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Abstract The Bayesian approach to inverse problems is of paramount importance
in quantifying uncertainty about the input to, and the state of, a system of interest
given noisy observations. Herein we consider the forward problem of the forced 2D
Navier-Stokes equation. The inverse problem is to make inference concerning the
forcing, and possibly the initial condition, given noisy observations of the velocity
field. We place a prior on the forcing which is in the form of a spatially-correlated
and temporally-white Gaussian process, and formulate the inverse problem for the
posterior distribution. Given appropriate spatial regularity conditions, we show that the
solution is a continuous function of the forcing. Hence, for appropriately chosen spatial
regularity in the prior, the posterior distribution on the forcing is absolutely continuous
with respect to the prior and is hence well-defined. Furthermore, it may then be shown
that the posterior distribution is a continuous function of the data. We complement these
theoretical results with numerical simulations showing the feasibility of computing
the posterior distribution, and illustrating its properties.
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1 Introduction

The Bayesian approach to inverse problems has grown in popularity significantly
over the last decade, driven by algorithmic innovation and steadily increasing com-
puter power [10]. Recently there have been systematic developments of the theory of
Bayesian inversion on function spaces [3,11–14,18] and this has led to new sampling
algorithms which perform well under mesh-refinement [2,15,21]. In this paper we
add to this growing interest in the Bayesian formulation of inversion, in the context
of a specific PDE inverse problem, motivated by geophysical applications such as
data assimilation in the atmosphere and ocean sciences, and demonstrate that fully
Bayesian probing of the posterior distribution is feasible.

The primary goal of this paper is to demonstrate that the Bayesian formulation of
inversion for the forced Navier-Stokes equation, introduced in [3], can be extended
to the case of white noise forcing. The paper [3] assumed an Ornstein-Uhlenbeck
structure in time for the forcing, and hence did not include the white noise case. It is
technically demanding to extend to the case of white noise forcing, but it is also of
practical interest. This practical importance stems from the fact that the Bayesian for-
mulation of problems with white noise forcing corresponds to a statistical version of the
continuous time weak constraint 4DVAR methodology [22]. The 4DVAR approach to
data assimilation currently gives the most accurate global short term weather forecasts
available [16] and this is arguably the case because, unlike ensemble filters which form
the major competitor, 4DVAR has a rigorous statistical interpretation as a maximum a
posteriori (or MAP) estimator—the point which maximizes the posterior probability.
It is therefore of interest to seek to embed our understanding of such methods in a
broader Bayesian context.

To explain the connection between our work and the 4DVAR methodology and, in
particular, to explain the terminology used in the data assimilation community, it is
instructive to consider the finite dimensional differential equation

du

dt
= f (u) + ξ, u(0) = u0

on R
n . Assume that we are given noisy observations {y j } of the solution u j = u(t j )

at times t j = jh so that

y j = u j + η j , j = 1, . . . , J,

for some noises η j . An important inverse problem is to determine the initial condition
u0 and forcing ξ which best fit the data. If we view the solution u j as a function of
the initial condition and forcing, then a natural regularized least squares problem is to
determine u0 and ξ to minimize

I (u0, ξ) =
J∑

j=1

∣∣∣Γ − 1
2
(
y j − u j (u0, ξ)

)∣∣∣
2 + |Σ− 1

2 u0|2 + ‖Q− 1
2 ξ‖2
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where | · |, ‖ · ‖ denote the R
n−Euclidean and L2

([0, T ]; R
n
)

norms respectively,
Γ,Σ denote covariance matrices and Q a covariance operator. This is a continuous
time analogue of the 4DVAR or variational methodology, as described in the book of
Bennett [1]. In numerical weather prediction the method is known as weak constraint
4DVAR, and as 4DVAR if ξ is set to zero (so that the ODE

du

dt
= f (u), u(0) = u0

is satisfied as a hard constraint), the term ‖Q− 1
2 ξ‖2 dropped, and the minimization

is over u0 only. As explained in [10], these minimization problems can be viewed
as probability maximizers for the posterior distribution of a Bayesian formulation of
the inverse problem—the so-called MAP estimators. In this interpretation the prior
measures on u0 and ξ are centred Gaussians with covariances Σ and Q respectively.
Making this connection opens up the possibility of performing rigorous statistical
inversion, and thereby estimating uncertainty in predictions made.

The ODEs arising in atmosphere and ocean science applications are of very high
dimension due to discretizations of PDEs. It is therefore conceptually important to
carry through the program in the previous paragraph, and in particular Bayesian for-
mulation of the inversion, for PDEs; the paper [5] explains how to define MAP estima-
tors for measures on Hilbert spaces and the connection to variational problems. The
Navier-Stokes equation in 2D provides a useful canonical example of a PDE of direct
relevance to the atmosphere and ocean sciences. When the prior covariance opera-
tor Q is chosen to be that associated to an Ornstein-Uhleneck operator in time, the
Bayesian formulation for the 2D Navier-Stokes equation has been carried out in [3].
Our goal in this paper is to extend to the more technically demanding case where Q is
the covariance operator associated with a white noise in time, with spatial correlation
Q. We will thus use the prior model ξdt = dW where W is a Q−Wiener process
in an appropriate Hilbert space, and consider inference with respect to W and u0. In
the finite dimensional setting the differences between the case of coloured and white
noise forcing, with respect to the inverse problem, are much less substantial and the
interested reader may consult [7] for details.

The key tools required in applying the function space Bayesian approach in [18] are
the proof of continuity of the forward map from the function space of the unknowns
to the data space, together with estimates of the dependence of the forward map
upon its point of application, sufficient to show certain integrability properties with
respect to the prior. This program is carried out for the 2D Navier-Stokes equation
with Ornstein-Uhlenbeck priors on the forcing in the paper [3]. However to use priors
which are white in time adds further complications since it is necessary to study
the stochastically forced 2D Navier-Stokes equation and to establish continuity of
the solution with respect to small changes in the Brownian motion W which defines
the stochastic forcing. We do this by employing the solution concept introduced by
Flandoli in [6], and using probabilistic estimates on the solution derived by Mattingly in
[17]. In Sect. 2 we describe the relevant theory of the forward problem, employing the
setting of Flandoli. In Sect. 3 we build on this theory, using the estimates of Mattingly
to verify the conditions in [18], resulting in a well-posed Bayesian inverse problem for
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which the posterior is Lipschitz in the data with respect to Hellinger metric. Section 4
extends this to include making inference about the initial condition as well as the
forcing. Finally, in Sect. 5, we present numerical results which demonstrate feasibility
of sampling from the posterior on white noise forces, and demonstrate the properties
of the posterior distribution.

2 Forward problem

In this section we study the forward problem of the Navier-Stokes equation driven by
white noise. Section 2.1 describes the forward problem, the Navier-Stokes equation,
and rewrites it as an ordinary differential equation in a Hilbert space. In Sect. 2.2
we define the functional setting used throughout the paper. Section 2.3 highlights the
solution concept that we use, leading in Sect. 2.4 to proof of the key fact that the
solution of the Navier-Stokes equation is continuous as a function of the rough driving
of interest and the initial condition. All our theoretical results in this paper are derived
in the case of Dirichlet (no flow) boundary conditions. They may be extended to the
problem on the periodic torus T

d , but we present the more complex Dirichlet case
only for brevity.

2.1 Overview

Let D ∈ R
2 be a bounded domain with smooth boundary. We consider in D the

Navier-Stokes equation

∂t u − ν�u + u · ∇u = f − ∇ p, (x, t) ∈ D × (0,∞)

∇ · u = 0, (x, t) ∈ D × (0,∞)

u = 0, (x, t) ∈ ∂ D × (0,∞),

u = u0, (x, t) ∈ D × {0}. (1)

We assume that the initial condition u0 and the forcing f (·, t) are divergence-free.
We will in particular work with Eq. (3) below, obtained by projecting (1) into the
space of divergence free functions—the Leray projector [19]. We denote by V the
space of all divergence-free smooth functions from D to R

2 with compact support,
by H the closure of V in (L2(D))2, and by H

1 the closure of V in (H1(D))2. Let
H

2 = (H2(D))2⋂
H

1. The initial condition u0 is assumed to be in H. We define the
linear Stokes’ operator A : H

2 → H by Au = −�u noting that the assumption of
compact support means that Dirichlet boundary condition is imposed on the Stokes’
operator A. Since A is selfadjoint, A possesses eigenvalues 0 < λ1 ≤ λ2 ≤ · · · with
the corresponding eigenvectors e1, e2, . . . ∈ H

2.
We denote by 〈·, ·〉 the inner product in H, extended to the dual pairing on H

−1×H
1.

We then define the bilinear form B : H
1 × H

1 → H
−1

〈B(u, v), z〉 =
∫

D

z(x) · (u(x) · ∇)v(x)dx
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which must hold for all z ∈ H
1. From the incompressibility condition we have, for all

z ∈ H
1,

〈B(u, v), z〉 = −〈B(u, z), v〉. (2)

By projecting problem (1) into H we may write it as an ordinary differential equation
in the form

du(t) = −ν Audt − B(u, u)dt + dW (t), u(0) = u0 ∈ H, (3)

where dW (t) is the projection of the forcing f (x, t)dt into H. We will define the
solution of this equation pathwise, for suitable W , not necessarily differentiable in
time.

2.2 Function spaces

For any s ≥ 0 we define H
s ⊂ H to be the Hilbert space of functions u = ∑∞

k=1 ukek ∈
H such that

∞∑

k=1

λs
ku2

k < ∞;

we note that the H
j for j ∈ {0, 1, 2} coincide with the preceding definitions of these

spaces. The space H
s is endowed with the inner product

〈u, v〉Hs =
∞∑

k=1

λs
kukvk,

for u = ∑∞
k=1 ukek , v = ∑∞

k=1 vkek in H. We denote by V the particular choice

s = 1
2 + ε, namely H

1
2 +ε , for given ε > 0. In what follows we will be particularly

interested in continuity of the mapping from the forcing W into linear functionals of the
solution of (3). To this end it is helpful to define the Banach space X := C([0, T ]; V)

with the norm

‖W‖X = sup
t∈(0,T )

‖W (t)‖V.

2.3 Solution concept

In what follows we define a solution concept for Eq. (3) for each forcing function W
which is continuous, but not necessarily differentiable, in time. We always assume
that W (0) = 0. Following Flandoli [6], for each W ∈ X we define the weak solution
u(·; W ) ∈ C([0, T ]; H)

⋂
L2([0, T ]; H

1/2) of (3) as a function that satisfies
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〈u(t), φ〉 + ν

t∫

0

〈u(s), Aφ〉ds −
t∫

0

〈B
(
u(s), φ

)
, u(s)〉dx = 〈u0, φ〉 + 〈W (t), φ〉,

(4)

for all φ ∈ H
2 and all t ∈ (0, T ); note the integration by parts on the Stokes’ operator

and the use of (2) to derive this identity from (3). Note further that if u and W are
sufficiently smooth, (4) is equivalent to (3).

To employ this solution concept we first introduce the concept of a solution of the
linear equation

dz(t) = −ν Azdt + dW (t), z(0) = 0 ∈ H (5)

where W is a deterministic continuous function obtaining values in X but not nec-
essarily differentiable. We define a weak solution of this equation as a function
z ∈ C([0, T ]; H) such that

〈z(t), φ〉 + ν

t∫

0

〈z(s), Aφ〉ds = 〈W (t), φ〉 (6)

for all φ ∈ H
2.

Then for this function z(t) we consider the solution v of the equation

dv(t) = −ν Avdt − B(z + v, z + v)dt, v(0) = u0 ∈ H. (7)

As we will show below, z(t) possesses sufficiently regularity so (7) possesses a weak
solution v. We then deduce that u = z + v is a weak solution of (3) in the sense of
(4). When we wish to emphasize the dependence of u on W (and similarly for z and
v) we write u(t; W ).

We will now show that the function z defined by

z(t) =
t∫

0

e−ν A(t−s)dW (s)

= W (t) −
t∫

0

ν Ae−ν A(t−s)W (s)ds (8)

satisfies the weak formula (6). Let wk = 〈W, ek〉, that is

W (t) :=
∞∑

k=1

wk(t)ek ∈ X. (9)
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We then deduce from (8) that

z(t; W ) = W (t) −
∞∑

k=1

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek . (10)

We have the following regularity property for z:

Lemma 1 For each W ∈ X, the function z = z(·; W ) ∈ C([0, T ]; H
1/2).

Proof We first show that for each t, z(t; W ) as defined in (10) belongs to H
1/2. Fixing

an integer M > 0, using inequality a1−ε/2e−a < c for all a > 0 for an appropriate
constant c, we have

M∑

k=1

λ
1/2
k

⎛

⎝
t∫

0

νλke(t−s)(−νλk )wk(s)ds

⎞

⎠
2

≤
M∑

k=1

λ
1/2
k

⎛

⎝
t∫

0

c

(t − s)1−ε/2 λ
ε/2
k |wk(s)|dx

⎞

⎠
2

.

Therefore,
∥∥∥∥∥∥

M∑

k=1

t∫

0

νλke(t−s)(−νλk )wk(s)ekds

∥∥∥∥∥∥
H1/2

≤
∥∥∥∥∥∥

M∑

k=1

t∫

0

c

(t − s)1−ε/2 λ
ε/2
k |wk(s)|ekds

∥∥∥∥∥∥
H1/2

≤
t∫

0

c

(t − s)1−ε/2

∥∥∥∥∥

M∑

k=1

λ
ε/2
k |wk(s)|ek

∥∥∥∥∥
H1/2

ds

≤ max
s∈(0,T )

‖W (s)‖
H1/2+ε

t∫

0

c

(t − s)1−ε/2 ds,

which is uniformly bounded for all M . Therefore,

∞∑

k=1

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek ∈ H
1/2.

It follows from (10) that, since W ∈ X, for each t , z(t; W ) ∈ H
1/2 as required.

Furthermore, for all t ∈ (0, T )

‖z(t; W )‖H1/2 ≤ c‖W‖X. (11)
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Now we turn to the continuity in time. Arguing similarly, we have that

∥∥∥∥∥∥

∞∑

k=M

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek

∥∥∥∥∥∥
H1/2

≤
t∫

0

c

(t − s)1−ε/2

∥∥∥∥∥

∞∑

k=M

wk(s)ek

∥∥∥∥∥
H1/2+ε

ds

≤
⎛

⎝
t∫

0

c

(t − s)(1−ε/2)p ds

⎞

⎠
1/p ⎛

⎝
t∫

0

∥∥∥∥∥

∞∑

k=M

wk(s)ek

∥∥∥∥∥

q

H1/2+ε

ds

⎞

⎠
1/q

,

for all p, q > 0 such that 1/p +1/q = 1. From the Lebesgue dominated convergence
theorem,

lim
M→∞

t∫

0

∥∥∥∥∥

∞∑

k=M

wk(s)ek

∥∥∥∥∥

q

H1/2+ε

ds = 0;

and when p sufficiently close to 1,

t∫

0

c

(t − s)(1−ε/2)p
ds

is finite. We then deduce that

lim
M→∞

∥∥∥∥∥∥

∞∑

k=M

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek

∥∥∥∥∥∥

1/2

H

= 0,

uniformly for all t .
Fixing t ∈ (0, T ) we show that

lim
t ′→t

‖z(t; W ) − z(t ′; W )‖H1/2 = 0.

We have

‖z(t; W ) − z(t ′; W )‖H1/2 ≤ ‖W (t) − W (t ′)‖H1/2

+

∥∥∥∥∥∥∥

M−1∑

k=1

⎛

⎜⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds −
t ′∫

0

wk(s)νλke(t ′−s)(−νλk )ds

⎞

⎟⎠ ek

∥∥∥∥∥∥∥
H1/2
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+
∥∥∥∥∥∥

∞∑

k=M

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek

∥∥∥∥∥∥
H1/2

+

∥∥∥∥∥∥∥

∞∑

k=M

⎛

⎜⎝
t ′∫

0

wk(s)νλke(t ′−s)(−νλk )ds

⎞

⎟⎠ ek

∥∥∥∥∥∥∥
H1/2

.

For δ > 0, when M is sufficiently large, the argument above shows that

∥∥∥∥∥∥

∞∑

k=M

⎛

⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds

⎞

⎠ ek

∥∥∥∥∥∥
H1/2

+

∥∥∥∥∥∥∥

∞∑

k=M

⎛

⎜⎝
t ′∫

0

wk(s)νλke(t ′−s)(−νλk )ds

⎞

⎟⎠ ek

∥∥∥∥∥∥∥
H1/2

< δ/3.

Furthermore, when |t ′ − t | is sufficiently small,

∥∥∥∥∥∥∥

M−1∑

k=1

⎛

⎜⎝
t∫

0

wk(s)νλke(t−s)(−νλk )ds −
t ′∫

0

wk(s)νλke(t ′−s)(−νλk )ds

⎞

⎟⎠ ek

∥∥∥∥∥∥∥
H1/2

< δ/3.

Finally, since W ∈ X, for |t ′ − t | is sufficiently small we have

‖W (t) − W (t ′)‖H1/2 < δ/3

Thus when |t ′ − t | is sufficiently small, ‖z(t; W )− z(t ′; W )‖H1/2 < δ. The conclusion
follows. 
�

Having established regularity, we now show that z is indeed a weak solution of (5).

Lemma 2 For each φ ∈ H
2, z(t) = z(t; W ) satisfies (6).

Proof It is sufficient to show this for φ = ek . We have

t∫

0

〈z(s), Aek〉ds =
t∫

0

〈W (s), Aek〉ds −
t∫

0

s∫

0

wk(τ )νλ2
ke(s−τ)(−νλk )dτds

= λk

t∫

0

wk(s)ds − νλ2
k

t∫

0

wk(τ )
( t∫

τ

e(s−τ)(−νλk )ds
)

dτ
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= λk

t∫

0

wk(s)ds − λk

t∫

0

wk(τ )dτ + λk

t∫

0

wk(τ )e(t−τ)(−νλk )dτ

= λk

t∫

0

wk(τ )e(t−τ)(−νλk )dτ.

On the other hand,

〈z(t), ek〉 = 〈W (t), ek〉 − νλk

t∫

0

wk(s)e
(t−s)(−νλk )ds.

The result then follows. 
�

We now turn to the following result, which concerns v and is established on page
416 of [6], given the properties of z(·; W ) established in the preceding two lemmas.

Lemma 3 For each W ∈ X, problem (7) has a unique solution v in the function space
C(0, T ; H)

⋂
L2(0, T ; H

1).

We then have the following existence and uniqueness result for the Navier-Stokes
Eq. (3), more precisely for the weak form (4), driven by rough additive forcing [6]:

Proposition 1 For each W ∈ X, problem (4) has a unique solution u ∈
C(0, T ; H)

⋂
L2(0, T ; H

1/2) such that u − z ∈ L2(0, T ; H
1).

Proof A solution u for (4) can be taken as

u(t; W ) = z(t; W ) + v(t; W ). (12)

From the regularity properties of z and v in Lemmas 1 and 3, we deduce that u ∈
C(0, T ; H)

⋂
L2(0, T ; H

1/2). Assume that ū(t; W ) is another solution of (4). Then
v̄(t; W ) = ū(t; W ) − z(t; W ) is a solution in C(0, T ; H)

⋂
L2(0, T ; H

1) of (7).
However, (7) has a unique solution in C(0, T ; H)

⋂
L2(0, T ; H

1). Thus v̄ = v. 
�

2.4 Continuity of the forward map

The purpose of this subsection is to establish continuity of the forward map from W
into the weak solution u of (3), as defined in (4), at time t > 0. In fact we prove
continuity of the forward map from (u0, W ) into u and for this it is useful to define
the space H = H × X and denote the solution u by u(t; u0, W ).
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Theorem 1 For each t > 0, the solution u(t; ·, ·) of (3) is a continuous map from H
into H.

Proof First we fix the initial condition and just write u(t; W ) for simplicity. We con-
sider Eq. (3) with driving W ∈ X given by (9) and by W ′ ∈ X defined by

W ′(s) =
∞∑

k=1

wk
′(s)ek ∈ X.

We will prove that, for W, W ′ from a bounded set in X, there is c = c(T ) > 0, such
that

sup
t∈(0,T )

‖z(t; W ) − z(t; W ′)‖H1/2 ≤ c‖W − W ′‖X (13)

and, for each t ∈ (0, T ),

‖v(t; W ) − v(t; W ′)‖2
H

≤ c sup
s∈(0,T )

‖z(s; W ) − z(s; W ′)‖2
L4(D)

. (14)

This suffices to prove the desired result since Sobolev embedding yields, from (14),

‖v(t; W ) − v(t; W ′)‖2
H

≤ c sup
s∈(0,T )

‖z(s; W ) − z(s; W ′)‖2

H
1
2
. (15)

Since u = z + v we deduce from (13) and (15) that u as a map from X to H is
continuous.

To prove (13) we note that

‖z(t; W ) − z(t; W ′)‖
H

1
2

≤ ‖W (t) − W ′(t)‖
H

1
2

+
∥∥∥∥∥∥

t∫

0

ν Ae−ν A(t−s) (W (s) − W ′(s)
)

ds

∥∥∥∥∥∥
H

1
2

so that

sup
t∈(0,T )

‖z(t; W ) − z(t; W ′)‖
H

1
2

≤ ‖W − W ′‖X

+ sup
t∈(0,T )

∥∥∥∥∥∥

t∫

0

ν Ae−ν A(t−s) (W (s) − W ′(s)
)

ds

∥∥∥∥∥∥
H

1
2

.
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Thus it suffices to consider the last term on the right hand side. We have

∥∥∥∥∥∥

t∫

0

Ae−ν A(t−s) (W (s) − W ′(s)
)

ds

∥∥∥∥∥∥

2

H
1
2

=
∥∥∥∥∥∥

∞∑

k=1

t∫

0

λke(t−s)(−νλk )(w′
k(s) − wk(s))ekds

∥∥∥∥∥∥

2

H1/2

=
∞∑

k=1

λ
1/2
k

⎛

⎝
t∫

0

λke(t−s)(−νλk )(w′
k(s) − wk(s))ds

⎞

⎠
2

≤
∞∑

k=1

λ
1/2
k

⎛

⎝
t∫

0

λke(t−s)(−νλk )|w′
k(s) − wk(s)|ds

⎞

⎠
2

≤
∞∑

k=1

λ
1/2
k

⎛

⎝
t∫

0

c

(t − s)1−ε/2 λ
ε/2
k |w′

k(s) − wk(s)|ds

⎞

⎠
2

where we have used the fact that a1−ε/2e−a < c for all a > 0 for an appropriate
constant c. From this, we deduce that

∥∥∥∥∥∥

t∫

0

Ae−ν A(t−s)(W (s) − W ′(s)
)
ds

∥∥∥∥∥∥
H

1
2

≤
∥∥∥∥∥∥

∞∑

k=1

t∫

0

c

(t − s)1−ε/2 λ
ε/2
k |w′

k(s) − wk(s)|ekds

∥∥∥∥∥∥
H1/2

≤
t∫

0

c

(t − s)1−ε/2

∥∥∥∥∥

∞∑

k=1

λ
ε/2
k |w′

k(s) − wk(s)|ek

∥∥∥∥∥
H1/2

ds

≤
t∫

0

c

(t − s)1−ε/2 ds sup
s∈(0,T )

∥∥∥∥∥

∞∑

k=1

λ
ε/2
k |w′

k(s) − wk(s)|ek

∥∥∥∥∥
H1/2

≤ c sup
s∈(0,T )

‖W ′(s) − W (s)‖V.

Therefore (13) holds.
We now prove (14). We will use the following estimate for the solution v of (7)

which is proved in Flandoli [6], page 412, by means of a Gronwall argument:
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sup
s∈(0,T )

‖v(s)‖2
H

+
T∫

0

‖v(s)‖2
H1 ≤ C

(
T, sup

s∈(0,T )

‖z(s)‖L4(D)

)
. (16)

We show that the map C([0, T ]; L4(D)) � z(·; W ) �→ v(·; W ) ∈ H is continuous.
For W and W ′ in X, define v = v(t; W ), v′ = v(t; W ′), z = z(t; W ), z′ =

z(t; W ′), e = v − v′ and δ = z − z′. Then we have

de

dt
+ ν Ae + B

(
v + z, v + z

)− B
(
v′ + z′, v′ + z′) = 0. (17)

From this, we have

1

2

d‖e‖2
H

dt
+ ν‖e‖2

H1 = −〈B(v + z, v + z
)
, e
〉

+ 〈B(v′ + z′, v′ + z′), e
〉
.

From (2) we obtain

1

2

d‖e‖2
H

dt
+ ν‖e‖2

H1 = +〈B(v + z, e
)
, v + z

〉

− 〈B(v′ + z′, e
)
, v′ + z′〉 = 〈

B
(
v + z, e

)
, v + z − v′ − z′〉

− 〈B(v′ + z′ − v − z, e
)
, v′ + z′〉 = 〈

B
(
v + z, e

)
, e + δ

〉

+ 〈B(e + δ, e
)
, v′ + z′〉 ≤ (‖e‖L4(D) + ‖δ‖L4(D))(‖v‖L4(D) + ‖z‖L4(D)

+‖v′‖L4(D) + ‖z′‖L4(D))‖e‖H1 .

We now use the following interpolation inequality

‖e‖L4(D) ≤ c0‖e‖1/2
H1 ‖e‖1/2

H
, (18)

which holds for all two dimensional domains D with constant c0 depending only on
D; see Flandoli [6]. Using this we obtain

1

2

d‖e‖2
H

dt
+ ν‖e‖2

H1 ≤ c1

(
‖e‖3/2

H1 ‖e‖1/2
H

+ ‖δ‖L4(D)‖e‖H1

)

· (‖v‖L4(D) + ‖v′‖L4(D) + ‖z‖L4(D) + ‖z′‖L4(D)

)

for a positive constant c1. From the Young inequality, we have

‖e‖3/2
H1 ‖e‖1/2

H

(‖v‖L4(D) + ‖v′‖L4(D) + ‖z‖L4(D) + ‖z′‖L4(D)

)

≤ 3

4
c4/3

2 ‖e‖2
H1 + 1

4c4
2

‖e‖2
H

(‖v‖L4(D) + ‖v′‖L4(D) + ‖z‖L4(D) + ‖z′‖L4(D)

)4
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and

‖δ‖L4(D)‖e‖H1
(‖v‖L4(D) + ‖v′‖L4(D) + ‖z‖L4(D) + ‖z′‖L4(D)

)

≤ c2
3

2
‖e‖2

H1 + 1

2c2
3

‖δ‖2
L4(D)

(‖v‖L4(D) + ‖v′‖L4(D) + ‖z‖L4(D) + ‖z′‖L4(D)

)2

for all positive constants c2 and c3. Choosing c2 and c3 so that c1(3c4/3
2 /4+c2

3/2) = ν,
we deduce that there is a positive constant c such that

1

2

d‖e‖2
H

dt
+ ν‖e‖2

H1 ≤ ν‖e‖2
H1 + c‖e‖2

H
· I4 + c‖δ‖2

L4(D)
· I2 (19)

where we have defined

I2 = ‖v‖2
L4(D)

+ ‖v′‖2
L4(D)

+ ‖z‖2
L4(D)

+ ‖z′‖2
L4(D)

I4 = ‖v‖4
L4(D)

+ ‖v′‖4
L4(D)

+ ‖z‖4
L4(D)

+ ‖z′‖4
L4(D)

.

From Gronwall’s inequality, we have

‖e(t)‖2
H

≤ c

t∫

0

(
e

t∫
s

I4(s′)ds′)
‖δ(s)‖2

L4(D)
I2(s)ds. (20)

Applying the interpolation inequality (18) to v(s′; W ), we have that

T∫

0

‖v(s′; W )‖4
L4(D)

ds′ ≤ c sup
s′∈(0,T )

‖v(s′; W )‖2
H

T∫

0

‖v(s′; W )‖2
H1 ds′,

which is bounded uniformly when W belongs to a bounded subset of X due to (16).
Using this estimate, and a similar estimate on v′, together with (11) and Sobolev

embedding of H
1
2 into L4(D), we deduce that

‖e(t)‖2
H

≤ c sup
0≤s≤T

‖δ(s)‖2
L4(D)

.

We now extend to include continuity with respect to the initial condition. We show
that u(·, t; u0, W ) is a continuous map from H to H. For W ∈ X and u0 ∈ H, we
consider the following equation:

dv

dt
+ Av + B(v + z, v + z) = 0, v(0) = u0. (21)

We denote the solution by v(t) = v(t; u0, W ) to emphasize the dependence on initial
condition and forcing which is important here. For (u0, W ) ∈ H and (u′

0, W ′) ∈ H,
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from (19) and Gronwall’s inequality, we deduce that

‖v(t; u0, W ) − v(t; u′
0, W ′)‖2

H
≤ ‖u0 − u′

0‖2
H

e

t∫

0
I4(s′))ds′

+ c

t∫

0

(
e
∫ t

s I4(s′)ds′ · ‖z(s; W ) − z(s; W ′)‖2
L4(D)

.I2(s)

)
ds.

We then deduce that

‖v(t; u0, W ) − v(t; u′
0, W ′)‖2

H
≤ c‖u0 − u′

0‖2
H

+ c sup
0≤s≤T

‖z(s; W ) − z(s; W ′)‖2
L4(D)

≤ c‖u0 − u′
0‖2

H
+ c sup

t∈(0,T )

‖W (t) − W ′(t)‖
H1/2+ε .

This gives the desired continuity of the forward map. 
�

3 Bayesian inverse problems with model error

In this section we formulate the inverse problem of determining the forcing to Eq. (3)
from knowledge of the velocity field; more specifically we formulate the Bayesian
inverse problem of determining the driving Brownian motion W from noisy pointwise
observations of the velocity field. Here we consider the initial condition to be fixed
and hence denote the solution of (3) by u(t; W ); extension to the inverse problem for
the pair (u0, W ) is given in the following section.

We set-up the likelihood in Sect. 3.1. Then, in Sect. 3.2, we describe the prior on
the forcing which is a Gaussian white-in-time process with spatial correlations, and
hence a spatially correlated Brownian motion prior on W . This leads, in Sect. 3.3, to
a well-defined posterior distribution, absolutely continuous with respect to the prior,
and Lipschitz in the Hellinger metric with respect to the data. To prove these results
we employ the framework for Bayesian inverse problems developed in Cotter et al. [3]
and Stuart [18]. In particular, Corollary 2.1 of [3] and Theorem 6.31 of [18] show that,
in order to demonstrate the absolute continuity of the posterior measure with respect to
the prior, it suffices to show that the mapping G in (23) is continuous with respect to the
topology of X and to choose a prior with full mass on X. Furthermore we then employ
the proofs of Theorem 2.5 of [3] and Theorem 4.2 of [18] to show the well-posedness
of the posterior measure; indeed we show that the posterior is Lipschitz with respect
to data, in the Hellinger metric.

3.1 Likelihood

Fix a set of times t j ∈ (0, T ), j = 1, . . . , J. Let � be a collection of K bounded linear
functionals on H. We assume that we observe, for each j , �

(
u(·, t j ; W )

)
plus a draw
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from a centered K dimensional Gaussian noise ϑ j so that

δ j = �
(
u(·, t j ; W )

)+ ϑ j (22)

is known to us. Concatenating the data we obtain

δ = G(W ) + ϑ (23)

where δ, ϑ ∈ R
J K and G : X → R

J K . The observational noise ϑ is a draw from the
J K dimensional Gaussian random variable with the covariance matrix �.

In the following we will define a prior measure ρ on W and then determine the
conditional probability measure ρδ = P(W |δ). We will then show that ρδ is absolutely
continuous with respect to ρ and that the Radon–Nikodym derivative between the
measures is given by

dρδ

dρ
∝ exp (−Φ(W ; δ)), (24)

where

Φ(W ; δ) = 1

2

∣∣∣Σ− 1
2 (δ − G(W ))

∣∣∣
2
. (25)

The right hand side of (24) is the likelihood of the data δ.

3.2 Prior

We construct our prior on the time-integral of the forcing, namely W . Let Q be a linear

operator from the Hilbert space H
1
2 +ε into itself with eigenvectors ek and eigenvalues

σ 2
k for k = 1, 2, . . .. We make the following assumption

Assumption 1 There is an ε > 0 such that the eigenvalues {σk} satisfy

∞∑

k=1

σ 2
k λ

1/2+ε
k < ∞

where λk are the eigenvalues of the operator A defined in Sect. 2.1.

As

∞∑

k=1

〈Qek, ek〉
H

1
2 +ε

=
∞∑

k=1

σ 2
k λ

1
2 +ε

k < ∞,

Q is a trace class operator in H
1
2 +ε .
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We assume that our prior is the Q-Wiener process W with values in H
1
2 +ε where

W (s1) − W (s2) is Gaussian in H
1
2 +ε with covariance (s1 − s2)Q and mean 0. This

process can be written as

W (t) =
∞∑

k=1

σkekωk(t), (26)

where ωk(t) are pair-wise independent Brownian motions (see Da Prato and Zabczyk
[4], Proposition 4.1) and where the convergence of the infinite series is in the mean
square norm with respect to the probability measure of the probability space that
generates the randomness of W . We define by ρ the measure generated by this
Q-Wiener process on X.

Remark 1 We have constructed the solution to (3) for each deterministic continuous
function W ∈ X. As we equip X with the prior probability measure ρ, we wish to
employ the results from [6] concerning the solution of (3) when W is considered as a
Brownian motion obtaining values in X. However, the solution of (3) is constructed
in a slightly different way in [6] from that used in the preceding developments. We
therefore show that under Assumption 1, ρ almost surely, solution u of (4) defined
in (12) for each individual function W equals the unique progressively measurable
solution in C([0, T ]; H)

⋂
L2([0, T ]; H

1) constructed in Flandoli [6] when the noise
W is sufficiently spatially regular. This allows us to employ the existence of the
second moment of ‖u(·, t; W )‖2

H
, i.e.the finiteness of the energy E

ρ[‖u(·, t; W )‖2
H

],
established in Mattingly [17], which we need later.

For the infinite dimensional Brownian motion W defined in (26) where

∞∑

k=1

λ
2β0−1/2
k σ 2

k < ∞,

for some β0 > 0, where we employ the same notation as in [6] for ease of exposition.
Flandoli [6] employs the Ornstein-Uhlenbeck process

zα(t) =
t∫

−∞
e−(ν A+α)(t−s)dW (s) (27)

which, considered as the stochastic process, is a solution of the Ornstein-Uhlenbeck
equation

dzα(t) + Azα(t)dt + αzα(t)dt = dW (t),

where α is a constant, in order to define a solution of (4). Note that if β0 > 1
2

then Assumption 1 is satisfied. With respect to the probability space (�,Ft , P), the
expectation E‖zα(t)‖2

H1/2+2β is finite for β < β0. Thus almost surely with respect to
(�,Ft , P), zα(t) is sufficiently regular so that problem (7) with the initial condition
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v(0; W ) = u0 − zα(0) is well posed. The stochastic solution to the problem (3) is
defined as

u(·, t; W ) = zα(t; W ) + v(t; W ) (28)

which is shown to be independent of α in [6]. When β0 > 1
2 , E‖zα(t)‖2

H1 is finite so

u(·, t; W ) ∈ C([0, T ]; H)
⋂

L2([0, T ]; H
1). Flandoli [6] leaves open the question of

the uniqueness of a generalized solution to (4) in C([0, T ]; H)
⋂

L2([0, T ]; H
1/2).

However, there is a unique solution in C([0, T ]; H)
⋂

L2([0, T ]; H
1).

Almost surely with respect to the probability measure ρ, solution u of (4) con-
structed in (12) equals the solution constructed by Flandoli [6] in (28). To see this,
note that the stochastic integral

t∫

0

e−ν A(t−s)dW (s) (29)

can be written in the integration by parts form (10). Therefore, with respect to ρ,

E
ρ
[
‖z(t)‖2

L2(0,T ;H1)

]
=

T∫

0

E
ρ

⎡

⎢⎣
∞∑

k=1

λkσ
2
k

⎛

⎝
t∫

0

e−νλk (t−s)dωk(s)

⎞

⎠
2
⎤

⎥⎦ dt

=
T∫

0

⎛

⎝
∞∑

k=1

λkσ
2
k

t∫

0

e−2νλk (t−s)ds

⎞

⎠ dt

= 1

2ν

T∫

0

∞∑

k=1

σ 2
k (1 − e−2νλk t )dt

which is finite. Therefore ρ almost surely, z(t) ∈ L2(0, T ; H
1). Thus u(t; W ) ∈

C(0, T ; H)
⋂

L2(0, T ; H
1). We can then argue that ρ almost surely, the solution u

constructed in (12) equals Flandoli’s solution in (28) which we denote by uα (even
though it does not depend on α) as follows. As uα ∈ C([0, T ]; H)

⋂
L2([0, T ]; H

1),
vα(t; W ) = uα(t; W ) − z(t; W ) ∈ C([0, T ]; H)

⋂
L2([0, T ]; H

1) and satisfies
(7). As for each W , (7) has a unique solution in C([0, T ]; H)

⋂
L2([0, T ]; H

1), so
vα(t; W ) = v(t; W ). Thus almost surely, the Flandoli [6] solution equals the solu-
tion u in (12). This is also the argument to show that (3) has a unique solution in
C([0, T ]; H)

⋂
L2([0, T ]; H

1).

3.3 Posterior

Theorem 2 The conditional probability measure P(W |δ) = ρδ is absolutely contin-
uous with respect to the prior measure ρ with the Radon–Nikodym derivative being
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given by (24). Furthermore, when |δ| < r and |δ′| < r there is a constant c= c(r) so
that

dHell(ρ
δ, ρδ′

) ≤ c|δ − δ′|.

Proof Note that ρ(X) = 1. It follows from Corollary 2.1 of Cotter et al. [3] and
Theorem 6.31 of Stuart [18] that, in order to demonstrate that ρδ � ρ, it suffices
to show that the mapping G : X → R

J K is continuous; then the Randon-Nikodym
derivative (24) defines the density of ρδ with respect to ρ. As � is a collection of
bounded continuous linear functionals on H, the continuity of G with respect to the
topology of X follows from Theorem 1.

We now turn to the Lipschitz continuity of the posterior in the Hellinger metric.
The method of proof is very similar to that developed in the proofs of Theorem 2.5 in
[3] and Theorem 4.2 in [18]. We define

Z(δ) :=
∫

X

exp(−Φ(W ; δ))dρ(W ).

Mattingly [17] shows that for each t , the second moment E
ρ(‖u(·, t; W )‖2

H
) is

finite. Fixing a large constant M , the ρ measure of the set of paths W such that
max j=1,...,J ‖u(·, t j ; W )‖H ≤ M is larger than 1 − cJ/M2 > 1/2. For those paths
W in this set we have,

Φ(W ; δ) ≤ c(|δ| + M).

From this, we deduce that Z(δ) > 0. Next, we have that

|Z(δ) − Z(δ′)| ≤
∫

X

|Φ(W ; δ) − Φ(W ; δ′)|dρ(W )

≤ c
∫

X

(|δ| + |δ′| + 2
J∑

j=1

|�(u(t j ; W ))|RK )|δ − δ′|dρ(W )

≤ c|δ − δ′|.

We then have

2dHell(ρ
δ, ρδ′

)2 ≤
∫

X

(
Z(δ)−1/2 exp(−1

2
Φ(W ; δ))−Z(δ′)−1/2 exp(−1

2
Φ(W ′; δ′))

)2

dρ(W )

≤ I1 + I2,
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where

I1 = 2

Z(δ)

∫

X

(
exp(−1

2
Φ(W ; δ)) − exp(−1

2
Φ(W ; δ′))

)2

dρ(W ),

and

I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫

X

exp(−Φ(W ; δ′))dρ(W ).

Using the facts that

∣∣∣ exp(−1

2
Φ(W ; δ)) − exp(−1

2
Φ(W ; δ′))

∣∣∣ ≤ 1

2
|Φ(W ; δ) − Φ(W ; δ′)|

and that Z(δ) > 0, we deduce that

I1 ≤ c
∫

X

|Φ(W ; δ) − Φ(W ; δ′)|2dρ(W )

≤ c
∫

X

(|δ| + |δ′| + 2
J∑

j=1

|�(u(t j ; W ))|RK )2|δ − δ′|2dρ(W )

≤ c|δ − δ′|2.

Furthermore,

|Z(δ)−1/2 − Z(δ′)−1/2|2 ≤ c max(Z(δ)−3, Z(δ′)−3)|Z(δ) − Z(δ′)|2.

From these inequalities it follows that dHell(ρ
δ, ρδ′

) ≤ c|δ − δ′|. 
�

4 Inferring the initial condition

In the previous section we discussed the problem of inferring the forcing from the
velocity field. In practical applications it is also of interest to infer the initial condition,
which corresponds to a Bayesian interpretation of 4DVAR, or the initial condition and
the forcing, which corresponds to a Bayesian interpretation of weak constraint 4DVAR.
Thus we consider the Bayesian inverse problem for inferring the initial condition u0
and the white noise forcing determined by the Brownian driver W . Including the initial
condition does not add any further technical difficulties as the dependence on the
pathspace valued forcing is more subtle than the dependence on initial condition, and
this dependence on the forcing is dealt with in the previous section. As a consequence
we do not provide full details.
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Let � be a Gaussian measure on the space H and let μ = � ⊗ ρ be the prior
probability measure on the space H = H × X. We denote the solution u of (3) by
u(x, t; u0, W ).

We outline what is required to extend the analysis of the previous two sections to
the case of inferring both initial condition and driving Brownian motion. We simplify
the presentation by assuming observation at only one time t0 > 0 although this is
easily relaxed. Given that at t0 ∈ (0, T ), the noisy observation δ of �(u(·, t0; u0, W )

is given by

δ = �(u(·, t0; u0, W )) + ϑ (30)

where ϑ ∼ N (0, �). Letting

Φ(u0, W ; δ) = 1

2
|δ − �(u(·, t0; u0, W ))|2�, (31)

we aim to show that the conditional probability μδ = P(u0, W |δ) is given by

dμδ

dμ
∝ exp(−Φ(u0, W ; δ)). (32)

We have the following result.

Theorem 3 The conditional probability measure μδ = P(u0, W |δ) is absolutely con-
tinuous with respect to the prior probability measure μ with the Radon–Nikodym
derivative give by (32). Further, when |δ| < r and |δ′| < r there is a constant c= c(r)

such that

dHell(μ
δ, μδ′

) ≤ c|δ − δ′|.

Proof To establish the absolute continuity of posterior with respect to prior, together
with the formula for the Radon–Nikodym derivative, the key issue is establishing
continuity of the forward map with respect to initial condition and driving Brownian
motion. This is established in Theorem 1. Since μ(H) = 1 the first part of the theorem
follows.

For the Lipschitz dependency of the Hellinger distance of μδ on δ, we use the result
of Mattingly [17] which shows that, for each initial condition u0,

E
ρ(‖u(t; u0, W )‖2

H
) ≤ E0

2νλ1
+ e−2νλ1t

(
‖u0‖2

H
− E0

2νλ1

)
,

where E0 = ∑∞
k=1 σ 2

k . Therefore E
μ(‖u(t; u0, W )‖2

H
) is bounded. This enables us

to establish positivity of the normalization constants and the remainder of the proof
follows that given in Theorem 2. 
�
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5 Numerical results

The purpose of this section is twofold: firstly to demonstrate that the Bayesian for-
mulation of the inverse problem described in this paper forms the basis for practical
numerical inversion; and secondly to study some properties of the posterior distribu-
tion on the white noise forcing, given observations of linear functionals of the velocity
field.

The numerical results move outside the strict remit of our theory in two direc-
tions. Firstly we work with periodic boundary conditions; this makes the computa-
tions fast, but simultaneously demonstrates the fact that the theory is readily extended
from Dirichlet to other boundary conditions. Secondly we consider both (i) pointwise
observations of the entire velocity field and (ii) observations found from the projection
onto the lowest eigenfunctions of A noting that the second form of observations are
bounded linear functionals on H, as required by our theory, whilst the first form of
observations are not.

To extend our theory to periodic boundary conditions requires generalization of
the Flandoli [6] theory from the Dirichlet to the periodic setting, which is not a tech-
nically challenging generalization. However consideration of pointwise observation
functionals requires the proof of continuity of u(t; ·, ·) as a mapping from H into H

s

spaces for s sufficiently large. Extension of the theory to include pointwise observation
functionals would thus involve significant technical challenges, in particular to derive
smoothing estimates for the semigroup underlying the Flandoli solution concept. Our
numerical results will show that the posterior distribution for (ii) differs very little
from that for (i), which is an interesting fact in its own right.

In Sect. 5.1 we describe the numerical method used for the forward problem. In
Sect. 5.2 we describe the inverse problem and the Metropolis-Hastings MCMC method
used to probe the posterior. Section 5.3 describes the numerical results.

5.1 Forward problem: numerical discretization

All our numerical results are computed using a viscosity of ν = 0.1 and on the periodic
domain. We work on the time interval t ∈ [0, 0.1]. We use M = 322 divergence free
Fourier basis functions for a spectral Galerkin spatial approximation, and employ a
time-step δt = 0.01 in a Taylor time-approximation [9]. The number of basis functions
and time-step lead to a fully-resolved numerical simulation at this value of ν.

5.2 Inverse problem: metropolis hastings MCMC

Recall the Stokes’ operator A. We consider the inverse problem of finding the
driving Brownian motion. As a prior we take a centered Brownian motion in time
with spatial covariance π4 A−2; thus the space-time covariance of the process is
C0 := π4 A−2 ⊗ (−�t )

−1, where �t is the Laplacian in time with fixed homoge-
neous Dirichlet condition at t = 0 and homogeneous Neumann condition at t = T .
It is straightforward to draw samples from this Gaussian measure, using the fact that
A is diagonalized in the spectral basis. Note that if W ∼ ρ, then W ∈ C(0, T ; H

s)
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Fig. 1 Full-field point wise observations. The truth (top), expected value (middle), and absolute distance
between them (bottom) of the vorticity w(t; W ), for t = 0.01 (left, relative L2 error e = 0.0044) and
t = 0.1 (right, e = 0.0244)

almost surely for all s < 1; in particular W ∈ X. Thus ρ(X) = 1 as required. The
likelihood is defined (i) by making observations of the velocity field at every point on
the 322 grid implied by the spectral method, at every time t = nδt , n = 1, · · · 10, or
(ii) by making observations of the projection onto eigenfunctions {φk}|k|<4 of A. The
observational noise standard deviation is taken to be γ = 1.6 and all observational
noises are uncorrelated.

To sample from the posterior distribution we employ a Metropolis-Hastings MCMC
method. Furthermore, to ensure mesh-independent convergence properties, we use a
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Fig. 2 Full-field point wise observations. The trajectories uk (t; W ) (left) and Wk (right), with k = (0, 1)

(top), k = (0, 4) (middle), and k = (0, 8) (bottom). Shown are expected values and standard deviation
intervals as well as true values. The right hand images also show the expected value and standard deviation
of the prior, indicating the decreasing information content of the data for the increasing wave numbers

method which is well-defined in function space [2]. Metropolis-Hastings methods
proceed by constructing a Markov kernel P which satisfies detailed balance with
respect to the measure ρδ which we wish to sample:

ρδ(du)P(u, dv) = ρδ(dv)P(v, du), ∀ u, v ∈ X. (33)
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Fig. 3 Full-field point wise observations. The histograms of the posterior distribution in comparison to the
prior distribution of Wk (t = 0.05), for k = (0, 1) (left), k = (0, 4) (middle), and k = (0, 8) (right). These
plots again illustrate the decreasing information content of the data for the increasing wave numbers

Integrating with respect to u, one can see that detailed balance implies ρδP = ρδ .
Metropolis-Hastings methods [8,20] prescribe an accept-reject move based on pro-
posals from another Markov kernel Q, in order to define a kernel P which satisfies
detailed balance. If we define the measures

ν(du, dv) = Q(u, dv)ρδ(du) ∝ Q(u, dv) exp
(
−Φ(u; δ)

)
ρ(du)

ν⊥(du, dv) = Q(v, du)ρδ(dv) ∝ Q(v, du) exp
(
−Φ(v; δ)

)
ρ(dv).

(34)

then, provided ν⊥ � ν, the Metropolis-Hastings method is defined as follows. Given
current state un , a proposal is drawn u∗ ∼ Q(un, ·), and then accepted with probability

α(un, u∗) = min

{
1,

dν⊥

dν
(un, u∗)

}
. (35)

The resulting chain is denoted by P. If the proposal Q preserves the prior, so that
ρQ = ρ, then a short calculation reveals that

α(un, u∗) = min
{

1, exp
(
Φ(un; δ) − Φ(u∗; δ)

)}
; (36)

thus the acceptance probability is determined by the change in the likelihood in moving
from current to proposed state. We use the following pCN proposal [2] which is
reversible with respect to the Gaussian prior N (0, C0):

Q(un, ·) = N

(√
1 − β2un, β2C0

)
. (37)

This hence results in the acceptance probability (36). Variants on this algorithm, which
propose differently in different Fourier components, are described in [15], and can
make substantial speedups in the Markov chain convergence. However for the exam-
ples considered here the basic form of the method suffices.
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Fig. 4 Observation of Fourier modes {φk }|k|<4. The truth (top), expected value (middle), and absolute

distance between them (bottom) of the vorticity w(t; W ), for t = 0.01 (left, relative L2 error e = 0.0044)
and t = 0.1 (right, e = 0.0249). Notice the similarity to the results of Fig. 1

5.3 Results and discussion

The true driving Brownian motion W †, underlying the data in the likelihood, is con-
structed as a draw from the prior ρ. We then compute the corresponding true trajectory
u†(t) = u(t; W †). We use the pCN scheme (36), (37) to sample W from the posterior
distribution ρδ . It is important to appreciate that the object of interest here is the pos-
terior distribution on W itself which provides estimates of the forcing, given the noisy
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Fig. 5 Observation of Fourier modes {φk }|k|<4. The trajectories uk (t; W ) (left) and Wk (right), with
k = (0, 1) (top), k = (0, 4) (middle), and k = (0, 8) (bottom). Shown are expected values and standard
deviation intervals as well as true values. The right hand images also show the expected value and standard
deviation of the prior, indicating the decreasing information content of the data for the increasing wave
numbers

observations of the velocity field. This posterior distribution is not necessarily close
to a Dirac measure on the truth; in fact we will show that some parameters required
to define W are recovered accurately whilst others are not.

We first consider the observation set-up (i) where pointwise observations of the
entire velocity field are made. The true initial and final conditions are plotted in Fig. 1,
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Fig. 6 Observation of Fourier modes {φk }|k|<4. The histograms of the posterior distribution in comparison
to the prior distribution of Wk (t = 0.05), for k = (0, 1) (left), k = (0, 4) (middle), and k = (0, 8) (right).
These plots again illustrate the decreasing information content of the data for the increasing wave numbers.
Notice the middle panel in which one notices the posterior on W0,4(t = 0.05) is much closer to the prior
than in Fig. 3

top two panels, for the vorticity field w; the middle two panels of Fig. 1 show the
posterior mean of the same quantities and indicate that the data is fairly informa-
tive, since they closely resemble the truth; the bottom two panels of Fig. 1 show the
absolute difference between the fields in the top and middle panels. The true trajectory,
together with the posterior mean and one standard deviation interval around the mean,
are plotted in Fig. 2, for the wavenumbers (0, 1), (0, 4), and (0, 8), and for both the
driving Brownian motion W (right) and the velocity field u (left). This figure indi-
cates that the data is very informative about the (0, 1) mode, but less so concerning
the (0, 4) mode, and there is very little information in the (0, 8) mode. In particular
for the (0, 8) mode the mean and standard deviation exhibit behaviour similar to that
under the prior whereas for the (0, 1) mode they show considerable improvement over
the prior in both position of the mean and width of standard deviations. The poste-
rior on the (0, 4) mode has gleaned some information from the data as the mean has
shifted considerably from the prior; the variance remains similar to that under the
prior, however, so uncertainty in this mode has not been reduced. Figure 3 shows the
histograms of the prior and posterior for the same 3 modes as in Fig. 2 at the center
time t = 0.05. One can see here even more clearly that the data is very informative
about the (0, 1) mode in the left panel, less so but somewhat about the (0, 4) mode
in the center panel, and it is not informative at all about the (0, 8) mode in the right
panel.

Figures 4, 5, and 6 are the same as Figs. 1, 2, and 3 except for the case of (ii)
observation of low Fourier modes. Notice that the difference in the spatial fields are
difficult to distinguish by eye, and indeed the relative errors even agree to threshold
10−3. However, we can see that now the unobserved (0, 4) mode in the center panels
of Figs. 5 and 6 is not informed by the data and remains distributed approximately
like the prior.
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