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Abstract
We consider the inverse problem of estimating an unknown function u from
noisy measurements y of a known, possibly nonlinear, map G applied to u.
We adopt a Bayesian approach to the problem and work in a setting where
the prior measure is specified as a Gaussian random field μ0. We work under
a natural set of conditions on the likelihood which implies the existence of a
well-posed posterior measure, μy. Under these conditions, we show that the
maximum a posteriori (MAP) estimator is well defined as the minimizer of
an Onsager–Machlup functional defined on the Cameron–Martin space of the
prior; thus, we link a problem in probability with a problem in the calculus of
variations. We then consider the case where the observational noise vanishes
and establish a form of Bayesian posterior consistency for the MAP estimator.
We also prove a similar result for the case where the observation of G(u) can
be repeated as many times as desired with independent identically distributed
noise. The theory is illustrated with examples from an inverse problem for the
Navier–Stokes equation, motivated by problems arising in weather forecasting,
and from the theory of conditioned diffusions, motivated by problems arising
in molecular dynamics.

1. Introduction

This paper considers questions from Bayesian statistics in an infinite-dimensional setting, for
example in function spaces. We assume our state space to be a general separable Banach
space

(
X, ‖ ·‖X

)
. While in the finite-dimensional setting, the prior and posterior distribution of

such statistical problems can typically be described by densities w.r.t. the Lebesgue measure,
such a characterization is no longer possible in the infinite-dimensional spaces we consider
here: it can be shown that no analogue of the Lebesgue measure exists in infinite-dimensional
spaces. One way to work around this technical problem is to replace the Lebesgue measure
with a Gaussian measure on X , i.e. with a Borel probability measure μ0 on X such that all
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finite-dimensional marginals of μ0 are (possibly degenerate) normal distributions. Using a
fixed, centred (mean-zero) Gaussian measure μ0 = N (0, C0) as a reference measure, we then
assume that the distribution of interest, μ, has a density with respect to μ0:

dμ

dμ0
(u) ∝ exp(−�(u)). (1.1)

Measures μ of this form arise naturally in a number of applications, including the theory
of conditioned diffusions [18] and the Bayesian approach to inverse problems [33]. In these
settings, there are many applications where � : X → R is a locally Lipschitz continuous
function, and it is in this setting that we work.

Our interest is in defining the concept of ‘most likely’ functions with respect to the measure
μ, and in particular the maximum a posteriori (MAP) estimator in the Bayesian context. We
will refer to such functions as MAP estimators throughout. We will define the concept precisely
and link it to a problem in the calculus of variations, study posterior consistency of the MAP
estimator in the Bayesian setting and compute it for a number of illustrative applications.

To motivate the form of MAP estimators considered here, we consider the case where
X = Rd is finite dimensional and the prior μ0 is Gaussian N (0, C0). This prior has density
exp(− 1

2 |C−1/2
0 u|2) with respect to the Lebesgue measure, where | · | denotes the Euclidean

norm. The probability density for μ with respect to the Lebesgue measure, given by (1.1), is
maximized at minimizers of

I(u) := �(u) + 1
2‖u‖2

E , (1.2)

where ‖ · ‖E = |C−1/2
0 u|. We would like to derive such a result in the infinite-dimensional

setting.
The natural way to talk about MAP estimators in the infinite-dimensional setting is to

seek the centre of a small ball with maximal probability and then study the limit of this centre
as the radius of the ball shrinks to zero. To this end, let Bδ (z) ⊂ X be the open ball of radius δ

centred at z ∈ X . If there is a functional I, defined on E, which satisfies

lim
δ→0

μ(Bδ (z2))

μ(Bδ (z1))
= exp(I(z1) − I(z2)), (1.3)

then I is termed the Onsager–Machlup functional [11, 21]. For any fixed z1, the function z2

for which the above limit is maximal is a natural candidate for the MAP estimator of μ and is
clearly given by minimizers of the Onsager–Machlup function. In the finite-dimensional case,
it is clear that I given by (1.2) is the Onsager–Machlup functional.

From the theory of infinite-dimensional Gaussian measures [5, 25], it is known that copies
of the Gaussian measure μ0 shifted by z are absolutely continuous w.r.t. μ0 itself, if and only
if z lies in the Cameron–Martin space

(
E, 〈·, ·〉E , ‖ · ‖E

)
; furthermore, if the shift direction z is

in E, then the shifted measure μz has density

dμz

dμ0
= exp

(
〈z, u〉E − 1

2
‖z‖2

E

)
. (1.4)

In the finite-dimensional example, above, the Cameron–Martin norm of the Gaussian measure
μ0 is the norm ‖ · ‖E , and it is easy to verify that (1.4) holds for all z ∈ Rd . In the infinite-
dimensional case, it is important to keep in mind that (1.4) only holds for z ∈ E � X .
Similarly, relation (1.3) only holds for z1, z2 ∈ E. In our application, the Cameron–Martin
formula (1.4) is used to bound the probability of the shifted ball Bδ (z2) from equation (1.3).
(For an exposition of the standard results about small ball probabilities for Gaussian measures,
we refer to [5, 25]; see also [24] for related material.) The main technical difficulty that is
encountered stems from the fact that the Cameron–Martin space E, while being dense in X ,
has measure zero with respect to μ0. An example where this problem can be explicitly seen is
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the case where μ0 is the Wiener measure on L2; in this example, E corresponds to a subset of
the Sobolev space H1, which has indeed measure zero w.r.t. the Wiener measure.

Our theoretical results assert that despite these technical complications, the situation from
the finite-dimensional example, above, carries over to the infinite-dimensional case essentially
without change. In theorem 3.2, we show that the Onsager–Machlup functional in the infinite-
dimensional setting still has the form (1.2), where ‖ · ‖E is now the Cameron–Martin norm
associated with μ (using ‖z‖E = ∞ for z ∈ X \ E), and in corollary 3.10, we show that the
MAP estimators for μ lie in the Cameron–Martin space E and coincide with the minimizers
of the Onsager–Machlup functional I.

In the second part of the paper, we consider the inverse problem of estimating an unknown
function u in a Banach space X , from a given observation y ∈ RJ , where

y = G(u) + ζ ; (1.5)

here, G : X → RJ is a possibly nonlinear operator, and ζ is a realization of an RJ-valued
centred Gaussian random variable with known covariance �. A prior probability measure
μ0(du) is put on u, and the distribution of y|u is given by (1.5), with ζ assumed to be
independent of u. Under appropriate conditions on μ0 and G, the Bayes theorem is interpreted
as giving the following formula for the Radon–Nikodym derivative of the posterior distribution
μy on u|y with respect to μ0:

dμy

dμ0
(u) ∝ exp(−�(u; y)), (1.6)

where

�(u; y) = 1
2 |�− 1

2 (y − G(u))|2. (1.7)

The derivation of the Bayes formula (1.6) for problems with finite-dimensional data, and ζ in
this form, is discussed in [7]. Clearly, then, Bayesian inverse problems with Gaussian priors
fall into the class of problems studied in this paper, for potentials � given by (1.7) which
depend on the observed data y. When the probability measure μ arises from the Bayesian
formulation of inverse problems, it is natural to ask whether the MAP estimator is close to the
truth underlying the data, in either the small noise or large sample size limits. This is a form
of Bayesian posterior consistency, here defined in terms of the MAP estimator only. We will
study this question for finite observations of a nonlinear forward model, subject to Gaussian
additive noise.

The paper is organized as follows:

• in section 2, we detail our assumptions on � and μ0;
• in section 3, we give conditions for the existence of an Onsager–Machlup functional I and

show that the MAP estimator is well defined as the minimizer of this functional;
• in section 4, we study the problem of Bayesian posterior consistency by studying the limits

of Onsager–Machlup minimizers in the small noise and large sample size limits;
• in section 5, we study applications arising from data assimilation for the Navier–Stokes

equation, as a model for what is done in weather prediction;
• in section 6, we study applications arising in the theory of conditioned diffusions.

We conclude the introduction with a brief literature review. We first note that MAP
estimators are widely used in practice in the infinite-dimensional context [22, 30]. We
also note that the functional I in (1.2) resembles a Tikhonov–Phillips regularization of the
minimization problem for � [12], with the Cameron–Martin norm of the prior determining
the regularization. In the theory of classical non-statistical inversion, formulation via the
Tikhonov–Phillips regularization leads to an infinite-dimensional optimization problem and
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has led to deeper understanding and improved algorithms. Our aim is to achieve the same
in a probabilistic context. One way of defining a MAP estimator for μ given by (1.1) is to
consider the limit of parametric MAP estimators: first discretize the function space using n
parameters, and then apply the finite-dimensional argument above to identify an Onsager–
Machlup functional on Rn. Passing to the limit n → ∞ in the functional provides a candidate
for the limiting Onsager–Machlup functional. This approach is taken in [27, 28, 32] for
problems arising in conditioned diffusions. Unfortunately, however, it does not necessarily
lead to the correct identification of the Onsager–Machlup functional as defined by (1.3).
The reason for this is that the space on which the Onsager–Machlup functional is defined is
smoother than the space on which small ball probabilities are defined. Small ball probabilities
are needed to properly define the Onsager–Machlup functional in the infinite-dimensional limit.
This means that discretization and use of standard numerical analysis limit theorems can, if
incorrectly applied, use more regularity than is admissible in identifying the limiting Onsager–
Machlup functional. We study the problem directly in the infinite-dimensional setting, without
using discretization, leading, we believe, to greater clarity. Adopting the infinite-dimensional
perspective for MAP estimation has been widely studied for diffusion processes [9] and
related stochastic PDEs [34]; see [35] for an overview. Our general setting is similar to that
used to study the specific applications arising in [9, 34, 35]. By working with small ball
properties of Gaussian measures, and assuming that � has natural continuity properties, we
are able to derive results in considerable generality. There is a recent related definition of
MAP estimators in [19], with application to density estimation in [16]. However, whilst the
goal of minimizing I is also identified in [19], the proof in that paper is only valid in finite
dimensions since it implicitly assumes that the Cameron–Martin norm is μ0 -almost surely
(a.s.) finite. In our specific application to fluid mechanics, our analysis demonstrates that
widely used variational methods [2] may be interpreted as MAP estimators for an appropriate
Bayesian inverse problem and, in particular, that this interpretation, which is understood in
the atmospheric sciences community in the finite-dimensional context, is well defined in the
limit of infinite spatial resolution.

Posterior consistency in Bayesian nonparametric statistics has a long history [15]. The
study of posterior consistency for the Bayesian approach to inverse problems is starting to
receive considerable attention. The papers [1, 23] are devoted to obtaining rates of convergence
for linear inverse problems with conjugate Gaussian priors, whilst the papers [4, 29] study non-
conjugate priors for linear inverse problems. Our analysis of posterior consistency concerns
nonlinear problems, and finite data sets, so that multiple solutions are possible. We prove an
appropriate weak form of posterior consistency, without rates, building on ideas appearing
in [3].

Our form of posterior consistency is weaker than the general form of Bayesian posterior
consistency since it does not concern fluctuations in the posterior, simply a point (MAP)
estimator. However, we note that for linear Gaussian problems there are examples where
the conditions which ensure convergence of the posterior mean (which coincides with the
MAP estimator in the linear Gaussian case) also ensure posterior contraction of the entire
measure [1, 23].

2. Set-up

Throughout this paper, we assume that
(
X, ‖ · ‖X

)
is a separable Banach space and that μ0 is a

centred Gaussian (probability) measure on X with Cameron–Martin space
(
E, 〈·, ·〉E , ‖ · ‖E

)
.

The measure μ of interest is given by (1.1) and we make the following assumptions concerning
the potential �.
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Assumption 2.1. The function � : X → R satisfies the following conditions.

(i) For every ε > 0, there is an M ∈ R, such that for all u ∈ X,

�(u) � M − ε‖u‖2
X .

(ii) � is locally bounded from above, i.e. for every r > 0, there exists K = K(r) > 0 such
that, for all u ∈ X with ‖u‖X < r, we have

�(u) � K.

(iii) � is locally Lipschitz continuous, i.e. for every r > 0, there exists L = L(r) > 0, such
that for all u1, u2 ∈ X with ‖u1‖X , ‖u2‖X < r, we have

|�(u1) − �(u2)| � L‖u1 − u2‖X .

Assumption 2.1(i) ensures that expression (1.1) for the measure μ is indeed normalizable
to give a probability measure; the specific form of the lower bound is designed to ensure that
application of the Fernique theorem (see [5] or [25]) proves that the required normalization
constant is finite. Assumption 2.1(ii) enables us to obtain explicit bounds from below on small
ball probabilities and assumption 2.1(iii) allows us to use continuity to control the Onsager–
Machlup functional. Numerous examples satisfying these conditions are given in [18, 33].
Finally, we define a function I : X → R by

I(u) =
{
�(u) + 1

2‖u‖2
E if u ∈ E, and

+∞ else.
(2.1)

We will see in section 3 that I is the Onsager–Machlup functional.

Remark 2.2. We close with a brief remark concerning the definition of the Onsager–Machlup
function in the case of a non-centred reference measure μ0 = N (m, C0). Shifting coordinates
by m, it is possible to apply the theory based on the centred Gaussian measure μ0, and then
undo the coordinate change. The relevant Onsager–Machlup functional can then be shown to
be

I(u) =
{
�(u) + 1

2‖u − m‖2
E if u − m ∈ E, and

+∞ else.

3. MAP estimators and the Onsager–Machlup functional

In this section, we prove two main results. The first, theorem 3.2, establishes that I given by (1.2)
is indeed the Onsager–Machlup functional for the measure μ given by (1.1). Then theorem 3.5
and corollary 3.10 show that the MAP estimators, defined precisely in definition 3.1, are
characterized by the minimizers of the Onsager–Machlup functional.

For z ∈ X , let Bδ (z) ⊂ X be the open ball centred at z ∈ X with radius δ in X . Let

Jδ (z) = μ
(
Bδ (z)

)
be the mass of the ball Bδ (z). We first define the MAP estimator for μ as follows.

Definition 3.1. Let

zδ = argmax
z∈X

Jδ (z).

Any point z̃ ∈ X satisfying limδ→0(Jδ (z̃)/Jδ (zδ )) = 1 is a MAP estimator for the measure μ

given by (1.1).

5
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We show later on (theorem 3.5) that a strongly convergent subsequence of {zδ}δ>0 exists,
and its limit, that we prove to be in E, is a MAP estimator and also minimizes the Onsager–
Machlup functional I. Corollary 3.10 then shows that any MAP estimator z̃ as given in
definition 3.1 lives in E as well, and minimizers of I characterize all MAP estimators of μ.

One special case where it is easy to see that the MAP estimator is unique is the case where
� is linear, but we note that, in general, the MAP estimator cannot be expected to be unique.
To achieve uniqueness, stronger conditions on � would be required.

We first need to show that I is the Onsager–Machlup functional for our problem.

Theorem 3.2. Let assumption 2.1 hold. Then the function I defined by (2.1) is the Onsager–
Machlup functional for μ, i.e. for any z1, z2 ∈ E, we have

lim
δ→0

Jδ (z1)

Jδ (z2)
= exp(I(z2) − I(z1)).

Proof. Note that Jδ (z) is finite and positive for any z ∈ E by assumptions 2.1(i) and (ii)
together with the Fernique theorem and the positive mass of all balls in X , centred at points in
E, under Gaussian measure [5]. The key estimate in the proof is the following consequence of
proposition 3 in section 18 of [25]:

lim
δ→0

μ0(Bδ (z1))

μ0(Bδ (z2))
= exp

(
1

2
‖z2‖2

E − 1

2
‖z1‖2

E

)
. (3.1)

This is the key estimate in the proof since it transfers questions about probability, naturally
asked on the space X of full measure under μ0, into statements concerning the Cameron–Martin
norm of μ0, which is almost surely infinite under μ0.

We have

Jδ (z1)

Jδ (z2)
=

∫
Bδ (z1 )

exp(−�(u))μ0(du)∫
Bδ (z2 )

exp(−�(v))μ0(dv)

=
∫

Bδ (z1 )
exp(−�(u) + �(z1)) exp(−�(z1))μ0(du)∫

Bδ (z2 )
exp(−�(v) + �(z2)) exp(−�(z2))μ0(dv)

.

By assumption 2.1(iii), for any u, v ∈ X ,

−L‖u − v‖X � �(u) − �(v) � L‖u − v‖X ,

where L = L(r) with r > max{‖u‖X , ‖v‖X }. Therefore, setting L1 = L(‖z1‖X + δ) and
L2 = L(‖z2‖X + δ), we can write

Jδ (z1)

Jδ (z2)
� eδ(L1+L2)

∫
Bδ (z1 )

exp(−�(z1))μ0(du)∫
Bδ (z2 )

exp(−�(z2))μ0(dv)

= eδ(L1+L2 ) e−�(z1 )+�(z2 )

∫
Bδ (z1)

μ0(du)∫
Bδ (z2)

μ0(dv)
.

Now, by (3.1), we have

Jδ (z1)

Jδ (z2)
� r1(δ) eδ(L2+L1) e−I(z1 )+I(z2 )

with r1(δ) → 1 as δ → 0. Thus,

lim sup
δ→0

Jδ (z1)

Jδ (z2)
� e−I(z1 )+I(z2). (3.2)

6
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Similarly, we obtain

Jδ (z1)

Jδ (z2)
� 1

r2(δ)
e−δ(L2+L1) e−I(z1 )+I(z2 )

with r2(δ) → 1 as δ → 0 and deduce that

lim inf
δ→0

Jδ (z1)

Jδ (z2)
� e−I(z1 )+I(z2 ). (3.3)

Inequalities (3.2) and (3.3) give the desired result. �

We note that similar methods of analysis show the following.

Corollary 3.3. Let the assumptions of theorem 3.2 hold. Then for any z ∈ E,

lim
δ→0

Jδ (z)∫
Bδ (0)

μ0(du)
= 1

Z
e−I(z),

where Z = ∫
X exp(−�(u)) μ0(du).

Proof. Noting that we consider μ to be a probability measure and hence,

Jδ (z)∫
Bδ (0)

μ0(du)
=

1
Z

∫
Bδ (z) exp(−�(u))μ0(du)∫

Bδ (0)
μ0(du)

,

with Z = ∫
X exp(−�(u)) μ0(du), arguing along the lines of the proof of the above theorem

gives

1

Z

1

r(δ)
e−δL̂ e−I(z) � Jδ (z)∫

Bδ (0)
μ0(du)

� 1

Z
r(δ) eδL̂ e−I(z)

with L̂ = L(‖z‖X + δ) (where L(·) is as in definition 2.1) and r(δ) → 1 as δ → 0. The result
then follows by taking lim sup and lim inf as δ → 0. �

Proposition 3.4. Suppose assumptions 2.1 hold. Then the minimum of I : E → R is attained
for some element z∗ ∈ E.

Proof. The existence of a minimizer of I in E, under the given assumptions, is proved as
theorem 5.4 in [33] (and as theorem 2.7 in [7] in the case where � is non-negative). �

The rest of this section is devoted to a proof of the result that MAP estimators can
be characterized as minimizers of the Onsager–Machlup functional I (theorem 3.5 and
corollary 3.10).

Theorem 3.5. Suppose that assumptions 2.1(ii) and (iii) hold. Assume also that there exists
an M ∈ R such that �(u) � M for any u ∈ X.

(i) Let zδ = argmaxz∈X Jδ (z). There is a z̄ ∈ E and a subsequence of {zδ}δ>0 which converges
to z̄ strongly in X.

(ii) The limit z̄ is a MAP estimator and a minimizer of I.

The proof of this theorem is based on several lemmas. We state and prove these lemmas
first and defer the proof of theorem 3.5 to the end of the section where we also state and
prove a corollary characterizing the MAP estimators as minimizers of the Onsager–Machlup
functional.

7
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Lemma 3.6. Let δ > 0. For any centred Gaussian measure μ0 on a separable Banach space
X, we have

Jδ
0 (z)

Jδ
0 (0)

� c e− a1
2 (‖z‖X −δ)2

,

where c = exp( a1
2 δ2) and a1 is a constant independent of z and δ.

Proof. We first show that this is true for a centred Gaussian measure on Rn with the covariance
matrix C = diag[λ1, . . . , λn] in basis {e1, . . . , en}, where λ1 � λ2 � · · · � λn. Let a j = 1/λ j,
and |z|2 = z2

1 + · · · + z2
n. Define

Jδ
0,n(z) :=

∫
Bδ (z)

e− 1
2 (a1x2

1+···+anx2
n ) dx, for any z ∈ Rn, (3.4)

and with Bδ (z) the ball of radius δ and centre z in Rn. We have

Jδ
0,n(z)

Jδ
0,n(0)

=
∫

Bδ (z) e− 1
2 (a1x2

1+···+anx2
n ) dx∫

Bδ (0)
e− 1

2 (a1x2
1+···+anx2

n) dx

<
e− 1

2 (a1−ε)(|z|−δ)2

e− 1
2 (a1−ε)δ2

∫
Bδ (z) e− 1

2 (εx2
1+(a2−a1+ε)x2

2+···+(an−a1+ε)x2
n) dx∫

Bδ (0)
e− 1

2 (εx2
1+(a2−a1+ε)x2

2+···+(an−a1+ε)x2
n ) dx

< c e− 1
2 (a1−ε)(|z|−δ)2

∫
Bδ (z) μ̂0(dx)∫
Bδ (0)

μ̂0(dx)
,

for any ε < a1 and where μ̂0 is a centred Gaussian measure on Rn with the covariance matrix
diag[1/ε, 1/(a2 − a1 + ε), . . . , 1/(an − a1 + ε)] (noting that an � an−1 � · · · � a1). By
Anderson’s inequality for the infinite-dimensional spaces (see theorem 2.8.10 of [5]), we have
μ̂0(B(z, δ)) � μ̂0(B(0, δ)) and therefore

Jδ
0,n(z)

Jδ
0,n(0)

< c e− 1
2 (a1−ε)(|z|−δ)2

,

and since ε is arbitrarily small, the result follows for the finite-dimensional case.
To show the result for an infinite-dimensional separable Banach space X , we first note that

{e j}∞j=1, the orthogonal basis in the Cameron–Martin space of X for μ0, separates the points
in X ; therefore, T : u → {e j(u)}∞j=1 is an injective map from X to R∞. Let u j = e j(u) and

Pnu = (u1, u2, . . . , un, 0, 0, . . .).

Then, since μ0 is a Radon measure, for the balls B(0, δ) and B(z, δ), for any ε0 > 0, there exists
large enough N such that the cylindrical sets A0 = P−1

n (Pn(Bδ (0))) and Az = P−1
n (Pn(Bδ (z)))

satisfy μ0(Bδ (0) � A0) < ε0 and μ0(Bδ (z) � Az) < ε0 for n > N [5], where � denotes the
symmetric difference. Let z j = (z, e j) and zn = (z1, z2, . . . , zn, 0, . . .), and for 0 < ε1 < δ/2,
n > N large enough so that ‖z − zn‖X � ε1. With α = c e− a1

2 (‖z‖X −ε1−δ)2
, we have

Jδ
0 (z) � Jδ

0,n(z
n) + ε0

� αJδ
0,n(0) + ε0

� αJδ
0 (0) + (1 + α)ε0.

Since ε0 and ε1 converge to zero as n → ∞, the result follows. �

Lemma 3.7. Suppose that z̄ �∈ E, {zδ}δ>0 ⊂ X and zδ converges weakly to z in X as δ → 0.
Then for any ε > 0, there exists δ small enough such that

Jδ
0 (zδ )

Jδ
0 (0)

< ε.
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Proof. Let C be the covariance operator of μ0, and {e j} j∈N the eigenfunctions of C scaled with
respect to the inner product of E, the Cameron–Martin space of μ0, so that {e j} j∈N forms an
orthonormal basis in E. Let {λ j} be the corresponding eigenvalues and aj = 1/λ j. Since zδ

converges weakly to z̄ in X as δ → 0,

e j(z
δ ) → e j(z̄) for any j ∈ N, (3.5)

and as z̄ �∈ E for any A > 0, there exist N sufficiently large and δ̃ > 0 sufficiently small, such
that

inf
z∈Bδ̃ (z̄)

⎧⎨
⎩

N∑
j=1

a jx
2
j

⎫⎬
⎭ > A2,

where x j = e j(z). By (3.5), for δ1 < δ̃ small enough, we have Bδ1 (zδ1 ) ⊂ Bδ̃ (z̄) and therefore

inf
z∈Bδ1 (zδ1 )

⎧⎨
⎩

N∑
j=1

a jx
2
j

⎫⎬
⎭ > A2. (3.6)

Let Tn : X → Rn map z to (e1(z), . . . , en(z)), and consider Jδ
0,n(z) to be defined as in (3.4).

Having (3.6), and choosing δ � δ1 such that e− 1
4 (a1+···+aN )δ2

> 1/2, for any n � N, we can
write

Jδ
0,n(Tnzδ )

Jδ
0,n(0)

=
∫

Bδ (Tnzδ )
e− 1

2 (a1x2
1+···+anx2

n ) dx∫
Bδ (0)

e− 1
2 (a1x2

1+···+anx2
n) dx

�
∫

Bδ (Tnzδ )
e− 1

4 (a1x2
1+···+aN x2

N ) e− 1
2 (

a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx∫
Bδ (0)

e− 1
4 (a1x2

1+···+aN x2
N ) e− 1

2 (
a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx

�
e− 1

4 A2 ∫
Bδ (Tnzδ )

e− 1
2 (

a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx

1
2

∫
Bδ (0)

e− 1
2 (

a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx

� 2 e− 1
4 A2

.

As A > 0 was arbitrary, the constant in the last line of the above equation can be made
arbitrarily small, by making δ sufficiently small and n sufficiently large. Having this and
arguing in a similar way to the final paragraph of the proof of lemma 3.6, the result
follows. �

Corollary 3.8. Suppose that z �∈ E. Then

lim
δ→0

Jδ
0 (z)

Jδ
0 (0)

= 0.

Lemma 3.9. Consider {zδ}δ>0 ⊂ X and suppose that zδ converges weakly and not strongly to
0 in X as δ → 0. Then for any ε > 0, there exists δ small enough such that

Jδ
0 (zδ )

Jδ
0 (0)

< ε.

Proof. Since zδ converges weakly and not strongly to 0, we have

lim inf
δ→0

‖zδ‖X > 0,

9
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and therefore, for δ1 small enough, there exists α > 0 such that ‖zδ‖X > α for any δ < δ1. Let
λ j, a j and e j, j ∈ N, be defined as in the proof of lemma 3.7. Since zδ ⇀ 0 as δ → 0,

e j(z
δ ) → 0, for any j ∈ N. (3.7)

Also, as for μ0-almost every x ∈ X , x = ∑
j∈N

e j(x)ê j and {ê j = e j/
√

λ j} is an orthonormal
basis in X∗

μ0
(closure of X∗ in L2(μ0)) [5], we have∑

j∈N

(e j(x))2 < ∞ for μ0-almost every x ∈ X . (3.8)

Now, for any A > 0, let N large enough such that aN > A2. Then, having (3.7) and (3.8), one
can choose δ2 < δ1 small enough and N1 > N large enough so that for δ < δ2 and n > N1,

N∑
j=1

(e j(z
δ ))2 <

Cα

2
and

n∑
j=N+1

(e j(z
δ ))2 >

Cα

2
.

Therefore, letting Jδ
0,n(z) and Tn be defined as in the proof of lemma 3.7, we can write

Jδ
0,n(Tnzδ )

Jδ
0,n(0)

=
∫

Bδ (Tnzδ )
e− 1

2 (a1x2
1+···+anx2

n ) dx∫
Bδ (0)

e− 1
2 (a1x2

1+···+anx2
n) dx

�
∫

Bδ (Tnzδ )
e− A2

2 (x2
N+1+···+x2

n ) e− 1
2 (a1x2

1+···+aN x2
N+(aN+1−A2 )x2

N+1···+(an−A2 )x2
n ) dx∫

Bδ (0)
e− A2

2 (x2
N+1+···+x2

n ) e− 1
2 (a1x2

1+···+aN x2
N+(aN+1−A2 )x2

N+1···+(an−A2 )x2
n ) dx

�
e− 1

2 A2( Cα
2 −δ2 )

∫
Bδ (Tnzδ )

e− 1
2 (

a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx

e− 1
2 A2δ2 ∫

Bδ (0)
e− 1

2 (
a1
2 x2

1+···+ aN
2 x2

N+aN+1x2
N+1···+anx2

n ) dx

� 2 e− Cα
4 A2

,

if δ < δ2 is small enough so that eAδ2
< 2. Having this and arguing in a similar way to the

final paragraph of the proof of lemma 3.6, the result follows. �
Having these preparations in place, we can give the proof of theorem 3.5.

Proof of theorem 3.5. (i) We first show that {zδ} is bounded in X . By assumption 2.1(ii), for
any r > 0, there exists K = K(r) > 0 such that

�(u) � K(r)

for any u satisfying ‖u‖X < r; thus, K may be assumed to be a non-decreasing function of r.
This implies that

max
z∈E

∫
Bδ (z)

e−�(u)μ0(du) �
∫

Bδ (0)

e−�(u)μ0(du) � e−K(δ)

∫
Bδ (0)

μ0(du).

We assume that δ � 1, and then the inequality above shows that

Jδ (zδ )∫
Bδ (0)

μ0(du)
� 1

Z
e−K(1) = ε1, (3.9)

noting that ε1 is independent of δ.
We can also write

ZJδ (z) =
∫

Bδ (z)
e−�(u)μ0(du)

� e−M
∫

Bδ (z)
μ0(du)

=: e−MJδ
0 (z),

10
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which implies that for any z ∈ X and δ > 0,

Jδ
0 (z) � Z eMJδ (z). (3.10)

Now suppose {zδ} is not bounded in X , so that for any R > 0, there exists δR such that
‖zδR‖X > R (with δR → 0 as R → ∞). By (3.10), (3.9) and the definition of zδR , we have

JδR
0 (zδR ) � Z eMJδR (zδR ) � Z eMJδR (0) � eM e−K(1)JδR

0 (0),

implying that for any δR and corresponding zδR

JδR
0 (zδR )

JδR
0 (0)

� c = eM e−K(1).

This contradicts the result of lemma 3.6 (below) for δR small enough. Hence, there exists
R, δR > 0 such that

‖zδ‖X � R for any δ < δR.

Therefore, there exist a z̄ ∈ X and a subsequence of {zδ}0<δ<δR which converges weakly in X
to z̄ ∈ X as δ → 0.

Now, suppose either

(a) there is no strongly convergent subsequence of {zδ} in X , or
(b) if there is one, its limit z̄ is not in E.

Let UE = {u ∈ E : ‖u‖E � 1}. Each of the above situations implies that for any positive
A ∈ R, there is a δ† such that for any δ � δ†,

Bδ (zδ ) ∩ (
Bδ (0) + AUE

) = ∅. (3.11)

We first show that z̄ has to be in E. By the definition of zδ , we have (for δ < 1)

1 � Jδ (zδ )

Jδ (0)
� eM

e−K(1)

∫
Bδ (zδ )

μ0(du)∫
Bδ (0)

μ0(du)
. (3.12)

Supposing z̄ �∈ E, in lemma 3.7, we show that for any ε > 0, there exists δ small enough such
that ∫

Bδ (zδ )
μ0(du)∫

Bδ (0)
μ0(du)

< ε.

Hence, choosing A in (3.11) such that e−A2/2 < 1
2 eK(1) e−M , and setting ε = e−A2/2, from (3.12),

we obtain 1 � Jδ (zδ )/Jδ (0) < 1, which is a contradiction. We therefore have z̄ ∈ E.
Now, knowing that z̄ ∈ E, we can show that zδ converges strongly in X . Suppose it does

not. Then for zδ − z̄, the hypotheses of lemma 3.9 are satisfied. Again choosing A in (3.11)
such that e−A2/2 < 1

2 eK(1) e−M , and setting ε = e−A2/2, from lemma 3.9 and (3.12), we
obtain 1 � Jδ (zδ )/Jδ (0) < 1, which is a contradiction. Hence, there is a subsequence of {zδ}
converging strongly in X to z̄ ∈ E.

(ii) Let z∗ = arg minI(z) ∈ E; the existence is assured by theorem 3.2. By
assumption 2.1(iii), we have

Jδ (zδ )

Jδ (z̄)
� e−�(zδ )+�(z̄) e(L1+L2)δ

∫
Bδ (zδ )

μ0(du)∫
Bδ (z̄) μ0(du)

,

with L1 = L(‖zδ‖X + δ) and L2 = L(‖z̄‖X + δ). Therefore, since � is continuous on X and
zδ → z̄ in X,

lim sup
δ→0

Jδ (zδ )

Jδ (z̄)
� lim sup

δ→0

∫
Bδ (zδ )

μ0(du)∫
Bδ (z̄) μ0(du)

.

11
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Suppose {zδ} is not bounded in E, or if it is, it only converges weakly (and not strongly) in E.
Then, ‖z̄‖E < lim infδ→0 ‖zδ‖E , and hence for small enough δ, ‖z̄‖E < ‖zδ‖E . Therefore, for
the centered Gaussian measure μ0, since ‖zδ − z̄‖X → 0, we have

lim sup
δ→0

∫
Bδ (zδ )

μ0(du)∫
Bδ (z̄) μ0(du)

� 1.

Since by the definition of zδ , Jδ (zδ ) � Jδ (z̄) and hence

lim inf
δ→0

(
Jδ (zδ )/Jδ (z̄)

)
� 1,

this implies that

lim
δ→0

Jδ (zδ )

Jδ (z̄)
= 1. (3.13)

In the case where {zδ} converges strongly to z̄ in E, by the Cameron–Martin theorem we have∫
Bδ (zδ )

μ0(du)∫
Bδ (z̄) μ0(du)

= e− 1
2 ‖zδ‖2

E
∫

Bδ (0)
e〈zδ ,u〉E μ0(du)

e− 1
2 ‖z̄‖2

E
∫

Bδ (0)
e〈z̄,u〉E μ0(du)

,

and then by an argument very similar to the proof of theorem 18.3 of [25], one can show that

lim
δ→0

∫
Bδ (zδ )

μ0(du)∫
Bδ (z̄) μ0(du)

= 1,

and (3.13) follows again in a similar way. Therefore, z̄ is a MAP estimator of measure μ.
It remains to show that z̄ is a minimizer of I. Suppose z̄ is not a minimizer of I

so that I(z̄) − I(z∗) > 0. Let δ1 be small enough so that in the equation before (3.2),
1 < r1(δ) < eI(z̄)−I(z∗) for any δ < δ1 and therefore,

Jδ (z̄)

Jδ (z∗)
� r1(δ) e−I(z̄)+I(z∗) < 1. (3.14)

Let α = r1(δ) e−I(z̄)+I(z∗ ). We have

Jδ (zδ )

Jδ (z∗)
= Jδ (zδ )

Jδ (z̄)

Jδ (z̄)

Jδ (z∗)
,

and this by (3.14) and (3.13) implies that

lim sup
δ→0

Jδ (zδ )

Jδ (z∗)
� α lim sup

δ→0

Jδ (zδ )

Jδ (z̄)
< 1,

which is a contradiction, since by the definition of zδ , Jδ (zδ ) � Jδ (z∗) for any δ > 0. �

Corollary 3.10. Under the conditions of theorem 3.5, we have the following.

(i) Any MAP estimator, given by definition 3.1, minimizes the Onsager–Machlup functional
I.

(ii) Any z∗ ∈ E which minimizes the Onsager–Machlup functional I is a MAP estimator for
measure μ given by (1.1).

Proof.

(i) Let z̃ be a MAP estimator. By theorem 3.5, we know that {zδ} has a subsequence which
strongly converges in X to z̄. Let {zα} be the said subsequence. Then by (3.13) one can
show that

lim
δ→0

Jδ (zδ )

Jδ (z̄)
= lim

α→0

Jα(zα )

Jα(z̄)
= 1.

12
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By the above equation and since z̃ is a MAP estimator, we can write

lim
δ→0

Jδ (z̃)

Jδ (z̄)
= lim

δ→0

Jδ (zδ )

Jδ (z̄)
lim
δ→0

Jδ (z̃)

Jδ (zδ )
= 1.

Then corollary 3.8 implies that z̃ ∈ E, and supposing that z̃ is not a minimizer of I would
result in a contradiction using an argument similar to that in the last paragraph of the
proof of the above theorem.

(ii) Note that the assumptions of theorem 3.5 imply those of theorem 3.2. Since z̄ is a minimizer
of I as well, by theorem 3.2 we have

lim
δ→0

Jδ (z̄)

Jδ (z∗)
= 1.

Then we can write

lim
δ→0

Jδ (z∗)
Jδ (zδ )

= lim
δ→0

Jδ (z̄)

Jδ (zδ )
= lim

δ→0

Jδ (z∗)
Jδ (z̄)

= 1.

The result follows by definition 3.1. �

4. Bayesian inversion and posterior consistency

The structure (1.1), where μ0 is Gaussian, arises in the application of the Bayesian methodology
to the solution of inverse problems. In that context, it is interesting to study posterior
consistency: the idea that the posterior concentrates near the truth which gave rise to the
data, in the small noise or large sample size limits; these two limits are intimately related and
indeed there are theorems that quantify this connection for certain linear inverse problems [6].

In this section, we describe the Bayesian approach to nonlinear inverse problems, as
outlined in the introduction. We assume that the data are found from the application of G to
the truth u† with additional noise:

y = G(u†) + ζ .

The posterior distribution μy is then of the form (1.6) and in this case, it is convenient to extend
the Onsager–Machlup functional I to a mapping from X × RJ to R, defined as

I(u; y) = �(u; y) + 1
2‖u‖2

E .

We study the posterior consistency of MAP estimators in both the small noise and
large sample size limits. The corresponding results are presented in theorems 4.4 and 4.1,
respectively. Specifically, we characterize the sense in which the MAP estimators concentrate
on the truth underlying the data in the small noise and large sample size limits.

4.1. Large sample size limit

Let us denote the exact solution by u† and suppose that as data we have the following n random
vectors:

y j = G(u†) + η j, j = 1, . . . , n,

with y j ∈ RK and η j ∼ N (0, C1) independent identically distributed random variables. Thus,
in the general setting, we have J = nK, G(·) = (G(·), . . . ,G(·)) and � a block diagonal
matrix with C1 in each block. We have n independent observations, each polluted by O(1)

13
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noise, and we study the limit n → ∞. Corresponding to this set of data and given the prior
measure μ0 ∼ N (0, C0), we have the following formula for the posterior measure on u:

dμy1,...,yn

dμ0
(u) ∝ exp

⎛
⎝−1

2

n∑
j=1

|y j − G(u)|2C1

⎞
⎠ .

Here, and in the following, we use the notations 〈·, ·〉C1 = 〈C−1/2
1 ·, C−1/2

1 ·〉 and | · |2C1
= 〈·, ·〉C1 .

By corollary 3.10, MAP estimators for this problem are minimizers of

In := ‖u‖2
E +

n∑
j=1

|y j − G(u)|2C1
. (4.1)

Our interest is in studying the properties of the limits of minimizers un of In, namely the MAP
estimators corresponding to the preceding family of posterior measures. We have the following
theorem concerning the behaviour of un when n → ∞.

Theorem 4.1. Assume that G : X → RK is Lipschitz on bounded sets and u† ∈ E. For every
n ∈ N, let un ∈ E be a minimizer of In given by (4.1). Then there exist a u∗ ∈ E and a
subsequence of {un}n∈N that converges weakly to u∗ in E, almost surely. For any such u∗, we
have G(u∗) = G(u†).

We describe some preliminary calculations useful in the proof of this theorem, then give
lemma 4.2, also useful in the proof, and finally give the proof itself.

We first observe that, under the assumption that G is Lipschitz on bounded sets,
assumptions 2.1 hold for �. We note that

In = ‖u‖2
E +

n∑
j=1

|y j − G(u)|2C1

= ‖u‖2
E + n|G(u†) − G(u)|2C1

+ 2
n∑

j=1

〈G(u†) − G(u), C−1
1 η j〉.

Hence,

arg min
u

In = arg min
u

⎧⎨
⎩‖u‖2

E + n|G(u†) − G(u)|2C1
+ 2

n∑
j=1

〈G(u†) − G(u), C−1
1 η j〉

⎫⎬
⎭ .

Define

Jn(u) = |G(u†) − G(u)|2C1
+ 1

n
‖u‖2

E + 2

n

n∑
j=1

〈G(u†) − G(u), C−1
1 η j〉.

We have

arg min
u

In = arg min
u

Jn.

Lemma 4.2. Assume that G : X → RK is Lipschitz on bounded sets. Then for fixed n ∈ N and
almost surely, there exists un ∈ E such that

Jn(un) = inf
u∈E

Jn(u).

14
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Proof. We first observe that, under the assumption that G is Lipschitz on bounded sets and
because for a given n and fixed realizations η1, . . . , ηn there exists an r > 0 such that
max{|y1|, . . . , |yn|} < r, assumptions 2.1 hold for �. Since arg minu In = arg minu Jn, the
result follows by proposition 3.4. �

We may now prove the posterior consistency theorem. From (4.3) onwards, the proof
is an adaptation of the proof of theorem 2 of [3]. We note that the assumptions on limiting
behaviour of measurement noise in [3] are stronger: property (9) of [3] is not assumed here for
our Jn. On the other hand, a frequentist approach is used in [3], while here, since Jn is coming
from a Bayesian approach, the norm in the regularization term is stronger (it is related to the
Cameron–Martin space of the Gaussian prior). That is why in our case, asking what if u† is
not in E and only in X is relevant and is answered in corollary 4.3 below.

Proof of theorem 4.1 By the definition of un, we have

|G(u†) − G(un)|2C1
+ 1

n
‖un‖2

E + 2

n

n∑
j=1

〈G(u†) − G(un), C−1
1 η j〉 � 1

n
‖u†‖2

E .

Therefore,

|G(u†) − G(un)|2C1
+ 1

n
‖un‖2

E � 1

n
‖u†‖2

E + 2

n
|G(u†) − G(un)|C1 |

n∑
j=1

C−1/2
1 η j|.

Using Young’s inequality (see lemma 1.8 of [31], for example) for the last term on the
right-hand side, we obtain

1

2
|G(u†) − G(un)|2C1

+ 1

n
‖un‖2

E � 1

n
‖u†‖2

E + 2

n2

⎛
⎝ n∑

j=1

C−1/2
1 η j

⎞
⎠

2

.

Taking expectation and noting that the {η j} are independent, we obtain

1

2
E|G(u†) − G(un)|2C1

+ 1

n
E‖un‖2

E � 1

n
‖u†‖2

E + 2K

n
,

where K = E|C−1/2
1 η1|2. This implies that

E|G(u†) − G(un)|2C1
→ 0 as n → ∞ (4.2)

and

E‖un‖2
E � ‖u†‖2

E + 2K. (4.3)

(1) We first show using (4.3) that there exist u∗ ∈ E and a subsequence {unk(k)}k∈N of {un}
such that

E〈unk(k), v〉E → E〈u∗, v〉E for any v ∈ E. (4.4)

Let {φ j} j∈N be a complete orthonormal system for E. Then,

E〈un, φ1〉E � E‖un‖E‖φ1‖E � ‖u†‖2
E + 2K.

Therefore, there exist ξ1 ∈ R and a subsequence {un1(k)}k∈N of {un}n∈N such that
E〈un1(k), φ1〉 → ξ1. Now considering E〈un1(k), φ2〉 and using the same argument, we
conclude that there exist ξ2 ∈ R and a subsequence {un2(k)}k∈N of {un1(k)}k∈N such that
E〈un2(k), φ2〉 → ξ2. Continuing similarly, we can show that there exist {ξ j} ∈ R∞ and
{un1(k)}k∈N ⊃ {un2(k)}k∈N ⊃ . . . ⊃ {unj (k)}k∈N such that E〈unj (k), φ j〉 → ξ j for any j ∈ N

as k → ∞. Therefore,

E〈unk(k), φ j〉E → ξ j, as k → ∞ for any j ∈ N.
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We need to show that {ξ j} ∈ 
2(R). We have, for any N ∈ N,
N∑

j=1

ξ 2
j � lim

k→∞
E

N∑
j=1

〈unk(k), φ j〉2
E � lim sup

k→∞
E‖unk(k)‖2

E � ‖u†‖2
E + 2K.

Therefore, {ξ j} ∈ 
2(R) and u∗ := ∑∞
j=1 ξ jφ j ∈ E. We can now write for any nonzero

v ∈ E,

E〈unk(k) − u∗, v〉E = E

∞∑
j=1

〈v, φ j〉E〈unk(k) − u∗, φ j〉E

� N‖v‖EE sup
j∈{1,...,N}

|〈unk(k) − u∗, φ j〉E |

+ (‖u†‖2
E + 2K)1/2

∞∑
j=N

|〈v, φ j〉E |.

Now for any fixed ε > 0, we choose N large enough so that

(‖u†‖2
E + 2K)1/2

∞∑
j=N

|〈v, φ j〉E | <
1

2
ε,

and then k large enough so that

N‖v‖EE|〈unk(k) − u∗, φ j〉E | < 1
2ε for any 1 � j � N.

This demonstrates that E〈unk(k) − u∗, v〉E → 0 as k → ∞.
(2) Now we show the almost sure existence of a convergent subsequence of {unk(k)}. By (4.2),

we have |G(unk(k)) − G(u†)|C1 → 0 in probability as k → ∞. Therefore, there exists a
subsequence {um(k)} of {unk(k)} such that

G(um(k)) → G(u†) a.s. as k → ∞.

Now by (4.4), we have 〈um(k) − u∗, v〉E → 0 in probability as k → ∞, and hence there
exists a subsequence {um̂(k)} of {um(k)} such that um̂(k) converges weakly to u∗ in E almost
surely as k → ∞. Since E is compactly embedded in X , this implies that um̂(k) → u∗ in
X almost surely as k → ∞. The result now follows by continuity of G. �
In the case where u† ∈ X (and not necessarily in E), we have the following weaker result.

Corollary 4.3. Suppose that G and un satisfy the assumptions of theorem 4.1, and that u† ∈ X.
Then there exists a subsequence of {G(un)}n∈N converging to G(u†) almost surely.

Proof. For any ε > 0, by the density of E in X , there exists v ∈ E such that ‖u† − v‖X � ε.
Then by the definition of un, we can write

|G(u†) − G(un)|2C1
+ 1

n
‖un‖2

E + 2

n

n∑
j=1

〈G(u†) − G(un), C−1
1 η j〉

� |G(u†) − G(v)|2C1
+ 1

n
‖v‖2

E + 2

n

n∑
j=1

〈G(u†) − G(v), C−1
1 η j〉.

Therefore, dropping 1
n‖un‖2

E on the left-hand side, and using Young’s inequality, we obtain

1

2
|G(u†) − G(un)|2C1

� 2|G(u†) − G(v)|2C1
+ 1

n
‖v‖2

E + 3

n2

n∑
j=1

|C−1/2
1 η j|2.
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By the local Lipschitz continuity of G, |G(u†) − G(v)|C1 � Cε2, and therefore, taking the
expectations and noting the independence of {η j}, we obtain

E|G(u†) − G(un)|2C1
� 4Cε2 + 2Cε

n
+ 6K

n
,

implying that

lim sup
n→∞

E|G(u†) − G(un)|2C1
� 4Cε2.

Since the lim inf is obviously positive and ε was arbitrary, we have limn→∞ E|G(u†) −
G(un)|2C1

= 0. This implies that |G(u†) − G(un)|C1 → 0 in probability. Therefore, there
exists a subsequence of {G(un)} which converges to G(u†) almost surely. �

4.2. Small noise limit

Consider the case where, as data, we have the random vector

yn = G(u†) + 1

n
ηn (4.5)

for n ∈ N and with u† again as the true solution and η j ∼ N (0, C1), j ∈ N, Gaussian random
vectors in RK . Thus, in the preceding general setting, we have G = G and J = K. Rather than
having n independent observations, we have an observation noise scaled by small γ = 1/n
converging to zero. For these data and given the prior measure μ0 on u, we have the following
formula for the posterior measure:

dμyn

dμ0
(u) ∝ exp

(
−n2

2
|yn − G(u)|2C1

)
.

By the result of the previous section, the MAP estimators for the above measure are the
minimizers of

In(u) := ‖u‖2
E + n2|yn − G(u)|2C1

. (4.6)

Our interest is in studying the properties of the limits of minimizers of In as n → ∞. We have
the following almost-sure convergence result.

Theorem 4.4. Assume that G : X → RK is Lipschitz on bounded sets, and u† ∈ E. For every
n ∈ N, let un ∈ E be a minimizer of In(u) given by (4.6). Then, there exist a u∗ ∈ E and a
subsequence of {un}n∈N that converges weakly to u∗ in E, almost surely. For any such u∗, we
have G(u∗) = G(u†).

Proof. The proof is very similar to that of theorem 4.1 and so we only sketch differences. We
have

In = ‖u‖2
E + n2|yn − G(u)|2C1

= ‖u‖2
E + n2|G(u†) + 1

n
ηn − G(u)|2C1

= ‖u‖2
E + n2|G(u†) − G(u)|2C1

+ |ηn|2C1
+ 2n〈G(u†) − G(u), ηn〉C1 .

Letting

Jn(u) = 1

n2
‖u‖2

E + |G(u†) − G(u)|2C1
+ 2

n
〈G(u†) − G(u), ηn〉C1 ,
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we hence have arg minuIn = arg minuJn. For this Jn, the result of lemma 4.2 holds true, using
an argument similar to the large sample size case. The result of theorem 4.4 carries over as
well. Indeed, by the definition of un, we have

|G(u†) − G(un)|2C1
+ 1

n2
‖un‖2

E + 2

n
〈G(u†) − G(un), C−1

1 ηn〉 � 1

n2
‖u†‖2

E .

Therefore,

|G(u†) − G(un)|2C1
+ 1

n2
‖un‖2

E � 1

n2
‖u†‖2

E + 2

n
|G(u†) − G(un)|C1 |C−1/2

1 ηn|.
Using Young’s inequality for the last term on the right-hand side, we obtain

1

2
|G(u†) − G(un)|2C1

+ 1

n2
‖un‖2

E � 1

n2
‖u†‖2

E + 2

n2
|C−1/2

1 ηn|2.
Taking expectation, we obtain

E|G(u†) − G(un)|2C1
+ 1

n2
E‖un‖2

E � 1

n2
‖u†‖2

E + 2K

n2
.

This implies that

E|G(u†) − G(un)|2C1
→ 0 as n → ∞ (4.7)

and

E‖un‖2
E � ‖u†‖2

E + 2K. (4.8)

Having (4.7) and (4.8), and with the same argument as in the proof of theorem 4.1, it follows
that there exist a u∗ ∈ E and a subsequence of {un} that converges weakly to u∗ in E almost
surely, and for any such u∗, we have G(u∗) = G(u†). �

As in the large sample size case, here also, if we have u† ∈ X and we do not restrict the
true solution to be in the Cameron–Martin space E, one can prove, in a similar way to the
argument of the proof of corollary 4.3, the following weaker convergence result.

Corollary 4.5. Suppose that G and un satisfy the assumptions of theorem 4.4, and that u† ∈ X.
Then there exists a subsequence of {G(un)}n∈N converging to G(u†) almost surely.

5. Applications in fluid mechanics

In this section, we present an application of the methods presented above to filtering
and smoothing in fluid dynamics, which is relevant to data assimilation applications in
oceanography and meteorology. We link the MAP estimators introduced in this paper to
the variational methods used in applications [2], and we demonstrate posterior consistency in
this context.

We consider the 2D Navier–Stokes equation on the torus T2 := [−1, 1) × [−1, 1) with
the following periodic boundary conditions:

∂tv − ν�v + v · ∇v + ∇p = f for all (x, t) ∈ T2 × (0,∞),
∇ · v = 0 for all (x, t) ∈ T2 × (0,∞),
v = u for all (x, t) ∈ T2 × {0}.

Here, v : T2 × (0,∞) → R2 is a time-dependent vector field representing the velocity,
p : T2×(0,∞) → R is a time-dependent scalar field representing the pressure, f : T2 → R2 is
a vector field representing the forcing (which we assume to be time independent for simplicity)
and ν is the viscosity. We are interested in the inverse problem of determining the initial velocity
field u from pointwise measurements of the velocity field at later times. This is a model for the
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situation in weather forecasting where observations of the atmosphere are used to improve the
initial condition used for forecasting. For simplicity, we assume that the initial velocity field
is divergence free and integrates to zero over T2, noting that this property will be preserved in
time.

Define

H :=
{

trigonometric polynomials u : T2 → R2
∣∣∣∇ · u = 0,

∫
T2

u(x) dx = 0

}

and H as the closure of H with respect to the (L2(T2))2 norm. We define the map
P : (L2(T2))2 → H to be the Leray–Helmholtz orthogonal projector (see [31]). Given
k = (k1, k2)

T, define k⊥ := (k2,−k1)
T. Then an orthonormal basis for H is given by

ψk : R2 → R2, where

ψk(x) := k⊥

|k| exp(π ik · x)

for k ∈ Z2 \ {0}. Thus, for u ∈ H, we may write

u =
∑

k∈Z2\{0}
uk(t)ψk(x),

where, since u is a real-valued function, we have the reality constraint u−k = −ūk. Using the
Fourier decomposition of u, we define the fractional Sobolev spaces

Hs :=
⎧⎨
⎩u ∈ H

∣∣∣∣
∑

k∈Z2\{0}
(π2|k|2)s|uk|2 < ∞

⎫⎬
⎭

with the norm ‖u‖s := (∑
k(π

2|k|2)s|uk|2
)1/2

, where s ∈ R. If A = −P�, the Stokes operator,
then Hs = D(As/2). We assume that f ∈ Hs for some s > 0.

Let t
 = 
h, for 
 = 0, . . . , L, and define v
 ∈ RM to be the set of pointwise values
of the velocity field given by {v(xm, t
)}m∈M, where M is some finite set of points in T2

with cardinality M/2. Note that each v
 depends on u and we may define G
 : H → RM by
G
(u) = v
. We let {η
}
∈{1,...,L} be a set of random variables in RM which perturbs the points
{v
}
∈{1,...,L} to generate the observations {y
}
∈{1,...,L} in RM given by

y
 := v
 + γ η
, 
 ∈ {1, . . . , L}.
We let y = {y
}L


=1, the accumulated data up to time T = Lh, with similar notation for η,
and define G : H → RML by G(u) = (G1(u), . . . ,GL(u)). We now solve the inverse problem
of finding u from y = G(u) + γ η. We assume that the prior distribution on u is a Gaussian
μ0 = N(0, C0), with the property that μ0(H) = 1 and that the observational noise {η
}
∈{1,...,L}
is i.i.d. in RM , independent of u, with η1 distributed according to a Gaussian measure N(0, I).
If we define

�(u) = 1

2γ 2

L∑
j=1

|y j − G j(u)|2,

then under the preceding assumptions, the Bayesian inverse problem for the posterior measure
μy for u|y is well defined and is Lipschitz in y with respect to the Hellinger metric (see [7]).
The Onsager–Machlup functional in this case is given by

INS(u) = 1
2‖u‖2

C0
+ �(u).

We are in the setting of subsection 4.2, with γ = 1/n and K = ML. In the applied literature,
approaches to assimilating data into mathematical models based on minimizing INS are known
as variational methods, and sometimes as 4DVAR [2].
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Figure 1. Illustration of posterior consistency in the fluid mechanics application. The three curves
given are the relative error of the MAP estimator u∗ in reproducing the truth, u† (solid), the relative
error of the map G(u∗) in reproducing G(u†) (dashed) and the relative error of G(u∗) with respect
to the observations y (dash–dotted).

We now describe numerical experiments concerned with studying posterior consistency
in the case γ → 0. We let C0 = A−2 noting that if u ∼ μ0, then u ∈ Hs almost surely for
all s < 1; in particular, u ∈ H. Thus μ0(H) = 1 as required. The forcing in f is taken to be
f = ∇⊥�, where � = cos(πk ·x) and ∇⊥ = J∇ with J the canonical skew-symmetric matrix
and k = (5, 5). The dimension of the attractor is determined by the viscosity parameter ν. For
the particular forcing used, there is an explicit steady state for all ν > 0, and for ν � 0.035,
this solution is stable (see [26], chapter 2, for details). As ν decreases, the flow becomes
increasingly complex, and we focus subsequent studies of the inverse problem on the mildly
chaotic regime which arises for ν = 0.01. We use a time-step of δt = 0.005. The data are
generated by computing a true signal solving the Navier–Stokes equation at the desired value
of ν, and then adding Gaussian random noise to it at each observation time. Furthermore, we
let h = 4δt = 0.02 and take L = 10, so that T = 0.2. We take M = 322 spatial observations
at each observation time. The observations are made at the gridpoints; thus the observations
include all numerically resolved, and hence observable, wavenumbers in the system. Since
the noise is added in spectral space in practice, for convenience we define σ = γ /

√
M and

present the results in terms of σ . The same grid is used for computing the reference solution
and the MAP estimator.

Figure 1 illustrates the posterior consistency which arises as the observational noise
strength γ → 0. The three curves shown quantify (i) the relative error of the MAP estimator
u∗ compared with the truth, u†, (ii) the relative error of G(u∗) compared with G(u†) and (iii)
the relative error of G(u∗) with respect to the observations y. The figure clearly illustrates
theorem 4.4, via the dashed curve for (ii), and indeed shows that the map estimator itself
is converging to the true initial condition, via the blue curve, as γ → 0. Recall that the
observations approach the true value of the initial condition, mapped forward under G, as
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γ → 0, and note that the dashed and dashed–dotted curves shows that the image of the MAP
estimator under the forward operator G, G(u∗), is closer to G(u†) than y, asymptotically as
γ → 0.

6. Applications in conditioned diffusions

In this section, we consider the MAP estimator for conditioned diffusions, including bridge
diffusions and an application to filtering/smoothing. We identify the Onsager–Machlup
functional governing the MAP estimator in three different cases. We demonstrate numerically
that this functional may have more than one minimizer. Furthermore, we illustrate the results
of the consistency theory in section 4 using numerical experiments. Subsection 6.1 concerns
the unconditioned case, and includes the assumptions made throughout. Subsections 6.2
and 6.3 describe bridge diffusions and the filtering/smoothing problem, respectively. Finally,
subsection 6.4 is devoted to numerical experiments for an example in filtering/smoothing.

6.1. Unconditioned case

For simplicity, we restrict ourselves to scalar processes with additive noise, taking the form

du = f (u) dt + σ dW, u(0) = u−. (6.1)

If we let ν denote the measure on X := C([0, T ]; R) generated by the stochastic differential
equation (SDE) given in (6.1), and ν0 the same measure obtained in the case f ≡ 0, then the
Girsanov theorem states that ν � ν0 with density

dν

dν0
(u) = exp

(
− 1

2σ 2

∫ T

0
| f (u(t))|2 dt + 1

σ 2

∫ T

0
f (u(t))du(t)

)
.

If we choose an F : R → R with F ′(u) = f (u), then an application of Itô’s formula gives

dF(u(t)) = f (u(t)) du(t) + σ 2

2
f ′(u(t)) dt,

and using this expression to remove the stochastic integral, we obtain

dν

dν0
(u) ∝ exp

(
− 1

2σ 2

∫ T

0
(| f (u(t))|2 + σ 2 f ′(u(t))) dt + 1

σ 2
F(u(T ))

)
. (6.2)

Thus, the measure ν has a density with respect to the Gaussian measure ν0 and (6.2) takes the
form (1.1) with μ = ν and μ0 = ν0; we have

dν

dν0
(u) ∝ exp(−�1(u)),

where �1 : X → R is defined by

�1(u) =
∫ T

0
�(u(t)) dt − 1

σ 2
F(u(T )) (6.3)

and

�(u) = 1

2σ 2
(| f (u)|2 + σ 2 f ′(u)).

We make the following assumption concerning the vector field f driving the SDE.

Assumption 6.1. The function f = F ′ in (6.1) satisfies the following conditions.

(1) F ∈ C2(R, R) for all u ∈ R.
(2) There is M ∈ R such that �(u) � M for all u ∈ R and F(u) � M for all u ∈ R.
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Under these assumptions, we see that �1 given by (6.3) satisfies assumptions 2.1 and,
indeed, the slightly stronger assumptions made in theorem 3.5. Let H1[0, T ] denote the space
of absolutely continuous functions on [0, T ]. Then the Cameron–Martin space E1 for ν0 is

E1 =
{
v ∈ H1[0, T ]|

∫ T

0
|v′(s)|2 ds < ∞ and v(0) = 0

}

and the Cameron–Martin norm is given by

‖v‖E1 = σ−1‖v‖H1 ,

where

‖v‖H1 =
(∫ T

0

∣∣v′(s)
∣∣2

ds

) 1
2

.

The mean of ν0 is the constant function m ≡ u− and so, using remark 2.2, we see that the
Onsager–Machlup functional for the unconditioned diffusion (6.1) is thus I1 : E1 → R given
by

I1(u) = �1(u) + 1

2σ 2
‖u − u−‖2

H1 = �1(u) + 1

2σ 2
‖u‖2

H1 .

Together, theorems 3.2 and 3.5 tell us that this functional attains its minimum over E ′
1 defined

by

E ′
1 =

{
v ∈ H1[0, T ]|

∫ T

0
|v′(s)|2ds < ∞ and v(0) = u−

}
.

Furthermore, such minimizers define MAP estimators for the unconditioned diffusion (6.1),
i.e. the most likely paths of the diffusion.

We note that the regularity of minimizers for I1 implies that the MAP estimator is C2,
whilst sample paths of the SDE (6.1) are not even differentiable. This is because the MAP
estimator defines the centre of a tube in X which contains the most likely paths. The centre
itself is a smoother function than the paths. This is a generic feature of MAP estimators for
measures defined via density with respect to a Gaussian in infinite dimensions.

6.2. Bridge diffusions

In this subsection, we study the probability measure generated by solutions of (6.1), conditioned
to hit u+ at time 1 so that u(T ) = u+, and denote this measure μ. Let μ0 denote the Brownian
bridge measure obtained in the case f ≡ 0. By applying the approach to determining bridge
diffusion measures in [17], we obtain, from (6.2), the expression

dμ

dμ0
(u) ∝ exp

(
−

∫ T

0
�(u(t)) dt + 1

σ 2
F(u+)

)
. (6.4)

Since u+ is fixed, we now define �2 : X → R by

�2(u) =
∫ T

0
�(u(t)) dt

and then (6.4) takes again the form (1.1). The Cameron–Martin space for the (zero mean)
Brownian bridge is

E2 =
{
v ∈ H1[0, T ]|

∫ T

0
|v′(s)|2 ds < ∞ and v(0) = v(T ) = 0

}
,
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and the Cameron–Martin norm is again σ−1‖ · ‖H1 . The Onsager–Machlup function for the
unconditioned diffusion (6.1) is thus I2 : E ′

2 → R, given by

I2(u) = �2(u) + 1

2σ 2
‖u − m‖2

H1 ,

where m, given by m(t) = T−t
T u− + t

T u+ for all t ∈ [0, T ], is the mean of μ0 and

E ′
2 =

{
v ∈ H1[0, T ]|

∫ T

0
|v′(s)|2 ds < ∞ and v(0) = u−, u(T ) = u+

}
.

The MAP estimators for μ are found by minimizing I2 over E ′
2.

6.3. Filtering and smoothing

We now consider conditioning the measure ν on observations of the process u at discrete time
points. Assume that we observe y ∈ RJ given by

y j = u(t j) + η j, (6.5)

where 0 < t1 < · · · < tJ < T and the η j are independent identically distributed random
variables with η j ∼ N(0, γ 2). Let Q0(dy) denote the RJ-valued Gaussian measure N(0, γ 2I)
and let Q(dy|u) denote the RJ-valued Gaussian measure N(Gu, γ 2I), where G : X → RJ is
defined by

Gu = (u(t1), . . . , u(tJ )).

Recall ν0 and ν from the unconditioned case and define the measures P0 and P on X × RJ as
follows. The measure P0(du, dy) = ν0(du)Q0(dy) is defined to be an independent product of
ν0 and Q0, whilst P(du, dy) = ν(du)Q(dy|u). Then,

dP

dP0
(u, y) ∝ exp

⎛
⎝−

∫ T

0
�(u(t)) dt + 1

σ 2
F(u(T )) − 1

2γ 2

J∑
j=1

|y j − u(t j)|2
⎞
⎠

with the constant of proportionality depending only on y. Clearly, by continuity,

inf
‖u‖X �1

exp

⎛
⎝−

∫ T

0
�(u(t)) dt + 1

σ 2
F(u(T )) − 1

2γ 2

J∑
j=1

|y j − u(t j)|2
⎞
⎠ > 0,

and hence,
∫

‖u‖X �1
exp

⎛
⎝−

∫ T

0
�(u(t)) dt + 1

σ 2
F(u(T )) − 1

2γ 2

J∑
j=1

|y j − u(t j)|2
⎞
⎠ ν0(du) > 0.

Applying the conditioning lemma 5.3 in [17] then gives

dμy

dν0
(u) ∝ exp

⎛
⎝−

∫ T

0
�(u(t)) dt + 1

σ 2
F(u(T )) − 1

2γ 2

J∑
j=1

|y j − u(t j)|2
⎞
⎠ .

Thus, we define

�3(u) =
∫ T

0
�(u(t)) dt − 1

σ 2
F(u(T )) + 1

2γ 2

J∑
j=1

|y j − u(t j)|2.

The Cameron–Martin space is again E1 and the Onsager–Machlup functional is thus
I3 : E ′

1 → R, given by

I3(u) = �3(u) + 1

2σ 2
‖u‖2

H1 . (6.6)
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Figure 2. Illustration of the problem of local minima of I for the smoothing problem with a small
number of observations. The process u(t) starts at u(0) = −1 and moves in a double-well potential
with stable equilibrium points at −1 and +1. Two observations of the process are indicated by the
two black circles. The curves correspond to four different local minima of the functional I3 for this
situation.

The MAP estimator for this set-up is, again, found by minimizing the Onsager–Machlup
functional I3.

The only difference between the potentials �1 and �3, and thus between the functionals
I1 for the unconditioned case and I3 for the case with discrete observations, is the presence
of the term 1

2γ 2

∑J
j=1 |y j − u(t j)|2. In the Euler–Lagrange equations describing the minima of

I3, this term leads to Dirac distributions at the observation points t1, . . . , tJ , and it transpires
that, as a consequence, minimizers of I3 have jumps in their first derivatives at t1, . . . , tJ . This
effect can be clearly seen in the local minima of I3 shown in figure 2.

6.4. Numerical experiments

In this section, we perform three numerical experiments related to the MAP estimator for the
filtering/smoothing problem presented in section 6.3.

For the experiments, we generate a random ‘signal’ by numerically solving the SDE (6.1),
using the Euler–Maruyama method, for a double-well potential F given by

F(u) = − (1 − u)2(1 + u)2

1 + u2
,

with diffusion constant σ = 1 and initial value u− = −1. From the resulting solution u(t),
we generate random observations y1, . . . , yJ using (6.5). Then we implement the Onsager–
Machlup functional I3 from equation (6.6) and use numerical minimization, employing the
Broyden–Fletcher–Goldfarb–Shanno method (see [13]; we use the implementation found in
the GNU scientific library [14]), to find the minima of I3. The same grid is used for numerically
solving the SDE and for approximating the values of I3.

The first experiment concerns the problem of local minima of I3. For a small number
of observations, we find multiple local minima; the minimization procedure can converge to
different local minima, depending on the starting point of the optimization. This effect makes
it difficult to find the MAP estimator, which is the global minimum of I3, numerically. The
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Figure 3. Illustration of posterior consistency for the smoothing problem in the small-noise limit.
The marked points correspond the maximum-norm distance between the true signal u† and the
MAP estimator uγ with J = 5 evenly spaced observations. The map G(u) = (u(t1), . . . , u(tJ ))

is the projection of the path onto the observation points. The solid line is a fitted curve of the
form cγ .

problem is illustrated in figure 2, which shows four different local minima for the case of
J = 2 observations. In the presence of local minima, some care is needed when numerically
computing the MAP estimator. For example, one could start the minimization procedure with
a collection of different starting points and take the best of the resulting local minima as the
result. One would expect this problem to become less pronounced as the number of observations
increases, since the observations will ‘pull’ the MAP estimator towards the correct solution,
thus reducing the number of local minima. This effect is confirmed by experiments: for larger
numbers of observations, our experiments found only one local minimum.

The second experiment concerns the posterior consistency of the MAP estimator in the
small noise limit. Here, we use a fixed number J of observations of a fixed path of (6.1), but
let the variance γ 2 of the observational noise η j converge to 0. Noting that the exact path
of the SDE, denoted by u† in (4.5), has the regularity of a Brownian motion and therefore
the observed path is not contained in the Cameron–Martin space E3, we are in the situation
described in corollary 4.5. Our experiments indicate that we have G(uγ ) → G(u†) as γ ↓ 0,
where uγ denotes the MAP estimator corresponding to observational variance γ 2, confirming
the result of corollary 4.5. As discussed above, for small values of γ , one would expect the
minimum of I3 to be unique, and indeed, experiments where different starting points of the
optimization procedure were tried did not find different minima for small δ. The result of a
simulation with J = 5 is shown in figure 3.

Finally, we perform an experiment to illustrate posterior consistency in the large sample
size limit: for this experiment, we still use one fixed path u† of the SDE (6.1). Then, for
different values of J, we generate observations y1, . . . , yJ using (6.5) at equidistantly spaced
times t1, . . . , tJ , for fixed γ = 1, and then determine the L2 distance of the resulting MAP
estimate uJ to the exact path u†. As discussed above, for large values of J, one would expect
the minimum of I3 to be unique, and indeed, experiments where different starting points of
the optimization procedure were tried did not find different minima for large J. The situation
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Figure 4. Illustration of posterior consistency for the smoothing problem in the large sample size
limit. The marked points correspond the supremum-norm distance between the true signal u∗ and
the MAP estimator u†

J with J evenly spaced observations. The solid line is a fitted curve of the
form cJ−α ; the exponent α = −1/4 was found numerically.

considered here is not covered by the theoretical results from section 4, but the results of the
numerical experiment, shown in figure 4, indicate that posterior consistency still holds.
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