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Analysis of the Gibbs Sampler for Hierarchical Inverse Problems*
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Abstract. Many inverse problems arising in applications come from continuum models where the unknown
parameter is a field. In practice the unknown field is discretized, resulting in a problem in RY, with
an understanding that refining the discretization, that is, increasing N, will often be desirable. In
the context of Bayesian inversion this situation suggests the importance of two issues: (i) defining
hyperparameters in such a way that they are interpretable in the continuum limit N — co and so
that their values may be compared between different discretization levels; and (ii) understanding
the efficiency of algorithms for probing the posterior distribution as a function of large N. Here
we address these two issues in the context of linear inverse problems subject to additive Gaussian
noise within a hierarchical modeling framework based on a Gaussian prior for the unknown field
and an inverse-gamma prior for a hyperparameter, namely the amplitude of the prior variance. The
structure of the model is such that the Gibbs sampler can be easily implemented for probing the
posterior distribution. Subscribing to the dogma that one should think infinite-dimensionally before
implementing in finite dimensions, we present function space intuition and provide rigorous theory
showing that as IV increases, the component of the Gibbs sampler for sampling the amplitude of the
prior variance becomes increasingly slower. We discuss a reparametrization of the prior variance that
is robust with respect to the increase in dimension; we give numerical experiments which exhibit
that our reparametrization prevents the slowing down. Our intuition on the behavior of the prior
hyperparameter, with and without reparametrization, is sufficiently general to include a broad class
of nonlinear inverse problems as well as other families of hyperpriors.
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1. Introduction. We consider the possibly nonlinear inverse problem of recovering an
unknown parameter u € X’ from a noisy indirect observation y € ). We work in a framework
where X is an infinite-dimensional separable Hilbert space with inner product <-, > and norm
| - ||, and ) is also a separable Hilbert space. We will be especially interested in the case
Y =X or Y = RM. The unknown parameter and the observation are related through an
additive noise model

(1.1) y=G(u)+mn,
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where G : X — ) is the forward map which is assumed to be continuous, and 7 is Gaussian
noise:

(1.2) n ~ N(0,\71Cy).

The linear operator C1 : Y — ) is bounded and positive definite, and A > 0 models the noise
level; we do not enforce that Cq is trace class, thereby allowing the case of Gaussian white
noise where it is the identity.

We adopt a Bayesian approach with a Gaussian prior on the unknown parameter u,

(1.3) uld ~ N(0,671Cy),

where Cy : X — X is a positive definite and trace class operator and § > 0 models the
amplitude of the prior variance; the unknown w is assumed to be independent of the noise 7.
The trace class assumption on Cy ensures that draws from the prior on u|d are in X. For a
fixed u the likelihood is Gaussian, y|u,d ~ N (G(u), \"1Cy). We work under certain regularity
conditions on the forward map G, which imply that the inverse problem is sufficiently ill-posed;
in particular, for the noise model at hand, these conditions imply that the unknown w is not
perfectly identifiable from a single realization of the data. Under the additional assumption
that the prior on w|d is such that the regularity conditions on G are satisfied in its support,
it can be shown that almost surely with respect to the data the posterior on uly,d is well
defined, nondegenerate, and absolutely continuous with respect to the prior on u|d [39].

In what follows, we consider the hyperparameter ¢ as a part of the inference problem;
that is, we endow it with a prior P(d); this leads to a hierarchical Bayesian model. The
potential for the use of hierarchical priors in inverse problems has been highlighted in [23],
where the authors express the conviction that if a parameter is not known, it is a part of the
inference problem; see also [11, 10], where conditionally Gaussian hierarchical models have
been considered in finite-dimensional contexts. Returning to our setting, we note that of
course in practice other aspects of the model, such as parameters that control the regularity
of the draws from the prior, will also be part of the inference problem. Section 6 discusses
how the results of this paper can be extended to such situations, but the focus here is the joint
hierarchical inference on v and §. Statistical inference is achieved by Markov chain Monte
Carlo sampling from the resulting full posterior on u, d|y, where by Bayes’ rule,

P(u, dly) o< P(y|u, §)P(u|6)P(5) o Pluly, §)P(d]y).

A sufficient condition for this posterior to be well defined is that the prior P(J) is proper.
Due to the nature of the pair (u,d) € X x [0,00), sampling can be achieved by a
two-component Metropolis-within-Gibbs (MwG) algorithm. There is a range of possible
parametrizations for this MwG algorithm, perhaps the most natural of which is the so-called
centered algorithm (CA) [34]. This scheme alternates between simulating from wu|y,d and
0|y, u using Metropolis—Hastings steps. Each pair of such simulations is one algorithmic iter-
ation of a prescribed number k4. For specific models the simulation from the two condition-
als can be done directly, without Metropolis—Hastings, in which case the resultant algorithm
is the Gibbs sampler. Note that the model structure implies that § and y are conditionally
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independent given w, that is, dly,u = §|u. This is the defining property of the so-called
centered parametrization of a hierarchical model [34].

In practice, the inverse problem and the algorithm are discretized and Bayesian inference
is implemented in finite dimensions. We then have two sources of error in the estimated
posterior distribution: (a) the approximation error due to the discretization of the unknown
and the forward problem, that is, the discretization bias, discussed in a general Bayesian
(nonhierarchical) inverse problem setting in [13]; and (b) the Monte Carlo error due to the
use of a Markov chain Monte Carlo method to sample the discretized posterior distribution.
Assuming that the discretization level of the unknown is N, we have that the total error is of
the order

(1.4) R + T—
for some s > 0 which relates to the quality of approximation of the unknown and forward
problem, and C(N), which depends on the mixing properties of the particular algorithm
used to probe the posterior. This picture allows the practitioner to get a rough idea how to
distribute the computational budget by balancing investments in higher discretization levels
with investments in longer chains in order to achieve the desired error level in the estimated
posterior distribution. In reality, of course, the constants that multiply these rates will be
relevant and hard to determine.

There are four principal motivations for formulating the inverse problem and the simu-
lation algorithms in infinite dimensions, while using consistent discretizations (in the sense
of numerical analysis; see subsection 1.2) for the numerical implementation. First, such for-
mulation is often more faithful to the mathematical model that we wish to learn from the
data. Second, it makes the inference comparable across different levels of discretization, so
that the estimation of the model with increasing values of N corresponds to a reduction in
the discretization bias at the cost of additional computation. Third, the prior distribution
on hyperparameters, such as §, represents the same prior beliefs across different levels of
discretization. On the contrary, when the finite-dimensional model is not a consistent dis-
cretization of an infinite-dimensional one, the prior on the hyperparameters might contain an
amount of information that depends on the level of discretization chosen; see, for example, the
last paragraph in subsection 1.2.2 below. Finally, practically useful algorithms can be designed
for moderate or even small values of N by studying their behavior at the asymptotic limit
N — oo. In fact, it is usually unrealistic to try to obtain practically useful theoretical results
on the convergence of Markov chain Monte Carlo for sampling nontrivial targets, unless such
asymptotic regimes are constructed and invoked. This is precisely the case with the Gibbs
sampler and related MwG algorithms, which are particularly hard to analyze (see, for exam-
ple, [32]). Similarly, conceiving of Metropolis—-Hastings methods in the infinite-dimensional
limit leads to algorithms with provably dimension-independent convergence properties, while
standard methods have convergence properties which degenerate with increased refinement of
the discretization; see [14] and discussion therein.

In this paper we investigate theoretically and numerically the performance of MwG al-
gorithms in the asymptotic regime of large N. In order to have a mathematically tractable
analysis, we focus on linear inverse problems; see subsection 1.1. For these models, and under
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a commonly adopted prior on §, the MwG becomes a Gibbs sampler. We establish a result
on the mean drift and diffusion of the d-chain in CA, which has the informal interpretation
that C'(N) is of the order N'/2. An immediate consequence of this result is that in order to
minimize the total error in (1.4), k4, should be scaled like N 1425 while for algorithms for
which C'(N) is uniformly bounded with respect to N, the same error level can be achieved by
scaling kpaqe like N2%; we expect this to be the case for the noncentered algorithm proposed
later in this section. We emphasize that although we prove this result for the linear model and
for a specific prior on 9, a detailed understanding of the ideas underlying our proofs indicates
that most of the details of the model, including linearity and the prior used on 9, do not really
affect the validity of our main finding, that is, that CA deteriorates with N. The fundamental
reason why this algorithm becomes unusable for large N is an absolute continuity property,
a high-level description of which we now provide. Note, however, that proving the result in
such generality is definitely beyond the scope of this paper.

In the infinite-dimensional limit, ¢ is an almost sure property of u|d ~ N(0,67Cq). This
means that a single draw of w contains infinite information about the value of ¢ that generated
it. In measure-theoretic terms, it means that the prior measures P(u|d) and P(ul|d’) for 6 # &
are mutually singular [16, Remark 2.10]. Recalling that we work under assumptions which
imply that u|y,d is absolutely continuous with respect to u|d, we deduce that § is also an
almost sure property of u|y,d. As a result, iterative simulation from the distributions, u|y, d
and 4|y, u, will fail in ever changing the initial value of §. On the other hand, recall that we
also work under assumptions that imply that w, and hence §, are not perfectly identifiable
from the data. Therefore, d|y is nondegenerate (provided the prior is nondegenerate), and
hence any single value of d has zero probability under the data. Concatenating, we have that
when iteratively simulating from wu|y,0 and 0|y, u, the values of u will be changing along
the iterations but will in fact be sampled from a subspace which has probability zero under
P(uly). In other words CA is reducible in infinite dimensions and will fail to sample from
u,d0|y. Iterative conditional sampling of the finite-dimensional approximation of w,d|y will
allow samples to be obtained from the (approximated) posterior distribution of § but will suffer
from increasingly slow mizing as the discretization level N increases. In fact, the dependence
between the discretized unknown parameter u and § increases with IV and becomes infinitely
strong in the limit NV — oo; it is this dependence that slows down the MwG.

In order to alleviate the undesirable effects of the strong dependence between the prior on
u and §, using intuition from [34, 37], we reparametrize the prior by writing u = 6~ 2v, where
v ~ N(0,Cp) and § ~ P(§). This results in a MwG algorithm which alternates between a step
of updating v|y, d and a step of updating d|y, v; this is an example of a noncentered algorithm
(NCA) [34]. Since v and § are now a priori independent, and recalling that w is not perfectly
identified by the data, the dependence of these two parameters is not perfect conditionally on
the data. Thus, the NCA is irreducible in infinite dimensions and is thus robust with respect
to the discretization level N. Hence, for NCA we expect that C'(N) is uniformly bounded
with respect to IV; we show numerical evidence in support of this statement in section 5.

1.1. The linear case: Modeling and notation. We will concentrate on the linear inverse
problem case with gamma priors on & which has the convenient property of conditional con-
jugacy. Specifically, we restrict our attention to the case G = K, where K : X — ) is a
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bounded linear operator. Then, the posterior distribution u|y, J is also Gaussian:

uly,d ~ N(mjy5(y),Crs);

see [29, 27], where formulae for the posterior mean and covariance operator are provided.
When the prior distribution and the noise are specified in terms of precision operators (that
is, inverse covariance operators), the following expressions for the posterior mean and precision
are known to hold in a range of situations in [3, 4]:

(1.5) C 5= K'C{'K +4C; ",
(1.6) C;’}gmA,g(y) = \K*C'y.

In order to introduce discretizations and their connection to the continuum limit we need
some additional notation; subsection 1.2 gives specific examples of continuum models and
their discretizations, where the notation introduced below is put into practice. In order to
avoid a notational overload, in the development of the theory we assume that X = ) and that
the discretization levels of the unknown and the data are the same. This assumption is not
crucial to our results, and we refer the reader to the Ph.D. thesis [2, section 4.5] for the more
general statements. Furthermore, in section 5, we present numerical examples corresponding
to both Y = X with an increasing discretization level which is the same for both the unknown
and the data, and Y = RM for some fixed M, while the dimension of the discretization of
the unknown is increased. The case ) = X arises, for example, when we observe the whole
unknown function subject to blurring and noise, while the case Y = RM can arise when we
have available blurred and noisy observations of the unknown at only M spatial locations (see
subsection 1.2.2). The two cases can also arise if we work in the spectral domain, depending
on the availability of observations of a full or only a partial spectral expansion of a blurred
noisy version of the unknown.

We denote by (-, ->R v and || - ||z~ the (possibly scaled) Euclidean inner product and norm
in RY and by || - ||2.xv the induced operator norm for N x N matrices. Throughout the paper
we assume that this norm and inner product on RY are scaled so that, formally, the large N
limit recovers the norm and inner product on the Hilbert space when, for example, spectral
or finite difference approximations are made. Henceforward, we use boldface and regular
typeface letters to distinguish between infinite and finite-dimensional objects, respectively.
We assume that we have a way of computing discretizations y € RY of the observation y
and replace the operators K,Cp, and C; by the N x N matrices K,Cp, and Cyp, respectively,
which arise from a consistent, in the sense of numerical analysis, family of approximations of
the corresponding operators. In this finite-dimensional setting, the unknown is u € RY and
it is assigned a finite-dimensional Gaussian prior, u|§ ~ N(0,57Cp). The noise distribution
has Lebesgue density, and the corresponding log-likelihood is quadratic in w. Thus, standard
Bayesian linear theory (see, for example, [28]) implies that the posterior is also Gaussian,
uly,8 ~ N(mys(y),Chs), where mys(y) and C; s solve (1.5) and (1.6), where the boldface
infinite-dimensional quantities are replaced by the corresponding finite-dimensional regular
typeface quantities.

Bayesian modeling for finite-dimensional approximations of linear inverse problems using
Gaussian priors and noise models was recently carried out in [6]. The approach consisted
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in simultaneous inference for the unknown u and the hyperparameters A and §. We will
concentrate on simultaneous inference on u and d only, since A can be efficiently estimated from
a single high-dimensional realization of the data, for example using quadratic variation. We
again refer the interested reader to the Ph.D. thesis [2, Chapter 4] for theoretical and numerical
results on the large N behavior of A when considered as part of the inference problem; we
stress here that for low-dimensional data, the inference on A is nontrivial. In [6], a standard
conditionally conjugate prior was used for the hyperparameter, 6 ~ Gamma(xg, 39), which
in this type of finite-dimensional Gaussian models is known to lead to a gamma conditional
posterior distribution [7, Chapter 5.2]:

N
(1.7) 0y, u ~ Gamma (oco + 5

1, -1
Bo+ 3o 2ull2 ).

The inference for this model was carried out using CA which in this case is a Gibbs
sampler (see Algorithm 1 in section 2 below), since both conditional distributions u|y,d and
|y, u belong to known parametric families and can be sampled directly. One of the main aims
of this paper is to analyze the convergence of this algorithm in the large N limit. We also
aim to exhibit, via numerical simulations, the deterioration of the performance of CA in the
large N limit, as well as the benefits of reparametrizing the prior and using the corresponding
NCA (see Algorithm 2 in section 2 below).

1.2. Examples of consistent discretizations. In order to aid the understanding of the
paper and in anticipation of the subsequent developments, we briefly describe two methods
for passing from the continuum infinite-dimensional model in X to a discrete model in RYV.
Here and elsewhere in the paper, we define a Gaussian white noise in R to be a random
variable ¢ given as ( = Z;V:1 ¢jej, where {ej}é-v:l is a basis in RY which is orthonormal in
the possibly scaled Euclidean inner product <-, ->R ~»> and {(;}jen is a sequence of independent
standard Gaussian random variables in R.

1.2.1. Spectral truncation. Let {e;}jen be a complete orthonormal basis in X. An
element w € X can be identified with the sequence {w;};jen of coefficients w; = <w,ej>,
and by Parseval’s identity the Hilbert space norm of w can be replaced by the f5-norm of
the sequence of coefficients (similarly for the inner product). Omne can then discretize w
by replacing it with w € span{ey,..., ey}, which is identified with the truncated sequence
of coefficients {wy,...,wy} € RY. The fo-norm and inner product are then replaced by
the Euclidean norm and inner product. Let X : X — X be a bounded operator which is
diagonalizable in {e;};cn with eigenvalues {N]Z}jeN' The operator X can be identified with
the sequence {,u]z}jeN, and we can discretize 3 at level N by replacing it with the finite
rank operator which is identified with the N x N diagonal matrix ¥ = diag(ulz, e ,,uﬁ).
If x ~ N(0,X) is a Gaussian random variable in X, we can discretize by replacing & with
x € span{ey, ..., ey}, which is identified with a random variable with distribution N'(0,X) in
RY. Equivalently, z is identified with Z%azo, where z( is a Gaussian white noise in RY with
respect to the standard orthonormal basis of Euclidean space. For more details see subsection
4.1.
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1.2.2. Finite difference approximation. Let X = L?(I),I = (0,1), and denote by Ag the
negative Laplacian densely defined on X with domain H?(I) N H}(I), that is, with Dirichlet
boundary conditions. We discretize the domain I using a grid of IV equally spaced points
{ﬁ, e NLH}, we can restrict our attention to the interior points due to the Dirichlet
boundary conditions. We define the inner product and norm in RY as

1
N 2

N
1 1
<u,v>RN =¥+ ]z::lujvj and HUHRN = <—N T ;ui)

Note that the natural orthonormal basis on the N-dimensional space of grid points with
respect to the above norm and inner product is {ej}jyzl, with e; = {v/N + 16;;}}¥,, where d;;
is Kronecker’s delta. For a function w in I which vanishes on the boundary, we consider its
discretization on the grid, and hence u; = u( +1) We thus have a discrete approximation of
X with norm and inner product which are the discrete analogues of the L?-norm and inner
product. We use finite differences to discretize Ag. In particular, we replace Ay by the N x N
matrix

2 -1 0 0]

-1 2 -1 :

Ag=(N+17*| o . . . ¢
: .o-1 2 -1

0 ... 0 -1 2

If z ~ N(0,%) is a Gaussian random variable in X where X is a function of Ay (for example,
a power), we discretize z by considering the N-dimensional random variable z = 2%20 defined
on the grid, where ¥ is the corresponding function of the matrix Ay and zy is a Gaussian
white noise with respect to {e; };V:1

In subsection 5.2 we consider subsampling at a set of M equally spaced points amongst
the NV grid points, where A]\/[[—j;ll is a nonnegative power of 2. To this end, we define the matrix
P c RMXN by

N+1
pP.— Lifg =igs
7 0 otherwise.

N;l) ", to the subsampled
vector of the values on the coarse grid {u(M—H) i]\il. If we fix M and let N increase, then

The matrix P maps the vector of values on the fine grid {u(

P corresponds to a discretization of the operator P : C(I) — RM defined as M pointwise
evaluations at the points z; = MLH,Z' =1,....,.M, (Pu); = u(MH) for any continuous
function u. A formal calculation suggests that the adjoint of the pointwise evaluation operator
at x € I is an operator mapping r € R to rd,, where J, is the Dirac distribution at x. This
suggests that P* : RM — C(I) maps r € RM to the linear combination of Dirac distributions
710z, + -+ + rpdg,,. At the same time the matrix PT ¢ RV*M maps the vector of values
on the coarse grid {u(ﬁ)}f‘il to a vector in RY which is zero everywhere except from the
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iﬁ,—ill-th components, where it is equal to u(ﬁ), t=1,...,M. Combining, and in order to

capture the effect of the Dirac distribution at the locations ﬁ’ we have that P* should be
discretized using the matrix (N + 1)P7.

Note that if AV(0,6717 1) is used as a prior on u|§ at level N, where T is the N x
N tridiagonal matrix in the definition of Ay, then this corresponds to having a prior with
covariance matrix (N + 1)267'Aq. In particular, if 6 ~ Gamma(xg, o), then we have that
mé ~ Gamma(og, (N + 1)?B¢), where in the large N limit the last gamma distribution
converges to a point mass at zero, while Ay approximates Ag. This means that as N — oo
the correlation structure of the prior is described by the limiting A but with an amplitude
which becomes larger and larger with ever-increasing confidence; in other words, as N grows,

the prior on u|d looks increasingly flatter.

1.3. Notation. We use subscripts to make explicit the dependence of the d-chain on the
discretization level N and superscripts to denote the iteration number in the Gibbs sampler.
For a random variable x which depends on the mutually independent random variables z;
and z9, we use E*1[z]| to denote the expectation of x with respect to z; for fixed zo. We use

T £ 22 to denote that the random variables z; and xo have the same law. Finally, for two
sequences of positive numbers {s;} and {t;}, we use the notation s; < t; to mean that s;/t;
is bounded away from zero and infinity uniformly in j.

1.4. Paper structure. In the next section we present the centered Gibbs and noncen-
tered MwG algorithms in our assumed linear conjugate setting; we also discuss the option of
integrating u out of the data likelihood and the resulting marginal algorithm. In section 3
we present our main result on the deterioration of the centered Gibbs sampler, which holds
under certain assumptions made at the discrete level and which are stated explicitly in the
same section. Our discrete level assumptions are typically inherited from Assumptions 3.1 on
the underlying infinite-dimensional model also stated in section 3 when consistent numerical
discretizations are used. In section 4 we exhibit three classes of linear inverse problems satis-
fying our assumptions on the underlying infinite-dimensional model. For the first two of these
classes, which is a class of mildly ill-posed and a class of severely ill-posed linear inverse prob-
lems both in a simultaneously diagonalizable setting, we also explicitly prove that our discrete
level assumptions are inherited from the infinite-dimensional assumptions when discretizing
via spectral truncation (see subsections 4.1 and 4.2). In section 5 we present numerical evi-
dence supporting our theory and intuition on the deterioration of the centered algorithm and
the merits of using the noncentered algorithm, using both spectral truncation (subsection 5.1)
and discretization via finite differences and subsampling (subsection 5.2). The main body of
the paper ends with concluding remarks in section 6, while the appendix in section 7 contains
the proof of our main result as well as several technical lemmas.

2. Sampling algorithms. We now present in more detail the different algorithms for sam-
pling u, §|y in linear hierarchical inverse problems and provide a high-level comparison of their
relative merits in the asymptotic regime of large N.

2.1. Centered algorithm (CA). We first provide pseudocode for the most natural algo-
rithm for sampling w, d|y in this linear conjugate setting, that is, the centered Gibbs sampler
used in [6] and discussed in section 1.
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Algorithm 1.

) Initialize 6 and set k = 0;

) u (mA s (1), Cy 5<k>)

2) S+ Gamma(oco + & 5, B0+ QHCO u(k H]RN

3) Set k=k+ 1. If k < kpyqq return to step (1), otherwise stop.

(0
(1
(
(

2.2. Noncentered algorithm (NCA). We now formulate in more detail the NCA intro-
duced in section 1. We define the algorithm in the mﬁnite dimensional setting and then
discretize it. We reparametrize the prior by writing w = 6~ 2'v where now v ~ N(0,Cy), and
the observation model becomes

(2.1) y=05:Kv+n.

The MwG sampler is used to sample v, §|y by iteratively sampling from the two conditionals.
Recall from the discussion on CA in section 1 that d|y, u = §|u, and note that |y, v no longer
simplifies to J|v, since even conditionally on v, 0 and y are dependent; this is the noncentered
property in the hierarchical model [34]. Additionally, note that a practically useful way to
sample from v|y, d, which recycles available code for CA, is to first sample ul|y,d, as in CA,
and then transform w tolv via v = 6. Finally, for reasons of efficiency described below, we
prefer to sample 7 = 6~ 2 instead of ¢ directly. In order to obtain the same Bayesian model
as the one before the transformation, the prior distribution for 7 should be the one obtained
from the prior on § after the 1/ /6 transformation, that is, a square root of an inverse-gamma
distribution. Of course, we can deterministically calculate § = 1/72 after each such update to
get §-samples and proceed to the next conditional simulation in the algorithm.

The finite-dimensional discretization of the algorithm is obtained in the same way as CA.
We notice that the log-likelihood is quadratic in 7 for given v. We can exploit this property
to sample 7 efficiently. The conditional posterior 7|y, v is not Gaussian, because the prior
on 7 is not Gaussian, and hence for our numerical results we replace direct simulation from
the conditional with a Metropolis—Hastings step that targets the conditional. Given that the
conditional posterior is the product of the prior and the conditional likelihood, and we expect
the likelihood to be the dominant term of the two, we use the likelihood, seen as a function
of T, as a proposal density in the Metropolis—Hastings step. The likelihood as a function of 7
is Gaussian N (7 ,, qiv), where

1 _1
(2.2) = Ale KR, S = MKy )
Q)\,U q)\,v

and hence is easy to simulate from. Proposals generated in this way are immediately rejected
if negative, and if not, they are accepted according to the Metropolis—Hastings ratio that by
construction involves only the prior density. Note that the same complication would arise
had we chosen to work with ¢ instead of 7, since d|y,v is also not a known distribution. The
difference in that case is that there is no apparent good proposal density for the Metropolis—
Hastings step, since the likelihood is not a known distribution as a function of §.
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We use the following Gibbs sampler, where p(-) denotes the density of the square root of
the inverse-gamma distribution with parameters &g, 3¢.

Algorithm 2.
(0) Initialize 79, calculate 6 = 1/(7(9)2, and set k = 0;
(1) wl®) ~ N (my 50 (1), Cy 00)
vk = (5(k))%u(k);
(2) propose T ~ N (1) ,m), G5 0));
if 7 <0 reject; if 7 > 0 accept with probability ppﬂ A 1 otherwise reject;

G
if 7 accepted set 7t = 7 otherwise set ;1) = 7(%)
§k+1) — 1/(T(k+1))2;

(3) Set k =k + 1. If k < kypqq return to step (1), otherwise stop.

9

2.3. Marginal algorithm (MA). Given that u (and hence Ku) and n are independent
Gaussian random variables, the marginal distribution of the data y given ¢ is also Gaussian,

ylo ~ N(0,6 ' KCoK +X7'¢Cy).
One can then use Bayes’ theorem to get that

P(d]y) oc P(y|6)P(0).

This distribution can be sampled using the random walk Metropolis (RWM) algorithm. In
order to get samples from wu,d|y, we alternate between drawing J|y and updating uly, 9.
Furthermore, it is beneficial to the performance of the RWM to sample log(d)|y instead of
dly; of course, samples from log(d)|y can be deterministically transformed to samples from
d|ly. The resultant algorithm is what we call the marginal algorithm (MA). MA in the discrete
level is as follows, where p(-) now denotes the density of the logarithm of a gamma distribution
with parameters g, B¢ and p = log(d).

Algorithm 3.

(0) Initialize p(®) and set k = 0;

(1) ul®) ~ N(mA,(s(k) (y),cms(k))%

(2) propose p ~ N (p*), s%);
accept with probability B (] exp(r®) )p0 (o)
if p accepted set p*t1D) = p. otherwise set p+1) = pk).
set §(k+1) — eXp(p(k+1));

(3) Set k =k + 1. If k < kjpae return to step (1), otherwise stop.

P(y| exp(p))po(p)

A 1 otherwise reject;

We follow the rule of thumb proposed in [19] and choose the RWM proposal variance s?

to achieve an acceptance probability around 44%.

2.4. Contrasting the methods. As discussed in section 1, and as formally shown in section
3, CA will deteriorate as the discretization level of the unknown, N, becomes larger. To
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get a first understanding of this phenomenon in the linear-conjugate setting, note that the
Gamma(xyg, Bo) distribution has mean and variance a3 L and xofy 2 respectively. Hence,
for any p > 0, as N grows, the random variable Gamma(xg + %, Bo + ,ug) behaves like a
Dirac distribution centered on p~!. Furthermore, we will show that, because of the consistency
of the approximation of the operators defining the Bayesian inverse problem, together with
scaling of the norms on RY to reproduce the Hilbert space norm limit, it is natural to assume
that

Ics Fu® |2, ~ (64))1N.

Using the limiting behavior of the gamma distribution described above, this means that as
the dimension N increases, we have 61 ~ §(%) and hence the d-chain makes very small
moves and slows down.

In contrast, both conditionals u|y,d and d|y, v sampled in NCA are nondegenerate even
in the infinite-dimensional limit. Our numerical results show that this reparametrization is
indeed robust with respect to the increase in dimension (see section 5), although establishing
formally that a spectral gap exists for NCA in this limit is beyond the scope of this paper.

Similarly, both distributions u|y,0 and J|y sampled in MA are nondegenerate in the
continuum limit, and hence MA is robust with respect to N. Moreover, MA is optimal with
respect to the dependence between the two components of the algorithm, since the §-chain
is independent of the u-draws; there is a loss of efficiency due to the use of RWM to sample
|y, but provided the proposal variance is optimally tuned, this will have only a minor effect
on the performance of MA. For these reasons, in section 5 we use the optimally tuned MA as
the gold standard with which we compare the performance of CA and NCA. Nevertheless, we
stress here the following:

(i) MA requires at each iteration the potentially computationally expensive calculation
of the square root and the determinant of the precision matrix of y|d. This makes the imple-
mentation of MA in large scale linear inverse problems less straightforward compared to CA
and NCA.

(ii) Even though we view MA as a gold, albeit potentially expensive, standard in our
linear setting, for nonlinear problems MA is not available. On the contrary, CA and NCA
are straightforward to extend to the nonlinear case (see section 6); this is one of the principal
motivations for studying the optimal parametrization of Gibbs sampling in this context.

3. Theory. In this section we present our theory concerning the behavior of CA as the
discretization level increases in the linear inverse problem setting introduced in subsection 1.1.
We first formulate our assumptions on the underlying infinite-dimensional model as well as a
corresponding set of discrete-level assumptions before presenting our main result on the large
N behavior of Algorithm 1.

3.1. Assumptions. We work under the following assumptions on the underlying infinite-
dimensional linear inverse problem.
Assumptions 3.1.

_1
(i) For any A,0 > 0, we have m) 5(y) € D(C, *) y-almost surely; that is, the posterior
mean belongs to the Cameron—Martin space of the prior on u|o.

1 1
(ii) €, 2 KCyK*C, ? is trace class; that is, the prior is sufficiently regularizing.
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Assumption 3.1(ii) implies the second and third conditions of the Feldman-Hajek theorem
[17, Theorem 2.23]. Together with Assumption 3.1(i), they thus imply that y-almost surely
uly, 0 is absolutely continuous with respect to u|d, and hence the infinite-dimensional intuition
on the behavior of CA described in section 1 applies.

In the following, we assume that Cy and Cq are positive definite NV x N matrices which are
the discretizations of the positive definite operators Co and C1, respectively, and the N x N
matrix K is the discretization of the bounded operator K. Our analysis of the d-chain is valid
under the following assumptions at the discrete level.

Assumptions 3.2.

(i) For almost all data y, for any A\,d > 0, there exists a constant ¢; = ¢1(y; \,0) > 0,
independent of NV, such that

_1
1Co 2mas ()| gy < c1-

(ii) There exists a constant ¢ > 0, independent of N and y, such that
_1 _1
Tr(Cy * KCoK™*Cy ?) < ca.

These assumptions are typically inherited from Assumptions 3.1 when consistent dis-
cretizations are used; see subsection 1.2 and section 4 for more details and examples.

3.2. Main result. We now present our main result on the behavior of Algorithm 1 in the
asymptotic regime of large N. We start by noting that the two steps of updating |y, and
]y, u in Algorithm 1 can be compressed to give one step of updating § and involving the noise
in the u update. Indeed, we denote by 5](5“) the §-draw in the k + 1 iteration of the Gibbs
sampler where the problem is discretized in RY. This draw is made using the previous draw

(k) (k)
N

of uly, d, which, assuming that J,’ = d, is denoted by u;’ and can be written as

3.1 () — c:
(3.1) Us mxs(y) + )\75@

where ( is an N-dimensional Gaussian white noise representing the fluctuation in step (1),
and Cy 5, m) s are given by the formulae (1.5), (1.6), respectively. Hence we have

N 1, -1
(3.2) 5](\lf+1) ~ Gamma <(X() +3 Bo + §HCO QUC(;k)H[zRN> .

Assumptions 3.2 ensure that the squared norm appearing in (3.2) behaves like 5! N, as
assumed in the discrete level intuition discussed in subsection 2.4. This is made precise in the
following lemma, which forms the backbone of our analysis and is proved in subsection 7.2.

Lemma 3.3. Under Assumptions 3.2, for any \,d > 0 we have

1, -1 N N
(3.3) Bo + 5110 s [ = 7' 5 + 071 S Wi + Fn (),

where (1) Wi n depends only on the white noise ¢ in (3.1), has mean zero and variance one, has
higher order moments which are bounded uniformly in N, and converges weakly to a standard
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normal random variable as N — oo; and (i) Fn(9) depends on the data y and y-almost surely
has finite moments of all positive orders uniformly in N (where the expectation is taken with
respect to ().

Combining with the scaling property of the gamma distribution as in the intuition de-
scribed in subsection 2.4, we show that as the dimension increases the §-chain makes increas-
ingly smaller steps, and we quantify the scaling of this slowing down. Indeed, we prove that
for large ]1V the é-chain makes moves which on average are of order N~! with fluctuations of
order N™2. As a result, it takes O(N) steps for the d-chain to move by O(1).

Theorem 3.4, Let A > 0, and consider Algorithm 1 under Assumptions 3.2. In the limit
N — oo, we have, almost surely with respect to y and where all the expectations are taken
with respect to the randomness in the algorithm, the following:

(i) The expected step in the d-chain scales like %, that is, for any 6 > 0,

N
FE oY = 60108 = 0] = (w0 + 13 — f(8:9)0* + O(N ),

where fn(0;y) is bounded uniformly in N. In particular, if there exists f(d;y) € R such that
In(0;y) = f(6;y), then

N
SE[ = o016 = 8] = (0 + 1)6 = £(3: 0% + 0(1),

(ii) The variance of the step also scales like %, and, in particular, for any d > 0,

g Var [ = 516y = 6] = 267 + O(N73).

Remark 3.5.

(i) The proof of Theorem 3.4 can be found in subsection 7.1 in the appendiz. FEquation
(7.2) is a key identity, as it very clearly separates the three sources of fluctuation in the draw
555“), that is, the fluctuation in the Gaussian-draw uly,d, the fluctuation in the gamma-draw
S|y, u, and the fluctuation in the data.

(i) fn(0;y) := ES[Fn(0;y)], where Fy is defined in the proof of Lemma 3.3. The as-
sumption on the convergence of fn(d;y) is trivially satisfied under Assumptions 3.2 if the
discretization scheme used is such that if the vector x € RN and the N x N matriz T are the
discretizations at level N of € € X and the linear operator T, respectively, then HTJ:HRN is a
nondecreasing sequence. This is the case, for example, in spectral truncation methods when T
is diagonalizable in the orthonormal basis used (see subsection 1.2.1).

Theorem 3.4 suggests that

(3.4) AR (PN N(((XO +1)ay) — fN(5§V)§y)(5](V))2> + \/% =

where = is a real random variable with mean zero and variance one. In the case where fy
has a limit, the last expression looks like the Euler—Maruyama discretization of the stochastic
differential equation

(3.5) s = (oo + 1 — £(3;9)8)ddt + v/26dW,
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where W = W (t) is a standard Brownian motion, with time step %. This is another mani-
festation of the fact that it takes O(N) steps for the d-chain to make a move of O(1) size.
Note that (3.4) implies that the expected square jumping distance of the Markov chain for
d generated by CA is O(1/N). Recall (see, for example, [38] for a recent account) that this
distance is defined as E[((SE\I;H) - 5](\];))2], where 5](\];) is drawn from the stationary distribution.
Hence, it is the expected squared step of the chain in stationarity. It is easy to check that
it equals 2Var(5](\lf))(1 - C’orr(éj(\]f), 5](5“))), where again all quantities are computed in sta-
tionarity. Although the expected square jumping distance is a sensible and practically useful
measure of efficiency of a Markov chain, there is no explicit result that links it to the variance
of Monte Carlo averages formed by using the output of the chain. This variance will not
only depend on autocorrelation at other lags but also on the function being averaged. Still,
it gives a rough idea: if the autocorrelation function associated with the identity function is
geometrically decaying, with lag-1 autocorrelation py, then the variance of the sample average
of kmaz, 5](\];) values in stationarity will be Var(éj(\];))(l + ,ON)/((l — pN)kmax). The point here

is that px behaves like 1 — ¢/N, for some ¢, but Var(éj((;)) is O(1). Hence, the Monte Carlo
error associated with ky,q, draws in stationarity is O(\/N/kmaz)-

4. Examples satisfying our assumptions. We now present three families of linear inverse
problems satisfying Assumptions 3.1 on the underlying continuum model: a family of mildly
ill-posed inverse problems, where the operators defining the problem are simultaneously di-
agonalizable [25]; a family of severely ill-posed inverse problems again in a diagonal setting
[26, 4]; and a family of mildly ill-posed inverse problems in a nondiagonal setting [3]. We
expect that Assumptions 3.2 will be satisfied by consistent discretizations of these models.
Indeed, we show that our discrete level assumptions are satisfied if we discretize the two diag-
onal examples using spectral truncation (see subsection 1.2.1). Furthermore, in section 5 we
provide numerical evidence that our ideas also apply in nondiagonal settings and when using
other discretization schemes, in particular discretization via finite difference approximations
(see subsection 1.2.2). We do not prove that discretization via finite differences satisfies our
discrete level assumptions, as it is beyond the scope of this paper; however, we expect this to
be the case.

4.1. Linear mildly ill-posed simultaneously diagonalizable inverse problem. We consider
the linear inverse problem setting of subsection 1.1, where K,Cy, and C; commute with
each other and K*K,C(, and C; are simultaneously diagonalizable with common complete
orthonormal eigenbasis {e;};en. Note that we do not assume that K and C; are compact, but
we do assume that K*K and C; are both diagonalizable in {e;} cn; in particular, we allow for
K and C; to be the identity. For any w € X, let w; := <w, ej>. Let 3 be a positive definite
and trace class operator in X which is diagonalizable in the orthonormal basis {e;} en, with
eigenvalues {,u?}jeN. Then for any p € X', we can write a draw © ~ N (p, X) as

o0
T=p+> \/uive,
j=1

where v; are independent standard normal random variables in R; this is the Karhunen-Loeve
expansion [1, Chapter IIL.3]. In fact, the Karhunen—Loéve expansion makes sense even if sz
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are not summable, that is, if 3 is not trace class in X’; the expansion then defines a Gaussian
measure in a bigger space than X in which 3 is trace class. This expansion suggests that since
we are in a simultaneously diagonalizable setting, we can use the Parseval identity and work
entirely in the frequency domain as in subsection 1.2.1. Indeed, we identify an element w € X
with the sequence of coefficients {w;};cn, as well as the norm and inner product in X with
the ¢?>-norm and inner product. Furthermore, we identify the operators Cg,Ci, and K with
the sequences of their eigenvalues {,ujc-o }iens {,u?l }jen, and {,uJK }jen, respectively. Algebraic
operations on the operators Cg,C1, K are defined through the corresponding operations on
the respective sequences.

We make the following assumptions on the spectral decay of K,Cq, and C;.

Assumptions 4.1. The eigenvalues of K*K,Cy, and Cq, denoted by (,u]K)2,,u§°, and ujc-l,
respectively, satisfy the following:'

(WP =g >0
7M§Ox] 205, Oé>§,

,ugl )

Let v be the joint distribution of y and w, where u|§ ~ N(0,67'Co) and y|u,d ~
N(Ku,A\"'Cy). Then, in this diagonal case, it is straightforward to show in the infinite-
dimensional setting that the conditional posterior ul|y,d is v-almost surely Gaussian,
N(m) 5(y),Crs), where Cy5 and m) 5(y) satisfy (1.5) and (1.6), respectively. We make
the following additional assumption.

Assumption 4.2. The parameters «, 3, in Assumptions 4.1 satisfy 2« + 4¢ — 23 > 1.

We show that under Assumptions 4.1 and 4.2, Assumptions 3.1 on the underlying infinite-
dimensional model are satisfied v-almost surely. Without loss of generality, assume § = A = 1.
For Assumption 3.1(i), we have, using the Karhunen-Loéve expansion and Assumption 4.1,

L , o i2a-dbtdh " ,
E”[|Co *m(y)||” < B (G128 +j2a)2(3_ TG+
j=1

where {(j}jen, {&j}jen are two independent sequences of independent standard normal ran-
dom variables. The assumptlon 2a0+4¢—25 > 1 secures that the right-hand 51de is finite, and

hence m(y) € D(C, 2) v-almost surely. For Assumption 3.1(ii), the operator C; 2KCOK*C1
has eigenvalues that decay like j~22~#+28 and hence are summable by Assumption 4.2.
We define the Sobolev-like spaces H!,t € R: for ¢t > 0, define

%
Ht — {u cX: HuH’Ht = Zj2t<ujyej>2 < OO},
=1

and for ¢t < 0, H! := (H~')*. We assume to have data of the following form.

1
Assumption 4.3. y = Kul + )\_%Cfﬁ, where u! € H#~2¢ is the underlying true solution
and £ is a Gaussian white noise, & ~ N(0, I).

Lo, B are not to be confused with «, 3, used, respectively, as shape and rate parameters of the gamma
distribution.
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Note that under Assumptions 4.1, 4.2, and 4.3, it is straightforward to check that As-
sumption 3.1(i) is also satisfied &-almost surely. Indeed, using the Karhunen—Loeve expansion
we have

. ) 00 jza—4£+4b 2, 12 L. 5.2
: . 1
E[[Cy*m(y)|” < CE§ : (j—4+26 1 j20)2 (7)) + A7270)%,
J=1

where {{;};en is a sequence of independent standard normal random variables. The assump-
tion 2a + 40 — 23 > 1 together with ul € HP~2 secures that the right-hand side is finite.
Assumption 3.1(ii) is independent of y and hence also holds by our previous considerations.

A natural way to discretize random draws in this setup is by truncating the Karhunen—
Loeve expansion which is equivalent to the spectral truncation in subsection 1.2.1. We assume
to have discrete data of the form

1
y = Kul + A73C7¢,

where K,Cy,uf, and ¢ are discretized as in subsection 1.2.1. The prior is also discretized
using spectral truncation, u ~ N(0,Cy). We show that Assumptions 3.2 are satisfied under
Assumptions 4.1 and 4.2 for this data and discretization scheme.

By Assumption 4.1, there exists a constant ¢ > 0, independent of N, such that

20— 40+4b
J

N
1
E[|c, *m(y)|2n < B — R
0 RN ; (j A28 4 52 )2 J J

where the right-hand side is bounded uniformly in /N, since we are summing nonnegative
numbers and we have seen that under Assumptions 4.2 and 4.3 the corresponding infinite
series is summable. Furthermore, again by Assumption 4.1, there exists another constant
¢ > 0, independent of N, such that

N
1 _1
Tr(C; 2KCoK™Cy %) < ey j2omth,
j=1

where the right-hand side is bounded uniformly in NV, since we have seen that under Assump-
tion 4.2 the corresponding infinite series is summable.

4.2. Linear severely ill-posed simultaneously diagonalizable inverse problem. We con-
sider the setting of [26, 4], that is, a similar situation with the previous example, where instead
of having (,uJK)2 = j=* we now have (,uJK)2 = ¢ 249" for b, s > 0. The proof of the validity of
Assumptions 3.1 v-almost surely is identical to the proof in the previous example, where we
now have the added advantage of the exponential decay of the eigenvalues of K*K. We can

1
also prove that for data of the form y = Ku'+ AT3C i &, where now it suffices to have ul e x,
Assumptions 3.1 are satisfied &-almost surely. Finally, in a similar way to the previous exam-
ple, Assumptions 3.2 are valid if we discretize this setup by spectral truncation (subsection
1.2.1).



ANALYSIS OF GIBBS SAMPLER FOR INVERSE PROBLEMS 527

4.3. Nondiagonal linear inverse problem. We consider the setting of [3], that is, the
linear inverse problem setting of subsection 1.1, where K*K,Cy, and C; are not necessar-
ily simultaneously diagonalizable but they are related to each other via a range of norm
equivalence assumptions expressing that K ~ Cé and C; ~ Cg for some ¢, > 0 (see [3,
Assumption 3.1]). Here ~ is used loosely to indicate two operators which induce equivalent
norms. As before let v be the joint distribution of y and u, where u|§ ~ N(0,67Cq) and
ylu,d ~ N(Ku,A\71Cy). Then, as in the simultaneously diagonalizable case examined above,
we have that the conditional posterior uly,d is v-almost surely N'(my s(y),C ), where C 5
and m) 5(y) satisfy (1.5) and (1.6), respectively (see [3, Theorem 2.1]). It is implicit in [3,

1

Theorem 2.1] that m) s5(y) € D(C,?) v-almost surely, and hence Assumption 3.1(i) holds
v-almost surely. Assumption 3.1(ii) also holds v-almost surely, since if {¢;};en is a complete
orthonormal system of eigenfunctions of Cy and {,ujc-o }jen the corresponding eigenvalues, by

. —L L2 GRS 12 CoN—B2Al s
3, Assumption 3.1(3)] we have ||C; 2 KCZ¢;||” < c[|C, o;|" = o(p5°) , which is
11
summable by [3, Assumption 3.1(1) and 3.1(2)]. Hence, C; * KC§ is Hilbert-Schmidt, and
1

_1 _1
thus C, > KCoK*C, * is trace class. We believe that Assumptions 3.2 on the discrete level are
also satisfied in this example if consistent discretization methods are used; however, proving
this is beyond the scope of the present paper.

5. Numerical results. We now present numerical simulations supporting our result in
section 3 on the large N behavior of CA described in subsection 2.1 and our intuition contained
in subsection 2.4 on the benefits of the reparametrization described in subsection 2.2. We
consider an instance and a modification of the mildly ill-posed diagonal setting presented in
subsection 4.1. In subsection 5.1 we use spectral truncation (see subsections 1.2.1 and 4.1),
and in subsection 5.2 we use finite difference approximation (see subsection 1.2.2).

5.1. Signal in white noise model using truncated Karhunen—Loéve expansion. We con-
sider the simultaneously diagonalizable setup described in subsection 4.1, where X = L?(I),1 =
(0,1). We consider the orthonormal basis e;(x) = v/2sin(jmz), = € I, and define the oper-
ators K,Cyp, and Cy directly through their eigenvalues ,u]K =1, M]Co = j73, and ,ugl =1 for
all 7 € N, respectively. In particular, this is the normal mean model, in which one assumes
observations of the form

yi=ui+mn5, JjEN,

where n; ~ N (0, A1) and the unknown is {u;};jen € ¢2. This model is clearly equivalent to
the white noise model

(5.1) Yy =u+n,

where 1 = )\_%5 and £ is an unobserved Gaussian white noise; see subsection 1.2.1. Note that
&, whose covariance function is a Dirac delta function, is not realizable in the basic Hilbert
space X (instead X is the corresponding Cameron—Martin space) but can be interpreted in
process form as, for example, in [8, 12] in the context of inverse problems. Although it can
be argued that white noise data models are unrealistic at the very smallest scales, they are a
useful idealization of noise which is best thought of as a continuous process with very short
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correlation lengthscales; in particular, if the correlation lengthscale is much smaller than the
grid scale used, then it is reasonable to use a white noise model. The white noise model
(5.1) is an important statistical model which is known to be asymptotically equivalent to
several standard statistical models, for example, nonparametric regression [9, 42]. It is also
practically relevant, since it is a nontrivial special case of the deconvolution inverse problem
[22, 36]. Finally, it gives rise to Gaussian posterior distributions which are well studied in the
sense of posterior consistency; see [25, 3, 36].

Defining Ay to be the negative Laplace operator in I with Dirichlet boundary (:onditions7

we recognize that we use a Gaussian prior with covariance operator Cy proportional to .Ag 2,
We then have that Assumptions 4.1 are satisfied with « = 1.5 and 8 = ¢ = 0; since 2a + 44 —
28 =3 > 1, Assumption 4.2 is also satisfied. We assume that we have data produced from
the underlying true signal uf(z) = Z]Oil u;ﬁsin(jmn), for x € I, where u; = ;=225 5in(105)
and A = 200, and in particular we have that the coefficients of y are given as

1
Y = u; + A72¢;,

where ¢; are standard normal random variables. It is straightforward to check that ul € H!
for any ¢t < 1.75, and hence Assumption 4.3 is also satisfied. According to the considerations
in subsection 4.1, we thus have that Assumptions 3.2 hold when using the spectral truncation
discretization method. This example is studied in [40], where the interest is in studying the
asymptotic performance of the posterior in the small noise limit (see section 6).

We use the hierarchical setup presented in subsection 1.1 and implement Algorithms 1
(CA), 2 (NCA), and 3 (MA) contained in section 2 at discretization levels N = 32,512,8192,
with hyperparameters g = 1,9 = 107%, chosen to give uninformative hyperpriors, that
is, hyperpriors whose variance is much larger than their mean. Following the discussion in
subsection 2.4, we view MA as the gold standard and benchmark CA and NCA against it.
We use 10* iterations and choose 6(2) = 1 in all cases. In order to have fair comparisons,
we use a fixed burn-in time of 10? iterations. We take the viewpoint that we have a fixed
computational budget, and hence we choose not to increase the burn-in time as N increases,
as one can do if infinite resources are available.

In Figure 1 we plot the true solution, the noisy data, and the sample means and credibility
bounds using CA and NCA for N = 8192. The sample means and credibility bounds at other
discretization levels of the unknown are similar and are therefore omitted.

04|

Figure 1. Left: true solution (dashed black) and noisy data (blue continuous). Middle and right: true
solution (dashed black), sample mean (red continuous), and 87.5% credibility bounds (shaded area) for CA
(middle) and NCA (right). Dimension is N = 8192.
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Figure 2. CA: d-chains (top) and kernel density estimates of the posterior on ¢ (bottom) for dimensions
N = 32,512, and 8192 left to right. In dashed red in the density plots is the density estimate using MA,
constdered as the gold standard.

In Figure 2 we see that for CA, in small dimensions the d-chain has a healthy mixing;
however, as predicted by Theorem 3.4, as N increases, it becomes increasingly slower and
exhibits diffusive behavior. This is also reflected in the density plots where we observe that
as IV increases, the kernel density estimates computed using CA look less and less like the
density estimates computed using MA which we consider to be optimal in this setting. In
Figure 3 we see that for NCA, as expected, the d-chain appears to be robust with respect to
the increase in dimension; this is also reflected in the density estimates using NCA which now
look very close to the ones obtained using MA for all discretization levels.
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Figure 3. NCA: §-chains (top) and kernel density estimates of the posterior on § (bottom) for dimensions

N = 32,512, and 8192 left to right.
considered as the gold standard.

In dashed red in the density plots is the density estimate using MA,

Our observations in Figures 2 and 3 are supported by the autocorrelation plots presented
in Figure 4. The rate of decay of correlations in the §-chain in CA appears to decrease as
the dimension increases, and in particular for N = 8192 the correlations seem not to decay at
all. On the contrary, the rate of decay of correlation in the J-chain in NCA appears not to be
affected by the increase in dimension and is very similar to the one in MA.
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Figure 4. Autocorrelation functions of §-chain, dimensions 32 (black), 512 (red), and 8192 (blue); left for
MA, middle for CA, and right for NCA.

5.2. Linear Bayesian inverse problem with coarse data using finite difference discretiza-
tion. We consider a modification of the simultaneously diagonalizable setup described in sub-
section 4.1, where X = L?(I),I = (0,1), and we allow K to map X into R and hence have
data y € RM. This setting is not directly covered by the theoretical analysis presented in
section 3; however, our theory readily generalizes to cover this setting; we refer the interested
reader to the Ph.D. thesis [2, section 4.5] for more details. The generalized analysis holds
again under Assumptions 3.2 on the discrete level based on intuition which holds for problems
satisfying Assumptions 3.1 on the underlying continuum model for the unknown wu.

In particular, we consider the problem of recovering a true signal w! by observing a blurred
version of it at M equally spaced points {ﬁ, ey Miﬂ}, polluted by additive independent
Gaussian noise of constant variance A™'. We define Ay to be the negative Laplacian with
Dirichlet boundary conditions in I. We let P be defined as in subsection 1.2.2 and define
K= I+ 1O()%.A())_l, and we consider the case K = PK, Cy = Agl, and C; = Iy in the
setting of subsection 1.1 and where [ is the M x M identity matrix. Notice that due to the
smoothing effect of K, the operator K is bounded in X. However, due to the presence of P,
K is not simultaneously diagonalizable with Cy.

We now check that this problem satisfies Assumptions 3.1. Indeed, assuming without loss
of generality that A = § = 1, by [39, Example 6 23] we have that the posterior covariance

and mean satlsfy (1.5) and (1. 6) and hence C, : m(y) = C, (C + K*K)"'K*y = (I +
1
C2K*KC2) 1CZK*y, Where C2K*y € X, and (I+C2K*KC2) is bounded in X by the

nonnegativity of(l’2 K*KC; : . Furthermore, we have that Tr(C; : KCyK*C, ? ) =Tr(KCyK™),
which is finite since KCOK* is an M x M matrix.

We discretize this setup at level N, using the finite difference approximation as explained
in subsection 1.2.2. In particular, we discretize Ay, P, and P* by replacing them with the
matrices Ag, P, and (N+1)P7, respectively, as in subsection 1.2.2; this induces a discretization
of the operators K and Cy by replacing them with the corresponding matrices K and Cy
calculated through the appropriate functions of Ay and P. In defining K, we also replace
the identity operator by the NV x N identity matrix. We do not prove that this discretization
scheme satisfies Assumptions 3.2; however, we expect this to be the case.

We assume that we have data produced from the underlying true signal uf(x) = 0.75 -



ANALYSIS OF GIBBS SAMPLER FOR INVERSE PROBLEMS 531

L10.1,0.25/(z) +0.25 - Lo 35,0.38) + sint(27x) - Ljp51)(z), @ € I In particular, we construct data
of the form

1
y = Ku' + \"2C2¢,

where A = 100 and using a discretization level N, = 8192 for the unknown; we treat this
discretization level as the continuum limit.

We implement Algorithms 1 (CA), 2 (NCA), and 3 (MA) for constant number of obser-
vation points M = 15, and for discretization levels of the unknown N = 15,127,1023, with
hyperparameters oy = 1, B = 1074, chosen to give uninformative hyperpriors, that is, hyper-
priors whose variance is much larger than their mean. Following the discussion in subsection
2.4, we view MA as the gold standard and benchmark CA and NCA against it. We use 10%
iterations and choose 6(°) = 1 in all cases. We again use a constant burn-in time of 103
iterations.

In Figure 5 we plot the true solution, the noisy data, and the sample means and credibility
bounds using CA and NCA for N = 1023. The sample means and credibility bounds at other
discretization levels of the unknown are similar and are therefore omitted.

Figure 5. Left: true solution (dashed black) and discrete blurred noisy data (blue asterisks). Middle and
right: true solution (dashed black), sample mean (red continuous), and 87.5% credibility bounds (shaded area)
for CA (middle) and NCA (right). Dimensions of true solution and observed data are N = 1023 and M = 15,
respectively.

In Figure 6 we see that for CA, in small dimensions the d-chain has a healthy mixing;
however, as predicted by our theory, as IV increases, it becomes increasingly slower and exhibits
diffusive behavior. This is also reflected in the density plots where we observe that as N
increases, the kernel density estimates computed using CA look less and less like the density
estimates computed using MA which we consider to be optimal in this setting. In Figure 7 we
see that for NCA the d-chain appears to be robust with respect to the increase in dimension;
this is also reflected in the density estimates using NCA which now look very close to the ones
obtained using MA for all discretization levels.

Our observations in Figures 6 and 7 are supported by the autocorrelation plots presented
in Figure 8. The rate of decay of correlations in the d-chain in CA appears to decrease as the
dimension increases, and in particular for large NV the correlations seem to decay very slowly.
On the contrary, the rate of decay of correlations in the d-chain in NCA appears not to be
affected by the increase in dimension and is relatively close to the one in MA.

6. Conclusions. We considered a hierarchical Bayesian approach to the function-space
general inverse problem (1.1), with Gaussian priors on the unknown function w which depend
on a variance-scaling parameter ¢ also endowed with a prior. We studied the finite-dimensional
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Figure 6. CA: d-chains (top) and kernel density estimates of the posterior on ¢ (bottom) for dimensions
N = 15,127, and 1023 left to right. In dashed red in the density plots is the density estimate using MA,
constdered as the gold standard.

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Figure 7. NCA: 0-chains (top) and kernel density estimates of the posterior on § (bottom) for dimensions
N = 15,127, and 1023 left to right. In dashed red in the density plots is the density estimate using MA,
considered as the gold standard.

implementation of this setup and, in particular, examined the mixing properties of MwG algo-
rithms for sampling the posterior as the discretization level N of the unknown increases. We
provided measure-theoretic intuition suggesting that under natural assumptions on the under-
lying function space model, as IV increases, CA, which is the most natural algorithm in this
setting, deteriorates (see section 1). We then used this intuition to propose a reparametriza-
tion of the prior for which the resultant algorithm, NCA, is expected to be robust with respect
to N. In the linear-conjugate setting we formulated a rigorous theory which quantifies the
deterioration of CA in the asymptotic regime of large N (see section 3).

This theory holds under assumptions on the discrete level (Assumptions 3.2) which we
expect to be inherited from our assumptions on the function-space model (Assumptions 3.1)
when consistent discretizations are used. Indeed, we provided three families of linear inverse
problems satisfying our assumptions on the underlying infinite-dimensional model (section
4), and for two of them, which are families of mildly and severely ill-posed problems in a
simultaneously diagonal setting, we also showed that a spectral truncation method based on
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Figure 8. Autocorrelation functions of §-chain, dimensions 15 (black), 127 (red), and 1023 (blue); left for
MA, middle for CA, and right for NCA.

the common eigenbasis satisfies our discrete level assumptions (subsections 4.1 and 4.2). It
would be interesting to show that discretization via finite differences of these examples also
satisfies our discrete assumptions.

Our numerical results confirmed our theory on the deterioration of CA as well as our intu-
ition about the robustness of NCA in the large N limit. However, for NCA the d-chain slows
down in the small noise limit. This is because even though v and § are a priori independent,
they both need to explain the data, and this creates an increasingly more severe constraint
as 1)\ becomes large. Hence, § and v concentrate near a lower-dimensional manifold, where
02 Kv ~ y, and the Gibbs sampler mixes poorly (see Figure 9 for a numerical illustration of
this effect in the example of subsection 5.1). Although MA is robust in both the large N and
the small noise limit, it can be prohibitively expensive for large scale inverse problems; new
work is required to produce effective hierarchical algorithms in this small noise limit when N
is large. We have considered the interweaving method of [41], which combines in each iteration
centered and noncentered draws of §, and the partially noncentered parametrizations of [33],
in which the prior is reparametrized as u = 5_%%, where v; ~ N(0,671Cy) for some t € [0, 1].
Our numerical experimentation did not suggest significant benefits from their use, and hence
we do not report them here, but further investigation of these issues would be of interest.

40 T T T T 01 F

008 |

006 |-

004 |

002 |-

0 2000 4000 6000 8000 10000 0 40 50 60

Figure 9. Signal in white noise model: NCA for small noise, A = 200%, and dimension N = 512; §-chain
(left) and kernel density estimate of posterior on & (right, black). In dashed red in the right plot is the density
estimate using MA, considered as the gold standard.

In addition to [6], a similar hierarchical setup has been considered in [40] in the signal
in white noise model (see subsection 5.1). The authors of [40] study a different aspect of
the problem, namely the asymptotic performance of the posterior distribution in the small
noise limit. This is motivated by results on posterior consistency suggesting that the optimal
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rates of contraction are achieved by rescaling the prior depending on the size of the noise
[25, 3, 26, 4]. They also study an empirical Bayes method for estimating the value of the prior
scaling from the data and show that both methods achieve optimal posterior contraction rates
over a range of regularity classes of the true solution. However, we have seen in this paper
that the implementation of the hierarchical Bayesian method in the large-dimensional limit is
problematic. On the other hand, while the empirical Bayes method is appealing because of the
lack of mixing issues, it involves solving an optimization problem which in more complicated
models can be computationally demanding, and it does not provide uncertainty quantification
of the prior scaling which may be desirable. Again we highlight the need for more research
and new ideas in the small noise limit when N is large.

An asymptotic regime which we have not investigated yet is the case where we have a
sequence of N-dimensional linear inverse problems, with the relevant matrices being consistent
discretizations of linear operators and where the size of the noise decreases as N grows larger,
that is, A = A(IN) — oo as N — oo. This is the limit of an infinite-dimensional unknown
which is also identifiable from the data. Since, in this regime, as N grows larger the supports
of both d|y,u and 4|y shrink to zero, we expect that there will be an optimal relationship
between A and N, for which CA will not deteriorate for large N.

Our theory on the slowing down of the d-chain can be extended to cover nonlinear
Gaussian-conjugate Bayesian inverse problems and in particular the nonparametric drift esti-
mation in SDE’s setting considered in [31, 35, 30]; see [2, Chapter 4.5]. Again the main result
holds under assumptions on the discrete level which we expect to be inherited by consistent
discretizations from natural assumptions on the underlying infinite-dimensional model which
express that the posterior is absolutely continuous with respect to the prior.

Furthermore, our infinite-dimensional intuition extends to hierarchical setups for inference
on other hyperparameters, for instance, the prior regularity parameter «, where Cy = A, “, as
studied in [24]. In Figure 10 we plot autocorrelation functions for the centered MwG algorithm
used in this setting and the corresponding version of the NCA; as before we also implemented
the corresponding marginal algorithm and use it as the gold standard. The underlying truth,
the noise distribution, and the discretization method are the same as in subsection 5.1, and we
use an exponential hyperprior on a.. The idea is the same as the intuition presented in section
1, since in infinite dimensions two Gaussian measures N (0,3;) and N (0,Xs), where ¥; and
¥, are simultaneously diagonalizable with eigenvalues {j~%!};en and {52 };en, respectively,
are mutually singular unless @y = 9. Indeed, our numerical simulations confirm again the
deterioration of the CA and the robustness of the NCA in the large N limit. More generally,
as suggested in section 1, our intuition holds for inference on any prior on w which depends
on a hyperparameter § when it holds that u|y, 6 is absolutely continuous with respect to u|0
almost surely with respect to the data, while u|f and u|0’ are mutually singular when 6 # 6'.

Returning to the general nonlinear setting discussed in section 1, we note that both Algo-
rithms 1 and 2 are straightforward to generalize but with a certain loss of efficiency compared
to the linear-conjugate setting. The distribution of u|y,  no longer belongs to a known para-
metric family of distributions and thus has to be sampled using a Metropolis—Hastings (for
example, one based on Langevin diffusion) step. Moreover, for nonlinear inverse problems
there is no longer an easy way of finding the marginal distribution y|J, and hence MA will
not be an option. The so-called pseudomarginal algorithm [5] might be an alternative for
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Figure 10. Autocorrelation functions of a-chain, dimensions 32 (black), 512 (red), and 8192 (blue); left
for marginal, middle for centered, and right for noncentered.

nonlinear problems, and it has recently been employed to perform Bayesian inference using
Gaussian process priors in [18]. An interesting research direction is the comparison of the
performance of the two MwG algorithms with the pseudomarginal algorithm in both the large
N and the small noise limit.

Finally, our research agenda includes the extension to the hierarchical setting of the present
paper of the analysis contained in [13] of the bias in the estimated posterior distribution due
to the discretization of the unknown and forward problem.

7. Appendix. In this section we present the proof of Theorem 3.4, as well as several
technical results and lemmas. Subsection 7.1 contains the proof of Theorem 3.4, the backbone
of which is Lemma 3.3, proved in subsection 7.2. In subsection 7.3 we state and prove a lemma
on the negative moments of the rate parameter in the ¢ draw (3.2), which allows us to control
the lower order terms arising in the proof of Theorem 3.4. Finally, in subsection 7.4, we prove
several probability and linear algebra lemmas, which are useful in our analysis.

7.1. Proof of Theorem 3.4. We now prove Theorem 3.4 under Assumptions 3.2. Us-
ing the scaling property of the gamma distribution, Gamma(c, f3) £ B~ lGamma(«x, 1), and
multiplying and dividing by %5, we can write the 5](\];“) draw in (3.2) as

(7.1) sET £ 5 Loy

1 )
F3(Bo + 31Co 2w )

where I'g ny ~ Gamma(xg + %, %) is independent of y and u((;k).

. Lo y—1-2%0
Defining Wy y := '274“’\’, we have
~ s
20(0 2 40(0
FO’N:1+W+ N+WW2’N’

where for every N, the random variable W5 y has mean zero and variance one, has third and
fourth moments bounded uniformly in N (see Lemma 7.5), and is independent of the data y
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(k)

and (, the Gaussian white noise expressing the fluctuation in uy . Concatenating, we get

(k+1) £ 5 L+ 52+ /% + F W
(7.2) 5D £
1+\/7W1N+ 2 P (5)5

and we are now ready to prove Theorem 3.4.
Proof. By the independence of W5 x and ¢ and since E[W; y] = 0, we have

1+ 30 4+ /%+38Wan
E[EHY — 50150 = 5] = o al —1

1+ \/EW + 2kt
2060 Wl 2FN(5

= 0E¢ L
L/ & Wiy + 250

Using the identity HLI =1l—-z+ ﬁ—Z we get

E5HY — 50160 = )

Fno) 2F N6
= §ES ( %o N =1/ W1N> (1—\/ WIN_—N ) +EC[61,N]7
where
_ 2W2 F2 52 5
(2(“ONFN5) _ %WLN) ( ]\lfN 4 4 1 4\/5F§I%/V1,N >
e1,N =

L4/ %Wy + 250

Using Holder’s inequality and the fact that Fiy and W; ny have moments of all positive
orders which are bounded uniformly in NV, we get

EUHD — s® 58 — 5] = z2v (((Xo +1)8 — EC[FN]‘Sz) + O(N72) + Efer,n]

almost surely with respect to y. For the residual e; n, by the Cauchy—Schwarz inequality and
(3.3), we have

¢ < 3 FNJ \/7W1N>< Win + % FR0% + 2\/§FNW17N5>

2F [
55 (1 +1/ 7w Wi N = )
2 2
2(OC0 — FN5) 2 2 2F]%(52 2\/§FNWlN5
<|E || ——= — /=W 197 ,
< ( ~ \ v W Nt T 1

Ld e \
el ) )"

EC[GLN] =E

NI

N



ANALYSIS OF GIBBS SAMPLER FOR INVERSE PROBLEMS 537

The1 square root of the first expectation on the right-hand side of the inequality is of order
N2, while by Lemma 7.1 the square root of the 3second expectation is of order N~! for almost
all y. Combining, we get that E¢[e; x] = O(N~2) almost surely with respect to y, and hence

2 .
By — o108 =0 = ((1 + )8 — EC[FN]52) +O(NT?)

y-almost surely.
For the variance of the step, we have

2
Var [V — 516l = o] B [(5}5“)—5}5)) \5}5):5] E [0 - o0 loy —s]”,

where by the first part of the proof the second term is O(N~2). Thus, we need only consider
the first term, which will be shown to be O(N~!). By (7.2) we have

2% + 40(() W2 N — /2 W 2FN5

1+\/WW1,N+%

2W22N+2W1N+ VN
N —3
N2

(- 5)

where the random variable Viy depends only on W; y and Fiv and has higher order moments
which are bounded uniformly in N y-almost surely (the dependence on Wy n disappears by
the independence of W5 y and ¢ and the fact that Wy x has both mean zero and variance

one). Using the identity m =1-2z+ 3x2+25§3, we get

(1+x)
2
E [(5}5*” — o0 ) 1o = 5}

QW3 2WE N, [9
( N + N % 1-2 W1 N — —FN5
where

e :52<2W2%N+2W1N ) <\/7W _|_2FN5> +2<\/7W _|_2FN6>
2,N N N N3 (1+\/7W1N+2FN6>

2
E [(555*” — o)) 1ol = 5] = 3°E

= §’E

= §’E

+ Elea n],

En§?

<1+\/7W1 2FN5>

Using the fact that y-almost surely Wi n, Fiv, and Vi have moments of all positive orders
which are bounded uniformly in N, by Hélder’s inequality (we do not need to consider higher




538 AGAPIOU, BARDSLEY, PAPASPILIOPOULOS, AND STUART

order moments for Ws x here, because it is independent of W x and F, and hence bounding
terms involving Wy n does not require the use of Holder’s inequality, which needs higher
moments), we get that

2 262
E [(55@*” - 5](5)) 6% = 5] = = (WS 5] +EW? 5]) + O(N™%) + Eleg n]

y-almost surely. For the residual ey n, as before using the Cauchy-Schwarz inequality and
(3.3),

Eleny] < NT2(E[E]2V])% <EKB° n %HCQ%USSMH%N)_“D

N

Since by Lemma 7.5 the first four moments of W5 y are also bounded uniformly in N, the
square root of the first expectation on the right-hand side is of order N2, while by Lemma 7.1
the square root of the second expectation is of order N2 for almost all y. Combining, we get
ES¢[ea.n] = O(N~2) almost surely with respect to y, and hence since E[WEN] = E[W22N] =1,

k+1 B2 o(k 442 _3
E[(aj(v '—80) |5§V):5] = < +O(N7?)

y-almost surely. Concatenating, we get the result. |

7.2. Proof of Lemma 3.3. Let {ej}j-vzl be any orthonormal basis of RY (with respect to
the possibly scaled norm || - ||z ), and for any w € RY write w; := (w, ej)pn- We then have

that ¢ = Zjvzl ¢jej, where {Cj}é-vzl is a sequence of independent standard normal random
variables. Using (3.1) we have

ST T JE TR el
HCO Us HRN = HCO m/\,é(y)HRN'i'HCO C,\,5CHRN+2<CO mxs(Y),Co CA,5C>RN
= Ay + By + Cy.
Under Assumptions 3.2, we can analyze each term as follows:
(A) By Assumption 3.2(i), for almost all data y, this term and all its positive integer

powers are bounded uniformly in N.
(B) The second term can be written as

1 1 _1 1 _1 1 1 1
1€y €3 5¢aw = (Co *C25C:Co CE ) am = (CF4CT CR 4G, C)
1 1 _1 1
= 57HC5(Crk — MK CTIK)CE 50, C) g = 5 Y[¢|Br — 5 tAlC) QKCi(S(H%N
= bi,n — bo,N,
where the following hold:
(bl) i n = 5—1HCH]§N — % + %Z;V:l(gf —1) = % + @WLN, where as N — oo,

Win = ﬁ Zjvzl(gf — 1) converges weakly to a standard normal random variable by the

central limit theorem and by Lemma 7.4 has all positive integer moments bounded uniformly
in N.
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(b2) For by x we have by Lemma 7.6(ii) that E¢[by ] is uniformly bounded in N. In fact,
using Lemma 7.3 together with Lemma 7.6(ii), we get that for any p € N, E¢ [0 ] is bounded
independently of V.

(C) For the third term we have

wl»—'
wl»-

0 2mas(Y));¢-

ywl»—-

11 1 N
2072 \* 2 §
J=1

1 11
(Co Zmrs(y),Co 2C5 5C)pn = ((Cy

It holds that

[
-

N 11 ) 11 1
S (€ 2C25)Cy Fmas(w))? = [[(Cy *C2)"Cy 2 mas(w)| 2
7j=1

and we claim that the norm on the right-hand side is uniformly bounded in N y-almost
surely. Indeed, by (1.5), the Cauchy—Schwarz inequality, and the nonnegative definiteness of
1 1

the matrix C2 K*Cl_lKCE, we have

1 1

1(Co 2C3 ) uHRN =(C, cA 500 w, )y = (6711 + AC%K*C—ch%)—lu,@RN
< 571+ 3¢ KO K ) g < 57 ]2

Combining with Assumption 3.2(i) we get the claim, and therefore by Lemma 7.2 below we get
that the third term has y-almost surely all even moments uniformly bounded in N. We define
Fy = Bo + M and observe that since all terms have bounded moments of every
order uniformly in N y-almost surely, Holder’s inequality secures that Fi also has bounded

moments of every order uniformly in N almost surely with respect to y. [ |

7.3. Negative moments of the rate parameter in the § draw.
Lemma 7.1. Let ugk) be as in (3.1) for any 6,\ > 0. Under Assumptions 3.2, we have

1 1 —2i ]
| (B0 gles IRy | = o

as N — oo, almost surely with respect to y, fori=1,2.

Proof. Without loss of generality we consider the case § = A = 1 and drop the A and
6 dependence in u,m, and C. To declutter our notation we also drop the dependence of m
on the data. Since g > 0, it suffices to show it for g = 0. Formally, the random variable

1
HCO_ 5u(k)HIzRJ\, behaves like a chi-squared random variable with N degrees of freedom. We
estimate the squared norm by a random variable Yy of known moment generating function
My, (t) and use the following formula from [15] for the calculation of negative moments of
nonnegative random variables:

(7.3) ElYy ] =T0)"" /0 h =1 My, (—t)dt, | € N.
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Welbegin by showing that there exists a constant ¢ > 0 independent of N such that
HC_%COEUHRN < CHUHRN for any v € RY. We have
_1,t 00 Lo .2 R R,
HC 2C021)HRN = <C02C COQU,U>RN = <(I+C02K Ci KC§ )’U,U>RN

— JJol2y + ller 2 KCEo|2n < (14 co)[v]

by Lemma 7.6(iii). The proved claim gives the estimate
&5 *u o = 165 0m+ Q) o = 165 *CH €3 m o+ ) 2 e le5m 4l

and hence it suffices to show that almost surely with respect to y we have E¢[Y 2] = O(N~%)
for Yy := HC_%m + CH;N. Indeed, let {ej}é-vzl be any orthonormal basis of RV (with respect
to the possibly scaled norm || - [|g~), and define w; := (w, e;) for any w € RY. Then we have

N
Yn =Y (C2m); +¢)?,
j=1
where (; ~ N(0,1) are the mutually independent components of the white noise ¢ and
(C_%m)j are independent of {, and therefore Yy is a noncentral chi-squared random vari-
able with IV degrees of freedom and noncentrality parameter py := Z;VZI(C_%m)f > 0. The
definition and properties of the noncentral chi-squared distribution can be found in [21], where
in particular, we find the moment generating function of Yy

_N t
My, () = (1 - 26) ¥ exp (%)

and hence using (7.3) we have for i = 1,2,

ESIY 2 = N1 [T 2 - —PNt
Yy~ =T(29) ; 7 (1+2t)” 2 exp T+ o dt

< c/ 12711 4 2) "2 dt = O(N~2),
0

provided N > 4i¢, where the last integral can be calculated by integration by parts. |

7.4. Technical lemmas.

Lemma 7.2. Let {X;} be a sequence of random wvariables, such that X; = c¢;Y;, where
the Y;, j € N, are independent and identically distributed random variables with finite even
moments up to order 2r € N and zero odd moments, and the cj, j € N, are deterministic real
numbers. Then, for any N € N,

2r r

N N
E Z X; <k Z c? ,
j=1 Jj=1
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where k = E[Y?"] > 0 is independent of N.

Proof. Denote by m, the 2n-th moment of Y7, mn = E[Y*"]. Observe that since by
Holder’s 1nequahty for 0 < s <t, E[|V1]° ] < E[v;]t ] we have that for ny,...,ng > 0 such
that ny +---+ng=r

1++q

Mpy « oMy, < E[Y3] = E[Y?].

Combining with the fact that the random variables Y; are independent with zero odd moments,

N 2 N
E ZX]- Zcz’"m,n + Z cz(r 2 mr_lciml + Z c?l(r_z)m,n_gc;gmg
Jj=1 J1#j2 J1#72
N N "
+ Z c?lci...cim’l’gmr chz . [ |
J1#J2FFr Jj=1

Lemma 7.3. For any p € N, there exists a constant ¢ = c(p) > 0, independent of N, such
that for any centered Gaussian random variable xy in RN, it holds that

E{[lanl] < ) (B[lanlz])”

Proof. The proof is a direct consequence of [17, Corollary 2.17]. |
Lemma 7.4. Let (%)JGN be a sequence of independent standard normal random variables,
and define Gy := F Z] 1(7] 1). Then all the positive integer moments of G n are bounded

uniformly in N.

Proof. For k € N, we have E[G/] = (2]\1[)% Zﬁjk E[(%z‘l —-1)... (VJQk — 1)]. Since 7]2 -1

are independent and identically distributed with finite moments of every order, the sum on
the right-hand side has a dependence on N determined by the total number of nonzero terms
in the summation. By independence and the fact that I[E['yj2 — 1] =0, all the terms in the sum
which contain a term with an index j; which occurs only once in the product are equal to
zero. We thus have that if k; is even, the sum on the right-hand side is of order N % while if
k is odd, it is of order N e . In both cases the k-th moment of Gy is bounded umformly in
N. [ |
Lemma 7.5. Let I'y ~ Gamma(o + %, %), for « >0, and define

I'y—-1-%

i+
Then the first four moments of O are bounded uniformly in N.

Proof. The random variable Gamma(a, 1) has mean and variance a and third and fourth
central moments 2a and 3a? + 6a, respectively [20]. Hence by the scaling property of the

ON =

gamma distribution, I'y £ %Gamma(oc%— %, 1) has mean 1 + , variance N + N2, and third
and fourth central moments which are both of order N 2. It is thus straightforward to see
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that1 Oy has mean zero and variance equal to one, and sinlce the denominator in © y is of order
N7z, it has third and fourth moments which are O(N~2) and O(1), respectively. [ |
Lemma 7.6. Under Assumptions 3.2, we have that for any A, 0 > 0, the following hold:

_1 _1
(i) Tr(C; 2KCyrsK*Cy ) < cad™l;
_1 1
(ii) E9HC1 *KC; 59H?&N < 90~ Y, where 6 is a Gaussian white noise in RY;
11
(iii) || *KCG [, v < vz,
where ¢y s defined in Assumption 3.2(ii).

Proof.
(i) By (1.5), we have

1 1 11 A\ L 1\ 1 1 1
CI2KCy\sK*C, 2 = 67'C, 2 KCg <I+ gch*c;chg> CEKC)

and hence the fact that for any matrix A € RNV*¥ it holds that Tr(A(I+cA*A)A*) < Tr(AA*)
for any ¢ > 0, together with Assumption 3.2(ii), gives the claim.

(ii) It is well known that for x ~ N(0,X), EH$H%N = Tr(X). Since for § ~ N(0,1) we
1

_1 1 _1 _1
have C; 2KC3 ;0 ~ N(0,C, 2 KCy sK*C; ?), the claim follows from part (i).
(iii) It is well known that for any matrix A € RV*V the Euclidean norm satisfies HAH2 N=
| A* H2 ~ = VP(A*A) < \/Tr(A*A), where p(B) is the spectral radius of the matrix B. Hence

11 1 1
we have [|C; 2KC§ ||, v < \/Tlr(C1 *KCyK*C, *) < /cz by Assumption 3.2(ii). [ ]
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