence of eigenvalues. For simplicity we assume that the eigenvalues
are in nonincreasing order. Then for any γ ≥ 1 we will denote Hγ := span(e1, . . . , eγ)
and the orthogonal projection onto Hγ by

(3.2) πγ : H → H, x 0→
γ∑

α=1

⟨x, eα⟩ eα.

Given such a measure µ0 we assume that the target measure µ is given by (3.1).
For ν ≪ µ, expression (2.1) can be rewritten, using (3.1) and the equivalence of

µ and µ0, as

DKL(ν∥µ) = Eν

[
log

(
dν

dµ
(x)

)
1{ dν

dµ ̸=0}

]

= Eν

[
log

(
dν

dµ0
(x) × dµ0

dµ
(x)

)
1{ dν

dµ0
̸=0}

]

= Eν

[
log

(
dν

dµ0
(x)

)
1{ dν

dµ0
̸=0
}
]
+ Eν

[
Φ(x)

]
+ log(Zµ).(3.3)

This calculation is classical and can be found, for example, in [1]. The expression
in the first line shows that in order to evaluate the Kullback–Leibler divergence it
is sufficient to compute an expectation with respect to the approximating measure
ν ∈ A and not with respect to the target µ.
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KULLBACK–LEIBLER APPROXIMATION 4099

The same expression shows positivity. To see this, decompose the measure µ into
two nonnegative measures µ = µ∥+µ⊥, where µ∥ is equivalent to ν and µ⊥ is singular
with respect to ν. Then we can write with the Jensen inequality

DKL(ν∥µ) =− Eν

[
log

(
dµ∥

dν
(x)

)
1{ dν

dµ ̸=0}

]
≥ − logEν

[
dµ∥

dν
(x)

]

=− logµ∥(H) ≥ 0.

This establishes the general fact that relative entropy is nonnegative for our particular
setting.

Finally, the expression in the third line of (3.3) shows that the normalization
constant Zµ enters into DKL only as an additive constant that can be ignored in
the minimization procedure. If we assume, furthermore, that the set A consists of
Gaussian measures, Lemma 2.4 and Corollary 2.5 imply the following result.

Theorem 3.1. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H), and let µ be given by (3.1). Consider the following choices for
A:

1. A1 = {Gaussian measures on H}.
2. A2 = {Gaussian measures on H equivalent to µ0}.
3. For a fixed covariance operator Ĉ ∈ T C(H),

A3 = {Gaussian measures on H with covariance Ĉ}.

4. For a fixed mean m̂ ∈ H,

A4 = {Gaussian measures on H with mean m̂}.

In each of these situations, as soon as there exists a single ν ∈ Ai with DKL(ν∥µ) < ∞,
there exists a minimizer of ν 0→ DKL(ν∥µ) in Ai. Furthermore, ν is necessarily
equivalent to µ0 in the sense of measures.

Remark 3.2. Even in the case A1 the condition that there exists a single ν with
finite DKL(ν∥µ) is not always satisfied. For example, if Φ(x) = exp

(
∥x∥4H

)
, then for

any Gaussian measure ν on H we have, using the identity (3.3), that

DKL(ν∥µ) = DKL(ν∥µ0) + Eν
[
Φ(x)

]
+ log(Zµ) = +∞.

In the cases A1,A3, and A4 such a ν is necessarily absolutely continuous with respect
to µ and hence equivalent to µ0; this equivalence is encapsulated directly in A2.
The conditions for this to be possible are stated in the Feldman–Hajek theorem,
Proposition B.2.

3.2. Parameterization of Gaussian measures. When solving the minimiza-
tion problem (2.2) it will usually be convenient to parameterize the set A in a suitable
way. In the case where A consists of all Gaussian measures on H the first choice that
comes to mind is to parameterize it by the mean m ∈ H and the covariance operator
C ∈ T C(H). In fact it is often convenient, for both computational and modeling
reasons, to work with the inverse covariance (precision) operator, which, because the
covariance operator is strictly positive and trace-class, is a densely defined unbounded
operator.

Recall that the underlying Gaussian centered reference measure µ0 has covariance
C0. We will consider covariance operators C of the form

(3.4) C−1 = C−1
0 + Γ
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4100 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

for suitable operators Γ. We will characterize below precisely the conditions on Γ
which are necessary and sufficient for the resulting class of approximating Gaussian
measures to be equivalent to µ0. From an applications perspective it is interesting to
consider the case whereH is a function space and Γ is a multiplication operator. Then
Γ has the form Γu = v(·)u(·) for some fixed function v which we refer to as a potential
in analogy with the Schrödinger setting. In this case parameterizing the Gaussian
family A by the pair of functions (m, v) comprises a considerable dimension reduction
over parameterization by the pair (m,C), since C is an operator. We develop the
theory of the minimization problem (2.2) in terms of Γ and extract results concerning
the potential v as particular examples.

The end of Remark 3.2 shows that, without loss of generality, we can always re-
strict ourselves to covariance operators C corresponding to Gaussian measures which
are equivalent to µ0. In general the inverse C−1 of such an operator and the in-
verse C−1

0 of the covariance operator of µ0 do not have the same operator domain.
Indeed, see Example 3.8 below for an example of two equivalent centered Gaussian
measures whose inverse covariance operators have different domains. But item 1 in
the Feldman–Hajek theorem (Proposition B.2) implies that the domains of C− 1

2 and

C
− 1

2
0 , i.e. the form domains of C−1 and C−1

0 , coincide. Hence, if we view the opera-
tors C−1 and C−1

0 as symmetric quadratic forms on H1 or as operators from H1 to
H−1, it makes sense to add and subtract them. In particular, we can interpret (3.4)
as

(3.5) Γ := C−1 − C−1
0 ∈ L(H1,H−1).

Actually, Γ is not only bounded from H1 to H−1. Item 3 in Proposition B.2 can be
restated as

(3.6)
∥∥Γ
∥∥2
HS(H1,H−1)

:=
∥∥C

1
2
0 ΓC

1
2
0

∥∥2
HS(H)

< ∞;

here HS(H1,H−1) denotes the space of Hilbert–Schmidt operators from H1 to H−1.
The space HS(H1,H−1) is continuously embedded into L(H1,H−1).

Conversely, it is natural to ask whether condition (3.6) alone implies that Γ can
be obtained from the covariance of a Gaussian measure as in (3.5). The following
lemma states that this is indeed the case as soon as one has an additional positivity
condition; the proof is left to section 4.2.

Lemma 3.3. For any symmetric Γ in HS(H1,H−1) the quadratic form given by

QΓ(u, v) = ⟨u,C−1
0 v⟩+ ⟨u,Γv⟩

is bounded from below and closed on its form domain H1. Hence it is associated to
a unique self-adjoint operator which we will also denote by C−1

0 + Γ. The operator
(C−1

0 +Γ)−1 is the covariance operator of a Gaussian measure on H which is equivalent
to µ0 if and only if QΓ is strictly positive.

Lemma 3.3 shows that we can parameterize the set of Gaussian measures that
are equivalent to µ0 by their mean and by the operator Γ. For fixed m ∈ H and
Γ ∈ HS(H1,H−1) we write NP,0(m,Γ) for the Gaussian measure with mean m and
covariance operator C−1 = C−1

0 +Γ, where the suffix (P, 0) is to denote the specifica-
tion via the shift in precision operator from that of µ0. We use the convention to set
NP,0(m,Γ) = δm if C−1

0 + Γ fails to be positive. Then we set

(3.7) A := {NP,0(m,Γ) ∈ M(H) : m ∈ H, Γ ∈ HS(H1,H−1)}.
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KULLBACK–LEIBLER APPROXIMATION 4101

Lemma 3.3 shows that the subset of A in which QΓ is strictly positive comprises
Gaussian measures absolutely continuous with respect to µ0. Theorem 3.1, with the
choice A = A2, implies immediately the existence of a minimizer for problem (2.2)
for this choice of A.

Corollary 3.4. Let µ0 be a Gaussian measure with mean m0 ∈ H and co-
variance operator C0 ∈ T C(H), and let µ be given by (3.1). Consider A given by
(3.7). Provided there exists a single ν ∈ A with DKL(ν∥µ) < ∞, then there exists a
minimizer of ν 0→ DKL(ν∥µ) in A. Furthermore, ν is necessarily equivalent to µ0 in
the sense of measures.

However, this corollary does not tell us much about the manner in which minimiz-
ing sequences approach the limit. With some more work we can actually characterize
the convergence more precisely in terms of the parameterization.

Theorem 3.5. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H), and let µ be given by (3.1). Consider A given by (3.7). Let
NP,0(mn,Γn) be a sequence of Gaussian measures in A that converge weakly to ν⋆
with

DKL(νn∥µ) → DKL(ν⋆∥µ).

Then ν⋆ = NP,0(m⋆,Γ⋆) and

∥mn −m⋆∥H1 +
∥∥Γn − Γ⋆

∥∥
HS(H1,H−1)

→ 0.

Proof. Lemma B.1 shows that ν⋆ is Gaussian, and Theorem 3.1 shows that in
fact ν⋆ = NP,0(m⋆,Γ⋆). It follows from Lemma 2.4 that νn converges to ν⋆ in total
variation. Lemma B.4, which follows, shows that

∥∥C
1
2
⋆

(
C−1

n − C−1
⋆

)
C

1
2
⋆

∥∥
HS(H)

+ ∥mn −m⋆∥H1 → 0.

By the Feldman–Hajek theorem (Proposition B.2, item 1) the Cameron–Martin spaces

C
1
2
⋆ H and C

1
2
0 H coincide with H1, and hence, since C−1

n −C−1
⋆ = Γn−Γ⋆, the desired

result follows.
The following example concerns a subset of the set A given by (3.7) found by

writing Γ as a multiplication of the identity I by a constant. This structure is useful
for numerical computations, for example if µ0 represents Wiener measure (possibly
conditioned) and we seek an approximation ν to µ with a mean m and covariance of
Ornstein–Uhlenbeck type (again possibly conditioned).

Example 3.6. Let C−1 = C−1
0 + βI so that

(3.8) C = (I + βC0)
−1C0.

Let A′ denote the set of Gaussian measures on H which have covariance of the form
(3.8) for some constant β ∈ R. This set is parameterized by the pair (m,β) ∈
H× R. The operator C−1 and the associated form are strictly positive if and only if
β ∈ I = (−λ−1

1 ,∞); recall that λ1, defined above (3.2), is the largest eigenvalue of C0.
Therefore, by Lemma 3.3, C is the covariance of a Gaussian equivalent to µ0 if and only
if β satisfies this condition. Note also that the covariance C satisfies C−1 = C−1

0 + β,
and so A′ is a subset of A given by (3.7) arising where Γ is multiplication by a
constant.

Now consider minimizing sequences {νn} from A′ for DKL(ν∥µ). Any weak limit
ν⋆ of a sequence νn = N

(
mn, (I + βnC0)−1C0

)
∈ A′ is necessarily Gaussian by
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4102 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Lemma B.1, item 1, and we denote it by N(m⋆, C⋆). By item 2 of the same lemma
we deduce that mn → m⋆ strongly in H and by item 3 that (I + βnC0)−1C0 → C⋆

strongly in L(H). Thus, for any α ≥ 1, and recalling that eα are the eigenvectors of C0,
∥C⋆eα−(1+βnλα)−1λαeα∥ → 0 as n → ∞. Furthermore, necessarily βn ∈ I for each n.
We now argue by contradiction that there are no subsequences βn′ converging to either
−λ−1

1 or ∞. For contradiction assume first that there is a subsequence converging to
−λ−1

1 . Along this subsequence we have (1+βnλ1)−1 → ∞, and hence we deduce that
C⋆e1 = ∞, so that C⋆ cannot be trace-class, a contradiction. Similarly assume for
contradiction that there is a subsequence converging to ∞. Along this subsequence
we have (1+βnλα)−1 → 0 and hence that C⋆eα = 0 for every α. In this case ν⋆ would
be a Dirac measure and hence not equivalent to µ0 (recall our assumption that C0 is
a strictly positive operator). Thus there must be a subsequence converging to a limit
β ∈ I and we deduce that C⋆eα = (1+βλα)−1λαeα, proving that C⋆ = (I+βC0)−1C0

as required.
Another class of Gaussians which is natural in applications, and in which the

parameterization of the covariance is finite dimensional, is as follows.
Example 3.7. Recall the notation πγ for the orthogonal projection onto Hγ :=

span(e1, . . . , eγ), the span of the first γ eigenvalues of C0. We seek C in the form

C−1 =
(
(I − πγ)C0(I − πγ)

)−1
+ Γ,

where

Γ =
∑

i,j≤N

γijei ⊗ ej .

It then follows that

(3.9) C = (I − πγ)C0(I − πγ) + Γ−1,

provided that Γ is invertible. Let A′ denote the set of Gaussian measures on H which
have covariance of the form (3.9) for some operator Γ invertible on Hγ . Now consider
minimizing sequences {νn} from A′ for DKL(ν∥µ) with mean mn and covariance
Cn = (I − πγ)C0(I − πγ) + Γ−1

n . Any weak limit ν⋆ of the sequence νn ∈ A′ is
necessarily Gaussian by Lemma B.1, item 1, and we denote it by N(m⋆, C⋆). As in
the preceding example, we deduce that mn → m⋆ strongly in H. Similarly we also
deduce that Γ−1

n converges to a nonnegative matrix. A simple contradiction shows
that, in fact, this limiting matrix is invertible since otherwise N(m⋆, C⋆) would not
be equivalent to µ0. We denote the limit by Γ−1

⋆ . We deduce that the limit of the
sequence νn is in A′ and that C⋆ = (I − πγ)C0(I − πγ) + Γ−1

⋆ .

3.3. Regularization for parameterization of Gaussian measures. The
previous section demonstrates that parameterization of Gaussian measures in the
set A given by (3.7) leads to a well-defined minimization problem (2.2) and that,
furthermore, minimizing sequences in A will give rise to means mn and operators Γn

converging in H1 and HS(H1,H−1), respectively. However, convergence in the space
HS(H1,H−1) may be quite weak and unsuitable for numerical purposes; in particu-
lar, if Γnu = vn(·)u(·), then the sequence (vn) may behave quite badly, even though
(Γn) is well-behaved in HS(H1,H−1). For this reason we consider, in this subsection,
regularization of the minimization problem (2.2) over A given by (3.7). But before

c⃝ 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/0

4/
15

 to
 1

37
.2

05
.5

7.
14

8.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



KULLBACK–LEIBLER APPROXIMATION 4103

doing so we provide two examples illustrating the potentially undesirable properties
of convergence in HS(H1,H−1).

Example 3.8 (compare [30, Example 3 in Chapter X.2]). Let C−1
0 = −∂2

t be the
negative Dirichlet–Laplace operator on [−1, 1] with domain H2([−1, 1])∩H1

0 ([−1, 1]),
and let µ0 = N(0, C0); i.e., µ0 is the distribution of a Brownian bridge on [−1, 1].
In this case H1 coincides with the Sobolev space H1

0 . We note that the measure µ0

assigns full mass to the space X of continuous functions on [−1, 1], and hence all
integrals with respect to µ0 in what follows can be computed over X . Furthermore,
the centered unit ball in X ,

BX(0; 1) :=

{
x ∈ X : sup

t∈[−1,1]
|x(t)| ≤ 1

}
,

has positive µ0 measure.
Let φ : R → R be a standard mollifier; i.e., φ ∈ C∞, φ ≥ 0, φ is compactly

supported in [−1, 1], and
∫
R φ(t) dt = 1. Then for any n define φn(t) = nφ(tn),

together with the probability measures νn ≪ µ0 given by

dνn
dµ0

(x(·)) = 1

Zn
exp

(
− 1

2

∫ 1

−1
φn(t)x(t)

2 dt

)
,

where

Zn := Eµ0 exp

(
− 1

2

∫ 1

−1
φn(t)x(t)

2 dt

)
.

The νn are also Gaussian, as Lemma C.1 shows. Using the fact that µ0(X) = 1 it
follows that

exp(−1/2)µ0

(
BX(0; 1)

)
≤ Zn ≤ 1.

Now define probability measure ν⋆ by

dν⋆
dµ0

(x(·)) = 1

Z⋆
exp

(
− x(0)2

2

)
,

noting that

exp(−1/2)µ0

(
BX(0; 1)

)
≤ Z⋆ ≤ 1.

For any x ∈ X we have
∫ 1

−1
φn(t)x(t)

2 dt → x(0)2.

An application of the dominated convergence theorem shows that Zn → Z⋆ and hence
that Z−1

n → Z−1
⋆ and log(Zn) → log(Z⋆).

Further applications of the dominated convergence theorem show that the νn
converge weakly to ν⋆, which is also then Gaussian by Lemma B.1, and that the
Kullback–Leibler divergence between νn and ν⋆ satisfies

DKL(νn∥ν⋆) =
1

Zn
Eµ0

[
exp

(
− 1

2

∫ 1

−1
φn(t)x(t)

2 dt

)

× 1

2

(
x(0)2 −

∫ 1

−1
φn(t)x(t)

2 dt

)]
+
(
log(Z⋆)− log(Zn)

)
→ 0.
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4104 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Lemma C.1 shows that νn is the centered Gaussian with covariance Cn given by
C−1

n = C−1
0 + φn. Formally, the covariance operator associated to ν⋆ is given by

C−1
0 + δ0, where δ0 is the Dirac δ function. Nonetheless, the implied multiplication

operators converge to a limit in HS(H1,H−1). In applications such limiting behavior
of the potential in an inverse covariance representation, to a distribution, may be
computationally undesirable.

Example 3.9. We consider a second example in a similar vein but linked to the
theory of averaging for differential operators. Choose µ0 as in the preceding example,
and now define φn(·) = φ(n·), where φ : R → R is a positive smooth 1-periodic
function with mean φ. Define Cn by C−1

n = C−1
0 + φn similarly as before. It follows,

as in the previous example, by use of Lemma C.1, that the measures νn are centered
Gaussians with covariance Cn and are equivalent to µ0 and that

dνn
dµ0

(x(·)) = 1

Zn
exp

(
− 1

2

∫ 1

−1
φn(t)x(t)

2 dt

)
.

By the dominated convergence theorem, as in the previous example, it also follows
that the νn converge weakly to ν⋆ with

dν⋆
dµ0

(x(·)) = 1

Z⋆
exp

(
− 1

2
φ

∫ 1

−1
x(t)2 dt

)
.

Again using Lemma C.1, ν⋆ is the centered Gaussian with covariance C⋆ given by
C−1

⋆ = C−1
0 + φ. The Kullback–Leibler divergence satisfies DKL(νn∥ν⋆) → 0, also

by application of the dominated convergence theorem as in the previous example.
Thus minimizing sequences may exhibit multiplication functions which oscillate with
increasing frequency whilst the implied operators Γn converge inHS(H1,H−1). Again
this may be computationally undesirable in many applications.

The previous examples suggest that, in order to induce improved behavior of min-
imizing sequences related to the operators Γ, in particular when Γ is a multiplication
operator, it may be useful to regularize the minimization in problem (2.2). To this
end, let G ⊆ HS(H1,H−1) be a Hilbert space of linear operators. For fixedm ∈ H and
Γ ∈ G we write NP,0(m,Γ) for the Gaussian measure with mean m and its covariance
operator given by (3.5). We now make the choice

(3.10) A := {NP,0(m,Γ) ∈ M(H) : m ∈ H, Γ ∈ G}.

Again, we use the convention NP,0(m,Γ) = δ0 if C−1
0 + Γ fails to be positive. Then,

for some δ > 0 we consider the modified minimization problem

(3.11) argmin
ν∈A

(
DKL(ν, µ) + δ∥Γ∥2G

)
.

We have existence of minimizers for problem (3.11) under very general assump-
tions. In order to state these assumptions, we introduce auxiliary interpolation spaces.

For any s > 0, we denote by Hs the domain of C
− s

2
0 equipped with the scalar product

⟨·, C−s
0 ·⟩ and define H−s by duality.
Theorem 3.10. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance

operator C0 ∈ T C(H), and let µ be given by (3.1). Consider A given by (3.10).
Suppose that the space G consists of symmetric operators on H and embeds compactly
into the space of bounded linear operators from H1−κ to H−(1−κ) for some 0 < κ < 1.
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KULLBACK–LEIBLER APPROXIMATION 4105

Then, provided that DKL(µ0∥µ) < ∞, there exists a minimizer ν⋆ = NP,0(m⋆,Γ⋆) for
problem (3.11).

Furthermore, along any minimizing sequence ν(mn,Γn) there is a subsequence
ν(mn′ ,Γn′) along which Γn′ → Γ⋆ strongly in G and ν(mn′ ,Γn′) → ν(m⋆,Γ⋆) with
respect to the total variation distance.

Proof. The assumption DKL(µ0∥µ) < ∞ implies that the infimum in (3.11) is
finite and nonnegative. Let νn = NP,0(mn,Γn) be a minimizing sequence for (3.11).
As both DKL(νn∥µ) and ∥Γn∥2G are nonnegative, this implies that DKL(νn∥µ) and
∥Γn∥2G are bounded along the sequence. Hence, by Proposition 2.1 and by the com-
pactness assumption on G, after passing to a subsequence twice we can assume that
the measures νn converge weakly as probability measures to a measure ν⋆ and the
operators Γn converge weakly in G to an operator Γ⋆; furthermore, the Γn also con-
verge in the operator norm of L(H1−κ,H−(1−κ)) to Γ⋆. By the lower semicontinuity
of ν 0→ DKL(ν∥µ) with respect to weak convergence of probability measures (see
Proposition 2.1) and by the lower semicontinuity of Γ 0→ ∥Γ∥2G with respect to weak
convergence in G we can conclude that

DKL(ν⋆∥µ) + δ∥Γ⋆∥2G ≤ lim inf
n→∞

DKL(νn∥µ) + lim inf
n→∞

δ∥Γn∥2G

≤ lim
n→∞

(
DKL(νn∥µ) + δ∥Γn∥2G

)

= inf
ν∈A

(
DKL(ν∥µ) + δ∥Γ∥2G

)
.(3.12)

By Lemma B.1, ν⋆ is a Gaussian measure with mean m⋆ and covariance operator
C⋆ and we have

(3.13) ∥mn −m⋆∥H → 0 and ∥Cn − C⋆∥L(H) → 0.

We want to show that C⋆ = (C0 + Γ⋆)−1 in the sense of Lemma 3.3. In order to see
this, note that Γ⋆ ∈ L(H1−κ,H−(1−κ)), which implies that for x ∈ H1 we have for
any λ > 0

⟨x,Γ⋆x⟩ ≤
∥∥Γ⋆

∥∥
L(H1−κ,H−(1−κ))

∥∥x∥2H1−κ

≤
∥∥Γ⋆

∥∥
L(H1−κ,H−(1−κ))

(
λ(1 − κ)

∥∥x∥2H1 + λ− 1−κ
κ κ

∥∥x∥2H
)
.

Hence, Γ⋆ is infinitesimally form-bounded with respect to C−1
0 (see, e.g., [30, Chap-

ter X.2]). In particular, by the KLMN theorem (see [30, Theorem X.17]) the form
⟨x,C−1

0 x⟩ + ⟨x,Γ⋆x⟩ is bounded from below and closed. Hence there exists a unique
self-adjoint operator denoted by C−1

0 +Γ⋆ with form domain H1 which generates this
form.

The convergence of Cn = (C−1
0 +Γn)−1 to C⋆ in L(H) implies, in particular, that

the Cn are bounded in the operator norm, and hence the spectra of the C−1
0 +Γn are

away from zero from below, uniformly. This implies that

inf
∥x∥H=1

(
⟨x,C−1

0 x⟩ + ⟨x,Γ⋆x⟩
)
≥ lim inf

n→∞
inf

∥x∥H=1

(
⟨x,C−1

0 x⟩ + ⟨x,Γnx⟩
)
> 0

so that C−1
0 +Γ⋆ is a positive operator and, in particular, invertible and so is (C−1

0 +
Γ⋆)

1
2 . As (C−1

0 + Γ⋆)
1
2 is defined on all of H1, its inverse maps onto H1, and hence
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4106 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

the closed graph theorem implies that C
− 1

2
0 (C−1

0 + Γ⋆)−
1
2 is a bounded operator on

H. From this we can conclude that for all x ∈ H1

∣∣⟨x, (C−1
0 + Γn)x⟩ − ⟨x, (C−1

0 + Γ⋆)x⟩
∣∣

≤
∥∥Γn − Γ⋆

∥∥
L(H1,H−1)

∥∥x
∥∥2
H1

≤
∥∥Γn − Γ⋆

∥∥
L(H1,H−1)

∥∥C− 1
2

0 (C−1
0 + Γ⋆)

− 1
2

∥∥2
L(H)

∥∥(C−1
0 + Γ⋆

) 1
2x
∥∥2
H.

By [31, Theorem VIII.25] this implies that C−1
0 + Γ⋆ converges to C−1

0 + Γ⋆ in the
strong resolvent sense. As all operators are positive and bounded away from zero by
[31, Theorem VIII.23], we can conclude that the inverses (C−1

0 + Γn)−1 converge to
(C−1

0 + Γ⋆)−1. By (3.13) this implies that C⋆ = (C−1
0 + Γ⋆)−1 as desired.

We can conclude that ν⋆ = NP,0(m⋆,Γ⋆) and hence that

DKL(ν⋆∥µ) + δ∥Γ⋆∥2G ≥ inf
ν∈A

(
DKL(ν∥µ) + δ∥Γ∥2G

)
,

implying from (3.12) that

DKL(ν⋆∥µ) + δ∥Γ⋆∥2G = lim inf
n→∞

DKL(νn∥µ) + lim inf
n→∞

δ∥Γn∥2G

= lim
n→∞

(
DKL(νn∥µ) + δ∥Γn∥2G

)

= inf
ν∈A

(
DKL(ν∥µ) + δ∥Γ∥2G

)
.

Hence we can deduce using the lower semicontinuity of Γ 0→ ∥Γ∥2G with respect to
weak convergence in G that

lim sup
n→∞

DKL(νn∥µ) ≤ lim
n→∞

(
DKL(νn∥µ) + δ∥Γn∥2G

)
− lim inf

n→∞
δ∥Γn∥2G

≤
(
DKL(ν⋆∥µ) + δ∥Γ⋆∥2G

)
− δ∥Γ⋆∥2G

= DKL(ν⋆∥µ),

which implies that limn→∞ DKL(νn∥µ) = DKL(ν⋆∥µ). In the same way it follows that
limn→∞ ∥Γn∥2G = ∥Γ⋆∥2G . By Lemma 2.4 we can conclude that ∥νn − ν⋆∥tv → 0. For
the operators Γn we note that weak convergence together with convergence of the
norm implies strong convergence.

Example 3.11. The first example we have in mind is the case where, as in Exam-
ple 3.8, H = L2([−1, 1]), C−1

0 is the negative Dirichlet–Laplace operator on [−1, 1],
H1 = H1

0 , and m0 = 0. Thus the reference measure is the distribution of a centered
Brownian bridge. By a slight adaptation of the proof of [18, Theorem 6.16] we have
that, for p ∈ (2,∞], ∥u∥Lp ≤ C∥u∥Hs for all s > 1

2 − 1
p , and we will use this fact

in what follows. For Γ we choose multiplication operators with suitable functions
Γ̂ : [−1, 1] → R. For any r > 0 we denote by Gr the space of multiplication oper-
ators with functions Γ̂ ∈ Hr([−1, 1]) endowed with the Hilbert space structure of
Hr([−1, 1]). In this notation, the compact embedding of the spaces Hr([−1, 1]) into
L2([−1, 1]) can be rephrased as a compact embedding of the space Gr into the space
G0, i.e., the space of L2([−1, 1]) functions, viewed as multiplication operators. By the
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KULLBACK–LEIBLER APPROXIMATION 4107

form of Sobolev embedding stated above we have that for κ < 3
4 and any3 x ∈ H1−κ

(3.14) ⟨x,Γx⟩ =
∫ 1

−1
Γ̂(t)x(t)2dt ≤ ∥Γ̂∥L2([−1,1])∥x∥2L4 ! ∥Γ̂∥L2([−1,1])∥x∥2H1−κ .

Since this shows that

∥Γ∥L(H1−κ,H−(1−κ)) ! ∥Γ̂∥L2([−1,1]),

it demonstrates that G0 embeds continuously into the space L(H1−κ,H−(1−κ)), and
hence the spaces Gr, which are compact in G0, satisfy the assumption of Theorem
3.10 for any r > 0.

Example 3.12. Now consider µ0 to be a Gaussian field over a space of dimension
2 or more. In this case we need to take a covariance operator that has a stronger
regularizing property than the inverse Laplace operator. For example, if we denote
by ∆ the Laplace operator on the n-dimensional torus Tn, then the Gaussian field
with covariance operator C0 = (−∆+I)−s takes values in L2(Tn) if and only if s > n

2 .
In this case, the space H1 coincides with the fractional Sobolev space Hs(Tn). Note
that the condition s > n

2 precisely implies that there exists a κ > 0 such that the
space H1−κ embeds into L∞(Tn) and in particular into L4[0, T ]. As above, denote
by Gr the space of multiplication operators on L2(Tn) with functions Γ̂ ∈ Hr(Tn).
Then the same calculation as (3.14) shows that the conditions of Theorem 3.10 are
satisfied for any r > 0.

3.4. Uniqueness of minimizers. As stated above in Proposition 2.3, the min-
imization problem (2.2) has a unique minimizer if the set A is convex. Unfortunately,
in all of the situations discussed in this section, A is not convex, so this criterion does
not apply.

In general we do not expect minimizers to be unique; the example in subsec-
tion 2.2 illustrates nonuniqueness. There is, however, one situation in which we have
uniqueness for all of the choices of A discussed in Theorem 3.1, namely the case
where instead of A the measure µ satisfies a convexity property. Let us first recall
the definition of λ-convexity.

Definition 3.13. Let Φ : H1 → R be a function. For a λ ∈ R the function Φ is
λ-convex with respect to H1 if

(3.15) H1 ∋ x 0→ λ

2
⟨x, x⟩H1 + Φ(x)

is convex on H1.
Remark 3.14. Equation (3.15) implies that for any x1, x2 ∈ H1 and for any

t ∈ (0, 1) we have

(3.16) Φ((1 − t)x1 + tx2) ≤ (1− t)Φ(x1) + tΦ(x2) + λ
t(1− t)

2
∥x1 − x2∥2H1 .

Equation (3.16) is often taken to define λ-convexity because it gives useful estimates
even when the distance function does not come from a scalar product. For Hilbert
spaces both definitions are equivalent.

3Throughout the paper we write a ! b to indicate that there exists a constant c > 0 independent
of the relevant quantities such that a ≤ cb.
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4108 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

The following theorem implies uniqueness for the minimization problem (2.2) as
soon as Φ is (1−κ)-convex for a κ > 0 and satisfies a mild integrability property. The
proof is given in section 4.

Theorem 3.15. Let µ be as in (3.1), and assume that there exists a κ > 0
such that Φ is (1 − κ)-convex with respect to H1. Assume that there exist constants
0 < ci < ∞, i = 1, 2, 3, and α ∈ (0, 2) such that for every x ∈ X we have

(3.17) −c1∥x∥αX ≤ Φ(x) ≤ c2 exp
(
c3∥x∥αX

)
.

Let ν1 = N(m1, C1) and ν2 = N(m2, C2) be Gaussian measures with DKL(ν1∥µ) < ∞
and DKL(ν2∥µ) < ∞. For any t ∈ (0, 1) there exists an interpolated measure ν1→2

t =
N(mt, Ct) which satisfies DKL(ν1→2

t ∥µ) < ∞. Furthermore, as soon as ν1 ̸= ν2 there
exists a constant K > 0 such that for all t ∈ (0, 1)

DKL(ν
1→2
t ∥µ) ≤ (1− t)DKL(ν1∥µ) + tDKL(ν1∥µ)−

t(1− t)

2
K.

Finally, if we have m1 = m2, then mt = m1 holds as well for all t ∈ (0, 1), and in the
same way, if C1 = C2, then Ct = C1 for all t ∈ (0, 1).

The measures ν1→2
t introduced in Theorem 3.15 are a special case of geodesics on

Wasserstein space first introduced in [26] in a finite dimensional situation. In addition,
the proof shows that the constant K appearing in the statement is κ times the square
of the Wasserstein distance between ν1 and ν2 with respect to the H1 norm. See
[1, 16] for a more detailed discussion of mass transportation on infinite dimensional
spaces. The following is an immediate consequence of Theorem 3.15.

Corollary 3.16. Assume that µ is a probability measure given by (3.1), that
there exists a κ > 0 such that Φ is (1 − κ) convex with respect to H1, and that Φ
satisfies the bound (3.17). Then for any of the four choices of sets Ai discussed in
Theorem 3.1 the minimizer of ν 0→ DKL(ν∥µ) is unique in Ai.

Remark 3.17. The assumption that Φ is (1 − κ)-convex for a κ > 0 implies
in particular that µ is log-concave (see [1, Definition 9.4.9]). It can be viewed as a
quantification of this log-concavity.

Example 3.18. As in Examples 3.8 and 3.9 above, let µ0 be a centered Brow-
nian bridge on [−L

2 ,
L
2 ]. As above we have H1 = H1

0 ([−L
2 ,

L
2 ]) equipped with the

homogeneous Sobolev norm and X = C([−L
2 ,

L
2 ]).

For some C2 function φ : R → R+ set Φ
(
x(·)

)
=
∫ L

2

−L
2
φ(x(s)) ds. The integrability

condition (3.17) translates immediately into the growth condition −c′1|x|α ≤ φ(x) ≤
c′2 exp(c

′
3|x|α) for x ∈ R and constants 0 < c′i < ∞ for i = 1, 2, 3. Of course, the

convexity assumption of Theorem 3.15 is satisfied if φ is convex. But we can allow
for some nonconvexity. For example, if φ ∈ C2(R) and φ′′ is uniformly bounded from
below by −K ∈ R, then we get for x1, x2 ∈ H1

Φ((1− t)x1 + tx2

)

=

∫ L
2

−L
2

φ
(
(1− t)x1(s) + tx2(s)

)
ds

≤
∫ L

2

−L
2

(1− t)φ
(
(x1(s)

)
+ tφ

(
x2(s)

)
+

1

2
t(1− t)K

∣∣x1(s)− x2(s)
∣∣2 ds

= (1− t)Φ(x1) + tΦ(x2) +
Kt(1− t)

2

∫ L
2

−L
2

∣∣x1(s)− x2(s)
∣∣2ds.
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KULLBACK–LEIBLER APPROXIMATION 4109

Using the estimate
∫ L

2

−L
2

∣∣x1(s)− x2(s)
∣∣2ds ≤

(
L

π

)2

∥x1 − x2∥2H1

we see that Φ satisfies the convexity assumption as soon as K <
(
π
L

)2
. The proof of

Theorem 3.15 is based on the influential concept of displacement convexity, introduced
by McCann in [26], and heavily inspired by the infinite dimensional exposition in [1].
It can be found in subsection 4.3.

3.5. Gaussian mixtures. We have demonstrated a methodology for approx-
imating measure µ given by (3.1) by a Gaussian ν. If µ is multimodal, then this
approximation can result in several local minimizers centered on the different modes.
A potential way to capture all modes at once is to use Gaussian mixtures, as explained
in the finite dimensional setting in [6]. We explore this possibility in our infinite di-
mensional context: in this subsection we show existence of minimizers for problem
(2.2) in the situation when we are minimizing over a set of convex combinations of
Gaussian measures.

We start with a basic lemma for which we do not need to assume that the mixture
measure comprises Gaussians.

Lemma 3.19. Let A,B ⊆ M(H) be closed under weak convergence of probability
measures. Then so is

C :=
{
µ := p1ν1 + p2ν2 : 0 ≤ pi ≤ 1, i = 1, 2; p1 + p2 = 1; ν1 ∈ A; ν2 ∈ B}.

Proof. Let (νn) = (p1nν
1
n + p2nν

2
n) be a sequence of measures in C that converges

weakly to µ⋆ ∈ M(H). We want to show that µ⋆ ∈ C. It suffices to show that a
subsequence of the νn converges to an element in C. After passing to a subsequence
we can assume that for i = 1, 2 the pin converge to pi⋆ ∈ [0, 1] with p1⋆ + p2⋆ = 1. Let
us first treat the case where one of these pi⋆ is zero, say p1⋆ = 0 and p2⋆ = 1. In this
situation we can conclude that the ν2n converge weakly to µ⋆ and hence µ⋆ ∈ B ⊆ C.
Therefore, we can assume pi⋆ ∈ (0, 1). After passing to another subsequence we can
furthermore assume that the pin are uniformly bounded from below by a positive
constant p̂ > 0. As the sequence νn converges weakly in M(H), it is tight. We claim
that this implies automatically the tightness of the sequences νin. Indeed, for a δ > 0
let Kδ ⊆ H be a compact set with νn(Kδ) ≤ δ for any n ≥ 1. Then we have for any
n and for i = 1, 2 that

νin(Kδ) ≤
1

p̂
ν(Kδ) ≤

δ

p̂
.

After passing to yet another subsequence, we can assume that the ν1n converge weakly
to ν1⋆ ∈ A and the ν2n converge weakly to ν2⋆ ∈ B . In particular, along this subsequence
the νn converge weakly to p1⋆ν

1
⋆ + p2⋆ν

2
⋆ ∈ C.

By a simple recursion, Lemma 3.19 extends immediately to sets C of the form

C̃ :=

{
ν :=

N∑

i=1

piνi : 0 ≤ pi ≤ 1,
N∑

i=1

pi = 1, νi ∈ Ai

}

for fixed N and sets Ai that are all closed under weak convergence of probability
measures. Hence we get the following consequence from Corollary 2.2 and Lemma
B.1.

Theorem 3.20. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H), and let µ be given by (3.1). For any fixed N and for any choice
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4110 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

of set A as in Theorem 3.1 consider the following choice for C:

C :=

{
µ :=

N∑

i=1

piνi : 0 ≤ pi ≤ 1,
N∑

i=1

pi = 1, νi ∈ A
}
.

Then as soon as there exists a single ν ∈ A with DKL(ν∥µ) < ∞ there exists a
minimizer of ν 0→ DKL(ν∥µ) in C. This minimizer ν is necessarily equivalent to µ0

in the sense of measures.

4. Proofs of main results. Here we gather the proofs of various results used in
this paper. The proofs may be of independent interest, but their inclusion in the main
text would break from the flow of ideas related to Kullback–Leibler minimization.

4.1. Proof of Lemma 2.4. The following “parallelogram identity” (see [10,
equation (2.2)]) is easy to check: for any n,m

DKL(νn∥µ) +DKL(νm∥µ)

= 2DKL

(
νn + νm

2

∥∥∥∥µ
)
+DKL

(
νn

∥∥∥∥
νn + νm

2

)
+DKL

(
νm

∥∥∥∥
νn + νm

2

)
.(4.1)

By assumption the left-hand side of (4.1) converges to 2DKL(ν⋆∥µ) as n,m → ∞.
Furthermore, the measure 1/2(νn + νm) converges weakly to ν⋆ as n,m → ∞ and by
the lower semicontinuity of ν 0→ DKL(ν∥µ) we have

lim inf
n,m→∞

2DKL

(
νn + νm

2

∥∥∥∥µ
)

≥ 2DKL(ν⋆∥µ).

By the nonnegativity of DKL this implies that

(4.2) DKL

(
νm

∥∥∥∥
νn + νm

2

)
→ 0 and DKL

(
νn

∥∥∥∥
νn + νm

2

)
→ 0.

As we can write

∥νn − νm∥tv ≤
∥∥∥νn − νn + νm

2

∥∥∥
tv

+
∥∥∥νm − νn + νm

2

∥∥∥
tv
,

equations (4.2) and the Pinsker inequality

∥ν − µ∥tv ≤
√

1

2
DKL(ν∥µ)

(a proof of which can be found in [9]) imply that the sequence is Cauchy with respect
to the total variation norm. By assumption, the νn converge weakly to ν⋆ and this
implies convergence in total variation norm.

4.2. Proof of Lemma 3.3. Recall (eα, λα,α ≥ 1), the eigenfunction/eigenvalue
pairs of C0 introduced above (3.2). For any α,β we write

Γα,β = ⟨eα,Γeβ⟩.

Then (3.6) states that

∑

1≤α,β<∞
λα λβΓ

2
α,β < ∞.
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KULLBACK–LEIBLER APPROXIMATION 4111

Define N0 = N2 \ {1, . . . , N0}2. Then the preceding display implies that for any δ > 0
there exists an N0 ≥ 0 such that

(4.3)
∑

(α,β)∈N0

λα λβΓ
2
α,β < δ2.

This implies that for x =
∑

α xαeα ∈ H1 we get

⟨x,Γx⟩ =
∑

1≤α,β<∞
Γα,βxαxβ

=
∑

1≤α,β≤N0

Γα,βxαxβ +
∑

(α,β)∈N0

Γα,βxαxβ .(4.4)

The first term on the right-hand side of (4.4) can be bounded by

∣∣∣∣∣
∑

1≤α,β≤N0

Γα,βxαxβ

∣∣∣∣∣ ≤ max
1≤α,β≤N0

∣∣Γα,β

∣∣∥x∥2H.(4.5)

For the second term we get using the Cauchy–Schwarz inequality and (4.3)
∣∣∣∣∣
∑

(α,β)∈N0

Γα,βxαxβ

∣∣∣∣∣ =

∣∣∣∣∣
∑

(α,β)∈N0

√
λαλβΓα,β

xαxβ√
λαλβ

∣∣∣∣∣

≤ δ⟨x,C−1
0 x⟩.(4.6)

We can conclude from (4.4), (4.5), and (4.6) that Γ is infinitesimally form-bounded
with respect to C−1

0 (see, e.g.. [30, Chapter X.2]). In particular, by the KLMN
theorem (see [30, Theorem X.17]) the form QΓ is bounded from below and closed,
and there exists a unique self-adjoint operator denoted by C−1

0 +Γ with form domain
H1 that generates QΓ.

If QΓ is strictly positive, then so is C−1
0 + Γ and its inverse (C−1

0 + Γ)−1. As

C−1
0 +Γ has form domain H1, the operator (C−1

0 +Γ)−
1
2C

− 1
2

0 is bounded on H by the
closed graph theorem and it follows that, as the composition of a trace-class operator
with two bounded operators,

(C−1
0 + Γ)−1 =

(
(C−1

0 + Γ)−
1
2C

− 1
2

0

)
C0

(
(C−1

0 + Γ)−
1
2C

− 1
2

0

)⋆

is a trace-class operator. It is hence the covariance operator of a centered Gaussian
measure on H. It satisfies the conditions of the Feldman–Hajek theorem by assump-
tion.

If QΓ is not strictly positive, then the intersection of the spectrum of C−1
0 +Γ with

(−∞, 0] is not empty, and hence it cannot be the inverse covariance of a Gaussian
measure.

4.3. Proof of Theorem 3.15. We start the proof of Theorem 3.15 with the
following lemma.

Lemma 4.1. Let ν = N(m,C) be equivalent to µ0. For any γ ≥ 1 let πγ : H → H
be the orthogonal projector on the space Hγ introduced in (3.2). Furthermore, assume
that Φ : X → R+ satisfies the second inequality in (3.17). Then we have

(4.7) lim
γ→∞

Eν
[
Φ(πγx)

]
= Eν

[
Φ(x)

]
.
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4112 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Proof. It is a well-known property of the white noise/Karhunen–Loève expansion
(see, e.g., [11, Theorem 2.12]) that ∥πγx − x∥X → 0 µ0-almost surely and, as ν
is equivalent to µ0, also ν-almost surely. Hence, by continuity of Φ on X , Φ(πγx)
converges ν-almost surely to Φ(x).

As ν(X) = 1, there exists a constant 0 < K∞ < ∞ such that ν(∥x∥X ≥ K∞) ≤ 1
8 .

On the other hand, by the ν-almost sure convergence of ∥πγx− x∥X to 0 there exists
a γ∞ ≥ 1 such that for all γ > γ∞ we have ν

(
∥πγx − x∥X ≥ 1

)
≤ 1

8 , which implies
that

ν
(
∥πγx∥ ≥ K∞ + 1

)
≤ 1

4
for all γ ≥ γ∞.

For any γ ≤ γ∞ there exists another 0 < Kγ < ∞ such that ν
(
∥πγx∥ ≥ Kγ

)
≤ 1

4 ,
and hence if we set K = max{K1, . . . ,Kγ∞ ,K∞ + 1}, we get

ν
(
∥πγx∥ ≥ K

)
≤ 1

4
for all γ ≥ 1.

By Fernique’s theorem (see, e.g., [11, Theorem 2.6]) this implies the existence of a
λ > 0 such that

sup
γ≥1

Eν
[
exp

(
λ∥πγx∥2

)]
< ∞.

Then the desired statement (4.7) follows from the dominated convergence theorem
observing that (3.17) implies the pointwise bound

(4.8) Φ(x) ≤ c2 exp(c3∥x∥αX
)
≤ c4 exp(λ∥x∥2X

)

for 0 < c4 < ∞ sufficiently large.
Let us also recall the following property.
Proposition 4.2 (see [1, Lemma 9.4.5]). Let µ, ν ∈ M(H) be a pair of arbitrary

probability measures on H, and let π : H → H be a measurable mapping. Then we
have

(4.9) DKL(ν ◦ π−1∥µ ◦ π−1) ≤ DKL(ν∥µ).

Proof of Theorem 3.15. As above (3.2), let (eα,α ≥ 1) be the basis H consisting
of eigenvalues of C0 with the corresponding eigenvalues (λα,α ≥ 1). For γ ≥ 1 let
πγ : H → H be the orthogonal projection on Hγ := span(e1, . . . , eγ). Furthermore,
for α ≥ 1 and x ∈ H let ξα(x) = ⟨x, eα⟩H. Then we can identify Hγ with Rγ through
the bijection

(4.10) Rγ ∋ Ξγ = (ξ1, . . . , ξγ) 0→
γ∑

α=1

ξαeα.

The identification (4.10) in particular gives a natural way to define the γ-dimensional
Lebesgue measure Lγ on Hγ .

Denote by µ0;γ = µ0 ◦ π−1
γ the projection of µ0 on Hγ . We also define µγ by

dµγ

dµ0;γ
(x) =

1

Zγ
exp

(
− Φ(x)

)
,
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KULLBACK–LEIBLER APPROXIMATION 4113

where Zγ = Eµ0,γ
[
exp

(
−Φ(x)

)]
. Note that in general µγ does not coincide with the

measure µ ◦ πγ . The Radon–Nikodym density of µγ with respect to Lγ is given by

dµγ

dLγ
(x) =

1

Z̃γ

exp
(
−Ψ(x)

)
,

where Ψ(x) = Φ(x) + 1
2 ⟨x, x⟩H1 and the normalization constant is given by

Z̃γ = Zγ(2π)
γ
2

γ∏

α=1

√
λα.

According to the assumption the function Ψ(x) − κ
2 ⟨x, x⟩H1 is convex on Hγ , which

implies that for any x1, x2 ∈ Hγ and for t ∈ [0, 1] we have

Ψ
(
(1 − t)x1 + tx2

)
≤ (1 − t)Ψ(x1) + tΨ(x2)− κ

t(1− t)

2
∥x1 − x2∥2H1 .

Let us also define the projected measures νi;γ := νi ◦ π−1
γ for i = 1, 2. By

assumption the measures νi are equivalent to µ0 and therefore the projections νi;γ
are equivalent to µ0;γ . In particular, the νi;γ are nondegenerate Gaussian measures
on Hγ . Their covariance operators are given by Ci;γ := πγCiπγ and the means by
mi;γ = πγmi.

There is a convenient coupling between the νi;γ . Indeed, set

(4.11) Λγ = C
1
2
2;γ

(
C

1
2
2;γC1;γC

1
2
2,γ

)− 1
2C

1
2
2;γ ∈ L(Hγ ,Hγ).

The operator Λγ is symmetric and strictly positive on Hγ . Then define for x ∈ Hγ

(4.12) Λ̃γ(x) := Λγ(x−m1;γ) +m2;γ .

Clearly, if x ∼ ν1,γ , then Λ̃γ(x) ∼ ν2,γ . Now for any t ∈ (0, 1) we define the interpo-
lation Λ̃γ,t(x) = (1− t)x+ tΛ̃γ(x) and the approximate interpolating measures ν1→2

t;γ

for t ∈ (0, 1) as push-forward measures

(4.13) ν1→2
t;γ := ν1,γ ◦ Λ̃−1

γ,t.

From the construction it follows that the ν1→2
t;γ = N(mt,γ , Ct,γ) are nondegenerate

Gaussian measures on Hγ . Furthermore, if the means m1 and m2 coincide, then we
have m1,γ = m2,γ = mt,γ for all t ∈ (0, 1), and in the same way, if the covariance
operators C1 and C2 coincide, then we have C1,γ = C2,γ = Ct,γ for all t ∈ (0, 1).

As a next step we will establish that for any γ the function

t 0→ DKL(ν
1→2
t;γ ∥µγ)

is convex. To this end it is useful to write

(4.14) DKL(ν
1→2
t;γ ∥µγ) = Hγ(ν

1→2
t;γ ) + Fγ(ν

1→2
t;γ ) + log(Z̃γ),

where Fγ(ν1→2
t;γ ) = Eν1→2

t;γ
[
Ψ(x)

]
and

Hγ(ν
1→2
t;γ ) =

∫

Hγ

dν1→2
t;γ

dLγ
(x) log

(
dν1→2

t;γ

dLγ
(x)

)
dLγ(x).
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4114 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Note that Hγ(ν1→2
t;γ ) is completely independent of the measure µ0. Also note that

Hγ(ν1→2
t;γ ), the entropy of ν1→2

t;γ , can be negative because the Lebesgue measure is not
a probability measure.

We will treat the terms Hγ(ν1→2
t;γ ) and Fγ(ν1→2

t;γ ) separately. The treatment of Fγ

is straightforward using the (−κ)-convexity of Ψ and the coupling described above.
Indeed, we can write

Fγ(ν
1→2
t;γ ) = Eν1→2

t;γ
[
Ψ(x)

]

= Eν1,γ
[
Ψ
(
(1− t)x + tΛ̃γ(x)

)]

≤ (1− t)Eν1,γ
[
Ψ(x)

]
+ tEν1,γ

[
Ψ(Λ̃γ(x))

]
− κ

t(1− t)

2
Eν1,γ∥x− Λ̃γ(x)∥2H1

≤ (1− t)Fγ

(
ν1,γ

)
+ tFγ

(
ν2,γ

)
− κ

t(1− t)

2
Eν1,γ ∥x− Λ̃γ(x)∥2H1 .(4.15)

Note that this argument does not make use of any specific properties of the mapping
x 0→ Λ̃γ(x), except that it maps µ1;γ to µ2;γ . The same argument would work for
different mappings with this property.

To show the convexity of the functional Hγ we will make use of the fact that
the matrix Λγ is symmetric and strictly positive. For convenience, we introduce the
notation

ρ(x) =
ν1;γ
dLγ

(x), ρt(x) :=
dν1→2

t;γ

dLγ
(x).

Furthermore, for the moment we write F (ρ) = ρ log(ρ). By the change of variables
formula we have

ρt(Λ̃γ(x)) =
ρ(x)

det
(
(1− t) Idγ +tΛγ

) ,

where we denote by Idγ the identity matrix on Rγ . Hence we can write

Hγ(ν
1→2
t;γ ) =

∫

Hγ

F
(
ρt(x)

)
dLγ(x)

=

∫

Hγ

F

(
ρ(x)

det
(
(1 − t) Idγ +tΛγ

)
)
det
(
(1− t) Idγ +tΛγ

)
dLγ(x).

For a diagonalizable matrix Λ with nonnegative eigenvalues the mapping [0, 1] ∋ t 0→
det((1− t) Id+tΛγ)

1
γ is concave, and as the map s 0→ F (ρ/sd)sd is nonincreasing, the

resulting map is convex in t. Hence we get

Hγ(ν
1→2
t;γ ) ≤ (1− t)

∫

Hγ

F
(
ρ(x)

)
dLγ(x) + t

∫

Hγ

F

(
ρ(x)

Λγ

)
det
(
Λγ

)
dLγ(x)

= (1− t)Hγ

(
ν1;γ

)
+ tHγ

(
ν2;γ

)
.(4.16)

Therefore, combining (4.14), (4.15), and (4.16) we obtain for any γ that

DKL

(
ν1→2
t;γ

∥∥µγ

)
≤ (1− t)DKL

(
ν1,γ

∥∥µγ

)
+ tDKL

(
ν2,γ

∥∥µγ

)

− κ
t(1− t)

2
Eν1,γ∥x− Λ̃γ(x)∥2H1 .(4.17)
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KULLBACK–LEIBLER APPROXIMATION 4115

It remains to pass to the limit γ → ∞ in (4.17). First we establish that for i = 1, 2
we have DKL

(
νi,γ
∥∥µγ

)
→ DKL

(
νi
∥∥µ
)
. In order to see that we write

(4.18) DKL

(
νi,γ
∥∥µγ

)
= DKL

(
νi,γ
∥∥µ0,γ

)
+ Eνi,γ

[
Φ(x)

]
+ log(Zγ),

and a similar identity holds for DKL

(
νi
∥∥µ
)
. The Gaussian measures νi,γ and µ0,γ are

projections of the measures νi and µ0, and hence they converge weakly as probability
measures on H to these measures as γ → ∞. Hence the lower semicontinuity of the
Kullback–Leibler divergence (Proposition 2.1) implies that for i = 1, 2

lim inf
γ→∞

DKL

(
νi,γ
∥∥µγ

)
≥ DKL

(
νi
∥∥µ0

)
.

On the other hand, the Kullback–Leibler divergence is monotone under projections
(Proposition 4.2), and hence we get

lim sup
γ→∞

DKL

(
νi,γ
∥∥µγ

)
≤ DKL

(
νi
∥∥µ0

)
,

which established the convergence of the first term in (4.18). The convergence of the
Zγ = Eµ0,γ

[
exp

(
− Φ(x)

)]
and of the Eνi,γ

[
Φ(x)

]
follow from Lemma 4.1 and the

integrability assumption (3.17).
In order to pass to the limit γ → ∞ on the left-hand side of (4.17) we note that

for fixed t ∈ (0, 1) the measures ν1→2
t;γ form a tight family of measures on H. Indeed,

by weak convergence the families of measures ν1,γ and ν2,γ are tight on H. Hence, for
every ε > 0 there exist compact in H sets K1 and K2 such that for i = 1, 2 and for
any γ we have νi,γ(Kc

i ) ≤ ε. For a fixed t ∈ (0, 1), the set

Kt := {x = (1 − t)x1 + tx2 : x1 ∈ K1, x2 ∈ K2}

is compact in H and we have, using the definition of ν1→2
t;γ , that

ν1→2
t;γ (Kc

t ) ≤ ν1,γ(K
c
1) + ν2,γ(K

c
2) ≤ 2ε,

which shows the tightness. Hence we can extract a subsequence that converges to
a limit ν1→2

t . This measure is Gaussian by Lemma B.1, and by construction its
mean coincides with m1 if m1 = m2, and in the same way its covariance coincides
with C1 if C1 = C2. By the lower semicontinuity of the Kullback–Leibler divergence
(Proposition 2.1) we get

(4.19) DKL

(
ν1→2
t

∥∥µ
)
≤ lim inf

γ→∞
DKL

(
ν1→2
t;γ

∥∥µγ

)
.

Finally, we have

(4.20) lim sup
γ→∞

Eν1,γ∥x− Λ̃γ(x)∥2H1 := K > 0.

In order to see this note that the measures ργ := ν1,γ [Id+Λ̃γ]−1 form a tight family
of measures on H ×H. Denote by ρ a limiting measure. This measure is a coupling
of ν1 and ν2, and hence if these measures do not coincide, we have

Eρ∥x− y∥2H1 > 0.
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4116 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Hence, the desired estimate (4.20) follows from Fatou’s lemma. This finishes the
proof.

Appendix A. Proof of Proposition 2.1. For completeness we give a proof of
the well-known proposition, Proposition 2.1, following closely the exposition in [14,
Lemma 1.4.2]; see also [1, Lemma 9.4.3].

We start by recalling the Donsker–Varadhan variational formula

(A.1) DKL(ν∥µ) = sup
Θ

EνΘ− logEµeΘ,

where the supremum can be taken either over all bounded continuous functions or
all bounded measurable functions Θ : H → R. Note that as soon as ν and µ are
equivalent, the supremum is realized for Θ = log

(
dν
dµ

)
.

We first prove the lower semicontinuity. For any bounded and continuous Θ : H →
R the mapping (ν, µ) 0→ EνΘ − logEµeΘ is continuous with respect to weak conver-
gence of ν and µ. Hence, by (A.1) the mapping (ν, µ) 0→ DKL(ν∥µ) is lower semicon-
tinuous as the pointwise supremum of continuous mappings.

We now prove the compactness of sublevel sets. By the lower semicontinuity of
ν 0→ DKL(ν∥µ) and Prokohorov’s theorem [5] it is sufficient to show that for any
M < ∞ the set B := {ν : DKL(ν∥µ) ≤ M} is tight. The measure µ is inner regular,
and therefore for any 0 < δ ≤ 1 there exists a compact set Kδ such that µ(Kc

δ ) ≤ δ.
Then choosing Θ = 1Kc

δ
log
(
1 + δ−1

)
in (A.1) we get, for any ν ∈ B,

log
(
1 + δ−1

)
ν(Kc

δ) = EνΘ

≤ M + log(EµeΘ
)

= M + log
(
µ(Kδ) + µ(Kc

δ )
(
1 + δ−1

))

≤ M + log
(
1 +

(
δ + 1

))
.

Hence, if for ε > 0 we choose δ small enough to ensure that

M + log(3)

log
(
1 + δ−1

) ≤ ε,

we have, for all ν ∈ B, that ν(Kc
δ) ≤ ε.

Appendix B. Some properties of Gaussian measures. The following lemma
summarizes some useful facts about the weak convergence of Gaussian measures.

Lemma B.1. Let νn be a sequence of Gaussian measures on H with mean mn ∈ H
and covariance operators Cn.

1. If the νn converge weakly to ν⋆, then ν⋆ is also Gaussian.
2. If ν⋆ is Gaussian with mean m⋆ and covariance operator C⋆, then νn converges

weakly to ν⋆ if and only if the following conditions are satisfied:
(a) ∥mn −m⋆∥H converges to 0.
(b) ∥

√
Cn −

√
C⋆∥HS(H) converges to 0.

3. Condition (b) can be replaced by the following condition:
(b’) ∥Cn − C⋆∥L(H) and Eνn∥x∥2H − Eν⋆∥x∥2H converge to 0 .

Proof. Point 1. Assume that νn converges weakly to ν. Then for any continuous
linear functional φ : H → R the push-forward measures νn ◦ φ−1 converge weakly to
ν ◦ φ−1. The measures νn ◦ φ−1 are Gaussian measures on R. For one dimensional
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KULLBACK–LEIBLER APPROXIMATION 4117

Gaussians a simple calculation with the Fourier transform (see, e.g., [23, Proposi-
tion 1.1]) shows that weak limits are necessarily Gaussian and weak convergence is
equivalent to the convergence of mean and variance. Hence ν ◦ φ−1 is Gaussian,
which in turn implies that ν is Gaussian. Points 2 and 3 are established in [7, Chap-
ter 3.8].

As a next step we recall the Feldman–Hajek theorem as proved in [11, Theorem
2.23].

Proposition B.2. Let µ1 = N(m1, C1) and µ2 = N(m2, C2) be two Gaus-
sian measures on H. The measures µ1 are either singular or equivalent. They are
equivalent if and only if the following three assumptions hold:

1. The Cameron–Martin spaces C
1
2
1 H and C

1
2
2 H are norm equivalent spaces with,

in general, different scalar products generating the norms; we denote the space
by H1.

2. The means satisfy m1 −m2 ∈ H1.

3. The operator
(
C

1
2
1 C

− 1
2

2

)(
C

1
2
1 C

− 1
2

2

)⋆ − Id is a Hilbert–Schmidt operator on H.

Remark B.3. Actually, in [11], item 3 is stated as
(
C

− 1
2

2 C
1
2
1

)(
C

− 1
2

2 C
1
2
1

)⋆ − Id is a
Hilbert–Schmidt operator on H. We find the formulation in item 3 more useful, and

the fact that it is well-defined follows since C
1
2
1 C

− 1
2

2 is the adjoint of C
− 1

2
2 C

1
2
1 . The

two conditions are shown to be equivalent in [7, Lemma 6.3.1(ii)].
The methods used within the proof of the Feldman–Hajek theorem, as given in [11,

Theorem 2.23], are used below to prove the following characterization of convergence
with respect to total variation norm for Gaussian measures.

Lemma B.4. For any n ≥ 1 let νn be a Gaussian measure on H with covariance
operator Cn and mean mn, and let ν⋆ be a Gaussian measure with covariance operator
C⋆ and mean m⋆. Assume that the measures νn converge to ν⋆ in total variation. Then
we have

(B.1)
∥∥C

1
2
⋆

(
C−1

n − C−1
⋆

)
C

1
2
⋆

∥∥
HS(H)

→ 0 and ∥mn −m⋆∥H1 → 0.

In order to prove Lemma B.4 we recall that for two probability measures ν and
µ the Hellinger distance is defined as

Dhell(ν;µ)
2 =

1

2

∫ (√
dν

dλ
(x)−

√
dµ

dλ
(x)

)2

dλ(dx),

where λ is a probability measure on H such that ν ≪ λ and µ ≪ λ. Such a λ always
exists (average ν and µ, for example), and the value does not depend on the choice
of λ.

For this we need the Hellinger integral

(B.2) H(ν;µ) =

∫ √
dµ

dλ
(x)

√
dν

dλ
(x) λ(dx) = 1−Dhell(ν;µ)

2.

We recall some properties of H(ν;µ).
Lemma B.5 (see [11, Proposition 2.19]).
1. For any two probability measures ν and µ on H we have 0 ≤ H(ν;µ) ≤ 1.

We have H(ν;µ) = 0 if and only if µ and ν are singular, and H(ν;µ) = 1 if
and only if µ = ν.

2. Let F̃ be a sub-σ-algebra of F , and denote by HF̃ (ν, µ) the Hellinger integrals
of the restrictions of ν and µ to F̃ . Then we have

(B.3) HF̃ (ν, µ) ≥ H(ν;µ).
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4118 F. J. PINSKI, G. SIMPSON, A. M. STUART, AND H. WEBER

Proof of Lemma B.4. Before commencing the proof we demonstrate the equiva-
lence of the Hellinger and total variation metrics. On the one hand the elementary
inequality (

√
a−

√
b)2 ≤ |a− b| which holds for any a, b ≥ 0 immediately yields that

Dhell(ν;µ)
2 ≤ 1

2

∫ ∣∣∣∣
dν

dλ
(x)− dµ

dλ
(x)

∣∣∣∣ λ(dx) = Dtv(ν, µ).

On the other hand the elementary equality (a− b) = (
√
a−

√
b)(

√
a+

√
b), together

with the Cauchy–Schwarz inequality, yields

Dtv(ν;µ) =
1

2

∫ ∣∣∣∣
dν

dλ
(x)− dµ

dλ
(x)

∣∣∣∣ λ(dx)

≤ Dhell(ν;µ)

∫ (√
dν

dλ
(x) +

√
dµ

dλ
(x)

)2

λ(dx) ≤ 4Dhell(ν;µ).

This justifies study of the Hellinger integral to prove total variation convergence.
We now proceed with the proof. We first treat the case of centered measures; i.e.,

we assume that mn = m⋆ = 0. For n large enough, νn and ν⋆ are equivalent, and
therefore their Cameron–Martin spaces coincide as sets, and in particular the opera-

tors C
− 1

2
⋆ C

1
2
n are defined on all of H and are invertible. By Proposition B.2 they are

invertible bounded operators on H. Denote by Rn the operator (C
− 1

2
⋆ C

1
2
n )(C

− 1
2

⋆ C
1
2
n )⋆.

This shows, in particular, that the expression (B.1) makes sense, as it can be rewritten
as

∥∥R−1
n − Id

∥∥2
HS(H)

→ 0.

Denote by (eα,α ≥ 1)4 the orthonormal basis of H consisting of eigenvectors of
the operator C⋆ and by (λα,α ≥ 1) the corresponding sequence of eigenvalues. For any
n the operator Rn can be represented in the basis (eα) by the matrix (rα,β;n)1≤α,β<∞,
where

rα,β;n =
⟨Cneα, eβ⟩√

λα λβ
.

For any α ≥ 1 define the linear functional

(B.4) ξα(x) =
⟨x, eα⟩√

λα
, x ∈ H.

By definition, we have for all α,β that

Eν⋆
[
ξα(x)

]
= 0, Eνn

[
ξα(x)

]
= 0,

Eν⋆
[
ξα(x)ξβ(x)

]
= δα,β, and Eνn

[
ξα(x)ξβ(x)

]
= rα,β;n.(B.5)

For any γ ≥ 1 denote by Fγ the σ-algebra generated by (ξ1, . . . , ξγ). Furthermore,
denote by Rγ;n and Iγ the matrices (rα,β;n)1≤α,β≤γ and (δα,β)1≤α,β≤γ . With this
notation (B.5) implies that we have

dνn
∣∣
Fγ

dν⋆
∣∣
Fγ

=
1√

det(Rγ;n)
exp

(
− 1

2

∑

α,β≤γ

ξαξβ
((
R−1

γ;n

)
α,β

− δα,β
))

,

4Use of the same notation as for the eigenfunctions and eigenvectors of C0 elsewhere should not
cause confusion.
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KULLBACK–LEIBLER APPROXIMATION 4119

and in particular we get the Hellinger integrals

HFγ

(
νn; ν⋆

)
=

(detR−1
γ,n)

1
4

(
det
(

Iγ+R−1
γ;n

2

)) 1
2

.

Denoting by
(
λα;γ;n,α = 1, . . . , γ

)
the eigenvalues of R−1

γ,n this expression can be
rewritten as

(B.6) − log
(
HFγ

(
νn; ν⋆

))
=

1

4

γ∑

α=1

log
(1 + λα;γ;n)2

4λα;γ;n
≤ − log

(
H(νn; ν⋆)

)
,

where we have used (B.3). The right-hand side of (B.6) goes to zero as n → ∞,
and in particular it is bounded by 1 for n large enough, say for n ≥ n0. Hence
there exist constants 0 < K1,K2 < ∞ such that for all n ≥ n0 and all γ,α we have
K1 ≤ λα;γ;n ≤ K2. There exists a third constant K3 > 0 such that for all λ ∈ [K1,K2]
we have

(1− λ)2 ≤ K3

4
log

(1 + λ)2

4λ
.

Hence, we can conclude that for n ≥ n0

∥∥R−1
γ,n − Iγ

∥∥2
HS(Rγ)

=
γ∑

α=1

∣∣λα;γ;n − 1
∣∣2 ≤ −K3 log

(
H(νn; ν⋆)

)
.

As this bound holds uniformly in γ, the claim is proved in the case mn = m⋆ = 0.
As a second step let us treat the case where mn and m⋆ are arbitrary but the

covariance operators coincide, i.e., for all n ≥ 1 we have Cn = C⋆ =: C. As above,
denote by (eα,α ≥ 1) the orthonormal basis of H consisting of eigenvectors of the op-
erator C and by (λα,α ≥ 1) the corresponding sequence of eigenvalues. Furthermore,
define the random variable ξα as above in (B.4). Then we get the identities

Eν⋆
[
ξα(x)

]
=

m⋆;α√
λα

, Eνn
[
ξα(x)

]
=

mn;α√
λα

,

covν⋆
(
ξα(x), ξβ(x)

)
= δα,β , and covνn

(
ξα(x)ξβ(x)

)
= δα,β ,

where covν⋆ and covνn denote the covariances with respect to the measures ν⋆ and
νn. Here we have set m⋆;α := ⟨m⋆, eα⟩ and mn;α := ⟨mn, eα⟩. Denoting as above by
Fγ the σ-algebra generated by (ξ1, . . . , ξγ) we get for any γ ≥ 1

(B.7) HFγ

(
νn; ν⋆

)
= exp

(
− 1

8

γ∑

α=1

1

λα

∣∣m⋆;α −mn;α

∣∣2
)
.

Noting that ∥mn−m⋆∥2H1 =
∑

α≥1
1
λα

∣∣mn;α−m⋆;α

∣∣2 and reasoning as above in (B.6)

we get that ∥mn −m⋆∥2H1 → 0.
The general case of arbitrarymn, m⋆, Cn, and C⋆ can be reduced to the two cases

above. Indeed, assume that νn converges to ν⋆ in total variation. After a translation
which does not change the total variation distance, we can assume that m⋆ = 0.
Furthermore, by symmetry, if the measures N(mn, Cn) converge to N(0, C⋆) in total
variation, then so do the measures N(−mn, Cn). A coupling argument, which we
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now give, shows that then the Gaussian measures N(0, 2Cn) converge to N(0, 2C⋆),
also in total variation. Let (X1, Y1) be random variables with X1 ∼ N(mn, Cn) and
Y1 ∼ N(0, C⋆) and P(X1 ̸= Y1) = ∥N(mn, Cn) − N(0, C⋆)∥tv, and in the same way
let (X2, Y2) be independent from (X1, Y1) and such that X2 ∼ N(−mn, Cn) and
Y2 ∼ N(0, C⋆) with P(X2 ̸= Y2) = ∥N(−mn, Cn) − N(0, C⋆))∥tv. Then we have
X1 +X2 ∼ N(0, 2Cn), Y1 + Y2 ∼ N(0, 2C⋆), and

∥N(0, 2Cn)−N(0, 2C⋆)∥tv = P(X1 +X2 ̸= Y1 + Y2)

≤ P(X1 ̸= Y1) + P(X2 ̸= Y2)

= 2∥N(mn, Cn)−N(0, C⋆)∥tv.

Hence we can apply the first part of the proof to conclude that the desired conclusion
concerning the covariances holds.

We now turn to the means. From the fact that N(mn, Cn) and N(0, Cn) con-
verge to N(0, C⋆) in total variation we can conclude by the triangle inequality that
∥N(mn, Cn)−N(0, Cn)∥tv → 0 and hence logH(N(mn, Cn), N(0, Cn)) → 0. By (B.7)
this implies that

∥C− 1
2

n mn∥H ≤ 8 logH(N(mn, Cn), N(0, Cn)) → 0.

Furthermore, the convergence of

∥∥C
1
2
⋆ (C

−1
n − C−1

⋆ )C
1
2
⋆

∥∥
HS(H)

=
∥∥(C

1
2
⋆ C

− 1
2

n )(C
1
2
⋆ C

− 1
2

n
)⋆ − Id

∥∥
HS(H)

implies that supn≥1 ∥C
− 1

2
⋆ C

1
2
n ∥L(H) < ∞. So we can conclude that, as desired,

∥mn∥H1 ≤
(
sup
n≥1

∥C− 1
2

⋆ C
1
2
n ∥L(H)

)
∥C− 1

2
n mn∥H → 0.

Appendix C. Characterization of Gaussian measures via precision op-
erators.

Lemma C.1. Let C0 = (−∂2
t )

−1 be the inverse of the Dirichlet Laplacian on
[−1, 1] with domain H2([−1, 1])∩H1

0 ([−1, 1]). Then µ0 = N(0, C0) is the distribution
of a homogeneous Brownian bridge on [−1, 1]. Consider measure ν ≪ µ0 defined by

(C.1)
dν

dµ0
(x(·)) = 1

Z
exp

(
− 1

2

∫ 1

−1
θ(t)x(t)2 dt

)
,

where θ is a smooth function with infimum strictly larger than −π2

4 on [−1, 1]. Then
ν is a centered Gaussian N(0, C) with C−1 = C−1

0 + θ.
The following proof closely follows techniques introduced to prove Theorem 2.1

in [29].
Proof. As above, denote H = L2([−1, 1]) and H1 = H1

0 ([−1, 1]). Furthermore,
let (eα,λα,α ≥ 1) be the eigenfunction/eigenvalue pairs of C0 ordered by decreasing
eigenvalues. For any γ ≥ 1 let πγ be the orthogonal projection on H onto Hγ =
span(e1, . . . , eγ). Denote H⊥

γ = (Id−πγ)H.
For each γ ≥ 1 define the measure νγ ≪ µ0 by

dνγ
dµ0

(x(·)) = 1

Zγ
exp

(
− 1

2

∫ 1

−1
θ(t)

(
πγx(t)

)2
dt

)
.
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We first show that the νγ are centered Gaussian, and we characterize their covari-
ance. To see this note that µ0 factors as the independent product of two Gaussians
on Hγ and H⊥

γ . Since the change of measure defining νγ depends only on πγx ∈ Hγ ,
it follows that νγ also factors as an independent product. Furthermore, the factor
on H⊥

γ coincides with the projection of µ0 and is Gaussian. On Hγ , which is finite
dimensional, it is clear that νγ is also Gaussian because the change of measure is
defined through a finite dimensional quadratic form. This Gaussian is centered and
has inverse covariance (precision) given by πγ(C

−1
0 + θ)πγ = πγC−1πγ . Hence νγ is

also Gaussian; denote its covariance operator by Cγ .
A straightforward dominated convergence argument shows that νγ converges

weakly to ν as a measure on H, and it follows that ν is a centered Gaussian by
Lemma B.1; we denote the covariance by Σ. It remains to show that Σ = C. On the
one hand, we have by Lemma B.1, item 3, that Cγ converges to Σ in the operator
norm. On the other hand, we have for any x ∈ H1 and for γ ≥ 1 that

∣∣⟨x,C−1
γ x⟩ − ⟨x,C−1x⟩

∣∣ =
∫ 1

−1
θ(t)

(
(Id−πγ)x(t)

)2
dt ≤ ∥θ∥L∞∥(Id−πγ)x(t)∥2L2

≤ ∥θ∥L∞λ2
γ∥x(t)∥2H1

0
.

As the λγ → 0 for γ → ∞ and as the operator C
1
2C

− 1
2

0 is a bounded invertible operator
on H1, this implies the convergence of C−1

γ to C−1 in the strong resolvent sense by [31,
Theorem VIII.25]. The conclusion then follows as in the proof of Theorem 3.10.

Acknowledgment. The third author is grateful to Colin Fox for fruitful discus-
sions on related topics.

REFERENCES
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