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Summary. The transport of inertial particles in incompressible flows and subject
to molecular diffusion is studied through direct numerical simulations. It was shown
in recent work [9,15] that the long time behavior of inertial particles, with motion
governed by Stokes’ law in a periodic velocity field and in the presence of molecular
diffusion, is diffusive. The effective diffusivity is defined through the solution of a de-
generate elliptic partial differential equation. In this paper we study the dependence
of the effective diffusivity on the non—dimensional parameters of the problem, as well
as on the streamline topology, for a class of two dimensional periodic incompressible
flows.

1 Introduction

Inertial particles play an important role in various applications such as at-
mosphere science [6,16] and engineering [5,8]. The presence of inertia leads
to many exciting phenomena and in particular to the fact that the distri-
bution of particles in turbulent flows is homogeneous, i.e. particles tend to
cluster [1,2,17,18]. Whilst the problem of passive tracers, where inertia is ne-
glected, has attracted the attention of many scientists over the last decades,
cf. [7,11], the number of theoretical investigations concerning inertial particles
is still rather small.

The purpose of this paper is to study the long time behavior of particles
which move in steady, periodic two—dimensional incompressible velocity fields
and are subject to molecular diffusion, using Monte Carlo simulations. The
particle motion is governed by Stokes’s law

1% = v(z) — & + 0. (1)
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Here 7 > 0 is the Stokes’ number, which can be thought of as the non-
dimensional particle relaxation time. The field v(z) is the (given) fluid velocity,
o > 0 is the molecular diffusivity and ,B stands for white noise, i.e. a mean
zero Gaussian process with covariance

(B;(t)B;(s)) = 6:;5(t — s),

where (-) stands for ensemble average. It was shown in recent work [9,15] that,
for periodic velocity fields v(x), the long time behavior of inertial particles
which move according to (1) is governed by an effective Brownian motion. To

be more precise, let
t
Sty = — . 2
wt) = () 2)

The process x¢(t) satisfies the rescaled equation

T

Fe = %v (z) — %+ af. (3)

The results of [9,15], see Theorem 1 in Sect. 2, imply that z¢(¢) converges, as
€ tends to 0, to a Brownian motion with covariance K, the effective diffusivity.

Now, the effective diffusivity is defined in terms of the solution of a de-
generate Poisson equation, see equations (8) and (9) below. It is expected
that K depends on the parameters of the problem 7 and ¢ in a complicated,
highly non linear way. Moreover, the diffusivity is also expected to depend
non—trivially on the topology of the streamlines of v(x), as happens for pas-
sive tracers [11]. Our goal is to gain some insight into such dependencies by
means of direct numerical simulations for a class of two dimensional flows.

Similar problems have been investigated within the context of massless
tracer particles which move according to equation (1) with 7 = 0:

& = v(z) + of. T (4

It has been known for a long time [3] that the long time behavior of passive
tracers moving in periodic flows is diffusive, with an effective diffusivity Kg
which can be computed in terms of a Poisson equation with periodic boundary
conditions, the cell problem. It is a well documented fact that the functional
dependence of the effective diffusivity on the molecular diffusivity depends cru-
cially on the streamline topology. For example, in the case of cellular flows—i.e.
flows with closed streamlines—both diagonal components of Kq scale linearly
with o:
Ko~eo, o<£l.

On the contrary, for shear flows the component of g along the direction of
the shear is inversely proportional to the square of o [19]:

1
ICON—z, (GF e L
g

u.l
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In [12] lower and upper bounds on the dependence of Ky for o < 1 were
derived and the concepts of maximally and minimally enhanced diffusion were
introduced. Recall that for pure molecular diffusion (i.e. Brownian motion) the
diffusion coefficient is Ko = "72

The problem of studying the properties of the effective diffusivity becomes
even more involved in the case of the inertial particles for two reasons. First,
there are two non-dimensional parameters to consider, the Stokes number 7,
together with the molecular diffusivity o. Second, the Poisson equation that
we need to solve in order to compute K, equation (9) below, is degenerate
and is posed on 27T? x R?, where T? denotes the d—dimensional unit torus;
this renders analytical investigations on the dependence of K on 7 and o very
difficult. Furthermore, the direct numerical solution of the cell problems is a
non—trivial issue and hence Monte Carlo methods are natural.

In order to gain some insight into this difficult and interesting problem
we resort to direct numerical simulations of (1) for a two—dimensional one—
parameter velocity field, the Childress—Soward flow [4]

ves(z) = Vies(z), Yeos(z) = sin(z;) sin(zs) + 6 cos(zy) cos(zz).  (5)

Here § € [0, 1]. This family of flows is useful for numerical experiments because
as, 0 ranges from 0 to 1, the flow ranges from pure cellular to pure shear. In
Figs. 1la, 1b and lc we present the contour plots of the Childress—Soward
stream function Y¢og(z) for § = 0.0, § = 0.5 and § = 1.0, respectively.

-1 -08-06-04-02 0 02 04 06 08 1 ; I j -08 -06 -04 -02 0 02 04 06 08 1
a. 6=00 b. =05 c. =10

Fig. 1. Contour plot of ¥cs(z) for § = 0.0, § = 0.5 and § = 1.0.

The numerical results reported in this paper indicate that the presence
of inertia can lead to a tremendous enhancement in the effective diffusivity,
beyond the enhancement in the absence of inertia, for certain values of the
parameters of the problem. However, it is shown that the effective diffusivity
depends very sensitively on the streamline topology. In particular, for shear
flows the presence of inertia seems to have a negligible effect on the effective
diffusivity.

The rest of the paper is organized as follows: in Sect. 2 we review the results
on periodic homogenization for inertial particles that were obtained in [9,15].
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In Sect. 3 we present the results obtained through Monte Carlo simulations
concerning the dependence of K on 7, ¢ and ¢ for the Childress—Soward flow.
Section 4 is reserved for conclusions.

2 Periodic Homogenization for Inertial Particles

We consider the motion of inertial particles moving in incompressible veloc-
ity fields v(z) subject to molecular diffusion. Under the assumption that the
density of the particles p, is much greater than the density of the surround-
ing fluid py, Z—i < 1, this gives rise to equation (1) [14]. Generalizations of

equation (1) which are valid for the case %i ~ 1 can also be treated by aug-

menting v(z) to include added mass effects. We refer to [14] for the model
and to [15, sec. 4.7] for details of the homogenization result in this case.

Upon introducing the particle velocity y = /7, as well as the auxiliary
variable z = x /e, we can rewrite the rescaled equation (3) as a first order
system:

e
1 \/;ely , : :
= 7rav(e) — zay+ 6, (6)
= ZrzYs

with the understanding that z € 2aT¢ and z, y € R?. The "fast” process
{z,y} € 2rT¢ x R? is Markovian with generator

1 1 o?
/«':*ﬁ(?/'vz+v(2)'vy)+; (—y-Vyﬁ—?Ay) :
It is proved in [15], using the results of [13], that the process {z, y} is ergodic
and that the unique invariant measure possesses a smooth density p(y, z) with
respect to Lebesgue measure. This density satisfies the stationary Fokker—

Planck equation
L'p=0,

where L£* is the adjoint of the generator of the process:

£ = 2 (v Vem v V) + 1 (V) + 54,

The main result of [9,15] is that, provided that the fluid velocity is smooth and
centered with respect to the invariant measure p(y, z), the long time behavior
of the inertial particles is diffusive, with an effective diffusivity which can
be computed through the solution of a degenerate Poissson equation. More
precisely we have the following theorem.

Theorem 1. Let z¢(t), defined in (2), be the solution of the rescaled equation
(3), in which the velocity field v(z) € C®(2rT?) satisfies
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/ / (2) p(y, z) dzdy = 0. (7)
27Td JRE

Then the process are(t converges weakly, as € — 0, to a Brownian motion on
R? with covariance IC. Here

K= %/Q ¥ /Rd y ® P(y, 2)p(y, ) dydz (8)

and the function @(y, z) is the solution of the Poisson equation

1
Lo(y,z) = 7Y (9)
The notation ® denotes the tensor product between two vectors in R%. We
will sometimes refer to K as the inertial effective diffusivity. The proof of this
theorem, which is based on the martingale central limit theorem, can be found
in [9], together with bounds on the rate of convergence. It is straightforward to
show that the effective diffusivity K is a nonnegative matrix. We also remark
that the centering condition (7) ensures the absence of a large scale mean drift.
Sufficient conditions for (7) to hold are derived in [15]. In the case where (7)
does not hold, a Galilean transformation with respect to the mean drift brings
us back to the situation described in Theorem 1.
The asymptotic behavior of K as 7 tends to 0 was also investigated in [15].
It was shown that, as 7 tends to 0, K converges to K, the effective diffusivity
for the passive tracers case:

K = Ko+ O(7). (10)

The effective diffusivity Ky is also computed through the solution of a Poisson

equation:
2

—Lox =v(z), Lo=wv(z) -V+ %—A, (11a)

2

= %H /2 V(@) @ x(z)dz. (11b)

Here I stands for the identity matrix on R%. We will refer to Ky as the tracer
effective diffusivity. It still an open question whether the higher order correc-
tions in (10) are of definite sign. Notice that for Ky the cell problem (11a) is
a uniformly elliptic PDE with periodic boundary conditions and is amenable
to direct numerical simulation, e.g. by means of a spectral method. This is no
longer true for the cell problem (9), which is a degenerate elliptic equation
posed on R¢ x (27T4), and we use Monte Carlo methods in this case.

3 Numerical Results

In this section we study numerically the effective diffusivity K for equation
(1) for the Childress—Soward velocity field (5). We are particularly interested
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in analyzing the dependence of K on the non—dimensional parameters of the
problem 7, o and §.

The results of [15] enable us to check that the Childress—Soward flow sat-
isfies condition (7) and hence the absence of ballistic motion at long scales
is ensured. Moreover, the symmetry properties of (5) imply that the two
diagonal components of the effective diffusivity are equal, whereas the off-
diagonal components vanish. In the figures presented below we use the nota-
tion K = }Cll = ]sz_),.

We compute the effective diffusivity using Monte Carlo simulations: we
solve the equations of motion (1) numerically for different realizations of the
noise and we compute the effective diffusivity through the formula

K= Jim %i((x(t) — (&(1)) @ (z(t) — ((&)))),

where () denotes ensemble average. We solve the stochastic equations of mo-
tion using Milstein’s method, appropriately modified for the second order SDE
(1) [10, p. 386]:

Tniz = (2—7)xps1 — (1 — 1)z, + rAtv(Tpe1) + or AIN(0,1) .

where r = %—t. This method has strong order of convergence 1.0. We use
N = 1024 uniformly distributed particles in 27 T? with zero initial velocities
and we integrate over a very long time interval (which is chosen to depend
upon the parameters of the problem) with At = 5.107* min{1,7}.

We are interested in comparing the effective diffusivities for inertial par-
ticles with those for passive tracers. The latter are computed by solving the
cell problem (11a) by means of a spectral method similar to that described
in [12]. )

We perform two sets of experiments: first, we fix o = 0.1 and compute the
effective diffusivity for 7 taking values in [0.1,10]. Then, we fix = = 1.0 and
compute K for o taking values in [0.1, 10]. We perform these two experiments
for various values of the Childress—Soward parameter § € [0,1]. The choice
d = 0.0 corresponds to closed streamlines, whereas the choice § = 1.0 leads to
a flow with completely open streamlines, i.e. a shear flow. The results of our
numerical simulations for § = 0.0, 0.25, 0.5, 0.75, 1.0 are reported in Figs. 2
to 6.

Several interesting results can be drawn from our numerical simulations.
First, a resonance occurs when the Stokes’ number 7 = (1), which leads
to a tremendous enhancement in the effective diffusivity. In particular, for

= 0.25 and § = 0.5, Figs. 3 and 4, the effective diffusivity for 7 = O(1) is
several orders of magnitude greater than the one for 7 = 0.0.

On the other hand, the effect of inertia on K becomes negligible as the
streamlines become completely open, Fig. 6. In this case, § = 1.0 the effective
diffusivity for inertial particles behaves very similarly to the effective diffusiv-
ity for passive tracers.
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Fig. 2. Effective diffusivity versus o (with 7 = 1.0) and 7 (with ¢ = 0.1) for 6 = 0.0.
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Fig. 3. Effective diffusivity versus ¢ (with 7 = 1.0) and 7 (with & = 0.1) for
d = 0.25.

The effective diffusivity as a function of § for inertial particles as well as
passive tracers is plotted in Fig. 7, for 7 = 1.0 and o = 0.1. It becomes clear
from this figure that, for 7 and o fixed, the effective diffusivity for inertial
particles reaches its maximum for § ~ 0.30: in contrast to the passive tracers
case, the dependence of the inertial effective diffusivity on § is not monotonic.
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Fig. 4. Effective diffusivity versus o (with 7 = 1.0) and 7 (with o = 0.1) for § = 0.5.
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Fig. 5. Effective diffusivity versus o (with 7 = 1.0) and 7 (with ¢ = 0.1) for
8 =10.75.

4 Conclusions

The dependence of the effective diffusivity for inertial particles on the particle
relaxation time 7 and the molecular diffusivity o was investigated in this paper
by means of Monte Carlo simulations, for a one parameter family of steady
two dimensional flows. We illstrated several phenomena of interest:

e the inertial effective diffusivity can be much greater than the tracer effec-
tive diffusivity, for certain values of the parameters of the problem,;
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Fig. 6. Effective diffusivity versus o (with 7 = 1.0) and 7 (with o = 0.1) for § = 1.0.
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e inertia creates interesting effects of enhanced diffusivity, especially for
small molecular diffusion, and these effects depend non-trivially on the
topology of the streamlines of the velocity field;

e for velocity fields with most, or all, streamlines open the effect of inertia
is negligible;

e the effective diffusivity is not montonic in the Stokes number, which mea-
sures the strength of the inertial contribution — maxima are observed for
Stokes numbers of order 1.

Many questions are open for further study, both analytical and numerical:

e it would be of interest to develop asymptotic studies of the effective diffu-
sivity, in particular to understand the effects of small molecular diffusion
and small Stokes number;

e it would be of interest to develop variational characterization of effective
diffusivities, as has been very effective for passive tracers [11];

e it is of interest to investigate effective diffusivities for time dependent ve-
locity fields v(z,t), with randomness introduced in space and/or time.
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