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Abstract. The problem of effectively combining data with a mathematical

model constitutes a major challenge in applied mathematics. It is particu-
lar challenging for high-dimensional dynamical systems where data is received

sequentially in time and the objective is to estimate the system state in an

on-line fashion; this situation arises, for example, in weather forecasting. The
sequential particle filter is then impractical and ad hoc filters, which employ

some form of Gaussian approximation, are widely used. Prototypical of these

ad hoc filters is the 3DVAR method. The goal of this paper is to analyze the
3DVAR method, using the Lorenz ’63 model to exemplify the key ideas. The

situation where the data is partial and noisy is studied, and both discrete time

and continuous time data streams are considered. The theory demonstrates
how the widely used technique of variance inflation acts to stabilize the filter,

and hence leads to asymptotic accuracy.

1. Introduction. Data assimilation concerns estimation of the state of a dynami-
cal system by combining observed data with the underlying mathematical model. It
finds widespread application in the geophysical sciences, including meteorology [15],
oceanography [2] and oil reservoir simulation [24]. Both filtering methods, which
update the state sequentially, and variational methods, which can use an entire time
window of data, are used [1]. However, the dimensions of the systems arising in the
applications of interest are enormous – of O(109) in global weather forecasting, for
example. This makes rigorous Bayesian approaches such as the sequential particle
filter [6], for the filtering problem, or MCMC methods for the variational problem
[29], prohibitively expensive in on-line scenarios.

For this reason various ad hoc methodologies are typically used. In the context
of filtering these usually rely on making some form of Gaussian ansatz [32]. The
3DVAR method [18, 26] is the simplest Gaussian filter, relying on fixed (with respect
to the data time-index increment) forecast and analysis model covariances, related
through a Kalman update. A more sophisticated idea is to update the forecast
covariance via the linearized dynamics, again computing the analysis covariance via
a Kalman update, leading to the extended Kalman filter [13]. In high dimensions
computing the full linearized dynamics is not practical. For this reason the ensemble
Kalman filter [7, 8] is widely used, in which the forecast covariance is estimated
from an ensemble of particles, and each particle is updated in Kalman fashion. An
active current area of research in filtering concerns the development of methods
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which retain the computational expediency of approximate Gaussian filters, but
which incorporate physically motivated structure into the forecast and analysis steps
[22, 21], and are non-Gaussian.

Despite the widespread use of these many variants on approximate Gaussian fil-
ters, systematic mathematical analysis remains in its infancy. Because the 3DVAR
method is prototypical of other more sophisticated ad hoc filters it is natural to de-
velop a thorough understanding of the mathematical properties of this filter. Two
recent papers address these issues in the context of the Navier-Stokes equation, for
data streams which are discrete in time [5] and continuous in time [4]. These papers
study the situation where the observations are partial (only low frequency spatial in-
formation is observed) and subject to small noise. Conditions are established under
which the filter can recover from an order one initial error and, after enough time
has elapsed, estimate the entire system state to within an accuracy level determined
by the observational noise scale; this is termed filter accuracy. Key to understand-
ing, and proving, these results on the 3DVAR filter for the Navier-Stokes equation
are a pair of papers by Titi and co-workers which study the synchronization of the
Navier-Stokes equation with a true signal which is fed into only the low frequency
spatial modes of the system, without noise [25, 12]; the higher modes then syn-
chronize because of the underlying dynamics. The idea that a finite amount of
information effectively governs the large-time behaviour of the Navier-Stokes equa-
tion goes back to early studies of the equation as a dynamical system [10] and is
known as the determining node or mode property in the modern literature [27]. The
papers [5, 4] demonstrate that the technique of variance inflation, widely employed
by practitioners in high dimensional filtering, can be understood as a method to
add greater weight to the data, thereby allowing the synchronization effect to take
hold.

The Lorenz ’63 model [19, 28] provides a useful metaphor for various aspects of
the Navier-Stokes equation, being dissipative with a quadratic energy-conserving
nonlinearity [9]. In particular, the Lorenz model exhibits a form of synchroniza-
tion analogous to that mentioned above for the Navier-Stokes equation [12]. This
strongly suggests that results proved for 3DVAR applied to the Navier-Stokes equa-
tion will have analogies for the Lorenz equations. The purpose of this paper is to
substantiate this assertion.

The presentation is organized as follows. In section 2 we describe the Bayesian
formulation of the inverse problem of sequential data assimilation; we also present
a brief introduction to the relevant properties of the Lorenz ’63 model and describe
the 3DVAR filtering schemes for both discrete and continuous time data streams.
In section 3 we derive Theorem 3.2 concerning the 3DVAR algorithm applied to the
Lorenz model with discrete time data. This is analogous to Theorem 3.3 in [5] for
the Navier-Stokes equation. However, in contrast to that paper, we study Gaussian
(and hence unbounded) observational noise and, as a consequence, our results are
proved in mean square rather than almost surely. In section 4 we extend the accu-
racy result to the continuous time data stream setting: Theorem 4.1; the result is
analogous to Theorem 4.3 in [4] which concerns the Navier-Stokes equation. Sec-
tion 5 contains numerical results which illustrate the theory. We make concluding
remarks in section 6.
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2. Set-Up. In subsection 2.1 we formulate the probabilistic inverse problem which
arises from attempting to estimate the state of a dynamical system subject to un-
certain initial condition, and given partial, noisy observations. Subsection 2.2 intro-
duces the Lorenz ’63 model which we employ throughout this paper. In subsections
2.3 and 2.4 we describe the discrete and continuous 3DVAR filters whose properties
we study in subsequent sections.

2.1. Inverse problem. Consider a model whose dynamics is governed by the equa-
tion

du

dt
= F(u), (2.1)

with initial condition u(0) = u0 ∈ Rp. We assume the the initial condition is
uncertain and only its statistical distribution is known, namely the Gaussian u0 ∼
N(m0, C0). Assuming that the equation has a solution for any u0 ∈ Rp and all
positive times, we let Ψ(·, ·) : Rp × R+ → Rp be the solution operator for equation
(2.1). Now suppose that we observe the system at equally spaced times tk = kh for
all k ∈ Z+. For simplicity we write Ψ(·) := Ψ(·;h). Defining uk = u(tk) = Ψ(u0; kh)
we have

uk+1 = Ψ(uk), k ∈ Z+. (2.2)

We assume that the data {yk}k∈Z+ is found from noisily observing a linear operator
H applied to the system state, at each time tk, so that

yk+1 = Huk+1 + νk+1, k ∈ N. (2.3)

Here {νk}k∈N is an i.i.d. sequence of random variables, independent of u0, with
ν1 ∼ N(0,Γ) and H denotes a linear operator from Rp to Rm, with m ≤ p. If the
rank of H is less than p the system is said to be partially observed. The partially
observed situation is the most commonly arising in applications and we concentrate
on it here. The over-determined case m > p corresponds to making more than one
observation in certain directions; one approach that can be used in this situation is
to average multiple observations to reduce the effective observational error variance
by the square root of the number of observations in that direction, and thereby
reduce to the case where the rank is less than or equal to p.

We denote the accumulated data up to time k by Yk := {yj}kj=1. The pair

(uk, Yk) is a jointly varying random variable in Rp × Rkm. The goal of filtering
is to determine the distribution of the conditioned random variable uk|Yk, and to
update it sequentially as k is incremented. This corresponds to a sequence of inverse
problems for the system state, given observed data, and it has been regularized by
means of the Bayesian formulation.

2.2. Forward model: Lorenz ’63. When analyzing the 3DVAR approach to
the filtering problem we will focus our attention on a particular model problem,
namely the classical Lorenz ’63 system [19]. In this section we introduce the model
and summarize the properties relevant to this paper. The Lorenz equations are a
system of three coupled non-linear ordinary differential equations whose solution
u ∈ R3, where u = (ux, uy, uz), satisfies

u̇x = α(uy − ux), (2.4a)

u̇y = −αux − uy − uxuz, (2.4b)

u̇z = uxuy − buz − b(r + α). (2.4c)
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Note that we have employed a coordinate system where origin is shifted to the
point

(
0, 0,−(r + α)

)
as discussed in [30]. Throughout this paper we will use the

classical parameter values (α, b, r) = (10, 83 , 28) in all of our numerical experiments.
At these values, the system is chaotic [31] and has one positive and one negative
Lyapunov exponent and the third is zero, reflecting time translation-invariance.
Our theoretical results, however, simply require that α, b > 1 and r > 0 and we
make this assumption, without further comment, throughout the remainder of the
paper.

In the following it is helpful to write the Lorenz equation in the following form
as given in [9],[12]:

du

dt
+Au+B(u, u) = f, u(0) = u0, (2.5)

where

A =

 α −α 0
α 1 0
0 0 b

 , f =

 0
0

−b(r + α)



B(u, ũ) =

 0
(uxũz + uzũx)/2
−(uxũy + uyũx)/2

 .

We use the notation 〈·, ·〉 and |·| for the standard Euclidean inner-product and norm.
When describing our observations it will also be useful to employ the projection
matrices P and Q defined by

P =

 1 0 0
0 0 0
0 0 0

 Q =

 0 0 0
0 1 0
0 0 1

 . (2.6)

We will use the following properties of A and B:

Properties 2.1 ([12]). For all u, ũ ∈ R3

(1). 〈Au, u〉 = αu2x + u2y + bu2z > |u|
2

provided that α, b > 1.
(2). 〈B(u, u), u〉 = 0.
(3). B(u, ũ) = B(ũ, u).
(4). |B(u, ũ)| ≤ 2−1|u||ũ|.
(5). |〈B(u, ũ), ũ〉| ≤ 2−1|u||ũ||Pũ|.

We will also use the following:

Proposition 2.2. ([12], Theorem 2.2) Equation (2.5) has a global attractor A. Let
u be a trajectory with u0 ∈ A. Then |u(t)|2 ≤ K for all t ∈ R where

K =
b2(r + α)2

4(b− 1)
. (2.7)

Figure 1 illustrates the properties of the equation. Sub-figure 1(a) shows the
global attractor A. Sub-figures 1(b), 1(c) and 1(d) show the components ux, uy
and uz, respectively, plotted against time.
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Figure 1. Lorenz attractor and individual components.

2.3. 3DVAR: Discrete time data. In this section we describe the 3DVAR filter-
ing scheme for the model (2.1) in the case where the system is observed discretely
at equally spaced time points. The system state at time tk = kh is denoted by
uk = u(tk) and the data upto that time is Yk = {yj}kj=1. Recall that our aim is to
find the probability distribution of uk|Yk. Approximate Gaussian filters, of which
3DVAR is a prototype, impose the following approximation:

P(uk|Yk) = N(mk, Ck). (2.8)

Given this assumption the filtering scheme can be written as an update rule

(mk, Ck) 7→ (mk+1, Ck+1). (2.9)

To determine this update we make a further Gaussian approximation, namely that
uk+1 given Yk follows a Gaussian distribution:

P(uk+1|Yk) = N(m̂k+1, Ĉk+1). (2.10)

Now we can break the update rule into two steps of prediction (mk, Ck) 7→ (m̂k+1,

Ĉk+1) and analysis (m̂k+1, Ĉk+1) → (mk+1, Ck+1). For the prediction step we

assume that m̂k+1 = Ψ(mk) whilst the choice of the covariance matrix Ĉk+1 depends
upon the choice of particular approximate Gaussian filter under consideration. For
the analysis step, (2.10) together with the fact that yk+1|uk+1 ∼ N(Huk+1,Γ) and
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application of Bayes’ rule, implies that

uk+1|Yk+1 ∼ N(mk+1, Ck+1) (2.11)

where [11]

Ck+1 = Ĉk+1 − Ĉk+1H
∗(Γ +HĈk+1H

∗)−1HĈk+1 (2.12a)

mk+1 = Ψ(mk) + Ĉk+1H
∗(Γ +HĈk+1H

∗)−1
(
yk+1 −HΨ(mk)

)
. (2.12b)

As mentioned the choice of update rule Ck → Ĉk+1 defines the particular approxi-

mate Gaussian filtering scheme. For the 3DVAR scheme we impose Ĉk+1 = C ∀k ∈
N where C is a positive definite p× p matrix. From equation (2.12b) we then get

mk+1 = Ψ(mk) + CH∗(Γ +HCH∗)
−1(

yk+1 −HΨ(mk)
)

= (I −GH)Ψ(mk) +Gyk+1 (2.13)

where
G := CH∗(Γ +HCH∗)

−1
(2.14)

is called Kalman gain matrix. The iteration (2.13) is analyzed in section 3.
Another way of defining the 3DVAR filter is by means of the following variational

definition:

mk+1 = argmin
m

(
1

2
‖C− 1

2

(
m−Ψ(mk)

)
‖
2

+
1

2
‖Γ− 1

2 (yk+1 −Hm)‖
2
)
. (2.15)

This coincides with the previous definition because the mean of a Gaussian can be
characterized as the minimizer of the negative of the logarithm of the probability
density function and because the analysis step corresponds to a Bayesian Gaussian
update, given the assumptions underlying the filter; indeed the fact that the neg-
ative logarithm is the sum of two squares follows from Bayes’ theorem. From the
variational formulation, it is clear that the 3DVAR filter is a compromise between
fitting the model and the data. The model uncertainty is characterized by a fixed
covariance C, and the data uncertainty by a fixed covariance Γ; the ratio of the size
of these two covariances will play an important role in what follows.

2.4. 3DVAR: Continuous time data. In this section we describe the limit of
high frequency observations h → 0 which, with appropriate scaling of the noise
covariance with respect to the observation time h, leads to a stochastic differential
equation (SDE) limit for the 3DVAR filter. We refer to this SDE as the continuous
time 3DVAR filter. We give a brief derivation, referring to [4] for further details and
to [3] for a related analysis of continuous time limits in the context of the ensemble
Kalman filter.

We assume the following scaling for the observation error covariance matrix:
Γ = 1

hΓ0. Thus, although the data arrives more and more frequently, as we consider
the limit h→ 0, it is also becoming more uncertain; this trade-off leads to the SDE
limit. Define the sequence of variables {zk}k∈N by the relation zk+1 = zk + hyk+1

and z0 = 0. Then

zk+1 = zk + hHuk+1 +
√
hΓ0γk, z0 = 0. (2.16)

Here γk ∼ N(0, I). By rearranging and taking limit as h→ 0 we get

dz

dt
= Hu+

√
Γ0

dw

dt
, (2.17)

where w is an Rm valued standard Brownian motion. We think of Z(t) :=
{z(s)}s∈[0,t] as being the data. For each fixed t we have the jointly varying random
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variable (u(t), Z(t)) ∈ Rp ×C([0, t];Rm). We are interested in the filtering problem
of determining the sequence of conditioned probability distributions implied by the
random variable u(t)|Z(t) in Rp. The 3DVAR filter imposes Gaussian approxima-
tions of the form N

(
m(t), C

)
. We now derive the evolution equation for m(t).

Recall the vector field F which drives equation (2.1). Using equation (2.16) in
(2.13), together with the fact that Ψ(u) = u+ hF(u) +O(h2), gives

mn+1 = mn + hF(mn) +O(h2) + hCH∗(Γ0 + hHCH∗)−1
(
zn+1 − zn

h
−Hmn

)
.

(2.18)
Rearranging and taking limit h→ 0 gives

dm

dt
= F(m) + CH∗Γ−10

(
dz

dt
−Hm

)
. (2.19)

Equation (2.19) defines the continuous time 3DVAR filtering scheme and is an-
alyzed in section 4. The data should be viewed as the continuous time stream
Z(t) = {z(s)}s∈[0,t] and equations (2.17) and (2.19) as stochastic differential equa-
tions driven by w and z respectively.

3. Analysis of discrete time 3DVAR. In this section we analyse the discrete
time 3DVAR algorithm when applied to a partially observed Lorenz ’63 model;
in particular we assume only that the ux component is observed. We start, in
subsection 3.1, with some general discussion of error propagation properties of the
filter. In subsection 3.2 we study mean square behaviour of the filter for Gaussian
noise. Recall the projection matrices P and Q given by (2.6), we will use these in
the following. We will also use {vk} to denote the exact solution sequence from the
Lorenz equations which underlies the data; this is to be contrasted with {uk} which
denotes the random variable which, when conditioned on the data, is approximated
by the 3DVAR filter.

3.1. Preliminary calculations. Throughout we assume that H = (1, 0, 0), so
that only ux is observed, and we choose the model covariance C = η−1ε2I. We also
assume that Γ = ε2. The Kalman gain matrix is then G = 1

1+ηH
∗ and the 3DVAR

filter (2.13) may be written

mk+1 =

(
η

1 + η
P +Q

)
Ψ(mk) +

1

1 + η
yk+1H

∗. (3.1)

The scalar parameter is a design parameter whose choice we will discuss through
the analysis of the iteration (3.1). Note that we are working with rather specific
choices of model and observational noise covariances C and Γ; we will comment on
generalizations in the concluding section 6.

We define v to be the true solution of the Lorenz equation (2.5) which underlies
the data, and we define vk = v(kh), the solution at observation times. Note that,
since Γ = ε2, it is consistent to assume that the observation errors have the form

νk =

 εξk
0
0

 ,
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where ξk are i.i.d. random variables on R. We will consider the case ξ1 ∼ N(0, 1)
for simplicity of exposition. Note that we may write

yk+1H
∗ = Pvk+1 + νk+1

= PΨ(vk) + νk+1.

Thus

mk+1 =

(
η

1 + η
P +Q

)
Ψ(mk) +

1

1 + η

(
PΨ(vk) + νk+1

)
. (3.2)

Observe that

vk+1 = Ψ(vk) =

(
η

1 + η
P +Q

)
Ψ(vk) +

1

1 + η
PΨ(vk). (3.3)

We are interested in comparing mk, the output of the filter, with vk the true
signal which underlies the data. We define the error process δ(t) as follows:

δ(t) =

{
mk − v(t) if t = tk

Ψ(mk, t− tk)− v(t) if t ∈ (tk, tk+1)

Observe that δ is discontinuous at times tj which are multiples of h, since mk+1 6=
Ψ(mk;h). In the following we write δ(t−j ) for limt→t−j

δ(t) and we define δj = δ(tj).

Thus δj 6= δ(t−j ). Subtracting (3.3) from (3.2) we obtain

δ(tk+1) =

(
η

1 + η
P +Q

)
δ(t−k+1) +

1

1 + η
νk. (3.4)

Now consider the time interval (tk, tk+1). Since δ(t) is simply given by the difference
of two solutions of the Lorenz equations in this interval, we have

dδ

dt
+Aδ +B(v, δ) +B(δ, v) +B(δ, δ) = 0, t ∈ (tk, tk+1). (3.5)

Taking the Euclidean inner product of equation (3.5) with δ gives

1

2

d|δ|2

dt
+ 〈Aδ, δ〉+ 〈B(v, δ), δ〉+ 〈B(δ, v), δ〉+ 〈B(δ, δ), δ〉 = 0 (3.6)

which, on simplifying and using Properties 2.1, gives

1

2

d|δ|2

dt
+ 〈Aδ, δ〉+ 2〈B(v, δ), δ〉 = 0, (3.7)

and hence
1

2

d|δ|2

dt
+ |δ|2 + 2〈B(v, δ), δ〉 ≤ 0. (3.8)

In order to use (3.4) we wish to estimate the behaviour of δ(t−k+1) in terms of δk.
The following is useful in this regard and may be proved by using (3.8) together
with Properties 2.1(4). Note that K is defined by equation (2.7) and is necessarily
greater than or equal to one, since b, α > 1.

Proposition 3.1 ([12]). Assume the true solution v lies on the global attractor A
so that supt≥0|v(t)|2 ≤ K with

K =
b2(r + α)2

4(b− 1)
.

Then for β = 2
(
K1/2 − 1

)
it follows that |δ(t)|2 ≤ |δk|2eβ(t−tk) for t ∈ [tk, tk+1).
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3.2. Accuracy theorem. In this subsection we assume that ξ1 ∼ N(0, 1) and we
study the behaviour of the filter in forward time when the size of the observational
noise, O(ε), is small. The following result shows that, provided variance inflation
is employed (η small enough), the 3DVAR filter can recover from an O(1) initial
error and enter an O(ε) neighbourhood of the true signal. The results are proved in
mean square. The reader will observe that the bound on the error behaves poorly as
the observation time h goes to zero, a result of the over-weighting of observed data
which is fluctuating wildly as h → 0. This effect is removed in section 4 where the
observational noise is scaled appropriately, in terms of h→ 0, to avoid this effect.

For this theorem we define a norm ‖ · ‖ by ‖u‖2 = |u|2 + |Pu|2, where | · | is the
Euclidean norm.

Theorem 3.2. Let v be a solution of the Lorenz equation (2.5) with v(0) ∈ A,
the global attractor. Assume that ξ1 ∼ N(0, 1) so that the observational noise is
Gaussian. Then there exist hc > 0, λ > 0 such that for all η sufficiently small and
all h ∈ (0, hc)

E||δk+1||2 ≤ (1− λh)E||δk||2 + 2ε2. (3.9)

Consequently

lim sup
k→∞

E||δk||2 ≤
2ε2

λh
. (3.10)

Proof. Recall that we have Eνk+1 = 0 and E|νk+1|2 = ε2. On application of the
projection P to the error equation (3.4) for 3DVAR we obtain

E|Pδk+1|2 ≤
(

η

1 + η

)2

E|Pδ(t−k+1)|2 +

(
1

1 + η

)2

ε2. (3.11)

Since E|Qδk+1|2 = E|Qδ(t−k+1)|2 ≤ E|δ(t−k+1)|2 we also obtain the bound

E|δk+1|2 ≤
(

η

1 + η

)2

E|Pδ(t−k+1)|2 + E|δ(t−k+1)|2 +

(
1

1 + η

)2

ε2. (3.12)

Define M1 and M2 by

M1(τ) =
Kα

β + α

(
eβτ − e−τ

β + 1
− e−ατ − e−τ

1− α

)
+ e−τ

+ 2

(
η

1 + η

)2(
α

β + α

)
(eβτ − e−ατ ) (3.13)

and

M2(τ) =
K

1− α
(
e−ατ − e−τ

)
+ 2

(
η

1 + η

)2

e−ατ . (3.14)

Adding (3.11) to (3.12) and using Lemma 3.3 shows that

E‖δk+1‖2 ≤M1(h)E|δk|2 +M2(h)E|Pδk|2 + 2

(
1

1 + η

)2

ε2, (3.15)

so that

E||δk+1||2 ≤M(h)E||δk||2 +
2ε2

(1 + η)2
, (3.16)

where

M(τ) = max{M1(τ),M2(τ)}. (3.17)
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Now we observe that

M1(0) = 1, M ′1(0) = −1 + 2α

(
η

1 + η

)2

and M2(0) = 2

(
η

1 + η

)2

.

Thus there exists an hc > 0 and a λ > 0 such that, for all η sufficiently small

M(τ, η) ≤ 1− λτ, ∀τ ∈ (0, hc].

Hence the theorem is proved.

The following lemma is used in the preceding proof.

Lemma 3.3. Under the conditions of Theorem 3.2 for t ∈ [tk, tk+1) we have

|Pδ(t)|2 ≤ α|δk|2

β + α

(
eβ(t−tk) − e−α(t−tk)

)
+ |Pδk|2e−α(t−tk) (3.18)

and

|δ(t)|2 ≤Kα|δk|
2

β + α

(
eβ(t−tk) − e−(t−tk)

β + 1
− e−α(t−tk) − e−(t−tk)

1− α

)
+
K|Pδk|2

1− α

(
e−α(t−tk) − e−(t−tk)

)
+ |δk|2e−(t−tk).

(3.19)

Proof. Taking inner product of (3.5) with Pδ, instead of with δ as previously, we
get

1

2

d|Pδ|2

dt
+ 〈Aδ, Pδ〉 = 0. (3.20)

Let δ = (δx, δy, δz)
T

. Notice that |Pδ|2 = |δx|2 and 〈Aδ, Pδ〉 = αδ2x − αδxδy.
Therefore equation (3.20) becomes

1

2

d|Pδ|2

dt
+ αδ2x = αδxδy

≤ α

2
δ2x +

α

2
δ2y

≤ α

2
δ2x +

α

2
|δ|2.

By rearranging and applying Proposition 3.1 we get

d|Pδ|2

dt
+ α|Pδ|2 ≤ α|δ(tk)|2eβ(t−tk). (3.21)

Multiplying by integrating factor eα(t−tk) and integrating from tk to t gives equation
(3.18).

Analysing the non-linear term in equation (3.8) with Property 2.1(5) gives

|2〈B(v, δ), δ〉| ≤ |v||Pδ||δ| (3.22)

≤ K
1
2 |Pδ||δ| (3.23)

≤ 1

2
K|Pδ|2 +

1

2
|δ|2. (3.24)

Substituting (3.18) and (3.24) in (3.8) gives

d|δ|2

dt
+ |δ|2 ≤ Kα|δk|2

β + α

(
eβ(t−tk) − e−α(t−tk)

)
+K|Pδk|2e−α(t−tk). (3.25)
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Multiplying by the integrating factor e(t−tk) and integrating from tk to t gives

|δ(t)|2e(t−tk) − |δk|2 ≤
Kα|δk|2

β + α

(
e(β+1)(t−tk) − 1

β + 1
− e(1−α)(t−tk) − 1

1− α

)
+
K|Pδk|2

1− α

(
e(1−α)(t−tk) − 1

)
.

(3.26)

Rearranging the above equation gives (3.19).

4. Analysis of continuous time 3DVAR. In this section we analyse application
of the 3DVAR continuous filtering algorithm for the Lorenz equation (2.5). We will
use {v(t)}t∈[0,∞) to denote the exact solution sequence from the Lorenz equations
which underlies the data; this is to be contrasted with {u(t)}t∈[0,∞) which denotes
the random variable which, when conditioned on the data, is approximated by the
3DVAR filter.

We study the continuous time 3DVAR filter, again in the case where H = (1, 0, 0),
Γ0 = ε2 and C = η−1ε2I. To analyse the filter it is useful to have the truth v which
gives rise to the data appearing in the filter itself. Thus (2.17) gives

dz

dt
= Hv +

√
Γ0

dw

dt
. (4.1)

We then eliminate z in equation (2.19) by using (4.1) to obtain

dm

dt
= F(m) + CH∗Γ−10 H(v −m) + CH∗Γ

− 1
2

0

dw

dt
. (4.2)

In the specific case of the Lorenz equation we get

dm

dt
= −Am−B(m,m) + f + CH∗Γ−10 H(v −m) + CH∗Γ

− 1
2

0

dw

dt
. (4.3)

From equation (4.2) with the choices of C, H and Γ0 detailed above we get

dm

dt
= −Am−B(m,m) + f +

1

η
P (v −m) +

ε

η
P

dw

dt
(4.4)

where we have extended w from a scalar Brownian motion to an R3-valued Brownian
motion for notational convenience. This SDE has a unique global strong solution
m ∈ C([0,∞);R3). Indeed similar techniques used to prove the following result
may be used to establish this global existence result, by applying the Itô formula
to |m|2 and using the global existence theory in [23]; we omit the details. Recall K
given by (2.7).

Theorem 4.1. Let m solve equation(4.4) and let v solve equation (2.5) with initial
data v(0) ∈ A, the global attractor, so that supt≥0 |v(t)|2 ≤ K. Then for ηK < 4 we
obtain

E|m(t)− v(t)|2 ≤ e−λt|m(0)− v(0)|2 +
ε2

η2λ
(1− e−λt), (4.5)

where λ is defined by

λ = 2

(
1− ηK

4

)
. (4.6)

Thus

limsupt→∞E|m(t)− v(t)|2 ≤ ε2

λη2
.
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Proof. The true solution follows the model

dv

dt
= −Av −B(v, v) + f +

1

η
P (v − v), (4.7)

where we include the last term, which is identically zero, for clear comparison
with the filter equation (4.4). Define δ = m − v and subtract equation (4.7) from
equation(4.4) to obtain

dδ

dt
= −Am−B(m,m) +Av +B(v, v)− η−1Pδ + εη−1P

dw

dt
(4.8)

= −Aδ − 2B(v, δ)−B(δ, δ)− η−1Pδ + εη−1P
dw

dt
. (4.9)

Using Itô’s formula gives

1

2
d|δ|2 + 〈Aδ + 2B(v, δ) +B(δ, δ) +

1

η
Pδ, δ〉dt ≤ 〈εη−1Pdw, δ〉+

1

2
Tr
(
ε2η−2P

)
dt.

(4.10)
Using Lemma 4.2 and the definition of λ gives

1

2
d|δ|2 +

λ

2
|δ|2dt ≤ 〈εη−1Pdw, δ〉+

1

2
Tr
(
ε2η−2P

)
dt. (4.11)

Rearranging and taking expectations gives

dE|δ|2

dt
≤ −λE|δ|2 +

ε2

η2
. (4.12)

Use of the Gronwall inequality gives the desired result.

The following lemma is used in the preceding proof.

Lemma 4.2. Let v ∈ A. Then

〈Aδ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 ≥

(
1− ηK

4

)
|δ|2. (4.13)

Proof. On expanding the inner product

〈Aδ+2B(v, δ)+B(δ, δ)+
1

η
Pδ, δ〉 = 〈Aδ, δ〉+2〈B(v, δ), δ〉+〈B(δ, δ), δ〉+〈η−1Pδ, δ〉.

(4.14)
We now use the Properties 2.1(1),(5) and the fact that true solution lies on the
global attractor so that |v| ≤ K. As a consequence we obtain

〈Aδ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 ≥ |δ|2 −K 1

2 |δ||Pδ|+ 1

η
|Pδ|2. (4.15)

Using Young’s inequality with parameter θ

〈Aδ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 ≥ |δ|2 − 1

2θ
K|Pδ|2 − θ

2
|δ|2 +

1

η
|Pδ|2. (4.16)

Taking θ = ηK
2 yields the desired result

〈Aδ + 2B(v, δ) +B(δ, δ) +
1

η
Pδ, δ〉 ≥

(
1− ηK

4

)
|δ|2. (4.17)
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Figure 2. Decay of initial error from O(1) to O(ε) for discrete
observations, ε = 1, η = 0.1

5. Numerical results. In this section we present numerical results illustrating
Theorems 3.2 and 4.1 established in the two preceding sections. All experiments
are conducted with the parameters (α, b, r) = (10, 83 , 28). Both the theorems are
mean square results. However, some of our numerics are based on a single long-time
realization of the filters in question, with time-averaging used in place of ensemble
averaging when mean square results are displayed; we highlight when this is done.

5.1. Discrete case. Under the assumptions of Theorem 3.2 we expect the mean
square error in δ = |v −m| to decrease exponentially until it is of the size of the
observational noise squared. Hence we expect the estimate m to converge to a
neighbourhood of the true solution v, where the size of the neighbourhood scales as
the size of the noise which pollutes in observation, in mean square. The following
experiment indicates that similar behaviour is in fact observed pathwise (Figure 2),
as well as in mean square over an ensemble (Figure 3). We set up the numerical
experiments by computing the true solution v of the Lorenz equations using the
explicit Euler method, and then adding Gaussian random noise to the observed x-
component to create the data. Throughout we fix the parameter η = 0.1. In Figure
2 the observational noise ε is fixed and in Figure 3 we vary it over a range of scales.

Figure 2 concerns the behaviour of a single realization of the filter. Note that
the initial error |v(0)−m(0)| is around E|v| ≈ 10 and it decays exponentially with
time, converging to O(ε); For this particular case we chose ε = 1. A consequence
of the second part of Theorem 3.2 is that the logarithm of the asymptotic mean
squared error logE|δ|2 varies linearly with the logarithm of the standard deviation
of noise in the observations (ε) and this is illustrated in Figure 3. To compute
the asymptotic mean square error we take two approaches. In the first, for each ε,



1074 KODY LAW, ABHISHEK SHUKLA AND ANDREW STUART

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Log plot of MSE, discrete observations

ε

E
|δ

|2

 

 

Expectation in time
Expectation in space

Figure 3. Log-linear dependence of asymptotic E|δ|2 on ε for dis-
crete observations, η = 0.1.

we time-average the error incurred within a single long trajectory of the filter. In
the second approach, we consider spatial average over an ensemble of observational
noises ν, at a single time after the error has reached equilibrium. In Figure 3
we observe the log-linear decrease in the asymptotic error as the size of the noise
decreases; furthermore, the slope of the graph is approximately 2 as predicted by
(3.10). Both temporal and spatial averaging deliver approximately the same slope.

5.2. Continuous case. In the case of continuous observations we again compute
a true trajectory of the Lorenz equation using the explicit Euler scheme. We then
simulate the SDE (4.3) using the Euler-Maruyama method.1 Similarly to the dis-
crete case, we consider both pathwise and ensemble illustrations of the mean square
results in Theorem 4.1. Figures 4 and 5 concern a single pathwise solution of (4.3).
Recall from Theorem 4.1 that the critical value of η, beneath which the mean square
theory holds, is ηc = 4/K. In Figure 4 we have η = 1

2ηc whilst in Figure 5 we have
η = 10ηc; in both cases the pathwise error spends most of its time at O(ε), after the
initial transient is removed, suggesting that the critical value of η derived in Theo-
rem 4.1 is not sharp. In Figure 6 we vary the size of observational error ε and take
η = 1

8ηc. The initial error is expected to decay exponentially towards something of
order ε, and this is what is observed in both the case where averaging is performed
in time and in space. Indeed we observe the log-linear decrease in the asymptotic

1Note that this is equivalent to creating the data z from (4.1) and solving (2.19) and, since we
have access to the truth, is computationally expedient.
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error as the size of the noise decreases, and the slope of the graph is approximately
2, as predicted by equation (4.5).
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Figure 4. Decay of initial error from O(1) to O(ε) for continuous
observations, ε = 0.01. Results are shown for η = 2/K < ηc.
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Figure 5. Decay of initial error from O(1) to O(ε) for continuous
observations, ε = 0.01. Results are shown for η = 40/K = 10ηc.
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Figure 6. Log-linear dependence of asymptotic logE|δ|2 on log ε
for continuous observations and η = 1/(2K).

6. Conclusions. The study of approximate Gaussian filters for the incorporation
of data into high dimensional dynamical systems provides a rich field for applied
mathematicians. Potentially such analysis can shed light on algorithms currently
in use, whilst also suggesting methods for the improvement of those algorithms.
However, rigorous analysis of these filters is in its infancy. The current work demon-
strates the properties of the 3DVAR algorithm when applied to the partially ob-
served Lorenz ’63 model; it is analogous to the more involved theory developed for
the 3DVAR filter applied to the partially observed Navier-Stokes equations in [5, 4].
Work of this type can be built upon in four primary directions: firstly to consider
other model dynamical systems of interest to practitioners, such as the Lorenz ’96
model [20]; secondly to consider other observation models, such as pointwise velocity
field measurements or Lagrangian data for the Navier-Stokes equations, building on
the theory of determining modes [14]; thirdly to consider the precise relationships
required between the model covariance C and observation operator H to ensure
accuracy of the filter; and finally to consider more sophisticated filters such as the
extended [13] and ensemble [7, 8] Kalman filters.

We are actively engaged in studying other models, such as Lorenz ’96, by simi-
lar techniques to those employed here; our work on Lorenz ’63 and Navier-Stokes
models builds heavily on the synchronization results of Titi and coworkers and we
believe that generalization of synchronization properties is a key first step in the
study of other models. Regarding the second direction, Lagrangian data introduces
an additional auxiliary system for the observed variables through which the system
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of interest is observed, necessitating careful design of correlations in the design pa-
rameters C, meaning that the analysis will be considerably more complicated than
for Eulerian data. This links to the third direction: in general the relationship
between the model covariance and observation operator required to obtain filter
accuracy may be quite complicated and is an important avenue for study in this
field; even for the particular Lorenz ’63 model studied herein, with observation of
only the x component of the system, this complexity is manifest if the covariance
is not diagonal. Relating to the fourth and final direction, it is worth noting that
3DVAR is outdated operationally and empirical studies of filter accuracy have re-
cently been focused on the more sophisticated methods such as ensemble Kalman
filter and 4DVAR [16, 17]. These empirical studies indicate that the more so-
phisticated methods outperform 3DVAR, as expected, and therefore suggest the
importance of rigorous analysis of those methods.
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