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We investigate the properties of the hybrid Monte Carlo algorithm (HMC) in high dimensions. HMC de-
velops a Markov chain reversible with respect to a given target distribution IT using separable Hamiltonian
dynamics with potential — log I'1. The additional momentum variables are chosen at random from the Boltz-
mann distribution, and the continuous-time Hamiltonian dynamics are then discretised using the leapfrog
scheme. The induced bias is removed via a Metropolis—Hastings accept/reject rule. In the simplified sce-
nario of independent, identically distributed components, we prove that, to obtain an O(1) acceptance
probability as the dimension d of the state space tends to oo, the leapfrog step size i should be scaled
as h =1 x d—1/*. Therefore, in high dimensions, HMC requires 0@ steps to traverse the state space.
We also identify analytically the asymptotically optimal acceptance probability, which turns out to be 0.651
(to three decimal places). This value optimally balances the cost of generating a proposal, which decreases
as [ increases (because fewer steps are required to reach the desired final integration time), against the cost
related to the average number of proposals required to obtain acceptance, which increases as [ increases.

Keywords: Hamiltonian dynamics; high dimensions; optimal acceptance probability; leapfrog scheme;
squared jumping distance

1. Introduction

The hybrid Monte Carlo (HMC) algorithm originates from the physics literature [15], where it
was introduced as a fast method for simulating molecular dynamics. It has since become popular
in a number of application areas, including statistical physics [1,17,18,23,43], computational
chemistry [22,24,30,42,45], data assimilation [2], geophysics [30] and neural networks [32,46].
The algorithm also has been proposed as a generic tool for Bayesian statistical inference [12,16,
31].

Many practitioners believe that HMC improves on traditional Markov chain Monte Carlo
(MCMC) algorithms. There are heuristic arguments to suggest why HMC might perform bet-
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ter, in particular based on the idea that it breaks down random walk-like behavior intrinsic to
many MCMC algorithms, such as the random-walk Metropolis (RWM) algorithm. However,
there is very little theoretical understanding of this phenomenon (although see [14]). This lack of
theoretical guidance concerning the choice of the free parameters for the algorithm accounts in
part for its relative obscurity in statistical applications. The aim of this paper is to provide insight
into the behavior of HMC in high dimensions and develop theoretical tools for improving the
efficiency of the algorithm.

HMC uses the derivative of the target probability log-density to guide the Monte Carlo tra-
jectory toward areas of high probability. The standard RWM algorithm [29] proposes local,
symmetric moves around the current position. In many cases (especially in high dimensions),
the variance of the proposal must be small for the corresponding acceptance probability to be
satisfactory. However smaller proposal variance leads to higher autocorrelations and increased
computing time to explore the state space. In contrast, HMC exploits the information on the
derivative of the log density to deliver guided, global moves, with higher acceptance probability.
Thus HMC has the potential to effectively decorrelate by exploiting Hamiltonian evolution, con-
ferring a potential advantage over random-walk-based methods, whose effective decorrelation
time is determined by random-walk behavior.

HMC is closely related to the so-called Metropolis-adjusted Langevin algorithm (MALA)
[39], which uses the derivative of the log density to propose steepest-ascent moves in the state
space. MALA uses Langevin dynamics; the proposal is derived from an Euler discretisation of a
Langevin stochastic differential equation that leaves the target density invariant. Note that statis-
ticians’ use of the term ‘Langevin dynamics’ refers to the dynamics of a first-order equation,
which physicists normally term ‘Brownian dynamics’; this model is derived from the second-
order Langevin equation in the over-damped limit. Indeed the idea of using such dynamics as a
proposal for Monte Carlo predates its appearance in the statistical literature [33,40]. In contrast,
HMC uses Hamiltonian dynamics. The original variable ¢ is seen as a “location” variable, and
an auxiliary “momentum” variable p is introduced. Hamilton’s ordinary differential equations
are used to generate moves in the enlarged (g, p) phase space. These moves preserve the total
energy, a fact that implies, in probability terms, that they preserve the target density IT of the
original g variable, provided that the initial momentum is chosen randomly from an appropriate
Gaussian distribution. Although seemingly of different origin, MALA can be viewed as a “lo-
calised” version of HMC in the case where Hamilton’s equations are integrated for only one time
step before the accept/reject mechanism is applied [28]. We return to this point later.

In practice, continuous-time Hamiltonian dynamics are discretised by means of a numerical
scheme; the popular Stormer—Verlet or leapfrog scheme [19,25,41,44] is currently the scheme of
choice. This integrator does not conserve energy exactly, and the induced bias is corrected via
a Metropolis—Hastings accept/reject rule. In this way, HMC develops a Markov chain reversible
with respect to I1, whose transitions incorporate information on IT in a natural way.

In this paper, we investigate the properties of HMC in high dimensions and this context offer
some guidance regarding the optimal specification of the free parameters of the algorithm. We
assume that we wish to sample from a density IT on RV with

M(Q) =exp(-V(Q)) (1.1)
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for V:RY — R. We study the simplified scenario where IT(Q) consists of d > 1 independent,
identically distributed (i.i.d.) vector components,

d
H(Q)=6Xp(—ZV(qi)>, V:R" > R; N=m xd. (1.2)
i=1

For the leapfrog integrator, we show analytically that under suitable hypotheses on V and as
d — 0o, HMC requires O(d'/4) steps to traverse the state space. We also identify the associated
optimal acceptance probability.

To be more precise, if £ is the step-size used in the leapfrog integrator, then we show that the
choice

HMC: h=1[-d"'* (1.3)

leads to an average acceptance probability that is of O(1) as d — oo (Theorem 3.6). This implies
that O(d'/*) steps are required for HMC to make (O(1) moves in state space. Furthermore we
provide a result of perhaps greater practical relevance. We prove that for the leapfrog integrator
and as d — oo, the asymptotically optimal algorithm corresponds to a well-defined value of the
acceptance probability, independent of the particular target T1, in (1.2). This value is (to three
decimal places) 0.651: Theorems 4.1 and 4.2. Thus, when applying HMC in high dimensions,
one should attempt to tune the free algorithmic parameters to obtain an acceptance probability
close to that value. We give the precise definition of optimality when stating the theorems, but
roughly, it is determined by the choice of / that balances the cost of generating a proposal, which
decreases as [ increases (because fewer steps are required to reach the desired final integration
time), against the cost related to the average number of proposals required to obtain acceptance,
which increases as [ increases.

The scaling O(d 1/4) to make O(1) moves in state space contrasts favorably with the corre-
sponding scalings O(d) and O(d'/3) required in a similar context by RWM and MALA, respec-
tively (see the discussion that follows). Furthermore, the full analysis of the leapfrog scheme
provided in this paper may be easily extended to high-order, volume-preserving, reversible in-
tegrators. For such an integrator, the corresponding scaling would be O(d'/?")), where v (an
integer) represents the order of the method. For the standard HMC algorithm, previous work has
already established the relevance of the choice 7 = Owd% (by heuristic arguments; see [18])
and an optimal acceptance probability of around 0.7 (by numerical experiments; see [12]). Our
analytic study of the scaling issues in HMC was prompted by those two papers.

We end this discussion with a transparent disclaimer about the range of validity of our optimal
scaling results. Our work contains two central assumptions: (i) We work in the setting of an i.i.d.
target measure; and (ii) this i.i.d. target is defined via a single potential V, which (see below) is
assumed to grow no faster than quadratically at infinity, so that the tails of the distribution are no
lighter than Gaussian. Regarding (i), we expect that our results will extend to some problems with
a non-product structure, provided that the resulting measure is “close to i.i.d.” Examples of such
problems have been provided by [4—6] and [8,27,35]. The latter three papers reported that optimal
scaling results for RWM and MALA type algorithms extend directly to target measures that
have a density with respect to a Gaussian, uniformly as dimension d — oco. Because a Gaussian
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measure is i.i.d. when represented in appropriate coordinates, such measures are indeed close
to the i.i.d. case as almost sure properties of the Gaussian measure are inherited by the target
measure. However, for all optimal scaling analyses of RWM, MALA and HMC, the extent and
manner in which the “close to i.i.d.” assumption can be violated, and yet the same optimality
criteria apply, remains an open and interesting research question. Regarding (ii), we note that
integration of Hamiltonian systems with superquadratic potentials (more precisely superlinear
forces) typically requires adaptive time-step integration [41], and that an open and interesting
research direction concerns the generalization of HMC algorithms to this situation. We discuss
these issues related to possible relaxation of our key assumptions in the concluding section of
this paper.

The paper is organized as follows. Section 2 presents the HMC method and reviews the lit-
erature concerning scaling issues for the RWM and MALA algorithms. Section 3 studies the
asymptotic behavior of HMC as the dimensionality grows, d — oo, including the key Theo-
rem 3.6. The optimal tuning of HMC is discussed in Section 4, including the key Theorems 4.1
and 4.2. Sections 5 and 6 are technical sections. The former presents the derivation of the required
numerical analysis estimates on the leapfrog integrator, with careful attention to the dependence
of constants in error estimates on the initial condition. Estimates of this kind are not available in
the literature and may be of independent interest. Section 6 gathers the probabilistic proofs. The
paper ends with some conclusions and discussion in Section 7.

2. Hybrid Monte Carlo (HMC)

The HMC method has been described from a statistician’s perspective in [26]. Here we provide
a precise definition of the algorithm, recalling several important concepts from the theory of
Hamiltonian dynamics, such as volume preservation, Liouville equation. and reversible integra-
tion.! Rather than repeat these classical definitions here, we refer the reader to [41].

2.1. Hamiltonian dynamics

Consider the Hamiltonian function
H(Q, P) = 3(P, M"'P) +V(Q),

on RZN | where M is a symmetric positive definite matrix (the “mass” matrix), Q is the location
argument, V(Q) is the potential energy of the system; P is the momenta, and (1/2)(P, M~'P)
is the kinetic energy. Thus H(Q, P) gives the total energy: the sum of the potential and the
kinetic energy. The Hamiltonian dynamics associated with ‘H are governed by

40 _ - P _
=M =), @1

Here “reversible” has a different meaning from that used in the study of Markov chains.
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a system of ordinary differential equations whose solution flow, ®;, defined by

(Q(0), P(1)) = ,(Q(0), P(0)),
has some key properties relevant to HMC:

1. Conservation of energy. The change in the potential becomes kinetic energy; that is, H o
®, =H, for all t > 0, that is H(D,(Q(0), P(0))) = H(Q(0), P(0)), for all # > 0 and all
initial conditions (Q(0), P(0)).

2. Conservation of volume. The volume element, dP dQ, of the phase space is conserved
under the mapping ;.

3. Time reversibility. If S denotes the symmetry operator,

S(Q.P)=(Q,—P),
then Ho S =H and
So(@) 'oS=0,. (2.2)

Thus, changing the sign of the initial velocity, evolving backward in time, and changing the
sign of the final velocity reproduces the forward evolution.

From the Liouville equation for (2.1), it follows that if the initial conditions are distributed
according to a probability measure with Lebesgue density depending only on H(Q, P), then
this probability measure is preserved by the Hamiltonian flow ®;. In particular, if the initial
conditions (Q(0), P(0)) of (2.1) are distributed with a density (proportional to, given that we
omit the normalizing constant for the Gaussian part)

exp(—H(Q, P)) = exp(—(1/2)(P, M~ P)) exp(—V(0)),

then for all # > 0, the marginal density of Q(¢) will also be exp(—V(Q)). This suggests that
integration of equations (2.1) might form the basis for an exploration of the target density

exp(=V(Q)).

2.2. The HMC algorithm

To formulate a practical algorithm, the continuous-time dynamics (2.1) must be discretised. The
most popular explicit method for doing this is the Stormer—Verlet, or leapfrog, scheme (see [19,
25,41] and references therein), defined as follows. Assume a current state (Qq, Pp). After one

step of length 2 > 0, the system (2.1) will be at a state (Qj,, Py) defined by the following three-
stage procedure:

h
Ppp = Py — EVV(Q0)§ (2.3a)
On = Qo +hM ™1 Py; (2.3b)

h
Py = Pppp — EVV(Qh)- (2.3¢)
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Table 1. Markov transition for the HMC algorithm. Iterative application for a given starting location 00,
will yield a Markov chain Q°, 01, ...

HMC(Q):

(i) Sample a momentum P ~ N (0, M).
(ii) Accept the proposed update Q' defined via (Q’, P") = \DIET)(Q, P) w.p.:

a((Q, P),(Q', P") :=1 nexp{H(Q, P) — H(Q', P")}.

The scheme gives rise to a map,

W, : (Qo, Po) = (On, Pr),

which approximates the flow ®;,. The solution at time T is approximated by taking L%J leapfrog
steps,

(Q(T), P(T)) = D1 (Q(0), P(0)) ~ ¥/ (0(0), P(0)).

Note that this is a deterministic computation. The map

(T) . \ylT/h)
v, =w

may be shown to be volume-preserving and time-reversible (see [19,25,41]), but it does not ex-
actly conserve energy. As a consequence, the leapfrog algorithm does not share the property of
equations (2.1) following from the Liouville equation, namely that the probability density func-
tion proportional to exp(—H(Q, P)) is preserved. Restoring this property requires the addition
of an accept/reject step must. The work of [31] provides a clear derivation of the required accep-
tance criterion.

We can now describe the complete HMC algorithm. Let the current state be Q. The next state
for the HMC Markov chain is determined by the dynamics described in Table 1.

Given the time reversibility and volume conservation properties of the integrator map \IllgT),
the algorithm in Table 1 defines (see [15,31]) a Markov chain reversible with respect to I1(Q).
Sampling this chain up to equilibrium will provide correlated samples Q" from IT(Q). Note that
the momentum P is merely an auxiliary variable, and that the user of the algorithm is free to
choose h, T and the mass matrix M. In this paper, we concentrate on the optimal choice of 4 for
high-dimensional targets.

2.3. Connection with other Metropolis—Hastings algorithms

Previous research has studied the optimal tuning of other Metropolis—Hastings algorithms,
namely RWM and MALA. In contrast with HMC, whose proposals involve a deterministic ele-
ment, those algorithms use purely stochastic updates. For the target density IT(Q) in (1.1), RWM
is specified through the proposed update

0 =0+Vhz,
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with Z ~ N (0, I). (This simple case suffices for our exposition, but note that Z may be allowed to
have an arbitrary mean zero distribution.) In contrast, MALA is determined through the proposal

h
0 =0+ 2 VlogT(Q) + VhZ.
The density IT is invariant for both algorithms when the proposals are accepted with probability

eHTQ'. 0)

Q) =1a VL0
“Q- =17 110.0)

where

T(x,y) =P[Q" edy|Q =x]/dy
is the transition density of the proposed update. [Note that for RWM, the symmetry of the pro-

posal implies that T(Q, Q") =T(Q’, Q).]
The proposed distribution for MALA corresponds to the Euler discretization of the stochastic
differential equation (SDE)

dQ = 1VlogI(Q)dr + dwW

for which IT is an invariant density. (Here W denotes a standard multivariate Brownian motion
with covariance /.) Whether HMC and MALA are connected can be easily checked, because
HMC reduces to MALA when T = h, that is, when the algorithm makes only a single leapfrog
step at each transition of the chain.

Assume now that RWM and MALA are applied with the scalings

RWM: h=1I[-d}, MALA: h=1[-d7 '3 (2.4)

for some constant / > 0, in the simplified scenario where the target IT has the i.i.d. structure (1.2)
with m = 1. Previous authors ([36,37]) have shown that as d — oo and under regularity condi-
tions on V (i.e., the function V must be seven times differentiable, with all derivatives having
polynomial growth bounds, and all moments of exp(—V) finite, the acceptance probability ap-
proaches a nontrivial value,

Ela(Q, @)1 —a() € (0, 1).

The limit a(!) is different for the two algorithms. Furthermore, if q?, q 11, ... denotes the pro-
jection of the trajectory Q°, Q!, ... onto its first coordinate, in the foregoing scenario it can be
shown ([36,37]) that the continuous-time interpolation,

RWM: 5 ¢l MALA: 11> gl 4" 2.5)

(with [x] denoting the integer part of x € R) converges to the diffusion process governed by the
SDE

dg = —%la()V'(g) dt +/la(l) dw, (2.6)

2This is mostly a technical requirement which may be relaxed.
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where w represents a standard Brownian motion. In view of (2.4), (2.5) and (2.6), we deduce that
the RWM and MALA algorithms cost O(d?) and O(d*/3), respectively, to explore the invariant
measure in stationarity for product measures where the cost of each step of the algorithm is O(d)
(because m 1is fixed and d — o0). Furthermore, as the product /a(/) determines the speed of
the limiting diffusion, the state space will be explored more rapidly for the choice /oy of I that
maximizes /a (/). Whereas [y, depends on the target distribution, it turns out that the optimal
acceptance probability a(lopt) is independent of V. In fact, with three decimal places, we find
that

RWM: a(lop) =0.234,  MALA: a(lop) = 0.574.

Asymptotically, as d — oo, this analysis identifies algorithms that may be considered uniformly
optimal, given that (as discussed in [38]) ergodic averages of trajectories corresponding to I = o
provide optimal estimation of expectations E[ f(g)], ¢ ~ exp(—V), irrespective of the choice of
the (regular) function f. These investigations of the optimal tuning of RWM and MALA have
been subsequently extended by [8] and [10] to non-product target distributions.

For HMC, we show that the scaling (1.3) leads to an average acceptance probability of O(1)
and hence to a cost of O(d>/*) to make the O(1) moves necessary to explore the (product) in-
variant measure. However, in contrast to RWM and MALA, for HMC we are not able to provide
a simple description of the limiting dynamics of a single coordinate of the Markov chain. Con-
sequently, optimality is harder to define.

3. Hybrid Monte Carlo in the limit d — oo

Our primary aim in this section is to prove Theorem 3.6 concerning the scaling of the step size &
in HMC. We also provide some insight into the limiting behavior of the resulting Markov chain
under this scaling in Propositions 3.8 and 3.9.

3.1. HMC in the i.i.d. scenario

Here we study the asymptotic behavior of the HMC algorithm in the i.i.d. scenario (1.2), when
the number d of ‘particles’ goes to infinity. Given such a scenario for our target, a global m x
d-dimensional implementation of the Hamiltonian dynamics (2.1), or indeed of the practical
leapfrog scheme (2.3), can now be decomposed into d independent implementations along each
of the identical m-dimensional constituent components (assuming that the auxiliary variable P
is chosen to have a similar i.i.d. structure). We exploit this simplified structure in our analysis.

We write Q = (qi)flzl and P = ( p,»)f:1 to distinguish the individual components, and use the
following notation for the combination location/momentum:

X=0Dos  xi=(q, p) e R*™.
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We denote by P, and P, the projections onto the position and momentum components of x, that
is, Py(q, p) =q, Pp(q, p) = p. We then have

d
1
HQ.P)=) Hgi.p):  H(q.p):=5(p.M™'p)+V(g) —log(c),

i=1

where M is a m x m symmetric, positive definite matrix and ¢ > 0 is the normalizing constant
for the Gaussian part, that is, ¢! = I e—(1/2(p.M ™! p) dp. We include this here only to avoid the
repeated use of a normalizing constant in the mathematical expressions for expectations used be-
low. Of course, HMC only uses differences in the energy H (g, p) or its derivatives, and thus does
not require normalizing constants under the distribution of p or g. The Hamiltonian differential
equations for a single (m-dimensional) particle are

dg -1 dp
—=M"'p, = = _VV(g), 3.1
ar p ar (@) (3.1)

where V :R™ — R. We denote the corresponding flow by ¢; and the leapfrog solution operator
over one h step by ¥,. Thus the acceptance probability for the evolution of the d particles is
given by (see Table 1)

d
a(X,Y)=1 Aexp<Z[H(x,~) - H(w,(f)(xi))]>, (3.2)

i=1

with Y = (yi)?zl = \IJ;(lT)(X) denoting the HMC proposal.

As mentioned earlier, in the i.i.d. scenario, the leapfrog scheme (2.3) disentangles into inde-
pendent implementations for each of the d particles (g;, p;i), with the different particles con-
nected only through the accept/reject decision (3.2).

3.2. Energy increments

Our first aim is to estimate (in an analytical sense) the exponent on the right-hand side of (3.2).

Because the d particles play the same role, studying a single term H (x;) — H (w}(lT) (x;)) is suffi-
cient. We set

Ale,h) = H(Y (0)) — Hler () = H (v, () — H). (3.3)

This is the energy change due to the leapfrog scheme over 0 < ¢t < T, with step size & and initial
condition x, which, by conservation of energy under the true dynamics, is simply the energy
error at time 7. We study the first and second moments,

w(h) :=E[A(x, h)] :/ A(x, h)e*H(x)dx7
R2m

s2(h) == E[A(x, h)*],
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and the corresponding variance,
o?(h) = s*(h) = p*(h).

If the integrator were exactly energy-preserving, then we would have A = 0, and all proposals
would be accepted. However, as is well known, the size of A(x, h) generally is no better than the

size of the integration error w,gT)(x) — ¢1(x), that is, O(h?). In fact, under natural smoothness
assumptions on V, the following condition holds (see Section 5 for a proof):

Condition 3.1. There exist functions o(x), p(x, h) such that
A(x, h) = h*a(x) + h2p(x, h) (3.4)
with limy_.q o (x, h) =0.

In the proofs of our theorems, we use an additional condition to control the variation of A as a
function of x. In Section 5 we show that this condition holds under suitable assumptions on the
growth of V and its derivatives.

Condition 3.2. There exists a function D :R*™ — R such that

Ax, h)|?
SupI(x )|§

D(x),
o<h<t  h? )

with

/ D(x)e 7™ dx < co.
R2m

A key to the proof of Theorem 3.6 is the fact that the average energy increment scales as
Oh*). We show this in Proposition 3.4 using the following simple lemma, which holds for
general volume-preserving, time-reversible integrators:

Lemma 3.3. Let lﬂh(r) be any volume-preserving, time-reversible numerical integrator of the

Hamiltonian equations (3.1), and let A(x, h) : R¥" x Ry > Rbeasin(33).Ifg:R— Risan
odd function, then

()
/ gD, hye 1 dx = — / (A, hye WD dx,
R2m R2m
provided that at least one of the foregoing integrals exists. If g is an even function, then
(1)
[, s me ™ ax= [ g me 0O,
R2m R2m

provided that at least one of the foregoing integrals exists.
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Proof. See Section 6. (]
Applying this lemma with g(u#) = u, we obtain
u(h) = — / AGr, e Vi) gy,
R2m
which implies that

2u(h)=/2 Ax, D[1 —exp(—A(x, h))]e ™ dx. 3.5
R m

We now use the inequality [¢* — 1| < |u|(e* + 1) and then Lemma 3.3 with g(u) = u? to
conclude that

)
120(h)| Sf |AGe, ) Pe 0 (">>dx+/ |AGe )2e=H® dy
2m m
: . (3.6)
52/ |AGx, h)?e™HW) dx = 25%(h).
R2m

The bound in (3.6) is important; it shows that the average of A(x, k) is actually of the order
of (the average of) A(x, h)2. Given the second-order leapfrog scheme A(x, h) = Oh?), (3.6)
shows that we may expect the average (k) to actually behave as O(h*). This is made precise in
the following theorem.

Proposition 3.4. If the potential V is such that Conditions 3.1 and 3.2 hold for the leapfrog

integrator w}(lT), then

h 2(h
G T O
h—0 h4 h—0 h*

for the constants
) :/ o2 (x)e HW gy, w=1x/2.
R2m

Proof. See Section 6. ]

We next perform explicit calculations for the example of the harmonic oscillator and verify
(for this case) the conclusions of Proposition 3.4.

Example 3.5 (Harmonic oscillator). Consider the Hamiltonian

H(q.p)=%p*+1q*

dg/dt\ _( p
dp/dt )~ \—q )’

which gives rise to the system
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q(t)\ _ ( cos(t) sin(t) q(0)
p@®) ) \ —sin@®) cos(®) )\ p0) )"
In this case, the leapfrog integration can be written as
_ o 1=h*2 h q

Accordingly, the numerical solution after L%J steps is given by

1 —
v (q. py =81 <Z)

with solutions

]

(5)

Diagonalizing E and exponentiating yields
1
cos(6n) ————sin(6n)
n_ 1—h%/4 )
—+/1—h2%/4sin(0n) cos(6n)

where 6 = cos ™! (1— h? /2). Using, for instance, MATHEMATICA, we can now obtain the Tay-
lor expansion,

69
|

A, h) = H(y " () = Hx) = B2a(x) + h*B(x) + O(),
where
a(q, p) = ((p* — ¢*)sin*(1) + pg sin(2)) /8;
B(q. p) = (—¢*sin(2) + pq(2cos(2) + 3sin(2)) + p?(3 — 3cos(2) +sin(2)))/192.

Note that in the stationary regime, g and p are standard normal variables. Therefore, the expec-
tation of «(x) is 0. Tedious calculations give

Var[e(x)] = & sin®(1), E[B(x)] = 35 sin*(1),

in agreement with Proposition 3.4.

3.3. Expected acceptance probability

We are now in a position to identify the scaling for / that gives nontrivial acceptance probability
as d — oo.

Theorem 3.6. Assume that the potential V is such that the leapfrog integrator W}ET) satisfies
Conditions 3.1 and 3.2 and that

h=1-d7* (3.7)
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for a constant | > 0. Then in stationarity, that is, for X ~ exp(—H) and Y = ‘-Il}(lT)(X),
Jim Ela(X, Y)] = 20(-12VE/2) = all),
— 00
where the constant % is as defined in Proposition 3.4.

Proof. To grasp the main idea, note that the acceptance probability (3.2) is given by
d
a(X,Y)=1nek; Ri==> A(xi.h). (3.8)
i=1

Due to the simple structure of the target density and stationarity, the terms A (x;, &) being added
in (3.8) are i.i.d. random variables. Since the expectation and variance of A(x, &) are both O(h*)
and we have d terms, the natural scaling to obtain a distributional limit is given by (3.7). Then
Ri~N(— %l 4%, 1*%) and the desired result follows. See Section 6 for a detailed proof. [l

In Theorem 3.6, the limit acceptance probability arises from the use of the central limit theo-
rem. If Condition 3.2 is not satisfied and o2 (h) = 00, then a Gaussian limit is not guaranteed and
it may be necessary to consider a different scaling to obtain a heavy-tailed limiting distribution
such as, say, a stable law.

The scaling (3.7) is a direct consequence of the fact that the leapfrog integrator has second-
order accuracy. Arguments similar to those used earlier prove that the use of a volume-preserving,
symmetric vth-order integrator would result in a scaling h = O(d /@)y (v is an even integer)
to obtain an acceptance probability of O(1).

3.4. Displacement of one particle in a transition

We now turn our attention to the displacement qf“ — g of a single particle in a transition
n — n + 1 of the chain. Note that, clearly,
n+l _ gn T), n .n ny n. n__
gy =1" Py, (gt pT) + (1= 1Mql; I" =1Tyn<qxn yny, (3.9)

with U, having a uniform distribution in [0, 1]. Although Conditions 3.1 and 3.2 refer to the
error in energy, the proof of the next results requires a condition on the leapfrog integration error
in the dynamic variables ¢ and p. In Section 5, we describe conditions on V that guarantee the
fulfillment of this condition.

Condition 3.7. There exists a function E : R*" — R such that

up [y (x) — o7 ()] S

E(x),
0<h<l h? 0
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with

/ E@x)*e W dx < 00.
RZm

Under the scaling (3.7) and at stationarity, the second moment IE[(q’fJrl - q7 21 will also

approach a nontrivial limit.

Proposition 3.8. Assume that the hypotheses of Theorem 3.6 and Condition 3.7 hold and also
that the density exp(—V (q)) has finite fourth moments. Then, in stationarity,

lim Ef(g{*" —¢})*1=Cy-a),
d—00
where the value of the constant Cj is given by

C;=E[(P,er(a,p)—4)’]: (@ p)~exp(—H(q, p)).
Proof. See Section 6. O

Note that the computational work required to integrate up to a fixed time 7 is inversely pro-
portional to the parameter /. Thus Proposition 3.8 suggests that it is reasonable to choose a value
for I that maximizes the quantity a(/)/. This choice of / is optimal in the sense that it seeks a
middle ground between smaller values of /, which lead to a higher acceptance probability (and
thus larger mean squared jumps) but need more computational work, and large values of /, which
have a smaller acceptance probability (and hence smaller mean squared jumps) but require less
computational resources. In Section 4, we expand this idea, define a precise notion of optimality
that encodes this trade-off, and derive the resulting optimal acceptance probability.

3.5. The limit dynamics

We now discuss the limiting dynamics of the Markov chain, under the same assumptions as
in Proposition 3.8. For HMC (as for RWM or MALA), the marginal process {g{},>0 is not
Markovian with respect to its own filtration, because its dynamics depend on the current position
of all d particles via the acceptance probability a(X", Y™) (see (3.9)). In the case of MALA and
RWM, {q{}n=0 is asymptotically Markovian: as d — oo the effect of the rest of the particles
are averaged to a constant via the strong law of large numbers. This allows for the interpolants
of (2.5) to converge to solutions of the SDE (2.6), which defines a Markov process. We now
argue that for HMC, {g]'},>0 cannot be expected to be asymptotically Markovian. To simplify
the exposition, we do not present all of the technicalities of the argument that follows.

It is well known (see, e.g., [44]) that, due to time-reversibility and under suitable smoothness
assumptions on V, the energy increments of the leapfrog integrator may be expanded in even
powers of & as follows (cf. (3.4)):

A(x, h) = h?a(x) + h*B(x) + Oh").



Optimal tuning of HMC 1515

Necessarily E[a(x)] = 0, because from Proposition 3.4 we know that E[A(x, )] = Oh*). Ig-
noring (’)(hﬁ)—terms, we can write

a(X",¥") =1 AeflatRoa
with
d

d
R ;= —h*) {a() —Ela(])lg/l} —h* Y B,

d
Ry ;=—h*Y Ela(x])lg!].

i=1

Under appropriate conditions, Ry ; converges, as d — 00, to a Gaussian limit independent of
the o-algebra o(qf.q3,...). To see that, note that, due to the strong law of large numbers
and because h* = [*/d, the second sum in RY 1.q converges a.s. to a constant. conditionally on
o(qy.qy, . ..), the distributional limit of the first term in RY ¢ 18 Gaussian with mean 0 and vari-

ance determined by the a.s. constant limit of h* Zi:l {a(x]") — Ela(x!)|g! 1}2; this follows from
the Martingale central limit theorem (see, e.g., Theorem 3.2 of [21]). On the other hand, the
limit distribution of R;’ 4 18 Gaussian with mean 0 but in general cannot be asymptotically in-
dependent of o' (g}, g3, ...). Instead, it seems that R} 5.4 Will result in a quantity appearing in the
acceptance probability that is nontrivial as d — oo and makes it impossible to have a Markovian
limit for the trajectory of ¢g;. In the case of RWM or MALA, the conditional expectations that
fulfill the role played here by E[c(x]")|g}'] are identically O (see the expansions for the accep-
tance probability in [36] and [37]), which implies that the corresponding acceptance probabilities
are asymptotically independent from o (g}, g3, . ..), and that the marginal processes {g{'},>0 are
asymptotically Markovian.
The final result in this section provides insight into the limit dynamics of {g}},>0.

Proposition 3.9. Ler Q" ~ T1(Q). Define

@ =1 Pror (gl P+ A =1l 1 =Tyn<aqy,

and consider q{ *1in (3.9). Then, under the hypotheses of Proposition 3.8, as d — o0,

(‘]1 )—> ((]1

Proof. See Section 6. O

This proposition provides a simple description of the asymptotic behavior of the one-transition
dynamics of the marginal trajectories of HMC. As d — oo, with probability a(l), the HMC par-
ticle moves under the correct Hamiltonian dynamics. However, because of the energy errors
accumulated from the leapfrog integration of all d particles, the deviation from the true Hamil-
tonian dynamics gives rise to the alternative event of staying at the current position g”, with
probability 1 —a(l).
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4. Optimal tuning of HMC

In the previous section, we addressed the question of how to scale the step size in the leapfrog
integration in terms of the dimension d, leading to Theorem 3.6. In this section we refine this
analysis and study the choice of constant / in (3.7). Regardless of the metrics used to measure the
efficiency of the algorithm, a good choice of / in (3.7) must balance the amount of work needed
to simulate a full 7T'-leg (interval of length 7') of the Hamiltonian dynamics and the probability
of accepting the resulting proposal. Increasing / decreases the acceptance probability but also
decreases the computational cost of each T-leg integration; decreasing / will yield the opposite
effects, suggesting an optimal value of /. In this section we present an analysis that avoids the
complex calculations typically associated with the estimation of mixing times of Markov chains,
but still provides useful guidance regarding the choice of /. We provide two alternative ways of
doing this, summarized in Theorems 4.1 and 4.2.

4.1. Asymptotically optimal acceptance probability

Clearly, the number of leapfrog steps of length /# needed to compute a proposal is [T/ h]. Fur-
thermore, at each step of the chain, it is necessary to evaluate a(X, Y) and sample P. Thus the
computing time for a single proposal will be

Td1/4
Cl,d ::’7 ] —‘-d-CLF+d~C0 4.1

for some constants Crg, Co that measure for one particle the leapfrog costs and overheads. Let
E; 4 denote the expected computing time until the first accepted T -leg in stationarity. Recall that
Q denotes the vector of positions within the Hamiltonian model so that X = (Q, P). If N denotes
the number of proposals up to (and including) the first to be accepted, then

1
E;q = C1.4E[N] = C; 4E[E[N|Q]] = C ¢EB| ————— |.
1.d = C1,aEIN] = C; 4E[E[N|Q]] = C;4 [E[a(x, Y)IQ]]

Here we have used the fact that, given the locations Q, the number of proposed T -legs follows a
geometric distribution with probability of success E[a(X, Y)|Q]. Jensen’s inequality yields

Cia
Eg>————=E,, 4.2
Y Elax, v “2

and, from (4.1) and Theorem 3.6, we conclude that

TC
lim d=5/* x Ef ;= —=.
d—00 a()l

A sensible choice for / minimizes the asymptotic cost E;' ;, that is,

lopt = arg rlna(;( eff(l); eff(l) :=a(Dl.
>
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Figure 1. The efficiency function eff = eff(a).

The value of /oy generally will depend on the specific target distribution under consideration.
However, by expressing eff as a function of a = a(l), we may write

12
off = (%) a- <<1>1 (1 - %)) , 4.3)

and this equality makes it apparent that a(lop) does not vary with the selected target. Figure 1 il-
lustrates the mapping a +— eff(a); different choices of target distribution change only the vertical
scale. In summary, we have

Theorem 4.1. Under the hypotheses of Theorem 3.6 and as d — oo, the measure of cost E;’i d
defined in (4.2) is minimized for the choice lop of | that leads to the value of a = a(l) that
maximizes (4.3). Rounded to three decimal places, the (target independent) optimal value of the
limit probability a is

a(lopt) = 0.651.

The optimal value identified in the preceding theorem is based on the quantity E ; that un-
derestimates the expected number of proposals. It may be assumed that the practical optimal
average acceptance probability is in fact greater than or equal to 0.651. In the next subsection
we use an alternative measure of efficiency; the expected squared jumping distance. Consid-
eration of this alternative metric will also lead to the same asymptotically optimal acceptance
probability of precisely 0.651 as did the minimization of E;k’ 4- This suggests that, as d — oo,
the consequences of the fact that E?i 4 underestimates E; s become negligible; proving analyt-
ically such a conjecture seems difficult given our current understanding of the limiting HMC
dynamics.
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4.2. Squared jumping distance

We now consider the chain Q°, Q', ... in stationarity (i.e., Q° ~ I1(Q)) and account for the
computing cost C; 4 in (4.1) by introducing the continuous-time process QN ) where {N(@);t>
0} denotes a Poisson process, independent of the HMC Markov chain, of intensity Ay = 1/C; 4.
Ifgq(t) := qfv(t) denotes the projection of Q¥ onto the first particle and § > 0 is a time incre-
ment, we measure the efficiency of HMC algorithms using the expected squared jump distance,

STDa(8) =E[(qa(t + ) — qa®))’]-

This measure of efficiency is a fairly standard one; see [8,34], for example.

In the HMC algorithm the computational time (cost) expended between successive steps of the
Markov chain is essentially fixed and equal to C; 4. Using an auxiliary Poisson process instead
with mean interarrival time equal to C; 4 is merely a device that allows for the definition of
processes (over the different choices of /) that take the computational time per step (that changes
with /) under consideration in a reasonable manner and can be meaningfully compared via an
easy to calculate measure such as S7D;(8).

The following result shows that S.7D,4(§) is indeed asymptotically maximized by maximizing
a(Dl:

Theorem 4.2. Under the hypotheses of Proposition 3.8,

C;8
lim &°/* x SJD, =
ST X STPa= g

x a(l)l.
LF

Proof. See Section 6. O

4.3. Optimal acceptance probability in practice

As d — oo, the computing time required for a proposal scales as 1/ (see (4.1)) and the number
of proposals that may be performed in a given amount of time scales as /. Inspection of (4.1)
reveals, however, that selecting a big value of / gives the full benefit of a proportional increase of
the number of proposals only asymptotically, and at the slow rate of O(d~'/#). On the other hand,
the average acceptance probability converges at the faster rate, O(d~'/2). (This is an application
of Stein’s method; see, e.g., [3].) These considerations suggest that unless d —l/4 §g very small,
the algorithm will tend to benefit from average acceptance probabilities > 0.651.

Figure 2 shows the results of a numerical study on HMC. The target distribution is a product
of d = 107 standard Gaussian densities N (0, 1). We have applied HMC with different choices of
the step size & but the same length of time horizon 7 = 1 and in all cases allowed the algorithm to
run during a computational time #comp Of 30 seconds. We used Monte Carlo averages of the output

N fcomp

N, > f@h

comp ]

A 1
f:

to estimate, for different choices of f, the expectation E[ f]1=E[f(¢)], g ~ N (0, 1); here Ny,
denotes the number of T-legs carried out within the allowed time #.omp. For each choice of & we
ran the HMC algorithm 120 times.
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Figure 2. Boxplots of squared errors (SEs) from Monte Carlo averages of HMC with 7 = 1 for 7 different
selections of number of leapfrog steps or step sizes / (corresponding to the different boxplots in each
panel); the number of leapfrog steps used in the seven scenarios were (6, 7, 8,9, 10, 13,27). We ran HMC
120 times, with each run allowed a computing time of 30 seconds. Each boxplot corresponds to the 120
SEs in estimating E[ f (¢)], for a particular # and f(-). Written at the bottom of each boxplots is the median
of the 120 empirical average acceptance probabilities for the corresponding /. (Note that these medians
change in a nonlinear fashion from one boxplot to the next.)

Each of the four panels in Figure 2 corresponds to a different choice of f(-). In each of the
panels, the various boxplots correspond to choices of 4; at the bottom of each boxplot we have
written the median of the 120 empirical average acceptance probabilities. The boxplots them-
selves use the 120 realizations of the squared distances, ( f — E[£]). The shape of the boxplots
endorses the point made above, that the optimal acceptance probability for large (but finite) d is
larger than the asymptotically optimal value of 0.651.

5. Estimates for the leapfrog algorithm

In this section we identify analytical hypotheses on V under which Conditions 3.1, 3.2 and 3.7
in Section 3 hold.
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We set f := —VV (the ‘force’) and denote by f'(q) := FD (), fP(q), ... the successive
Fréchet derivatives of f at ¢. Thus, at a fixed ¢, £ (¢g) is a multilinear operator from (R")*+1
to R. For the rest of this section, we use the following assumptions on V:

Assumptions 5.1. The function V :R™ — R satisfies
() V e C*R™ - R,).
G £, fP, 3 are uniformly bounded by a constant B.

These assumptions imply that the potential V (g) can grow at most quadratically at infinity as
|g| — oo. (If the growth of V is more than quadratic, then the leapfrog algorithm as applied with
a constant value of & throughout the phase space is in fact unstable whenever the initial condition
is large.) The case where V takes negative values but is bounded from below can be reduced to
the case V > 0 by adding a suitable constant to V. In terms of the target measure, this simply
involves changing the normalization constant and thus is irrelevant in the HMC algorithm.

5.1. Preliminaries

Differentiating (3.1) with respect to ¢, we find successively

P = f'@@)M™ " p@),
Gy =M"f(q®),
) = fFP @) M p@6), M p@) + f'(q)M ™" f(q ),
GOy =M"f(quHM p@),
) = £ @) M p@e), M~ pt), M~ p(1))
+3f@ @M fq@). M p@) + @M (g)M ™ f(q1)),
Gy =M~ fPq)M ™ p@), M p0) + M~ [ )M f(g®)).

In this section, K denotes a generic constant that may vary from one appearance to the next, but
will depend only on B, T, |[M]||, ||M~"|. From the foregoing equations for the derivatives and
using the assumptions on V, we obtain the following bounds:

[P <1f(@q®)l, Ig(0)] < K|p@)l,
PO < KIp@®)l, g < K|f(g®)l, 5.0
1B < K(Ip®P +1£(q1)]), G ()| < K|p@)l, '

FOI= K(IpOF +1pOIf @)+ £ @) 1§01 K(pOF +1£@@))).

5.2. Asymptotic expansion for the leapfrog solution

In previous sections, we used a subscript to denote the different particles composing our state
space. Here we consider leapfrog integration of a single particle and use the subscript to denote
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the time level in this integration. The leapfrog scheme can then be compactly written as

I’l2
Gnt1 = qn +hM ™ p, + 7M—1f<qn), (5.2)

h h h?
DPn+1 = Pn + Ef(‘]n) + Ef(‘]n + hM_lpn + TM_lf(CIn))~ (5.3)

We define the truncation error in the usual way:

h2
—‘L’rgq) =q(tht1) — <Q(fn) + hM?lp(tn) + EM]f(Q(tn))>a

h h n?
_Trgp) = ptns1) — <p(tn) + Ef(QH) + Ef(qan) “l‘hM?lp(tn) + Tle(CI(t”))>>’

where we have set t, = nh € [0, T']. Expanding and using standard truncation error analysis (see,
e.g., [19]), we obtain

o = 1035t + h*OUGO)lloo),
o = — L1 () + OO lloo) + hO(?),
where, for arbitrary function g,

lg(lloo := sup [g(®)I.

0<t<T

In view of these estimates, éh%’j (ty) and —%h3 p(t,) are the leading terms in the asymptotic
expansion of the truncation error. Standard results (see, e.g., [20], Section II.8) show that the

numerical solution has an asymptotic expansion,
dn = q(t) +h?0(t) + O(),
) 3 54
Pn = pty) +h7u(ty) + OK7),

where functions u(-) and v(-) are the solutions, with initial condition u(0) = v(0) =0, of the
variational system

)\ _ (0 M—lf/(qo))) (a@)) (f—zﬁ(ﬂ)
(Go)=(7 "% w0 ) T\ L) i
Remark 5.2. Note here that u(-),v(-) depend on the initial conditions (g(0), p(0)) via

(g(-), p(-)), but that this dependence is not reflected in the notation. One should keep in mind
that most of the norms appearing in the sequel are functions of (¢ (0), p(0)).

Applying Gronwall’s lemma and using the estimates (5.1), we obtain the bound

e Olloo + 10O lloo < K (1220 + I1F @) lo) (5.6)
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and, by differentiating (5.5) with respect to ¢, expressing #, v in terms of u, v, and using (5.1)
again, in turn we obtain

lii (Voo < K (12O + 12 ool £ @D lloo + 1/ @) lloo) (5.7)
15 lloo < K (IPO136 + 1/ (@ (Dlloo)- (5.8)

5.3. Estimates for the global error

With the leading coefficients u and v of the global errors g, — g (t,), pn, — p(t,) estimated in (5.6),
our task now is to obtain an explicit bound for the constants implied in the O(h>) remainder in
(5.4). Toward this end, we define the quantities

Zn = q(tn) + WP (ty),
Wy = p(tn) + hzu(tn)z

(q)* (p)*

and denote by 7, the residuals that they generate when substituted in (5.2) and (5.3),

respectively, that is,

* —
—'L',,Eq) =Zn+1 — n —]’ZM lwn —

h_2M—1
) S ),

(p)* h h -1 & —1
—Tn zwn—H_wn_Ef(Zn)_Ef Zn +hM wn+7M f ) -

Because the leapfrog scheme is stable, standard numerical analysis techniques [20] show that it
is possible to estimate the global errors in terms of the local residuals (truncation errors). This
gives

T(q)*| + |t,§p)*

), (5.9)

C
omax (14 = Znl + |pn = wal) < 7~ max {

with the constant C depending only on 7 and Lipschitz constant of the map (g, p,) —
(Gn+1, Pns1), which in turn depends on ||[M~!|| and the bound for f’. The stability bound (5.9)
is the basis of the proof of the following estimation of the global error:

Proposition 5.3. [f the potential V satisfies Assumptions 5.1, then for0 <t, <T,

|Pn = () + H2u()| < KB (1Ol + 1 (@)% + 1),
|CIn - (Q(tn) +h2v(tn))| < Kh3(”p()||io + ||f(‘1())||<2>o + 1)

(p)*

(‘1)* (p * We only present the estimation for 7," ",

Proof. Our task is reduced to estimating t,

since the computations for r(q) are similar but 51mpler.
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After regrouping the terms in 7.\”’*, we find that

2P = plts) = plt) — 2 (@) — - Fq ))+E'"‘(t>
n = pUn+1 Py ) q\ln ) q\In+1 12[’

I

h
+ h? (u(tn+1) —u(ty) — hf/(Q(tn))U(tn) - Ep(t))

I

(f(@(@) — f @) + R F(q(t))v(tn))

I3

NS

+

h h?
-3 (f (zn +hM w, + 7M1f(q(rn)>) — f(q(tns1) — hzf/(q(rn»v(rn)))

Iy

h - R -1 W
+§ flza +hM wn+7M fla) ) — flzn +hM wn+7M f(zn) .

Is

Now we estimate the foregoing five terms separately.
I;: We note that

Pltag1) = p(t) — %f(q(rn» - gﬂq(ml)) = ptas1) — pltn) — gmmn - g;a(rn),
and by using the estimates in (5.1), it follows that
1] < KE*(1pOlloo + 12O llooll £ @(Dlloo + 1 @) lloo)-
I>: Here we write I = h>(u(ty41) — u(ty) — hit(t,)) so that by (5.7)
112l < KR4 (Il pC) 1 + PO ool £ @D lloo + 1LF (@ (D) lloo).-

I5: This term is estimated, after Taylor expanding f(z,,) near f(g(z,)), by

1131 < K2 (IpOllos + ||f(q(-))||oo)2-

14: We rewrite this as

h
5 (£ g + o 4 ho(t) + P M (@) = £(qtns)) — B2 F(q)v(E)

and Taylor expand around f (g (#,)) to derive the bound

[l < K (Ilp & + 11 £ (@O)I1Z)-
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I5: This term is easily estimated as

1Is| < KR [v()llee < KB (IpO126 + 1£ (@ () lloo)-

Combining all the foregoing estimates, we have the bound
o = Ki* (1p Ol + 1/ @) 1Z)-
A similar analysis for 7.’ yields the bound

2% < Kh*(IpO 4 + 1L (@O)I1%)-

The proof is completed by substituting the foregoing estimates in (5.9). (|

We now use the estimates in Proposition 5.3 to derive the asymptotic expansion for the energy
increment for the leapfrog scheme (cf. Condition 3.1).

Proposition 5.4. Let potential V satisfy Assumptions 5.1. Then, for the leapfrog scheme, we get
A(x, h) = h2a(x) + h2p(x, h),
with
a(x) = (M~ p(T), u(T)) — (f(q(T)), v(T)),
@) < K(IpO I+ 1 @O)Z + 1),
oG, W < Kh(lpOIS + 11 f@O)IZ +1).  0<h<l1,

where (q(-), p(-)) denotes the solution of (3.1) with initial data x = (¢q(0), p(0)) and u(-), v(-)
are the solutions of the corresponding variational system given in (5.5) with u(0) = v(0) = 0.

Proof. We only consider the case when T/ is an integer. The general case follows with minor
adjustments. By Proposition 5.3,

A, ) = H (v, () = Hx) = H(, () — H{pr ()
= (M~ p(T), h*u(T) + > Ry) + 5(M ™ (R*u(T) + h*Ry), (h*u(T) + h*Ry))
+ V(q(T) + h*v(T) + h*Ry) — V(q(T)),
where Ry, R are remainders with
IR+ Rl < K(IpOige + 1 £ @)%+ 1).
By Taylor expanding V () around ¢ (T), we obtain

Ax, )y =h*((M~' p(T), u(T)) — (f(q(T)), v(T))) + p(x, h),
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with
lpGe m) < KR (IpOIS, + 11 @)% + 1)
for 0 < h < 1. From the bound (5.6), it follows that
le ()] < K(IpOlloclltllse + I (@D llocllv(lloo)
<K(lpOI + 17 O1% +1)

and the theorem is proved. O

Our analysis is completed by estimating the quantities || p(-)||co and ||g(-)]lco in the preceding
theorems in terms of the initial data (g(0), p(0)). We obtain these estimates for two families
of potentials that include most of the interesting/useful target distributions. The corresponding
estimates for other potentials may be obtained using similar methods.

Proposition 5.5. Let potential V satisfy Assumptions 5.1. If V also satisfies either of the condi-
tions

(1) f is bounded and

[ v@re @ <o (5.10)
Rm
or,
(2) there exist constants C1, Co > 0,and 0 < y <1 such that for all |q| > C,, we have V (q) >
Cilgl”

then Conditions 3.1, 3.2 and 3.7 all hold.

Proof. Here we present only the treatment of Conditions 3.1 and 3.2. The derivation of Condi-
tion 3.7 is similar and simpler.
From Proposition 5.4, we observe that function D(x) in Condition 3.2 may be taken to be

D) =K(IpOIL + 1 f (@) +1).

Thus, to prove the integrability of D(-), we need to estimate || p(-)|loo and || f(q(-))|lco- Estimat-
ing || p(-)|lco is easier. Indeed, by conservation of energy,

Hp@), M~ p®)) < X(p(0), M~ p(0)) + V(q(0)),
which implies
PO < K(1pO)["® +1V(q(0)[®). (5.11)

We now prove the integrability of D(-) under each of the two previously stated hypotheses.

Under hypothesis (1), suppose that f is bounded. In this case, we obtain that |D(x)| <
K(||p(~)||cl,g + 1); therefore, it is sufficient to estimate ||p(-)||co. Because the Gaussian distri-
bution has all moments, integrability of D follows from (5.10) and (5.11).
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Under hypothesis (2), using the stated hypothesis on V (g), we obtain
Cilg0I” = V(@) = 3(p0), M~ p(0)) + V(q(0)),
which implies that

lg()] < K (Ip©)*Y + |V (qO)]/7).

By Assumptions 5.1(1), | f(g(#))| < K(1 + |g(¢)]), and arguing as before and using the bound
(5.11), integrability of D follows if we show that

4
/ IV (g)’e™V @ dg < oo, 8= Inax<8, —>.
RIH ‘}/
Because |V (¢)| < K(1 + |q|%),
/ Vig)lPe " @ dg <K / (14 1g?)e Bl dg < oo
Rm RITI
and we are done. O

6. Proofs of probabilistic results

Proof of Lemma 3.3. The volume preservation property of 1//,ET)(~) implies that the associated

-1
Jacobian is unit. Thus, setting x = (Iph(r)) (y), we get
/2 g(A(X,h))e_H(X) d_x — /2 g(H(I//}(lT)(X)) _ H(x))e_H(x) dx
R&m R2m

)\ —1 _ (T)y—1
Z/]RZ g[H) — H((y,") " (n)]e D70 gy,
Following the definition of time reversibility in (2.2), we have

So 1//}ET) = ( ;lT))_l oS

for the symmetry operator S such that S(g, p) = (¢, —p). Now using the volume-preserving
transformation y = Sz and continuing from the foregoing, we get

/ g(A(x, h))e W dx
R2m
B /2 g(H(S2) — H((y") " (52)))e TS g
R2m
- /2 g(H(S2) — H(sy" (2)))e W O gz
R2m

- /2 g(H(2) — H(%ET) (Z)))e_H(‘/’ET)(Z)) dz.
R2m
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where in the last equation we used the identity H (Sz) = H(2). [l

Proof of Proposition 3.4. We first find the limit of o->(h)/ h*. Conditions 3.1 and 3.2 imply that

AZ
% =a®(x) + p*(x, h) +2p(x, h)a(x) < D(x).

Because for fixed x, Az(x, h)/ - ocz(x), the dominated convergence theorem shows that

s2(h
lim & =/ o> (x)e  HW gy = 3.
h—0 ]’l4 R2m

Now (3.6) implies that

2
h
lim th‘ ) =0, 6.1)

and the required limit for o-2(h)/ h* follows directly. Then, from (3.5) we obtain

2uth) =) _ [ A [exp(=AC 1) =1+ AT gy g )
h* T Jrem K2 h? 4

Because for any fixed x, Conditions 3.1 and 3.2 imply that A(x, h) — Oas h — 0 and A2 (x, h) =
O(h*), we have the pointwise limit

. exp(=Ax,h)) — 1+ A(x, h)
lim =0.
h—0 /’l2

Using inequality |u|e* — 1 — u| < |u|?>(e* + 2), we deduce that for all sufficiently small /,

/ |A(x, )| [exp(=A(x, h)) = 1+ Alx, )| _ gy
e dx
R2m ]’l2 h2

|A(x, )| _HG) A2, D) )
5/1;{2"1 Texp(—A(x,h))e * dx+2/Rzm —a e dx

< 3/ D(x)e ™ dx < oo,
R2m

where the last line follows from applying Lemma 3.3 with ¢(x) = x2 and Condition 3.2. Thus
the dominated convergence theorem yields

. 2u(h) —a%(h)
lim —— =0.
h—0 h4

This completes the proof of the proposition. (]
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Proof of Theorem 3.6. We continue from (3.8). In view of the scaling h =1 - d —1/4 we obtain,
using Proposition 3.4,
E[Rg]=—d - p(h) — —147“
and
Var[Rg]=d - o*(h) —> I*X.
The Lindeberg condition is readily seen to hold, and thus
Ry 55 Ry = N(—Z%E, 142>.
From the boundedness of u — 1 A €%, we may write
Ela(X, Y)] — E[1 A eRee],
where the last expectation can be found analytically (see, e.g., [36]) as
E[1 Aefe]=20(-*VE/2).
This completes the proof. O

Proof of Proposition 3.8. For simplicity, we write just ", ¢"*! and p" instead of ¢", q"Jrl and
P plicity. 1-91

p. respectively. Using (3.9), we get

@ =g =1"(Peyy@" ") — ")

We define
d
Cli(X",Y”) = lAexp{—ZA(xl”,h)}, I = HU”<a’(X”,Y")v (6.2)
i=2

and set
- T 2
£ = 1" (P (q", ™) — q").
Using the Lipschitz continuity of u = Iy <jaev and the Cauchy—Schwartz inequality, we get
T 2
El(q" — ") = &" < 1ACe, W |(Pewry (0" P = ¢")| .
Now Conditions 3.1 and 3.2 imply that

|AGx1, b1, = O(h?).
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In addition, from Condition 3.7 and the stated hypothesis on the density exp(—V), ¢" and
Py w}(lT) (¢", p™) have bounded fourth moments uniformly in /4, and thus

T 2
[Py (q" p") = q") ], C
for some constant C > 0. The last two statements imply that
El(q""" —¢")?* —§"| = 0. 6.3)

Exploiting the independence between /"~ and the first particle,

E[£,] = Ela~ (X, V)] x E[(P, v\ (q", p") — ¢")’] = a() - E[(Pyer(d", P") — ¢")],

where for the first factor, we used its limit from Theorem 3.6, and for the second factor, the
limit is a consequence of Condition 3.7 and the dominated convergence theorem. Equation (6.3)
completes the proof. (I

Proof of Proposition 3.9. Fix some ¢g{ € R". We define a™ (X", ¥Y") and I"™ as in (6.2). For

simplicity, we write just ¢", "1, g" ™! and p" instead of ¢, q{’“, qu:+1 and p, respectively.

We set
g =1""Pyer(g", p")+ (1= 1"")g".

Adding and subtracting 1" - P, (¢r(¢q", p")) yields

"t — g < [P, (v (", p™M) — Py ler(q", p™)|

(6.4)

HI" = I"(1Pgor (@", P")I +1g"1).

Using the Lipschitz continuity (with constant 1) of u — Iy <1 aexp(u), We have
[ = 1" < |A(x1, h)|. (6.5)

Now Condition 3.7 implies that the first term on the right-hand side of (6.4) vanishes with prob-
ability 1, and Condition 3.1 implies (via (6.5)) that the second term also vanishes with probabil-
ity 1. Therefore, as d — oo,

q —g"m =0, a.s.
. . . . L
Theorem 3.6 immediately implies that /"~ — I", and thus

gn+l L qn—H'

.. L .
From these two limits, we have q”“ - q"“, and this completes the proof. O
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Proof of Theorem 4.2. To simplify the notation, we again drop the subscript 1. Conditionally
on the trajectory ¢°, ¢!, ..., we get

0, w.p. 1 — Ag8 + O((148)?),
2
(gt +8) —q@)* =1 (VO —gV®)?, w.p. A8 + O((ha8)?),
(qNOHH — g0 wp O((a8) . j = 1.

Therefore,
STy =E[(qV O — gV D)) (148 + O((a8)D))

+ ZE[(qN(t)-i-l-i-j _qN(t))Z]O(()\.dé)j_l—l)
=1

(6.6)

Note now that

Jj+1 2
; 2 3
E[(qN(t)+1+,/ _ qN(t)) ] < (Z|qN(z)+k _qN(t)+k 1|L2)
k=1

= (j + D*El(g""" — g™,

because we have assumed stationarity. From (4.1),

[
A :d75/4— o) d76/4
d TCir +O( )

and, from Proposition 3.8, IE[(q("+1 - q”)z] = O(1). Therefore,
434 % ZE[(QNO)-H-H’ _ qN(’))Z]O((Ad5)1+‘)
j=1
is of the same order in d as

2g- A XY G+ DPO0S ™,
j=1
and thus

5 x SB[ (VO - gV 1O((1a8) ) = O(ha).
j=1

Using this result, and continuing from (6.6), Proposition 3.8 provides the required statement. []

7. Conclusion

The HMC methodology provides a promising framework for the study of sampling problems,
especially in high dimensions. There are a number of directions in which the research direction
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taken in this paper could be developed further, and a number of observations to be made con-
cerning optimal tuning of MCMC methods in general. We conclude by listing some of these
issues.

e The overall optimization involves tuning three free parameters (h, T, M). Because M is a
symmetric matrix, the number of tuning parameters is 2 4+ m(m + 1)/2. In this paper, we
have fixed M and T and illustrated that the choice & = Id~'/* provides nonvanishing O(1)
acceptance probabilities as d — co. We then focussed on optimizing the HMC algorithm
over choice of /. The natural next step would be to study the algorithm for various choices
of the mass matrix M and the integration time 7.

e There is interesting recent computational work [16] concerning exploration of state space
by means of nonseparable Hamiltonian dynamics. This work opens up several theoretical
research directions.

e The issue of irreducibility for the transition kernel of HMC is subtle and requires further
investigation, given that certain exceptional cases can lead to nonergodic behavior (see [11,
42] and references therein).

e Our analysis of the HMC algorithm is conducted in stationarity. It is possible that different
scaling analyses will be needed to study the burn-in phase of the algorithm, as for the study
of random-walk type algorithms in [13].

e There is evidence that the limiting properties of MALA for high-dimensional target densities
do not appear to depend critically on the tail behavior of the target (see [37]). However, in
the present work, for HMC, we have considered densities that are no lighter than Gaussian
at infinity. It would be interesting to extend the work to light-tailed densities. This links
naturally to the question of using variable step size integration [41] for HMC, because light-
tailed densities will lead to superlinear vector fields at infinity in (2.1). This also links to the
work of [16], in which nonseparable Hamiltonians arise via introduction of a nonstandard
metric on phase space, related to the Fisher information. This metric introduces a rescaling
of state space, and this rescaling induces similar algorithmic properties to those induced by
variable time-stepping.

o We have shown how to scale the HMC method to obtain (1) acceptance probabilities as
the dimension of the target product measure grows. We have also shown how to minimize
a reasonable measure of computational cost, defined as the work needed to make an O(1)
move in state space. However, in contrast to similar work on RWM and MALA ([36,37]), in
which a scalar SDE governs, for large d, the evolution of a single component of the Markov
chain, we have not identified a limiting Markov process arising in the infinite-dimensional
limit of HMC. This remains an interesting and technically demanding challenge.

e The work concerning optimal scaling of RWM and MALA in [36,37] and the identification
of the optimal acceptance probabilities of 0.234 and 0.574, respectively, concerns target
measures with an i.i.d. structure. However, recent work [27,35] shows that for measures
that have density with respect to a Gaussian measure (in the limit d — oo) and hence are
not necessarily i.i.d., the same optimal acceptance probabilities arise. A natural extension of
the work on HMC presented in this paper is to non-i.i.d. target measures in a similar manner.
Also note that for measures with this special structure, these results on optimal scaling are
of mainly theoretical interest, because they extend known results out of the i.i.d. scenario.
For the particular case of measures that have density with respect to a Gaussian, and from a
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more practical perspective, the RWM, MALA and HMC algorithms should be modified to
exploit this underlying Gaussian structure, as discussed next.

e We have concentrated on explicit integration by the leapfrog method. For measures that have
density with respect to a Gaussian measure (in the limit d — o0) it is natural to use semi-
implicit integrators that compute the linear dynamics implicitly, leading to exact statistics
in the pure Gaussian case. This idea, first developed for the MALA algorithm [9] and for
the RWM algorithm [10], leads to methods that explore state space in O(1) steps for mea-
sures with this special structure. The idea was recently developed for HMC methods by [7],
and the resulting algorithm was shown to outperform the semi-implicit MALA algorithm
for some problems arising in conditioned diffusions. Developing a theoretical understand-
ing of this behavior would be of interest. Note that the optimal acceptance probabilities
0.234,0.574 and 0.651 will not necessarily apply for these semi-implicit proposals as the
optimal proposal variance does not shrink to 0 as d — oco; as a result, different mechanisms
may come into play when determining optimality.

e It would be interesting to conduct simulation studies which investigate the robustness of
optimal scaling results for RWM, MALA and HMC in scenarios in which the target is not
i.i.d. or change of measure from Gaussian. Such simulation studies could help guide future
theoretical results on optimal scaling.
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