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MCMC

Methods for Functions: Modifying

Old Algorithms to Make Them Faster

S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White

Abstract. Many problems arising in applications result in the need to probe
a probability distribution for functions. Examples include Bayesian nonpara-
metric statistics and conditioned diffusion processes. Standard MCMC algo-
rithms typically become arbitrarily slow under the mesh refinement dictated
by nonparametric description of the unknown function. We describe an ap-
proach to modifying a whole range of MCMC methods, applicable when-
ever the target measure has density with respect to a Gaussian process or
Gaussian random field reference measure, which ensures that their speed of
convergence is robust under mesh refinement.

Gaussian processes or random fields are fields whose marginal distribu-
tions, when evaluated at any finite set of N points, are R" -valued Gaussians.
The algorithmic approach that we describe is applicable not only when the
desired probability measure has density with respect to a Gaussian process
or Gaussian random field reference measure, but also to some useful non-
Gaussian reference measures constructed through random truncation. In the
applications of interest the data is often sparse and the prior specification
is an essential part of the overall modelling strategy. These Gaussian-based
reference measures are a very flexible modelling tool, finding wide-ranging
application. Examples are shown in density estimation, data assimilation in
fluid mechanics, subsurface geophysics and image registration.

The key design principle is to formulate the MCMC method so that it is,
in principle, applicable for functions; this may be achieved by use of propos-
als based on carefully chosen time-discretizations of stochastic dynamical
systems which exactly preserve the Gaussian reference measure. Taking this
approach leads to many new algorithms which can be implemented via minor
modification of existing algorithms, yet which show enormous speed-up on
a wide range of applied problems.

Key words and phrases: MCMC, Bayesian nonparametrics, algorithms,
Gaussian random field, Bayesian inverse problems.

S. L. Cotter is Lecturer, School of Mathematics, University
of Manchester, M13 9PL, United Kingdom (e-mail:
simon.cotter @manchester.ac.uk). G. O. Roberts is
Professor, Statistics Department, University of Warwick,
Coventry, CV4 7AL, United Kingdom. A. M. Stuart is
Professor (e-mail: a.m.stuart@warwick.ac.uk) and

D. White is Postdoctoral Research Assistant, Mathematics
Department, University of Warwick, Coventry, CV4 7AL,
United Kingdom.

424

1. INTRODUCTION

The use of Gaussian process (or field) priors is
widespread in statistical applications (geostatistics
[48], nonparametric regression [24], Bayesian emula-
tor modelling [35], density estimation [1] and inverse
quantum theory [27] to name but a few substantial
areas where they are commonplace). The success of
using Gaussian priors to model an unknown function
stems largely from the model flexibility they afford, to-
gether with recent advances in computational method-
ology (particularly MCMC for exact likelihood-based
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methods). In this paper we describe a wide class of sta-
tistical problems, and an algorithmic approach to their
study, which adds to the growing literature concern-
ing the use of Gaussian process priors. To be concrete,
we consider a process {u(x);x € D} for D C R4 for
some d. In most of the examples we consider here u is
not directly observed: it is hidden (or latent) and some
complicated nonlinear function of it generates the data
at our disposal.

Gaussian processes or random fields are fields whose
marginal distributions, when evaluated at any finite set
of N points, are R"-valued Gaussians. Draws from
these Gaussian probability distributions can be com-
puted efficiently by a variety of techniques; for expos-
itory purposes we will focus primarily on the use of
Karhunen—Loéve expansions to construct such draws,
but the methods we propose simply require the abil-
ity to draw from Gaussian measures and the user
may choose an appropriate method for doing so. The
Karhunen—Loéve expansion exploits knowledge of the
eigenfunctions and eigenvalues of the covariance oper-
ator to construct series with random coefficients which
are the desired draws; it is introduced in Section 3.1.

Gaussian processes [2] can be characterized by ei-
ther the covariance or inverse covariance (precision)
operator. In most statistical applications, the covari-
ance is specified. This has the major advantage that the
distribution can be readily marginalized to suit a pre-
scribed statistical use. For instance, in geostatistics it
is often enough to consider the joint distribution of the
process at locations where data is present. However, the
inverse covariance specification has particular advan-
tages in the interpretability of parameters when there is
information about the local structure of u. (E.g., hence
the advantages of using Markov random field mod-
els in image analysis.) In the context where x varies
over a continuum (such as ours) this creates particu-
lar computational difficulties since we can no longer
work with a projected prior chosen to reflect available
data and quantities of interest [e.g., {u(x;); 1 <i <m}
say]. Instead it is necessary to consider the entire dis-
tribution of {u(x); x € D}. This poses major compu-
tational challenges, particularly in avoiding unsatisfac-
tory compromises between model approximation (dis-
cretization in x typically) and computational cost.

There is a growing need in many parts of applied
mathematics to blend data with sophisticated mod-
els involving nonlinear partial and/or stochastic dif-
ferential equations (PDEs/SDEs). In particular, cred-
ible mathematical models must respect physical laws
and/or Markov conditional independence relationships,

which are typically expressed through differential
equations. Gaussian priors arises naturally in this con-
text for several reasons. In particular: (i) they allow for
straightforward enforcement of differentiability prop-
erties, adapted to the model setting; and (ii) they al-
low for specification of prior information in a man-
ner which is well-adapted to the computational tools
routinely used to solve the differential equations them-
selves. Regarding (ii), it is notable that in many appli-
cations it may be computationally convenient to adopt
an inverse covariance (precision) operator specifica-
tion, rather than specification through the covariance
function; this allows not only specification of Markov
conditional independence relationships but also the di-
rect use of computational tools from numerical analy-
sis [45].

This paper will consider MCMC based computa-
tional methods for simulating from distributions of the
type described above. Although our motivation is pri-
marily to nonparametric Bayesian statistical applica-
tions with Gaussian priors, our approach can be ap-
plied to other settings, such as conditioned diffusion
processes. Furthermore, we also study some general-
izations of Gaussian priors which arise from truncation
of the Karhunen—Loéve expansion to a random number
of terms; these can be useful to prevent overfitting and
allow the data to automatically determine the scales
about which it is informative.

Since in nonparametric Bayesian problems the un-
known of interest (a function) naturally lies in an
infinite-dimensional space, numerical schemes for
evaluating posterior distributions almost always rely
on some kind of finite-dimensional approximation or
truncation to a parameter space of dimension d,,, say.
The Karhunen—Loéve expansion provides a natural and
mathematically well-studied approach to this prob-
lem. The larger d, is, the better the approximation
to the infinite-dimensional true model becomes. How-
ever, off-the-shelf MCMC methodology usually suf-
fers from a curse of dimensionality so that the numbers
of iterations required for these methods to converge
diverges with d,,. Therefore, we shall aim to devise
strategies which are robust to the value of d,,. Our ap-
proach will be to devise algorithms which are well-
defined mathematically for the infinite-dimensional
limit. Typically, then, finite-dimensional approxima-
tions of such algorithms possess robust convergence
properties in terms of the choice of d,. An early spe-
cialised example of this approach within the context of
diffusions is given in [43].
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In practice, we shall thus demonstrate that small,
but significant, modifications of a variety of stan-
dard Markov chain Monte Carlo (MCMC) methods
lead to substantial algorithmic speed-up when tackling
Bayesian estimation problems for functions defined
via density with respect to a Gaussian process prior,
when these problems are approximated on a finite-
dimensional space of dimension d,, > 1. Furthermore,
we show that the framework adopted encompasses a
range of interesting applications.

1.1 lllustration of the Key Idea

Crucial to our algorithm construction will be a de-
tailed understanding of the dominating reference Gaus-
sian measure. Although prior specification might be
Gaussian, it is likely that the posterior distribution u is
not. However, the posterior will at least be absolutely
continuous with respect to an appropriate Gaussian
density. Typically the dominating Gaussian measure
can be chosen to be the prior, with the corresponding
Radon—Nikodym derivative just being a re-expression
of Bayes’ formula

du

——(u) ocL(u)

duo
for likelihood L and Gaussian dominating measure
(prior in this case) wg. This framework extends in a
natural way to the case where the prior distribution is
not Gaussian, but is absolutely continuous with respect
to an appropriate Gaussian distribution. In either case
we end up with

(1.1 1) o exp(~ 0 @)

Ko
for some real-valued potential ®. We assume that wg
is a centred Gaussian measure N (0, C).

The key algorithmic idea underlying all the algo-
rithms introduced in this paper is to consider (stochas-
tic or random) differential equations which preserve u
or i and then to employ as proposals for Metropolis—
Hastings methods specific discretizations of these dif-
ferential equations which exactly preserve the Gaus-
sian reference measure g when ® = 0; thus, the meth-
ods do not reject in the trivial case where ® = 0. This
typically leads to algorithms which are minor adjust-
ments of well-known methods, with major algorithmic
speed-ups. We illustrate this idea by contrasting the
standard random walk method with the pCN algorithm
(studied in detail later in the paper) which is a slight
modification of the standard random walk, and which

arises from the thinking outlined above. To this end, we
define

(1.2) [(u) = @) + L c™2u?

and consider the following version of the standard ran-
dom walk method:

Set k =0 and pick u©@.

Propose v®) = u® 4 ge® £®) ~ N (0, C).
Set u**+D = y® with probability a(u®, v®).
Set u**+D = ® otherwise.

k—k+1.

The acceptance probability is defined as
a(u,v) =min{1, exp(I (u) — I (v))}.

Here, and in the next algorithm, the noise S(") is in-
dependent of the uniform random variable used in the
accept-reject step, and this pair of random variables
is generated independently for each k, leading to a
Metropolis—Hastings algorithm reversible with respect
to u.

The pCN method is the following modification of the
standard random walk method:

e Set k =0 and pick u©®.

Propose v® = /(1 — g2)u® 4 pe® £® ~ N(0,
0).
Set u* D = y® with probability a(u®, v®).
Set u®*+D = 4 ® otherwise.

o k—k+1.

Now we set
a(u,v) =min{l, exp(®(u) — ®(v))}.

The pCN method differs only slightly from the ran-
dom walk method: the proposal is not a centred ran-
dom walk, but rather of AR(1) type, and this results
in a modified, slightly simpler, acceptance probabil-
ity. As is clear, the new method accepts the proposed
move with probability one if the potential & = 0; this
is because the proposal is reversible with respect to the
Gaussian reference measure /ig.

This small change leads to significant speed-ups for
problems which are discretized on a grid of dimen-
sion dy,. It is then natural to compute on sequences of
problems in which the dimension d, increases, in order
to accurately sample the limiting infinite-dimensional
problem. The new pCN algorithm is robust to increas-
ing d,,, whilst the standard random walk method is not.
To illustrate this idea, we consider an example from the
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FiG. 1.

field of data assimilation, introduced in detail in Sec-
tion 2.2 below, and leading to the need to sample mea-
sure p of the form (1.1). In this problem d,, = Ax2,
where Ax is the mesh-spacing used in each of the two
spatial dimensions.

Figure 1(a) and (b) shows the average acceptance
probability curves, as a function of the parameter 8
appearing in the proposal, computed by the standard
and the modified random walk (pCN) methods. It is in-
structive to imagine running the algorithms when tuned
to obtain an average acceptance probability of, say,
0.25. Note that for the standard method, Figure 1(a),
the acceptance probability curves shift to the left as
the mesh is refined, meaning that smaller proposal vari-
ances are required to obtain the same acceptance prob-
ability as the mesh is refined. However, for the new
method shown in Figure 1(b), the acceptance proba-
bility curves have a limit as the mesh is refined and,
hence, as the random field model is represented more
accurately; thus, a fixed proposal variance can be used
to obtain the same acceptance probability at all levels
of mesh refinement. The practical implication of this
difference in acceptance probability curves is that the
number of steps required by the new method is in-
dependent of the number of mesh points d, used to
represent the function, whilst for the old random walk
method it grows with d,,. The new method thus mixes
more rapidly than the standard method and, further-
more, the disparity in mixing rates becomes greater as
the mesh is refined.

In this paper we demonstrate how methods such
as pCN can be derived, providing a way of thinking
about algorithmic development for Bayesian statistics
which is transferable to many different situations. The

(b)

Acceptance probabilities versus mesh-spacing, with (a) standard random walk and (b) modified random walk (pCN).

key transferable idea is to use proposals arising from
carefully chosen discretizations of stochastic dynami-
cal systems which exactly preserve the Gaussian refer-
ence measure. As demonstrated on the example, taking
this approach leads to new algorithms which can be
implemented via minor modification of existing algo-
rithms, yet which show enormous speed-up on a wide
range of applied problems.

1.2 Overview of the Paper

Our setting is to consider measures on function
spaces which possess a density with respect to a
Gaussian random field measure, or some related non-
Gaussian measures. This setting arises in many appli-
cations, including the Bayesian approach to inverse
problems [49] and conditioned diffusion processes
(SDESs) [20]. Our goals in the paper are then fourfold:

e to show that a wide range of problems may be cast in
a common framework requiring samples to be drawn
from a measure known via its density with respect to
a Gaussian random field or, related, prior;

e to explain the principles underlying the derivation of
these new MCMC algorithms for functions, leading
to desirable d,-independent mixing properties;

e to illustrate the new methods in action on some non-
trivial problems, all drawn from Bayesian nonpara-
metric models where inference is made concerning
a function;

e to develop some simple theoretical ideas which give
deeper understanding of the benefits of the new
methods.

Section 2 describes the common framework into
which many applications fit and shows a range of ex-
amples which are used throughout the paper. Section 3
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is concerned with the reference (prior) measure 1o and
the assumptions that we make about it; these assump-
tions form an important part of the model specifica-
tion and are guided by both modelling and implemen-
tation issues. In Section 4 we detail the derivation of a
range of MCMC methods on function space, includ-
ing generalizations of the random walk, MALA, in-
dependence samplers, Metropolis-within-Gibbs’ sam-
plers and the HMC method. We use a variety of prob-
lems to demonstrate the new random walk method in
action: Sections 5.1, 5.2, 5.3 and 5.4 include examples
arising from density estimation, two inverse problems
arising in oceanography and groundwater flow, and the
shape registration problem. Section 6 contains a brief
analysis of these methods. We make some concluding
remarks in Section 7.

Throughout we denote by (-, -) the standard Eu-
clidean scalar product on R™, which induces the stan-
dard Euclidean norm | - |. We also define (-, ‘)¢ :=
(C~1/2.,C~1/2.) for any positive-definite symmetric
matrix C; this induces the norm | - |¢ := |C™1/2 . |.
Given a positive-definite self-adjoint operator C on a
Hilbert space with inner-product (-, -), we will also de-
fine the new inner-product (-, )¢ = (C~'/2.,C~1/2.),
with resulting norm denoted by || - ||¢c or | - |c.

2. COMMON STRUCTURE

We will now describe a wide-ranging set of exam-
ples which fit a common mathematical framework giv-
ing rise to a probability measure p(du) on a Hilbert
space X,' when given its density with respect to a ran-
dom field measure pg, also on X. Thus, we have the
measure ¢ as in (1.1) for some potential ®: X — R.
We assume that ® can be evaluated to any desired
accuracy, by means of a numerical method. Mesh-
refinement refers to increasing the resolution of this
numerical evaluation to obtain a desired accuracy and
is tied to the number d,, of basis functions or points
used in a finite-dimensional representation of the target
function u. For many problems of interest ® satisfies
certain common properties which are detailed in As-
sumptions 6.1 below. These properties underlie much
of the algorithmic development in this paper.

A situation where (1.1) arises frequently is nonpara-
metric density estimation (see Section 2.1), where 1 is
a random process prior for the unnormalized log den-
sity and u the posterior. There are also many inverse
problems in differential equations which have this form

IExtension to Banach space is also possible.

(see Sections 2.2, 2.3 and 2.4). For these inverse prob-
lems we assume that the data y € R% is obtained by
applying an operator” G to the unknown function u and
adding a realisation of a mean zero random variable
with density p supported on R%, thereby determining
P(y|u). That is,

2.1) y=6Gw) +n, n~p.

After specifying wpo(du) = P(du), Bayes’ theorem
gives j(dy) = P(uly) with ®(u) = —Inp(y — G(u)).
We will work mainly with Gaussian random field pri-
ors N (0,C), although we will also consider generali-
sations of this setting found by random truncation of
the Karhunen—Loéve expansion of a Gaussian random
field. This leads to non-Gaussian priors, but much of
the methodology for the Gaussian case can be usefully
extended, as we will show.

2.1 Density Estimation

Consider the problem of estimating the probability
density function p(x) of a random variable supported
on [—£, £], given dy i.i.d. observations y;. To ensure
positivity and normalisation, we may write

exp((x))
22 _ ,
2 P = T o) ds

If we place a Gaussian process prior o on # and ap-
ply Bayes’ theorem, then we obtain formula (1.1) with

du)=-— Z?i] In p(y;) and p given by (2.2).

2.2 Data Assimilation in Fluid Mechanics

In weather forecasting and oceanography it is fre-
quently of interest to determine the initial condition u
for a PDE dynamical system modelling a fluid, given
observations [3, 26]. To gain insight into such prob-
lems, we consider a model of incompressible fluid flow,
namely, either the Stokes (y = 0) or Navier—Stokes
equation (y = 1), on a two-dimensional unit torus T2.
In the following v(-, ) denotes the velocity field at
time ¢, u the initial velocity field and p(-, t) the pres-
sure field at time ¢ and the following is an implicit non-
linear equation for the pair (v, p):

v —vAv+yv-Vv+Vp=vy

Y(x,1) € T? x (0, 00),
(2.3)
V.v=0 Vre(0,00),

v(x,0) =u(x), xeT>

2This operator, mapping the unknown function to the measure-
ment space, is sometimes termed the observation operator in the
applied literature; however, we do not use that terminology in the

paper.
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The aim in many applications is to determine the initial
state of the fluid velocity, the function u, from some ob-
servations relating to the velocity field v at later times.
A simple model of the situation arising in weather
forecasting is to determine v from Eulerian data of the
form y = {y; }N’M where
Y=UjkIjk=1>

(2.4) yik~N(vxj, %), T).

Thus, the inverse problem is to find # from y of the
form (2.1) with G ¢ (1) = v(x;, ;).

In oceanography Lagrangian data is often encoun-
tered: data is gathered from the trajectories of particles
z;j(t) moving in the velocity field of interest, and thus
satisfying the integral equation

t

2.5) zj<r>=z,-,o+f0 v(2;(s), ) ds.
Data is of the form
(2.6) Vik NN(Zj (te), F).
Thus, the inverse problem is to find u from y of the
form (2.1) with G x (u) =z (t).
2.3 Groundwater Flow

In the study of groundwater flow an important in-
verse problem is to determine the permeability k of the
subsurface rock from measurements of the head (wa-
ter table height) p [30]. To ensure the (physically re-
quired) positivity of k, we write k(x) = exp(u(x)) and

recast the inverse problem as one for the function u.
The head p solves the PDE

=V (expw)Vp) =g,

p=nh,

xeD,
2.7
xeadD.

Here D is a domain containing the measurement points
x; and 0D its boundary; in the simplest case g and A
are known. The forward solution operator is G(u); =
p(x;). The inverse problem is to find u, given y of the
form (2.1).

2.4 Image Registration

In many applications arising in medicine and secu-
rity it is of interest to calculate the distance between a
curve I'gps, given only through a finite set of noisy ob-
servations, and a curve I'g, from a database of known
outcomes. As we demonstrate below, this may be recast
as an inverse problem for two functions, the first, 7,
representing reparameterisation of the database curve
I"gp and the second, p, representing a momentum vari-
able, normal to the curve I"gp, which initiates a dynam-
ical evolution of the reparameterized curve in an at-
tempt to match observations of the curve I'gps. This

approach to inversion is described in [7] and devel-
oped in the Bayesian context in [9]. Here we outline
the methodology.

Suppose for a moment that we know the entire ob-
served curve I'gps and that it is noise free. We parame-
terize ['gp by gab and Iobs bY gobs, s € [0, 1]. We wish
to find a path ¢ (s, t), t € [0, 1], between gy and [gps,
satisfying

28)  q(s,00=ga(n()), q(s,1) = gops(s),

where 7 is an orientation-preserving reparameterisa-
tion. Following the methodology of [17, 31, 52], we
constrain the motion of the curve g (s, t) by asking that
the evolution between the two curves results from the
differential equation

d
(2.9) gq(s, 1) =v(q(s,1),1).
Here v(x,t) is a time-parameterized family of vector
fields on R? chosen as follows. We define a metric on
the “length” of paths as

11 )
/0 Sl

where B is some appropriately chosen Hilbert space.
The dynamics (2.9) are defined by choosing an appro-
priate v which minimizes this metric, subject to the end
point constraints (2.8).

In [7] it is shown that this minimisation problem
can be solved via a dynamical system obtained from
the Euler—Lagrange equation. This dynamical system
yields ¢ (s, 1) = G(p, n,s), where p is an initial mo-
mentum variable normal to ['gp, and 7 is the reparam-
eterisation. In the perfectly observed scenario the opti-
mal values of u = (p, n) solve the equation G (u, s) :=
G(p,1, ) = qobs(s).

In the partially and noisily observed scenario we are
given observations

(2.10)

Yj =qobs(s;) +1;
=G(u,sj)+n;

for j =1,..., J; the n; represent noise. Thus, we have
data in the form (2.1) with G;(u) = G(u, s;). The in-
verse problem is to find the distributions on p and 7,
given a prior distribution on them, a distribution on n
and the data y.
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2.5 Conditioned Diffusions

The preceding examples all concern Bayesian non-
parametric formulation of inverse problems in which
a Gaussian prior is adopted. However, the methodol-
ogy that we employ readily extends to any situation in
which the target distribution is absolutely continuous
with respect to a reference Gaussian field law, as arises
for certain conditioned diffusion processes [20]. The
objective in these problems is to find u(#) solving the
equation

du(t) = f(u())dt +y dB(1),

where B is a Brownian motion and where u is con-
ditioned on, for example, (i) end-point constraints
(bridge diffusions, arising in econometrics and chemi-
cal reactions); (ii) observation of a single sample path
y(t) given by

dy(t)=g(u@))dt + o dW ()

for some Brownian motion W (continuous time signal
processing); or (iii) discrete observations of the path
given by

yj =hu()) +nj.
For all three problems use of the Girsanov formula,
which allows expression of the density of the pathspace
measure arising with nonzero drift in terms of that aris-

ing with zero-drift, enables all three problems to be
written in the form (1.1).

3. SPECIFICATION OF THE REFERENCE
MEASURE

The class of algorithms that we describe are primar-
ily based on measures defined through density with re-
spect to random field model o = N(0, C), denoting
a centred Gaussian with covariance operator C. To be
able to implement the algorithms in this paper in an ef-
ficient way, it is necessary to make assumptions about
this Gaussian reference measure. We assume that in-
formation about (o can be obtained in at least one of
the following three ways:

1. the eigenpairs (¢, )\1.2) of C are known so that exact
draws from ¢ can be made from truncation of the
Karhunen—-Loéve expansion and that, furthermore,
efficient methods exist for evaluation of the result-
ing sum (such as the FFT);

2. exact draws from o can be made on a mesh, for
example, by building on exact sampling methods
for Brownian motion or the stationary Ornstein—
Uhlenbeck (OU) process or other simple Gaussian
process priors;

3. the precision operator £ = C~! is known and effi-
cient numerical methods exist for the inversion of
(I+¢L)for¢ >0.

These assumptions are not mutually exclusive and
for many problems two or more of these will be pos-
sible. Both precision and Karhunen-Loéve represen-
tations link naturally to efficient computational tools
that have been developed in numerical analysis. Specif-
ically, the precision operator L is often defined via dif-
ferential operators and the operator (I + ¢ £) can be ap-
proximated, and efficiently inverted, by finite element
or finite difference methods; similarly, the Karhunen—
Loéve expansion links naturally to the use of spectral
methods. The book [45] describes the literature con-
cerning methods for sampling from Gaussian random
fields, and links with efficient numerical methods for
inversion of differential operators. An early theoreti-
cal exploration of the links between numerical analysis
and statistics is undertaken in [14]. The particular links
that we develop in this paper are not yet fully exploited
in applications and we highlight the possibility of do-
ing so.

3.1 The Karhunen-Loéve Expansion

The book [2] introduces the Karhunen-Loéve ex-
pansion and its properties. Let wo = N (0, C) denote
a Gaussian measure on a Hilbert space X. Recall that
the orthonormalized eigenvalue/eigenfunction pairs of
C form an orthonormal basis for X and solve the prob-
lem

Chi = A3,

Furthermore, we assume that the operator is trace-
class:

i=1,2,....

o0
(3.1) > af < oo
i=1

Draws from the centred Gaussian measure [t can then
be made as follows. Let {&;}72, denote an independent

sequence of normal random variables with distribution
N0, kiz) and consider the random function

(3.2) u(x) =) Eigi(x).

i=l

This series converges in L2(§2; X) under the trace-class
condition (3.1). It is sometimes useful, both conceptu-
ally and for purposes of implementation, to think of
the unknown function u as being the infinite sequence
{&;}72, rather than the function with these expansion
coefficients.
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We let P, denote projection onto the first d modes’
{qﬁ,-}l.“':1 of the Karhunen-Loéve basis. Thus,

dy
(3.3) Plhu(x) =" E¢i(x).

i=1
If the series (3.3) can be summed quickly on a grid,
then this provides an efficient method for comput-
ing exact samples from truncation of pg to a finite-
dimensional space. When we refer to mesh-refinement
then, in the context of the prior, this refers to increas-
ing the number of terms d,, used to represent the target
function u.

3.2 Random Truncation and Sieve Priors

Non-Gaussian priors can be constructed from the
Karhunen—Loéve expansion (3.3) by allowing d,, it-
self to be a random variable supported on N; we let
p(i) =P(d, =i). Much of the methodology in this pa-
per can be extended to these priors. A draw from such
a prior measure can be written as

o0
(3.4) u(x) =Y 10 <d)&i(x),

i=1
where I(i € E) is the indicator function. We refer to
this as random truncation prior. Functions drawn from
this prior are non-Gaussian and almost surely C°°.
However, expectations with respect to d,, will be Gaus-
sian and can be less regular: they are given by the for-
mula

o0
(3.5) Eu(x) =Y ai&ii(x),

i=1
where o; =IP(d, > i). As in the Gaussian case, it can
be useful, both conceptually and for purposes of imple-
mentation, to think of the unknown function u as being
the infinite vector ({&;}72,, d,,) rather than the function
with these expansion coefficients.

Making d, a random variable has the effect of
switching on (nonzero) and off (zero) coefficients in
the expansion of the target function. This formulation
switches the basis functions on and off in a fixed order.
Random truncation as expressed by equation (3.4) is
not the only variable dimension formulation. In dimen-
sion greater than one we will employ the sieve prior
which allows every basis function to have an individual
on/off switch. This prior relaxes the constraint imposed
on the order in which the basis functions are switched

3Note that “mode” here, denoting an element of a basis in a
Hilbert space, differs from the “mode” of a distribution.

on and off and we write

oo
(3.6) u(x) =) xi&idi(x),

i=1
where {x;}72, € {0, 1}. We define the distribution on
x ={xi }j’il as follows. Let vy denote a reference mea-
sure formed from considering an i.i.d. sequence of
Bernoulli random variables with success probability
one half. Then define the prior measure v on y to have

density

dv s

—(x) exx)(—Xin),

dvo i=1
where A € RT. As for the random truncation method,
it is both conceptually and practically valuable to think
of the unknown function as being the pair of random
infinite vectors {£;}7°, and {x;}72,. Hierarchical pri-
ors, based on Gaussians but with random switches in
front of the coefficients, are termed “sieve priors” in
[54]. In that paper posterior consistency questions for
linear regression are also analysed in this setting.

4. MCMC METHODS FOR FUNCTIONS

The transferable idea in this section is that design of
MCMC methods which are defined on function spaces
leads, after discretization, to algorithms which are ro-
bust under mesh refinement d, — oo. We demonstrate
this idea for a number of algorithms, generalizing ran-
dom walk and Langevin-based Metropolis—Hastings
methods, the independence sampler, the Gibbs sampler
and the HMC method; we anticipate that many other
generalisations are possible. In all cases the proposal
exactly preserves the Gaussian reference measure o
when the potential ® is zero and the reader may take
this key idea as a design principle for similar algo-
rithms.

Section 4.1 gives the framework for MCMC meth-
ods on a general state space. In Section 4.2 we state
and derive the new Crank—Nicolson proposals, arising
from discretization of an OU process. In Section 4.3
we generalize these proposals to the Langevin setting
where steepest descent information is incorporated:
MALA proposals. Section 4.4 is concerned with Inde-
pendence Samplers which may be derived from par-
ticular parameter choices in the random walk algo-
rithm. Section 4.5 introduces the idea of randomizing
the choice of § as part of the proposal which is effec-
tive for the random walk methods. In Section 4.6 we in-
troduce Gibbs samplers based on the Karhunen—-Loéve
expansion (3.2). In Section 4.7 we work with non-
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Gaussian priors specified through random truncation
of the Karhunen—Loéve expansion as in (3.4), showing
how Gibbs samplers can again be used in this situation.
Section 4.8 briefly describes the HMC method and its
generalisation to sampling functions.

4.1 Set-Up

We are interested in defining MCMC methods for
measures @ on a Hilbert space (X, (-, -)), with induced
norm || - ||, given by (1.1) where o = N0, C). The set-
ting we adopt is that given in [51] where Metropolis—
Hastings methods are developed in a general state
space. Let g (u, -) denote the transition kernel on X and
n(du, dv) denote the measure on X x X found by tak-
ing u ~ u and then v|u ~ q(u, -). We use nL(u, v) to
denote the measure found by reversing the roles of u
and v in the preceding construction of 5. If n¥(u, v)
is equivalent (in the sense of measures) to n(u, v),

then the Radon—Nikodym derivative % (u, v) is well-
defined and we may define the acceptance probability

[, dn*
“4.1) a(u,v):mm{l,—(u,v)}.
dn

We accept the proposed move from u to v with
this probability. The resulting Markov chain is u-
reversible.

A key idea underlying the new variants on ran-
dom walk and Langevin-based Metropolis—Hastings
algorithms derived below is to use discretizations of
stochastic partial differential equations (SPDEs) which
are invariant for either the reference or the target mea-
sure. These SPDEs have the form, for £ = C~! the pre-
cision operator for 1o, and D® the derivative of poten-
tial @,

d db
4.2) d—“ = —K(Lu+yDowW) + V2K .
h) S

Here b is a Brownian motion in X with covariance op-
erator the identity and JC = C or /. Since K is a positive
operator, we may define the square-root in the sym-
metric fashion, via diagonalization in the Karhunen—
Loéve basis of C. We refer to it as an SPDE because
in many applications L is a differential operator. The
SPDE has invariant measure g for y = 0 (when it is
an infinite-dimensional OU process) and u for y =1
[12, 18, 22]. The target measure u will behave like the
reference measure (o on high frequency (rapidly os-
cillating) functions. Intuitively, this is because the data,
which is finite, is not informative about the function on
small scales; mathematically, this is manifest in the ab-
solute continuity of p with respect to g given by for-
mula (1.1). Thus, discretizations of equation (4.2) with

either y =0 or y = 1 form sensible candidate proposal
distributions.

The basic idea which underlies the algorithms de-
scribed here was introduced in the specific context of
conditioned diffusions with y = 1 in [50], and then
generalized to include the case y = 0 in [4]; further-
more, the paper [4], although focussed on the applica-
tion to conditioned diffusions, applies to general targets
of the form (1.1). The papers [4, 50] both include nu-
merical results illustrating applicability of the method
to conditioned diffusion in the case y = 1, and the pa-
per [10] shows application to data assimilation with
y = 0. Finally, we mention that in [33] the algorithm
with y = 0 is mentioned, although the derivation does
not use the SPDE motivation that we develop here, and
the concept of a nonparametric limit is not used to mo-
tivate the construction.

4.2 Vanilla Local Proposals

The standard random walk proposal for v|u takes the
form

4.3) v=u+~2K&

for any § € [0, 00), &g~ N(0,) and K=1 or K =C.
This can be seen as a discrete skeleton of (4.2) after ig-
noring the drift terms. Therefore, such a proposal leads
to an infinite-dimensional version of the well-known
random walk Metropolis algorithm.

The random walk proposal in finite-dimensional
problems always leads to a well-defined algorithm
and rarely encounters any reducibility problems [46].
Therefore, this method can certainly be applied for ar-
bitrarily fine mesh size. However, taking this approach
does not lead to a well-defined MCMC method for
functions. This is because = is singular with respect
to n so that all proposed moves are rejected with prob-
ability 1. (We prove this in Theorem 6.3 below.) Re-
turning to the finite mesh case, algorithm mixing time
therefore increases to oo as d, — oo.

To define methods with convergence properties ro-
bust to increasing d,,, alternative approaches leading to
well-defined and irreducible algorithms on the Hilbert
space need to be considered. We consider two possibil-
ities here, both based on Crank—Nicolson approxima-
tions [38] of the linear part of the drift. In particular,
we consider discretization of equation (4.2) with the
form

v=u— %MCE(M +v)
4.4)
— 3y KD®(u) + V2K

for a (spatial) white noise &.
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First consider the discretization (4.4) with y = 0 and
IKC = I. Rearranging shows that the resulting Crank—
Nicolson proposal (CN) for v|u is found by solving

4.5 (I +1s0)v=(1—LsC)u+28%.

It is this form that the proposal is best implemented
whenever the prior/reference measure (g is specified
via the precision operator £ and when efficient algo-
rithms exist for inversion of the identity plus a multiple
of L. However, for the purposes of analysis it is also
useful to write this equation in the form

4.6) @QC+shHv=2C—-3dNu++85Cw,

where w ~ N (0, C), found by applying the operator 2C
to equation (4.5).

A well-established principle in finite-dimensional
sampling algorithms advises that proposal variance
should be approximately a scalar multiple of that of
the target (see, e.g., [42]). The variance in the prior, C,
can provide a reasonable approximation, at least as far
as controlling the large d,, limit is concerned. This is
because the data (or change of measure) is typically
only informative about a finite set of components in
the prior model; mathematically, the fact that the pos-
terior has density with respect to the prior means that it
“looks like” the prior in the large i components of the
Karhunen—Loéve expansion.

The CN algorithm violates this principle: the pro-
posal variance operator is proportional to (2C +81) 2 -
C?, suggesting that algorithm efficiency might be im-
proved still further by obtaining a proposal variance
of C. In the familiar finite-dimensional case, this can be
achieved by a standard reparameterisation argument
which has its origins in [23] if not before. This mo-
tivates our final local proposal in this subsection.

The preconditioned CN proposal (pCN) for v|u is
obtained from (4.4) with y =0 and K = C giving the
proposal

(4.7) 2+ 8)v=(2—8)u+ /8w,

where, again, w ~ N(0,C). As discussed after (4.5),
and in Section 3, there are many different ways in
which the prior Gaussian may be specified. If the speci-
fication is via the precision £ and if there are numerical

4An interesting research problem would be to combine the ideas
in [16], which provide an adaptive preconditioning but are only
practical in a finite number of dimensions, with the prior-based
fixed preconditioning used here. Note that the method introduced in
[16] reduces exactly to the preconditioning used here in the absence
of data.

methods for which (1 4 ¢ £) can be efficiently inverted,
then (4.5) is a natural proposal. If, however, sampling
from C is straightforward (via the Karhunen—Loéve ex-
pansion or directly), then it is natural to use the pro-
posal (4.7), which requires only that it is possible to
draw from pg efficiently. For § € [0, 2] the proposal
(4.7) can be written as

(4.8) v=(1-8%""u+ puw,

where w ~ N(0,C), and B € [0,1]; in fact, g% =
88/(2 + 8). In this form we see very clearly a simple
generalisation of the finite-dimensional random walk
given by (4.3) with £ =C.

The numerical experiments described in Section 1.1
show that the pCN proposal significantly improves
upon the naive random walk method (4.3), and simi-
lar positive results can be obtained for the CN method.
Furthermore, for both the proposals (4.5) and (4.7) we
show in Theorem 6.2 that n* and 5 are equivalent
(as measures) by showing that they are both equiva-
lent to the same Gaussian reference measure 7g, whilst
in Theorem 6.3 we show that the proposal (4.3) leads
to mutually singular measures n- and 7. This theory
explains the numerical observations and motivates the
importance of designing algorithms directly on func-
tion space.

The accept-reject formula for CN and pCN is very
simple. If, for some p: X x X — R, and some refer-
ence measure 1y,

12

—(u,v) = Zexp(—p(u, v)),
I p(—p )
“4.9)
Dy =7 (=p (v, u))
——(u,v) = Zexp(—p (v, u)),
dno P
it then follows that
dnJ‘
(4.10) W(u,v)=eXp(p(u,v)—p(v,u))-

For both CN proposals (4.5) and (4.7) we show in The-
orem 6.2 below that, for appropriately defined ng, we
have p(u, v) = ®(u) so that the acceptance probability
is given by

(4.11)  a(u,v) =min{l, exp(P(u) — ®(v))}.

In this sense the CN and pCN proposals may be seen
as the natural generalisations of random walks to the
setting where the target measure is defined via den-
sity with respect to a Gaussian, as in (1.1). This point
of view may be understood by noting that the ac-
cept/reject formula is defined entirely through differ-
ences in this log density, as happens in finite dimen-
sions for the standard random walk, if the density is
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specified with respect to the Lebesgue measure. Simi-
lar random truncation priors are used in non-parametric
inference for drift functions in diffusion processes
in [53].

4.3 MALA Proposal Distributions

The CN proposals (4.5) and (4.7) contain no in-
formation about the potential ® given by (1.1); they
contain only information about the reference mea-
sure wo. Indeed, they are derived by discretizing the
SDE (4.2) in the case y = 0, for which p is an invari-
ant measure. The idea behind the Metropolis-adjusted
Langevin (MALA) proposals (see [39, 44] and the ref-
erences therein) is to discretize an equation which is
invariant for the measure w. Thus, to construct such
proposals in the function space setting, we discretize
the SPDE (4.2) with y = 1. Taking X =17 and X =C
then gives the following two proposals.

The Crank—Nicolson Langevin proposal (CNL) is
given by

2C+8v=02C —8)u —25CDd(u)
++/85Cw,
where, as before, w ~ o =N (0, C). If we define

(4.12)

p(u,v) =d(u)+ %(v —u, DP(u))
+ %(C_l(u +v), DD (u))

5
—I—ZHDCD(M) 2

then the acceptance probability is given by (4.1) and
(4.10). Implementation of this proposal simply requires
inversion of (I 4+ ¢ L), as for (4.5). The CNL method is
the special case 6 = % for the IA algorithm introduced
in [4].

The preconditioned Crank—Nicolson Langevin pro-
posal (pCNL) is given by
(4.13) 2+48)v=2—8)u —28CDD(u) + /85w,

where w is again a draw from pg. Defining

p(u,v) =)+ %(v —u, DP(u))

)
- Z(u + v, DP(u))

2
)

5
+ Z||Cl/2DCI>(u)

the acceptance probability is given by (4.1) and (4.10).
Implementation of this proposal requires draws from

the reference measure jto to be made, as for (4.7). The
pCNL method is the special case 6 = % for the PIA
algorithm introduced in [4].

4.4 Independence Sampler

Making the choice § = 2 in the pCN proposal (4.7)
gives an independence sampler. The proposal is then
simply a draw from the prior: v = w. The acceptance
probability remains (4.11). An interesting generalisa-
tion of the independence sampler is to take § = 2 in the
MALA proposal (4.13), giving the proposal

(4.14) v=—CDPu)+w

with resulting acceptance probability given by (4.1)
and (4.10) with

P, v) = D) + (v, DO W) + 1| C*Dd W) |*.

4.5 Random Proposal Variance

It is sometimes useful to randomise the proposal
variance § in order to obtain better mixing. We discuss
this idea in the context of the pCN proposal (4.7). To
emphasize the dependence of the proposal kernel on §,
we denote it by g (u, dv; §). We show in Section 6.1
that the measure no(du, dv) = q(u, dv; §)no(du) is
well-defined and symmetric in u,v for every § €
[0, 00). If we choose & at random from any probability
distribution v on [0, 00), independently from w, then
the resulting proposal has kernel

qu,dv) = /Oooq(u, dv; §)v(d$).

Furthermore, the measure ¢(u,dv)uo(du) may be
written as

/O ~ 4w, dv: §)o(du)v(ds)

and is hence also symmetric in u, v. Hence, both the
CN and pCN proposals (4.5) and (4.7) may be gener-
alised to allow for § chosen at random independently of
u and w, according to some measure v on [0, 0o). The
acceptance probability remains (4.11), as for fixed §.

4.6 Metropolis-Within-Gibbs: Blocking in
Karhunen-Loéve Coordinates

Any function # € X can be expanded in the
Karhunen—Loéve basis and hence written as

u(x) = &di(x).

i=1

(4.15)

Thus, we may view the probability measure  given by
(1.1) as a measure on the coefficients u = {£;}7°,. For
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any index set I C N we write £/ = {&};c; and & =
{&i}igr. Both £! and ! are independent and Gaussian
under the prior po with diagonal covariance operators
C! ¢!, respectively. If we let ,u(l) denote the Gaussian
N(0,C"), then (1.1) gives

d
@16) 5 (e 1E]) ocexp(- (" £7)).
Mo

where we now view @ as a function on the coeffi-
cients in the expansion (4.15). This formula may be
used as the basis for Metropolis-within-Gibbs sam-
plers using blocking with respect to a set of partitions
{1;}j=1,..,; with the property UJJ-:l I; = N. Because
the formula is defined for functions this will give rise
to methods which are robust under mesh refinement
when implemented in practice. We have found it useful
to use the partitions /; = {j} for j=1,...,J — 1 and
Iy =1{J,J+1,...}. On the other hand, standard Gibbs
and Metropolis-within-Gibbs samplers are based on
partitioning via /; = {;}, and do not behave well un-
der mesh-refinement, as we will demonstrate.

4.7 Metropolis-Within-Gibbs: Random Truncation
and Sieve Priors

We will also use Metropolis-within-Gibbs to con-
struct sampling algorithms which alternate between
updating the coefficients & = {£;}72, in (3.4) or (3.6),
and the integer d,,, for (3.4), or the infinite sequence
x = {xi};2, for (3.6). In words, we alternate between
the coefficients in the expansion of a function and the
parameters determining which parameters are active.

If we employ the non-Gaussian prior with draws
given by (3.4), then the negative log likelihood & can
be viewed as a function of (&,d,) and it is natural
to consider Metropolis-within-Gibbs methods which
are based on the conditional distributions for £|d,, and
d, |&. Note that, under the prior, £ and d,, are indepen-
dent with & ~ ¢ :=N(0,C) and d, ~ 10,4, , the lat-
ter being supported on N with p(i) = P(d, =i). For
fixed d,, we have
(4.17) dd—u(éldu) ocexp(—® (&, du))

Ho,&
with ®(u) rewritten as a function of & and d, via
the expansion (3.4). This measure can be sampled by
any of the preceding Metropolis—Hastings methods de-
signed in the case with Gaussian pg. For fixed & we
have

(4.18) dp

(dul§) ocexp(—P (&, du)).

07 u

A natural biased random walk for d,|& arises by
proposing moves from a random walk on N which
satisfies detailed balance with respect to the distribu-
tion p(i). The acceptance probability is then

a(u,v) =min{l, exp(® (&, d,) — P&, dy))}.

Variants on this are possible and, if p(i) is monotonic
decreasing, a simple random walk proposal on the in-
tegers, with local moves d,, - d, =d,, + 1, is straight-
forward to implement. Of course, different proposal
stencils can give improved mixing properties, but we
employ this particular random walk for expository pur-
poses.

If, instead of (3.4), we use the non-Gaussian sieve
prior defined by equation (3.6), the prior and poste-
rior measures may be viewed as measures on u =
&2y, (g ?‘;1). These variables may be modified as
stated above via Metropolis-within-Gibbs for sampling
the conditional distributions &|x and x |§. If, for exam-
ple, the proposal for x|& is reversible with respect to
the prior on &, then the acceptance probability for this
move is given by

a(u, v) =min{1, exp(® (&, xu) — P&y, x0))}-

In Section 5.3 we implement a slightly different pro-
posal in which, with probability %, a nonactive mode
is switched on with the remaining probability an active
mode is switched off. If we define Ny = ZlN:l Xi,then
the probability of moving from &, to a state &, in which
an extra mode is switched on is

au, v) = min{l, exp(cb@u, X) — Do, o)

)
Non

Similarly, the probability of moving to a situation in
which a mode is switched off is

a(u,v) = min{l, eXp<¢(§u, Xxuw) — P&y, xv)

o)
N — Non
4.8 Hybrid Monte Carlo Methods

The algorithms discussed above have been based on
proposals which can be motivated through discretiza-
tion of an SPDE which is invariant for either the prior
measure (g or for the posterior p itself. HMC meth-
ods are based on a different idea, which is to con-
sider a Hamiltonian flow in a state space found from
introducing extra “momentum” or “velocity” variables
to complement the variable « in (1.1). If the momen-
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tum/velocity is chosen randomly from an appropriate
Gaussian distribution at regular intervals, then the re-
sulting Markov chain in u is invariant under p. Dis-
cretizing the flow, and adding an accept/reject step, re-
sults in a method which remains invariant for @ [15].
These methods can break random-walk type behaviour
of methods based on local proposal [32, 34]. It is hence
of interest to generalise these methods to the function
sampling setting dictated by (1.1) and this is under-
taken in [5]. The key novel idea required to design this
algorithm is the development of a new integrator for
the Hamiltonian flow underlying the method; this in-
tegrator is exact in the Gaussian case ¢ = 0, on func-
tion space, and for this reason behaves well for non-
parametric where d, may be arbitrarily large infinite
dimensions.

5. COMPUTATIONAL ILLUSTRATIONS

This section contains numerical experiments de-
signed to illustrate various properties of the sampling
algorithms overviewed in this paper. We employ the
examples introduced in Section 2.

5.1 Density Estimation

Section 1.1 shows an example which illustrates the
advantage of using the function-space algorithms high-
lighted in this paper in comparison with standard tech-
niques; there we compared pCN with a standard ran-
dom walk. The first goal of the experiments in this
subsection is to further illustrate the advantage of the
function-space algorithms over standard algorithms.
Specifically, we compare the Metropolis-within-Gibbs
method from Section 4.6, based on the partition /; =
{j} and labelled MwG here, with the pCN sampler
from Section 4.2. The second goal is to study the effect
of prior modelling on algorithmic performance; to do
this, we study a third algorithm, RTM-pCN, based on
sampling the randomly truncated Gaussian prior (3.4)
using the Gibbs method from Section 4.7, with the
pCN sampler for the coefficient update.

5.1.1 Target distribution. We will use the true den-
sity
p x N (=3, DI(x € (—¢, +0))
+ N (3, DI(x € (—¢, +0)),

where ¢ = 10. [Recall that I(-) denotes the indica-
tor function of a set.] This density corresponds ap-
proximately to a situation where there is a 50/50
chance of being in one of the two Gaussians. This one-
dimensional multi-modal density is sufficient to expose
the advantages of the function spaces samplers pCN
and RTM-pCN over MwG.

5.1.2 Prior. We will make comparisons between the
three algorithms regarding their computational perfor-
mance, via various graphical and numerical measures.
In all cases it is important that the reader appreciates
that the comparison between MwG and pCN corre-
sponds to sampling from the same posterior, since they
use the same prior, and that all comparisons between
RTM-pCN and other methods also quantify the effect
of prior modelling as well as algorithm.

Two priors are used for this experiment: the Gaus-
sian prior given by (3.2) and the randomly truncated
Gaussian given by (3.4). We apply the MwG and pCN
schemes in the former case, and the RTM-pCN scheme
for the latter. The prior uses the same Gaussian co-
variance structure for the independent &, namely, & ~
N(O, k%), where A; o< i 7. Note that the eigenvalues
are summable, as required for draws from the Gaussian
measure to be square integrable and to be continuous.
The prior for the number of active terms d,, is an expo-
nential distribution with rate A = 0.01.

5.1.3 Numerical implementation. In order to facili-
tate a fair comparison, we tuned the value of § in the
pCN and RTM-pCN proposals to obtain an average
acceptance probability of around 0.234, requiring, in
both cases, § ~ 0.27. (For RTM-pCN the average ac-
ceptance probability refers only to moves in {£}72, and
not in d,,.) We note that with the value § = 2 we ob-
tain the independence sampler for pCN; however, this
sampler only accepted 12 proposals out of 10° MCMC
steps, indicating the importance of tuning § correctly.
For MwaG there is no tunable parameter, and we obtain
an acceptance of around 0.99.

5.1.4 Numerical results. In order to compare the
performance of pCN, MwG and RTM-pCN, we show,
in Figure 2 and Table 1, trace plots, correlation func-
tions and integrated auto-correlation times (the latter
are notoriously difficult to compute accurately [47] and
displayed numbers to three significant figures should
only be treated as indicative). The autocorrelation func-
tion decays for ergodic Markov chains, and its inte-
gral determines the asymptotic variance of sample path
averages. The integrated autocorrelation time is used,
via this asymptotic variance, to determine the number
of steps required to determine an independent sample
from the MCMC method. The figures and integrated
autocorrelation times clearly show that the pCN and
RTM-pCN outperform MwG by an order of magni-
tude. This reflects the fact that pCN and RTM-pCN
are function space samplers, designed to mix indepen-
dently of the mesh-size. In contrast, the MwG method
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FI1G. 2. Trace and autocorrelation plots for sampling posterior measure with true density p using MwG, pCN and RTM-pCN methods.

is heavily mesh-dependent, since updates are made one
Fourier component at a time.

Finally, we comment on the effect of the different
priors. The asymptotic variance for the RTM-pCN is
approximately double that of pCN. However, RTM-
PCN can have a reduced runtime, per unit error, when
compared with pCN, as Table 2 shows. This improve-
ment of RTM-pCN over pCN is primarily caused by
the reduction in the number of random number gener-
ations due to the adaptive size of the basis in which the
unknown density is represented.

5.2 Data Assimilation in Fluid Mechanics

We now proceed to a more complex problem and
describe numerical results which demonstrate that the
function space samplers successfully sample nontriv-
ial problems arising in applications. We study both the
Eulerian and Lagrangian data assimilation problems
from Section 2.2, for the Stokes flow forward model

TABLE 1
Approximate integrated autocorrelation
times for target p

Algorithm IACT
MwG 894
pCN 73.2
RTM-pCN 143

y = 0. It has been demonstrated in [8, 10] that the
pPCN can successfully sample from the posterior dis-
tribution for such problems. In this subsection we will
illustrate three features of such methods: convergence
of the algorithm from different starting states, conver-
gence with different proposal step sizes, and behaviour
with random distributions for the proposal step size, as
discussed in Section 4.5.

5.2.1 Target distributions. In this application we
aim to characterize the posterior distribution on the
initial condition of the two-dimensional velocity field
ug for Stokes flow [equation (2.3) with y = 0], given
a set of either Eulerian (2.4) or Lagrangian (2.6) ob-
servations. In both cases, the posterior is of the form
(1.1) with ®(u) = %llg(u) — y|I*, with G a nonlinear
mapping taking u to the observation space. We choose
the observational noise covariance to be I' = o> with
o =102

5.2.2 Prior. We let A be the Stokes operator defined
by writing (2.3) as dv/dt + Av = 0,v(0) = u in the
case y =0 and ¥ = 0. Thus, A is v times the negative
Laplacian, restricted to a divergence free space; we also
work on the space of functions whose spatial average is
zero and then A is invertible. For the numerics that fol-
low, we set v = 0.05. It is important to note that, in the
periodic setting adopted here, A is diagonalized in the
basis of divergence free Fourier series. Thus, fractional
powers of A are easily calculated. The prior measure is
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TABLE 2
Comparison of computational timings for target p

Time to draw an

Algorithm Time for 10° steps (s) indep sample (s)
MwG 262 0.234

pCN 451 0.0331
RTM-pCN 278 0.0398

then chosen as
(5.1 pno=N(0,8A7%),

in both the Eulerian and Lagrangian data scenarios. We
require o > 1 to ensure that the eigenvalues of the co-
variance are summable (a necessary and sufficient con-
dition for draws from the prior, and hence the poste-
rior, to be continuous functions, almost surely). In the
numerics that follow, the parameters of the prior were
chosen to be § =400 and « = 2.

5.2.3 Numerical implementation. The figures that
follow in this section are taken from what are termed
identical twin experiments in the data assimilation
community: the same approximation of the model de-
scribed above to simulate the data is also used for
evaluation of @ in the statistical algorithm in the cal-
culation of the likelihood of ug given the data, with
the same assumed covariance structure of the observa-
tional noise as was used to simulate the data.

Since the domain is the two-dimensional torus, the
evolution of the velocity field can be solved exactly
for a truncated Fourier series, and in the numerics that
follow we truncate this to 100 unknowns, as we have
found the results to be robust to further refinement. In
the case of the Lagrangian data, we integrate the tra-
jectories (2.5) using an Euler scheme with time step
At = 0.01. In each case we will give the values of N
(number of spatial observations, or particles) and M
(number of temporal observations) that were used. The
observation stations (Eulerian data) or initial positions
of the particles (Lagrangian data) are evenly spaced on
a grid. The M observation times are evenly spaced,
with the final observation time given by Tj; = 1 for
Lagrangian observations and Tj; = 0.1 for Eulerian.
The true initial condition u is chosen randomly from
the prior distribution.

5.2.4 Convergence from different initial states. We
consider a posterior distribution found from data com-
prised of 900 Lagrangian tracers observed at 100
evenly spaced times on [0, 1]. The data volume is high

1,
(=
5 kx
S 0.5F
=]
g
0

0 20 40 60 80 100
Sample Number n

FI1G. 3. Convergence of value of one Fourier mode of the initial
condition u in the pCN Markov chains with different initial states,
with Lagrangian data.

and a form of posterior consistency is observed for low
Fourier modes, meaning that the posterior is approx-
imately a Dirac mass at the truth. Observations were
made of each of these tracers up to a final time 7 = 1.
Figure 3 shows traces of the value of one particular
Fourier mode® of the true initial conditions. Different
starting values are used for pCN and all converge to the
same distribution. The proposal variance 8 was chosen
in order to give an average acceptance probability of
approximately 25%.

5.2.5 Convergence with different 8. Here we study
the effect of varying the proposal variance. Eulerian
data is used with 900 observations in space and 100
observation times on [0, 1]. Figure 4 shows the differ-
ent rates of convergence of the algorithm with different
values of B, in the same Fourier mode coefficient as

1.4
1.2
1
€ o8 L
S
3 0.6\ ]
3 0.6}
c h [ B=Bypx0001] |
0.41 =
—B=Bopr
0.2} B =PBgpy x 1000
00 1 2 3 4 5
Number of Samples x10°

FI1G. 4. Convergence of one of the Fourier modes of the initial
condition in the pCN Markov chains with different proposal vari-
ances, with Eulerian data.

SThe real part of the coefficient of the Fourier mode with wave
number 0O in the x-direction and wave number 1 in the y-direction.
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used in Figure 3. The value labelled Bop here is chosen
to give an acceptance rate of approximately 50%. This
value of B is obtained by using an adaptive burn-in,
in which the acceptance probability is estimated over
short bursts and the step size B adapted accordingly.
With g too small, the algorithm accepts proposed states
often, but these changes in state are too small, so the al-
gorithm does not explore the state space efficiently. In
contrast, with 8 too big, larger jumps are proposed, but
are often rejected since the proposal often has small
probability density and so are often rejected. Figure 4
shows examples of both of these, as well as a more ef-
ficient choice Bopt.

5.2.6 Convergence with random . Here we illus-
trate the possibility of using a random proposal vari-
ance f3, as introduced in Section 4.5 [expressed in
terms of § and (4.7) rather than S and (4.8)]. Such
methods have the potential advantage of including the
possibility of large and small steps in the proposal. In
this example we use Eulerian data once again, this time
with only 9 observation stations, with only one obser-
vation time at 7 = 0.1. Two instances of the sampler
were run with the same data, one with a static value of
B = Bopt and one with B ~ U([0.1 x Bopt, 1.9 X Bopt])-
The marginal distributions for both Markov chains are
shown in Figure 5(a), and are very close indeed, ver-
ifying that randomness in the proposal variance scale
gives rise to (empirically) ergodic Markov chains. Fig-
ure 5(b) shows the distribution of the B8 for which
the proposed state was accepted. As expected, the ini-
tial uniform distribution is skewed, as proposals with
smaller jumps are more likely to be accepted.

The convergence of the method with these two
choices for 8 were roughly comparable in this simple
experiment. However, it is of course conceivable that

12
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101 —B=Bopr
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when attempting to explore multimodal posterior dis-
tributions it may be advantageous to have a mix of both
large proposal steps, which may allow large leaps be-
tween different areas of high probability density, and
smaller proposal steps in order to explore a more lo-
calised region.

5.3 Subsurface Geophysics

The purpose of this section is twofold: we demon-
strate another nontrivial application where function
space sampling is potentially useful and we demon-
strate the use of sieve priors in this context. Key to
understanding what follows in this problem is to appre-
ciate that, for the data volume we employ, the posterior
distribution can be very diffuse and expensive to ex-
plore unless severe prior modelling is imposed, mean-
ing that the prior is heavily weighted to solutions with
only a small number of active Fourier modes, at low
wave numbers. This is because the homogenizing prop-
erty of the elliptic PDE means that a whole range of dif-
ferent length-scale solutions can explain the same data.
To combat this, we choose very restrictive priors, either
through the form of Gaussian covariance or through the
sieve mechanism, which favour a small number of ac-
tive Fourier modes.

5.3.1 Target distributions. We consider equation
(2.7) in the case D = [0, 1]>. Recall that the objec-
tive in this problem is to recover the permeability
k = exp(u). The sampling algorithms discussed here
are applied to the log permeability u. The “true” per-
meability for which we test the algorithms is shown in
Figure 6 and is given by

(5.2) K (x) = exp(ur(x)) = 5.

The pressure measurement data is y; = p(x;) + on;
with the n; 1.i.d. standard unit Gaussians, with the mea-
surement location shown in Figure 7.

150

— Proposal distribution of
— Distribution of accepted B

o
o

o
o

0O 0.002 0.004 0.006[30.008 0.01 0.012 0.014

(b)

Eulerian data assimilation example. (a) Empirical marginal distributions estimated using the pCN with and without random B.

(b) Plots of the proposal distribution for  and the distribution of values for which the pCN proposal was accepted.
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FI1G. 6. True permeability function used to create target distribu-
tions in subsurface geophysics application.

5.3.2 Prior. The priors will either be Gaussian or
a sieve prior based on a Gaussian. In both cases the
Gaussian structure is defined via a Karhunen—Loéve
expansion of the form

u(x) = .09 ?

5.3
(5-3) (p(p,q)

g
+ > P2+
(p.q)€Z?,/{0,0}

where ¢(79) are two-dimensional Fourier basis func-
tions and the ¢, , are independent random variables
with distribution ¢, 4, ~ N(0,1) and a € R. To en-
sure that the eigenvalues of the prior covariance opera-
tor are summable (a necessary and sufficient condition
for draws from it to be continuous functions, almost
surely), we require that o > 1. For target defined via «
we take o« = 1.001.

For the Gaussian prior we employ MwG and pCN
schemes, and we employ the pCN-based Gibbs sam-
pler from Section 4.7 for the sieve prior; we refer to this
latter algorithm as Sieve-pCN. As in Section 5.1, it is
important that the reader appreciates that the compari-
son between MwG and pCN corresponds to sampling
from the same posterior, since they use the same prior,
but that all comparisons between Sieve-pCN and other
methods also quantify the effect of prior modelling as
well as algorithm.

1

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

0
0 0.2 0.4 0.6 0.8 1

FIG. 7.  Measurement locations for subsurface experiment.

5.3.3 Numerical implementation. The forward mod-
el is evaluated by solving equation (2.7) on the two-
dimensional domain D = [0, 1]? using a finite differ-
ence method with mesh of size J x J. This results in a
J? x J? banded matrix with bandwidth J which may
be solved, using a banded matrix solver, in O(J 4) float-
ing point operations (see page 171 [25]). As drawing a
sample is a O(J*) operation, the grid sizes used within
these experiments was kept deliberately low: for target
defined via k¥ we take J = 64. This allowed a sample to
be drawn in less than 100 ms and therefore 10° samples
to be drawn in around a day. We used 1 measurement
point, as shown in Figure 7.

5.3.4 Numerical results. Since o = 1.001, the ei-
genvalues of the prior covariance are only just summa-
ble, meaning that many Fourier modes will be active in
the prior. Figure 8 shows trace plots obtained through
application of the MwG and pCN methods to the Gaus-
sian prior and a pCN-based Gibbs sampler for the sieve
prior, denoted Sieve-pCN. The proposal variance for
pCN and Sieve-pCN was selected to ensure an average
acceptance of around 0.234. Four different seeds are
used. It is clear from these plots that only the MCMC
chain generated by the sieve prior/algorithm combi-
nation converges in the available computational time.
The other algorithms fail to converge under these test
conditions. This demonstrates the importance of prior
modelling assumptions for these under-determined in-
verse problems with multiple solutions.

5.4 Image Registration

In this subsection we consider the image registration
problem from Section 2.4. Our primary purpose is to
illustrate the idea that, in the function space setting, it
is possible to extend the prior modelling to include an
unknown observational precision and to use conjugate
Gamma priors for this parameter.

5.4.1 Target distribution. We study the setup from
Section 2.4, with data generated from a noisily ob-
served truth u = (p, n) which corresponds to a smooth
closed curve. We make J noisy observations of the
curve where, as will be seen below, we consider the
cases J = 10,20, 50, 100, 200, 500 and 1000. The
noise used to generate the data is an uncorrelated
mean zero Gaussian at each location with variance
02, = 0.01. We will study the case where the noise
variance o is itself considered unknown, introducing
a prior on T = o 2. We then use MCMC to study the
posterior distribution on (u, 7), and hence on (u, o).
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FI1G. 8. Trace plots for the subsurface geophysics application, us-
ing 1 measurement. The MwG, pCN and Sieve-pCN algorithms are
compared. Different colours correspond to identical MCMC simu-
lations with different random number generator seeds.

5.4.2 Prior. The priors on the initial momentum and
reparameterisation are taken as

np(p) =N(0,8:H™*),

o (V) = N (0, 2 H™*2),

where a1 = 0.55, ap = 1.55, ;=30 and 6, =5 -
1072, Here H = (I — A) denotes the Helmholtz op-
erator in one dimension and, hence, the chosen values
of «; ensure that the eigenvalues of the prior covari-
ance operators are summable. As a consequence, draws
from the prior are continuous, almost surely. The prior
for 7 is defined as

(5.5) wur = Gamma(a,, Bs),

54

noting that this leads to a conjugate posterior on this
variable, since the observational noise is Gaussian. In
the numerics that follow, we set o, = 8, = 0.0001.

5.4.3 Numerical implementation. In each experi-
ment the data is produced using the same template
shape I'gp, with parameterization given by

qab(s) = (cos(s) + 7, sin(s) + 7),
s €0,2m).

In the following numerics, the observed shape is cho-
sen by first sampling an instance of p and v from their
respective prior distributions and using the numerical
approximation of the forward model to give us the pa-
rameterization of the target shape. The N observational
points {s,-}lN: | are then picked by evenly spacing them
out over the interval [0, 1), so thats; = (@ — 1)/N.

5.4.4 Finding observational noise hyperparameter.
We implement an MCMC method to sample from the
joint distribution of (u, T), where (recall) T = o2 is
the inverse observational precision. When sampling u
we employ the pCN method. In this context it is possi-
ble to either: (i) implement a Metropolis-within-Gibbs
sampler, alternating between use of pCN to sample u|t
and using explicit sampling from the Gamma distribu-
tion for 7|u; or (ii) marginalize out T and sample di-
rectly from the marginal distribution for u, generating
samples from t separately; we adopt the second ap-
proach.

We show that, by taking data sets with an increas-
ing number of observations N, the true values of the
functions u and the precision parameter T can both be
recovered: a form of posterior consistency.

This is demonstrated in Figure 9, for the poste-
rior distribution on a low wave number Fourier coef-
ficient in the expansion of the initial momentum p and
the reparameterisation 5. Figure 10 shows the poste-
rior distribution on the value of the observational vari-
ance o2; recall that the true value is 0.01. The posterior
distribution becomes increasingly peaked close to this
value as N increases.

5.5 Conditioned Diffusions

Numerical experiments which employ function
space samplers to study problems arising in condi-
tioned diffusions have been published in a number of
articles. The paper [4] introduced the idea of function
space samplers in this context and demonstrated the
advantage of the CNL method (4.12) over the standard



442 COTTER, ROBERTS, STUART AND WHITE

0.12

10 observations
20 observations
0.10 50 observations

100 observations

200 observations

by

0.08

500 observations | |

1000 observations

> 0.06

Probability Densit;

0.02

D'@45U —400 —350 —300 —250 —200
Po

(a)

0.9

10 observations
0.8 20 observations
50 observations

100 observations |

200 observations

500 observations

1000 observations | |

00—

15 20
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as the number of observations is increased, using the pCN.

Langevin algorithm for bridge diffusions; in the nota-
tion of that paper, the A method with 6 = % is our CNL
method. Figures analogous to Figure 1(a) and (b) are
shown. The article [19] demonstrates the effectiveness
of the CNL method, for smoothing problems arising in
signal processing, and figures analogous to Figure 1(a)
and (b) are again shown. The paper [5] contains numer-
ical experiments showing comparison of the function-
space HMC method from Section 4.8 with the CNL
variant of the MALA method from Section 4.3, for
a bridge diffusion problem; the function-space HMC
method is superior in that context, demonstrating the
power of methods which break random-walk type be-
haviour of local proposals.
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F1G. 10. Convergence of the posterior distribution on the value of
the noise variance o2 1 , as the number of observations is increased,
sampled using the pCN.

6. THEORETICAL ANALYSIS

The numerical experiments in this paper demonstrate
that the function-space algorithms of Crank—Nicolson
type behave well on a range of nontrivial examples.
In this section we describe some theoretical analysis
which adds weight to the choice of Crank—Nicolson
discretizations which underlie these algorithms. We
also show that the acceptance probability resulting
from these proposals behaves as in finite dimensions:
in particular, that it is continuous as the scale factor &
for the proposal variance tends to zero. And finally we
summarize briefly the theory available in the literature
which relates to the function-space viewpoint that we
highlight in this paper. We assume throughout that ®
satisfies the following assumptions:

ASSUMPTIONS 6.1. The function ®: X — R sat-

isfies the following:
1. there exists p > 0, K > O such that, forall u € X
0<®@u;y) < K1+ |lullP):;

2. for every r > 0O there is K(r) > 0 such that, for all
u,v € X with max{|u|, [v|} <r,

(D) — )| < K@) u—v.

These assumptions arise naturally in many Bayesian
inverse problems where the data is finite dimensional
[49]. Both the data assimilation inverse problems from
Section 2.2 are shown to satisfy Assumptions 6.1, for
appropriate choice of X in [11] (Navier—Stokes) and
[49] (Stokes). The groundwater flow inverse problem
from Section 2.3 is shown to satisfy these assumptions
in [13], again for approximate choice of X. It is shown
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in [9] that Assumptions 6.1 are satisfied for the image
registration problem of Section 2.4, again for appropri-
ate choice of X. A wide range of conditioned diffusions
satisfy Assumptions 6.1; see [20]. The density estima-
tion problem from Section 2.1 satisfies the second item
from Assumptions 6.1, but not the first.

6.1 Why the Crank—Nicolson Choice?

In order to explain this choice, we consider a one-
parameter (6) family of discretizations of equation
(4.2), which reduces to the discretization (4.4) when
6 = 3. This family is

v=u—8KK((1 —0)Lu+6Lv) — 5y KDD(u)
(6.1)
+ V/25K%,

where & ~ N(0, 1) is a white noise on X. Note that
w := +/C&y has covariance operator C and is hence a
draw from to. Recall that if u is the current state of the
Markov chain, then v is the proposal. For simplicity we
consider only Crank—Nicolson proposals and not the
MALA variants, so that y = 0. However, the analysis
generalises to the Langevin proposals in a straightfor-
ward fashion.

Rearranging (6.1), we see that the proposal v satis-
fies

v= (I —80KL)"!
(6.2)
(I +8(1 = 0)KL)u +25K&).

If I = I, then the operator applied to u is bounded
on X for any 0 € (0, 1]. If K = C, it is bounded for
6 € [0, 1]. The white noise term is almost surely in X
forK=1,0€(0,1]and X =C, 6 € [0, 1]. The Crank—
Nicolson proposal (4.5) is found by letting X’ = I and
0 = % The preconditioned Crank—Nicolson proposal
(4.7) is found by setting X =C and 8 = % The follow-

ing theorem explains the choice 6 = %

THEOREM 6.2. Let uo(X) =1, let ® satisfy As-
sumption 6.1(2) and assume that . and |y are equiv-
alent as measures with the Radon—Nikodym deriva-
tive (1.1). Consider the proposal viu ~ q(u,-) de-
fined by (6.2) and the resulting measure n(du, dv) =
qu,dv)u(du) on X x X. Forboth K=1and K =C
the measure 1+ = q (v, du)u(dv) is equivalent to 1 if
and only if 6 = % Furthermore, if 6 = %, then

dnt

g @0 0) = exp(P() — O(v)).

By use of the analysis of Metropolis—Hastings meth-
ods on general state spaces in [51], this theorem shows
that the Crank—Nicolson proposal (6.2) leads to a well-
defined MCMC algorithm in the function-space set-
ting, if and only if 6 = % Note, relatedly, that the
choice 6 = % has the desirable property that u ~
N (0, C) implies that v ~ N (0, C): thus, the prior mea-
sure is preserved under the proposal. This mimics the
behaviour of the SDE (4.2) for which the prior is an
invariant measure. We have thus justified the propos-
als (4.5) and (4.7) on function space. To complete our
analysis, it remains to rule out the standard random
walk proposal (4.3).

THEOREM 6.3. Consider the proposal vlu ~
q(u,-) defined by (4.3) and the resulting measure
n(du,dv) =qu,dv)u(du) on X x X. For both K =1
and K = C the measure n'- = q (v, du)u(dv) is not ab-
solutely continuous with respect to 1. Thus, the MCMC
method is not defined on function space.

6.2 The Acceptance Probability

We now study the properties of the two Crank—
Nicolson methods with proposals (4.5) and (4.7) in the
limit § — 0, showing that finite-dimensional intuition
carries over to this function space setting. We define

Ru,v) =du) — d(v)

and note from (4.11) that, for both of the Crank-
Nicolson proposals,

a(u,v) =min{1, exp(R(u, v))}.

THEOREM 6.4. Let uy be a Gaussian measure
on a Hilbert space (X, | - ||) with uo(X) =1 and
let w be an equivalent measure on X given by the
Radon—Nikodym derivative (1.1), satisfying Assump-
tions 6.1(1) and 6.1(2). Then both the pCN and CN
algorithms with fixed § are defined on X and, further-
more, the acceptance probability satisfies

lim E" =1.
(Sl_r)r(l) a(u,v)

6.3 Scaling Limits and Spectral Gaps

There are two basic theories which have been devel-
oped to explain the advantage of using the algorithms
introduced here which are based on the function-
space viewpoints. The first is to prove scaling lim-
its of the algorithms, and the second is to establish
spectral gaps. The use of scaling limits was pioneered
for local-proposal Metropolis algorithms in the papers
[40—42], and recently extended to the hybrid Monte
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Carlo method [6]. All of this work concerned i.i.d. tar-
get distributions, but recently it has been shown that
the basic conclusions of the theory, relating to optimal
scaling of proposal variance with dimension, and op-
timal acceptance probability, can be extended to the
target measures of the form (1.1) which are central to
this paper; see [29, 36]. These results show that the
standard MCMC method must be scaled with proposal
variance (or time-step in the case of HMC) which is in-
versely proportional to a power of d,,, the discretization
dimension, and that the number of steps required grows
under mesh refinement. The papers [5, 37] demon-
strate that judicious modifications of these standard
algorithms, as described in this paper, lead to scaling
limits without the need for scalings of proposal vari-
ance or time-step which depend on dimension. These
results indicate that the number of steps required is
stable under mesh refinement, for these new methods,
as demonstrated numerically in this paper. The sec-
ond approach, namely, the use of spectral gaps, offers
the opportunity to further substantiate these ideas: in
[21] it is shown that the pCN method has a dimen-
sion independent spectral gap, whilst a standard ran-
dom walk which closely resembles it has spectral gap
which shrinks with dimension. This method of analy-
sis, via spectral gaps, will be useful for the analysis of
many other MCMC algorithms arising in high dimen-
sions.

7. CONCLUSIONS
We have demonstrated the following points:

e A wide range of applications lead naturally to prob-
lems defined via density with respect to a Gaussian
random field reference measure, or variants on this
structure.

e Designing MCMC methods on function space, and
then discretizing the nonparametric problem, pro-
duces better insight into algorithm design than dis-
cretizing the nonparametric problem and then apply-
ing standard MCMC methods.

e The transferable idea underlying all the methods is
that, in the purely Gaussian case when only the ref-
erence measure is sampled, the resulting MCMC
method should accept with probability one; such
methods may be identified by time-discretization of
certain stochastic dynamical systems which preserve
the Gaussian reference measure.

e Using this methodology, we have highlighted new
random walk, Langevin and Hybrid Monte Carlo
Metropolis-type methods, appropriate for problems

where the posterior distribution has density with re-
spect to a Gaussian prior, all of which can be imple-
mented by means of small modifications of existing
codes.

e We have applied these MCMC methods to a range of
problems, demonstrating their efficacy in compari-
son with standard methods, and shown their flexi-
bility with respect to the incorporation of standard
ideas from MCMC technology such as Gibbs sam-
pling and estimation of noise precision through con-
jugate Gamma priors.

e We have pointed to the emerging body of theoretical
literature which substantiates the desirable proper-
ties of the algorithms we have highlighted here.

The ubiquity of Gaussian priors means that the tech-
nology that is described in this article is of immediate
applicability to a wide range of applications. The gen-
erality of the philosophy that underlies our approach
also suggests the possibility of numerous further devel-
opments. In particular, many existing algorithms can be
modified to the function space setting that is shown to
be so desirable here, when Gaussian priors underlie the
desired target; and many similar ideas can be expected
to emerge for the study of problems with non-Gaussian
priors, such as arise in wavelet based nonparametric es-
timation.
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