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Abstract
The Bayesian approach to inverse problems, in which the posterior probability
distribution on an unknown field is sampled for the purposes of computing
posterior expectations of quantities of interest, is starting to become
computationally feasible for partial differential equation (PDE) inverse
problems. Balancing the sources of error arising from finite-dimensional
approximation of the unknown field, the PDE forward solution map and the
sampling of the probability space under the posterior distribution are essential
for the design of efficient computational Bayesian methods for PDE inverse
problems. We study Bayesian inversion for a model elliptic PDE with an
unknown diffusion coefficient. We provide complexity analyses of several
Markov chain Monte Carlo (MCMC) methods for the efficient numerical
evaluation of expectations under the Bayesian posterior distribution, given
data δ. Particular attention is given to bounds on the overall work required to
achieve a prescribed error level ε. Specifically, we first bound the computational
complexity of ‘plain’ MCMC, based on combining MCMC sampling with
linear complexity multi-level solvers for elliptic PDE. Our (new) work versus
accuracy bounds show that the complexity of this approach can be quite
prohibitive. Two strategies for reducing the computational complexity are then
proposed and analyzed: first, a sparse, parametric and deterministic generalized
polynomial chaos (gpc) ‘surrogate’ representation of the forward response map
of the PDE over the entire parameter space, and, second, a novel multi-level
Markov chain Monte Carlo strategy which utilizes sampling from a multi-level
discretization of the posterior and the forward PDE. For both of these strategies,
we derive asymptotic bounds on work versus accuracy, and hence asymptotic
bounds on the computational complexity of the algorithms. In particular, we
provide sufficient conditions on the regularity of the unknown coefficients of
the PDE and on the approximation methods used, in order for the accelerations
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of MCMC resulting from these strategies to lead to complexity reductions over
‘plain’ MCMC algorithms for the Bayesian inversion of PDEs.

1. Introduction

Many inverse problems arising in PDEs require the determination of uncertain parameters u
from finite-dimensional observation data δ. We assume u and δ to be related by

δ = G(u) + ϑ. (1)

Here u, which we assume to belong to an (infinite-dimensional) function space, is an unknown
or uncertain input (e.g. an uncertain coefficient) to a differential equation and G is the
‘forward’ mapping taking one instance (one realization) of input u into a finite and noisy set
of observations. We model these observations mathematically as continuous linear functionals
on the solution of the governing partial differential equation (PDE). In (1), the parameter ϑ

represents noise arising when observing. For problems such as these, the Bayesian formulation
[17, 29] is an attractive and natural one, because it allows for an explicit incorporation
of the statistical properties of the observational noise, admits the possibility of quantifying
uncertainty in the solution and allows for clear mathematical modeling of the prior information
required to account for the under-determined nature of the inversion. However, the Bayesian
approach to such inverse problems requires the probing of probability measures in infinite-
dimensional spaces and is hence a substantial computational task in which the space of the
unknown parameter, the forward map and the probability space must all be approximated finite
dimensionally. Choosing appropriate approximation techniques, and balancing the resulting
errors so as to optimize the overall computational cost per unit error, is thus a significant
problem with potential ramifications for the resolution of many inverse problems arising in
applications. The purpose of this paper is to provide a detailed and comprehensive theoretical
study of this problem in computational complexity.

A key point to appreciate concerning our work herein is to understand it in the context
of the existing statistics literature concerning the complexity of Markov chain-Monte Carlo
(MCMC) methods. This statistics literature is focused on the error stemming from the central
limit theorem estimate of the convergence of sample path averages, and additionally on issues
such as the ‘burn-in’ time for the Markov chain to reach stationarity. Such analyses remain
central in analyzing the computational complexity of MCMC methods for inverse problems, but
must be understood, additionally, in the context of errors stemming from the finite-dimensional
approximation of the unknown function and the forward model. The purpose of this paper
is to provide what we believe is the first complete, rigorous analysis of the computational
complexity of MCMC methods for inverse problems which balances the errors resulting from
both the central limit theorem and finite-dimensional approximation.

The analysis is necessarily quite complex as it involves balancing errors from many
different sources. Thus, we address a specific inverse problem, namely the determination of the
diffusion coefficient in an elliptic PDE from measurements of the solution. We approximate the
probability space by means of an MCMC independence sampler, the parameter space by means
of the Karhunen–Loeve expansion and generalized polynomial chaos and the forward problem
by finite element (FE)-type methods. However, the ideas are generic and, with substantial
work, will be transferable to other inverse problems, MCMC samplers and approximation
methodologies. In our analysis, we place uniform prior measures on the unknown function
u. This simplifies certain steps in the present analysis; however, our results will also apply
to priors whose densities have bounded supports. Log-normal priors as used, for example,
in [18] and the references therein, require modifications in various parts of our analysis; this
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shall be dealt with elsewhere. Finally, we concentrate on the independence sampler as it is,
currently, the only function-space MCMC method for which an analysis of convergence rates
which accounts for sampling and discretization errors is available; extensions to other MCMC
algorithms are conceivable, for example, by continuing the analyses initiated in [14, 31].

1.1. Overview of paper

The methods we study incur two principal sources of error. First, the sampling error arising
from estimating expectations conditional on given data δ by sample averages of M realizations
of the unknown u, drawn from the posterior measure ρδ . The error in doing so will decay as
M− 1

2 as the number M of draws of u tends to ∞. Second, the discretization error arising from
the approximation of the system response for each draw of u, i.e. the error of approximating
G(u). For expository purposes, and to cover a wide range of discretization techniques, we let
Ndof denote the total number of degrees of freedom that are to be computed for the evaluation
of the Bayesian estimate. We assume that the discretization error decays as N−a

dof , with the rate
a > 0.4 We also assume that the work per step of MCMC scales as Nb

dof, with b > 0; thus, the
total work necessary for the numerical realization of M draws in the MCMC with discretized
forward model scales as MNb

dof. If (as we show in this paper for the independence sampler)
the constant in the root mean square MCMC error bound of order O(M− 1

2 ) is independent of
Ndof → ∞, then a straightforward calculation shows that the work to obtain the root-mean-
square error ε will grow asymptotically as ε → 0, as ε−2−b/a. The ratio b/a is thus crucial to
the overall computational complexity of the algorithm.

In this paper, we develop three ideas to speed up MCMC-based Bayesian inversion in
systems governed by PDEs. The first idea, which underlies the preceding expository calculation
concerning complexity, is that MCMC methods can be constructed whose convergence rate
is indeed independent of the number of degrees of freedom Ndof used in the approximation of
the forward map; the key idea here is to use MCMC algorithms which are defined on (infinite-
dimensional) function spaces, as overviewed in [7], and to use the Galerkin projections of the
forward map into finite-dimensional subspaces which employ Riesz bases in these function
spaces. We term this the plain MCMC method. The second idea is that sparse, deterministic
parametric representations of the forward map u �→ G(u), as analyzed in [3, 27, 4], can
significantly reduce b by reducing computational complexity per step of the Markov chain,
as the sparse approximation of G can be precomputed, prior to running the Markov chain,
and simply needs to be evaluated at each step of the chain; this idea has been successfully
used in practice in [19–21]. We term the resulting algorithm the generalized polynomial chaos
MCMC (gpc-MCMC). The third idea is that the representation of the forward map can be
truncated adaptively at different discretization levels of the physical system of interest. Then,
we propose a multi-level Monte Carlo acceleration of the MCMC method, in the spirit of
the work of Giles for Monte Carlo [9], and prove that this allows further improvement of the
computational complexity. The idea of extending Giles’ work to the MCMC, to obtain what we
term multi-level MCMC (MLMCMC) methods, is actively being considered by several other
research groups at present and we point in particular to [13], where the ideas are developed in
the context of conditioned diffusions, and [18] where uncertainty quantification in subsurface
flow is studied.

To give the reader some ideas of what will come ahead, the following table summarizes
the complexity required to obtain the approximation error ε in mean square with respect to the
probability space generated by the Markov chains for the three methods studied5.

4 Logarithmic corrections also occur, and will be made explicit in later sections.
5 Ignoring multiplicative logarithmic factors for clarity of exposition.
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Plain MCMC gpc-MCMC MLMCMC

Assume: Assumptions 1(i), (ii) and 7 Assumption 9 Assumptions 1(i), (ii) and 7
Number of

O(ε−d−2) O(ε−1/τ ) O(ε−d )degrees of freedom
Number of floating

O(ε−d−2−1/q) O(ε− max(α/τ,2+1/σ )) O(ε−d−1/q)point operations

Here, d � 2 denotes the dimension of the spatial variable in the elliptic inverse problem
and q determines the rate of decay in the sequence of coefficients of the Karhúnen–Loève
expansion of the unknown coefficient in assumption 1(ii). The parameters τ , α and σ concern
the approximation properties of the gpc solver and are detailed in assumption 9; τ quantifies
the rate of convergence and α the polynomial scaling of the floating point complexity with
respect to the total number of degrees of freedom that we assume for the gpc solver, whilst σ

relates the number of degrees of freedom to the number of terms in the gpc approximation.
The existence of methods which realize the assumptions made is discussed in detail in
appendices D and E; in particular, gpc-based adaptive forward solvers of infinite-dimensional,
parametric PDEs whose overall complexity scales polynomially in the number of degrees of
freedom in the discretization of the PDE of interest have recently become available; we refer
to [27, 12, 3] and the references therein. The three main results of the paper, substantiating
the displayed table, are then theorems 13, 18 and 21. Our results show that the MLMCMC
can achieve a given accuracy in work equal asymptotically, as the accuracy ε → 0, to that of
performing a single step of ‘plain’ MCMC; they also show that the gpc-MCMC is superior
to the ‘plain’ MCMC when the compression afforded by the sparse gpc FE approximations
of the parametric forward solution operator is large, i.e. when the parameter τ is close to
1/d and α is close to 1—parameter regimes which do hold in many cases (see, e.g., [27] and
the references therein for the stochastic Galerkin discretizations of the parametric forward
problem).

The paper is organized as follows. Section 2 is devoted to the specific elliptic inverse
problem which we study for illustrative purposes, and includes Bayesian formulation, a
discussion of approximation techniques for the unknown field and the forward map and
properties of the independence MCMC sampler that we study. In section 3, we analyze the
plain MCMC method, in section 4 the gpc-MCMC method and in section 5 we study the
MLMCMC method; these sections contain theorems 13, 18 and 21, respectively. Section 6
contains our concluding remarks. The paper also includes five appendices which are devoted
to mathematical developments which are necessary for the theoretical advances made in this
paper, but which employ ideas already in the literature. In particular, appendix A concerns the
Lipschitz dependence of the forward problem on the unknown function u, whilst appendix B
is devoted to the formulation of Bayesian inverse problems on measure spaces and appendix C
to the properties of independence samplers in this setting. Appendices D and E concern the FE
and polynomial chaos approximation properties, and demonstrate how the assumptions made
concerning them may be verified.

1.2. Overview of notation

Because of the many different approximations used in this paper, together with the mixture
of probability and PDE, the notation can be quite complicated. For this reason, we devote this
subsection to an overview of the notation, in order to help the reader.
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To be concrete we assume that the observational noise appearing in (1) is a single
realization of a centered Gaussian N(0, 	). If a prior measure ρ is placed on the unknown
u, then a Bayesian formulation of the inverse problem leads to the problem of probing the
posterior probability measure ρδ given by

dρδ

dρ
(u) ∝ exp(−
(u; δ)), (2)

where


(u; δ) = 1
2 |δ − G(u)|2	. (3)

Here, | · |	 = |	− 1
2 · | with | · | the Euclidean norm. In section 2 and appendix B,

we verify that formulae (2) and (3), which represent Bayes’ formula in the infinite-
dimensional setting, hold for the model elliptic inverse problem which is under consideration
here.

Our approximation of the unknown field u will be performed through the truncation of the
coefficients and FE Galerkin discretizations will be used to approximate the forward solution
map G.

On the probability side, we use the following notation: Bk denotes the sigma algebra
of Borel subsets of R

k. For a probability space (�,A, ρ) consisting of the set � of
elementary events, a sigma algebra A and a probability measure ρ, and a separable Hilbert
space H with norm ‖·‖H and for a summability exponent 0 < p � ∞, we denote by
Lp(�, ρ; H) the Bochner space of strongly measurable mappings from � to H which are
p-summable.

We denote by E
μ the expectation with respect to a probability measure μ on the space

U containing the unknown function u. In the following, we will finite dimensionalize both
the space U , in which the unknown function u lies, and the space containing the response of
the forward model. The parameter J denotes the truncation level of the coefficient expansion
(5) used for the unknown function and the parameter l denotes the spatial FE discretization
level introduced in section 3. The parameters N and L denote the cardinality of the set of
the chosen active gpc coefficients and the set of FE discretization levels for these coefficients
which is introduced in section 4. We employ multi-level FE discretizations on mesh levels
l = 0, 1, . . . , L of the forward problem together with multi-level approximations of the
Bayesian posterior which are indexed by l′ = 0, 1, . . . , L, and combine these judiciously with
a discretization level dependent sample size Mll′ within the MCMC method. The measure μ

will variously be chosen as the prior ρ, the posterior ρδ and various approximations of the
posterior such as ρJ,l,δ.

We denote byPu(0) ,PJ,l
u(0) andPN,L

u(0) probability measures on the probability space generated
by the MCMC processes detailed in the following, when conditioned on the initial point u(0)

with the acceptance probability for the Metropolis–Hastings Markov chain being α defined in
(9), αJ,l in (26) and αN,L in (31) respectively for the problems on the full, infinite-dimensional
space and its truncations. We then denote by Eu(0) , EJ,l

u(0) and EN,L
u(0) expectation with respect to

Pu(0) , PJ,l
u(0) and PN,L

u(0) , respectively.
If the initial point u(0) of these Markov chains is distributed with respect to an initial

probability measure μ on U , then we denote the probability measure on the probability
space that describes these Markov chains by Pμ, Pμ,J,l and Pμ,N,L, and the corresponding
expectation accordingly by Eμ, Eμ,J,l and Eμ,N,L. As these notations are somewhat involved,
for the convenience of the reader, we collect them in the following table.
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Acceptance probability α in (9) αJ,l in (26) αN,L in (31)

Starting with u(0) Probability of the
Markov chain Pu(0) PJ,l

u(0) PN,L
u(0)

Expectation Eu(0) EJ,l
u(0) EN,L

u(0)

Starting with
distribution μ

Probability of the
Markov chain Pμ Pμ,J,l Pμ,N,L

Expectation Eμ Eμ,J,l Eμ,N,L

Finally, in section 5, we will work with the probability measure PL on the probability
space corresponding to a sequence of independent Markov chains created by the MLMCMC
procedure, and with EL, the expectation with respect to this probability measure. The definition
of these measures will be given at the beginning of section 5.

2. Elliptic inverse problem and approximations

In this section, we formulate the elliptic problem of interest in section 2.1, formulate the
resulting Bayesian inverse problem in section 2.2, describe the independence sampler used to
probe the posterior distribution in section 2.3 and convergence rate estimates of the FE and gpc
methods in sections 2.4 and 2.5, respectively. The results in this section all follow from direct
application of well-known theories of inverse problems, MCMC and discretization techniques
for PDEs; however, to render the exposition self-contained, proofs and references are provided
in appendices A–E.

2.1. Forward problem

Let D be a bounded Lipschitz domain in R
d . For f ∈ L2(D), we consider the elliptic problem

−∇ · (K(x)∇P(x)) = f (x) in D, P = 0 on ∂D. (4)

Throughout we assume that the domain D is a convex polyhedron with plane sides. The
coefficient K ∈ L∞(D) in (4) is parametrized by the series expansion

K(x) = K̄(x) +
∑
j�1

u jψ j(x), x ∈ D, (5)

where the u j are normalized to satisfy sup j |u j| � 1 and the summation may be either infinite
or finite. In the following subsection, we formulate the problem of determining the (uncertain)
function K, or equivalently the sequence {uj} j�1, from a finite noisy set of observations
comprised of linear functionals of the solution P. Where it is notationally helpful to do so, we
will write K(x, u) and P(x, u) for the coefficient and solution of (4) respectively.

The following sparsity assumptions on K in (5), which we will use in various combinations
throughout the paper, imply the bounded invertibility of the parametric forward map
U 
 u �→ P(·, u) ∈ V . They also imply the sparsity of gpc representations of this map
and allow for controlling various approximation errors that arise in the following.

Assumption 1. The functions K̄ and ψ j in (5) are in L∞(D) and:

(i) there exists a positive constant κ such that∑
j�1

‖ψ j‖L∞(D) � κ

1 + κ
K̄min,

where K̄min = essinfxK̄(x) > 0;
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(ii) the functions K̄ and ψ j in (5) are in W 1,∞(D) and there exist positive constants C and
q such that for all J ∈ N, the sequence {ψ j} in the parametric representation (5) of the
uncertain coefficient in (4) satisfies∑

j�1

‖ψ j‖W 1,∞(D) < ∞,
∑
j>J

‖ψ j‖L∞(D) < CJ−q;

(iii) the coefficients ψ j are arranged in decreasing order of magnitude of ‖ψ j‖L∞(D) and there
are constants s > 1 and C > 0 such that

∀ j ∈ N : ‖ψ j‖L∞(D) � C j−s;
(iv) for all j ∈ N, ψ j ∈ W 1,∞(D) and there exists a constant C > 0 such that

∀ j ∈ N : ‖∇ψ j‖L∞(D) � C j−s′
for some 1 < s′ � s.

The sparsity of the unknown diffusion coefficient K, which is expressed in terms of the decay
rate for the coefficients ψ j of expansion (5) in assumptions 1(iii) and (iv), holds when the
covariance of the random coefficient K(x, ω) is sufficiently smooth, as shown in Bieri et al
[3]. With the decay rate in assumption 1(iii), the constant q in (ii) can be chosen as q = s − 1.

We denote by U = [−1, 1]N the set of all sequences u = (u j) j�1 of coordinates u j taking
values in [−1, 1] and note that this is the unit ball in �∞(N). We equip the parameter domain
U with the product sigma algebra � = ⊗∞

j=1 B([−1, 1]). Due to assumption 1(i), for any
u ∈ U , the series (5) converges in L∞(D). Furthermore, it also follows from this assumption
that there exist finite positive constants Kmin and Kmax such that, for all (x, u) ∈ D × U ,

Kmin := K̄min/(1 + κ) � K(x) � Kmax := esssupxK̄(x) + κK̄min/(1 + κ). (6)

We let V = H1
0 (D), whilst V ∗ denotes its dual space. We equip V with the norm

‖P‖V = ‖∇P‖L2(D). By (5), K(x) is bounded below uniformly with respect to (x, u) ∈ D × U
and, for every u ∈ U ,

Kmin‖P(·, u)‖2
V = Kmin(∇P(·, u),∇P(·, u)) � (K(·, u)∇P(·, u),∇P(·, u))

= ( f , P(·, u)) � ‖ f ‖V ∗‖P(·, u)‖V ,

where (·, ·) denotes the inner product in L2(D) and (L2(D))d . It follows that

sup
u∈U

‖P(·, u)‖V � ‖ f ‖V ∗

Kmin
. (7)

In fact, we have the following, proved in appendix A.

Proposition 2. Under assumption 1(i), the solution P : U �→ V = H1
0 (D) is Lipschitz when

viewed as a mapping from the unit ball in �∞(N) to V . It is in particular measurable, as a
mapping from the measurable space (U,�) to (V,B(V )).

2.2. Bayesian elliptic inverse problem

We now define the Bayesian inverse problem. For Oi ∈ V ∗, i = 1, . . . , k, which denote k
continuous, linear ‘observation’ functionals on V , we define a map G : U → R

k as

U 
 u �→ G(u) := (O1(P(·, u)),O2(P(·, u)), . . . ,Ok(P(·, u))) ∈ R
k. (8)

In (1), by ϑ we denote an observational noise which is statistically independent of the input u
and which we assume to be Gaussian, i.e. with the distribution N(0, 	) in R

k, with a positive
definite covariance matrix 	. We model the noisy observed data δ for G(u) by

δ = G(u) + ϑ.

7
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For Bayesian inversion, we place a prior measure on u by assuming that u j : � → [−1, 1]
comprises a sequence of independent random variables uj : � → [−1, 1] in the series
expansion (5). On the measurable space (U,�) defined above, we define the countable
product probability measure

ρ =
⊗
j�1

du j

2
,

where du j is the Lebesgue measure on [−1, 1]. As u j are uniformly distributed on [−1, 1],
the measure ρ is the law of the random vector u = (u1, u2, . . .) in U . As the random variables
u j(ω) were assumed independent, the probability measure on realizations of random vectors
u ∈ U is a product measure: for S =∏ j�1 S j,

ρ(S) =
∏
j�1

P({ω : u j ∈ S j}).

Combining the prior and likelihood, the posterior measure on u given δ can be explicitly
determined, using the general theory from appendix B and a stability/well-posedness estimate;
the proof of the following result for the model problem is provided there.

Proposition 3. Let assumption 1(i) hold. The conditional probability measure ρδ(du) =
P(du|δ) on U is absolutely continuous with respect to ρ(du) and satisfies

dρδ

dρ
∝ exp(−
(u; δ)).

Furthermore, for every r > 0 and every δ, δ′ such that |δ|	, |δ′|	 � r, there exists
C = C(r) > 0 such that

dHell(ρ
δ, ρδ′

) � C(r)|δ − δ′|	,

where dHell denotes the Hellinger distance of the measures ρδ, ρδ′
(see, e.g., equation (B.1) in

appendix B).

Remark 4. The proof of the preceding proposition shows that |G(u)| is uniformly bounded for
u in U . As a consequence there exists 
�(r) > 0 which is a uniform bound on 
(u; δ) for all
|δ| � r and all u ∈ U . This bound is also uniform with respect to the truncation of the infinite
series (5) for K, since this corresponds to a particular choice of some of the coefficients of
u ∈ U , and with respect to FE approximation of the solution of (4), since the uniform upper
bound on |G(u)| will be preserved under the Galerkin projections of the elliptic problem (4)
into finite-dimensional subspaces Vh ⊂ V (or, more generally, under any stable discretization
of the forward problem of interest).

2.3. Independence sampler

To approximate expectations with respect to the posterior measure ρδ constructed in the
previous section, we will use MCMC methods and, in particular, the independence sampler.
To this end we define, for any u, v ∈ U ,

α(u, v) = 1 ∧ exp(
(u, δ) − 
(v, δ)). (9)

The Markov chain {u(k)}∞k=1 ⊂ U is then constructed as follows: given the current state u(k),
we draw a proposal v(k) independently of u(k) from the prior measure ρ appearing in (2). Let
{w(k)}k�1 denote an i.i.d sequence with w(1) ∼ U[0, 1] and with w(k) independent of both u(k)

and v(k). We then determine the next state u(k+1) via the formula

u(k+1) = 1(α(u(k), v(k)) � w(k))v(k) + (1 − 1(α(u(k), v(k)) � w(k)))u(k). (10)

Thus, we choose to move from u(k) to v(k) with probability α(u(k), v(k)), and to remain at u(k)

with probability 1 − α(u(k), v(k)). The following is proved in appendix C.

8
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Proposition 5. Let assumption 1(i) hold. Equation (10) defines a Markov chain {u(k)}∞k=0 which
is reversible with respect to ρδ . If p(u, ·) denotes the transition kernel for the Markov chain
and pn(u, ·) its nth iterate, then there is R ∈ (0, 1) such that, for all n ∈ N and all u ∈ U,

‖pn(u, ·) − ρδ‖TV � 2(1 − R)n.

For every bounded, continuous function g : U → R, there holds, Pu(0) almost surely,

1

M

M∑
k=1

g(u(k)) = E
ρδ

[g(u)] + cξMM− 1
2 , (11)

where ξM is a sequence of random variables which converges weakly as M → ∞ to
ξ ∼ N(0, 1) and c is a deterministic constant which is independent of M (its absolute
value is bounded by a constant that depends only on 
�(r) in remark 4 and on supu∈U |g(u)|).
Furthermore, we have the mean square error bound: there exists C > 0 such that for every
bounded g : U �→ R and every M ∈ N(

Eρ

[∣∣∣∣∣Eρδ

[g(u)] − 1

M

M∑
k=1

g(u(k))

∣∣∣∣∣
2])1/2

� Csup
u∈U

|g(u)|M−1/2.

Remark 6. The proof of this proposition uses fairly standard methods from the theory of
Markov chains. In our context, a key observation regarding the proof is that all constants—in
particular the constant R—depend only on the upper bound on the negative log likelihood 
,
and on the supremum of g. Hence, if we can show for FE and Karhúnen–Loève approximations
of the forward map G in the physical domain D that these approximations are such that
the potential 
 is stable under these approximations, then the conclusions of the preceding
theorem will hold with constants that are uniformly bounded with respect to all approximation
parameters.

Note also that our choice of uniform priors and the independence sampler means that
the issue of ‘burn-in’ does not play a significant role in our analysis; in particular, the total
variation metric convergence bound is independent of initialization. When generalizing our
work to other priors and other MCMC methods ‘burn-in’ effects may become more pronounced
in the analysis.

2.4. Finite element approximation of the forward problem

Assumptions 1(i) and (ii) are imposed throughout what follows regarding the finite element
method (FEM). Thus, from (5), we deduce that K(·, u) ∈ W 1,∞(D) for all u ∈ U . We describe
an approximation of the forward problem based on FE representation of the solution P of
(4), together with truncation of the series (5). We start by discussing the FE approximation.
Recalling that the domain D is a bounded Lipschitz polyhedron with plane sides, we denote
by {T l}∞l=1 the nested sequence of simplices which is defined inductively as follows: first
we subdivide D into a regular family T 0 of simplices T ; for l � 1, the regular simplicial
mesh T l in D is obtained by recursive subdivision, i.e. each simplex in T l−1 is divided into
2d subsimplices. Then, the meshwidth hl := max{diam(T ) : T ∈ T l} of T l is hl = 2−lh0.
Based on these triangulations, we define a nested multi-level family of spaces of continuous,
piecewise linear functions on T l as

V l = {u ∈ V : u|T ∈ P1(T ) ∀T ∈ T l},
where P1(T ) denotes the set of linear polynomials in the simplex T ∈ T l . Approximating
the solution of the parametric, deterministic problem (4) from the FE spaces V l introduces
a discretization error which is well known to be bounded by the approximation property of

9
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the V l : there exists a positive constant C > 0 which is independent of l such that for all
P ∈ H2(D) ∩ H1

0 (D) and for every 0 < hl � 1 holds

inf
Q∈V l

‖P − Q‖V � Chl‖P‖H2(D), (12)

where hl = O(2−l ) and the constant C > 0 depends only on T 0.
We now discuss the effect of dimensional truncation, i.e. of truncating the infinite series

(5) for the unknown diffusion coefficient K in problem (4) after J terms, as

KJ(x, u) = K̄(x) +
J∑

j=1

u jψ j(x) x ∈ D, u ∈ U. (13)

We thus consider the parametric, deterministic family of approximate elliptic problems

−∇ · (KJ(·, u)∇PJ(·, u)) = f , PJ = 0 on ∂D. (14)

Under assumptions 1(i) and (ii), (A.2) shows that there exists a constant C > 0 such that for
all J ∈ N and all u ∈ U

‖P(·, u) − PJ(·, u)‖V � C‖P(·, u)‖V ‖K(·, u) − KJ(·, u)‖L∞(D)

� C‖P(·, u)‖V J−q � C

Kmin
J−q‖ f ‖V ∗ . (15)

We consider the FE approximation of the truncated problem (14): given J, l ∈ N, find
PJ,l (·, u) ∈ V l such that for all φ ∈ V l∫

D
KJ(x, u)∇PJ,l (x, u) · ∇φ(x) dx =

∫
D

f (x)φ(x) dx. (16)

We make the following assumption on the complexity of solving this discrete equation, the
justification of which is provided in appendix D.

Assumption 7. For J ∈ N as in (13), the solution PJ(·, u) of (14) is uniformly bounded
in W := H2(D) ∩ H1

0 (D) with respect to J ∈ N and u ∈ U. The matrix of the Galerkin
approximated problem (16) has O(ld−12dl ) non-zero entries and a uniformly bounded
condition number for all J, l and u. There exists C > 0 such that, for all J ∈ N and all
u ∈ U, the FE error for the approximating problem (16) satisfies

‖PJ(·, u) − PJ,l(·, u)‖V � C2−l‖PJ(·, u)‖W . (17)

From this assumption, we obtain the following error bound.

Proposition 8. Consider the approximation of the elliptic problem (4) via the FE solution of
the truncated problem (14), under assumptions 1(i), (ii) and 7. Then, there exists a constant
C > 0 such that for every J, l ∈ N and for every u ∈ U it holds that the FE solutions PJ,l(·, u)

are uniformly V -stable in the sense that, for every J, l ∈ N and for every u ∈ U, there holds

sup
J,l∈N

sup
u∈U

‖PJ,l(·, u)‖V � C

Kmin
‖ f ‖V ∗ . (18)

Moreover, there exists C > 0 such that for every u ∈ U holds the error bound

‖P(·, u) − PJ,l(·, u)‖V � C(2−l‖PJ(·, u)‖W + J−q‖P(·, u)‖V ). (19)

10
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2.5. Sparse tensor gpc-finite element surrogate of the parametric forward problem

By (7), the solution P(·, u) of problem (4) is uniformly bounded inV by ‖ f ‖V ∗/Kmin. Therefore,
from proposition 2, we deduce that P(·, ·) ∈ L2(U, ρ;V ). Thus, the parametric solution admits
a polynomial chaos-type representation in L2(U, ρ;V ). To define it, we denote by Ln(un) the
Legendre polynomial of degree n, normalized such that

1

2

∫ 1

−1
|Ln(ξ )|2 dξ = 1.

By F we denote the set of all sequences ν = (ν1, ν2, . . .) of non-negative integers such that
only finitely many ν j are non-zero. We define

Lν (u) =
∏
j�1

Lν j (u j). (20)

Since L0 ≡ 1, for each ν ∈ F the product contains only finitely many non-trivial factors. The
set {Lν : ν ∈ F} forms an orthonormal basis for L2(U, ρ). We can therefore expand P(·, u)

into the Legendre expansion

P(·, u) =
∑
ν∈F

Pν (·)Lν (u),

where Pν := ∫
U P(·, u)Lν (u) dρ(u) ∈ V . By the L2(U, ρ) orthonormality of the set

{Lν : ν ∈ F}, Parseval’s equation in the Bochner space L2(U, ρ;V ) takes the form

∀ P ∈ L2(U, ρ;V ) : ‖P‖2
L2(U,ρ;V )

=
∑
ν∈F

‖Pν‖2
V .

We now define the sparse tensor surrogate forward maps where we only use a finite (sparse)
subset of the gpc mode index set F . For any integer N, choose an index set �N ⊂ F of gpc
coefficients Pν ∈ V which are to be included into the surrogate map, subject to the constraint
#(�N ) � N, and a second set L(�N ) := (lν )ν∈�N ⊂ N

N of FE discretization levels for the FE
approximation of the active Pν , ν ∈ �N . Then, we consider surrogate forward maps PN,L for
the response P which are of the form

PN,L(x, u) =
∑
ν∈�N

Pν,L(x)Lν (u), Pν,L ∈ V lν . (21)

We wish to find the sets �N and L(�N ) that give the best (or the quasi-best) approximations
among all finite subsets � ⊂ F and of L(�) subject to a constraint on their combined
cardinality Ndof = O(

∑
ν∈�N

2dlν ). Convergence rates, in terms of Ndof, of such approximations
of parametric forward maps have been derived recently, for example, in [5, 6, 15, 16, 27, 25].
In these references, the following assumption has been verified for various problem classes.

Assumption 9. There are positive constants σ , τ , α and β such that for each integer N, with
a total budget of Ndof = O(Nσ/τ ) degrees of freedom, a subset �N ⊂ F of cardinality not
exceeding an absolute multiple of N and such that, for every ν ∈ �N, |ν| = O(log N) and a
surrogate gpc FE approximation PN,L of the parametric forward solution P of (14) of the form
(21) with rate of convergence,

‖P − PN,L‖L2(U,ρ;V ) � CN−τ
dof ,

can be found in O(Nα
dof(log Ndof)

β ) float point operations.

For the model elliptic inverse problem of determining K given by (5) from linear
functionals defined on solutions of (4), subject to the sparsity conditions in assumption 1,
the preceding assumption is verified in appendix E; there also bounds for τ , the rate σ and
for the exponents α > 0 and β � 0 in assumption 9 are derived, in terms of the sparsity
assumptions on the unknown coefficient K in (13).

11
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3. Plain MCMC

We study the computational complexity of the plain MCMC method (10) to generate samples
from the posterior probability measure ρδ determined in the previous section. The main
results of this analysis are summarized in theorem 13. The complexity analysis of the MCMC
algorithm is of independent interest as it utilizes the emerging idea of MCMC methods with
dimension independent mixing properties [7, 14, 31]. Furthermore, the results in the present
section will be the foundation for several accelerations of the plain MCMC algorithm which
will be presented in sections 4 and 5. In order to obtain a constructive version of the MCMC
algorithm, we will approximate the solutions of the forward problem (4) by applying the FEM
in the physical domain D to its parametric version (4) and by truncation of the expansion of
the diffusion coefficient K given by (5).

Assumptions 1(i) and (ii) are imposed throughout what follows. From assumption 1(ii)
and (5), we deduce that K(·, u) ∈ W 1,∞(D) for all u ∈ U .

3.1. FE approximation of the posterior measure

We denote the vector of observables from the Galerkin discretized, gpc-parametrized
approximate forward solution map by

GJ,l(u) = (O1(P
J,l(u)), . . . ,Ok(P

J,l(u))) : U �→ R
k (22)

and define the corresponding Bayesian potential


J,l(u; δ) = 1
2 |δ − GJ,l(u)|2	. (23)

We define an approximate conditional posterior probability measure ρJ,l,δ on the measurable
space (U,�) as

dρJ,l,δ

dρ
∝ exp(−
J,l(u; δ)).

Then, the measure ρJ,l,δ is an approximation of the Bayesian posterior ρδ which, due to the
discretization and the truncation of the expansion (5), incurs an approximation error. We now
show that this error in the posterior measure is bounded in the Hellinger metric with respect
to J and l in the same way as the forward error in proposition 8. The proof of the following
proposition is based on a generalization of the method introduced in [8].

Proposition 10. Let assumptions 1(i), (ii) and 7 hold. If the domain D is convex and if
f ∈ L2(D), then there exists a positive constant C(δ) depending only on the data δ such that
for every J and l there holds

dHell(ρ
δ, ρJ,l,δ ) � C(δ)(J−q + 2−l )‖ f ‖L2(D).

Proof. We denote the normalizing constants as

Z(δ) =
∫

U
exp(−
(u; δ)) dρ(u), ZJ,l (δ) =

∫
U

exp(−
J,l(u; δ)) dρ(u).

We then estimate

2dHell(ρ
δ, ρJ,l,δ )2 =

∫
U

(
Z(δ)−1/2 exp

(
−1

2

(u; δ)

)

− (ZJ,l(δ))−1/2 exp

(
−1

2

J,l(u; δ)

))2

dρ(u)

� I1 + I2,

12
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where we defined

I1 := 2

Z(δ)

∫
U

(
exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

J,l(u; δ)

))2

dρ(u),

I2 := 2|Z(δ)−1/2 − ZJ,l (δ)−1/2|2
∫

U
exp(−
J,l(u; δ)) dρ(u).

We estimate I1 and I2. To bound I1, given data δ, for every u ∈ U holds∣∣∣∣ exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

J,l(u; δ)

)∣∣∣∣ � 1

2
|
(u; δ) − 
J,l(u; δ)|

� C(2|δ| + |G(u)| + |GJ,l(u)|)|G(u) − GJ,l(u)|. (24)

Moreover, by proposition 8, there exists a constant C > 0 independent of J and of l such that,
for all u ∈ U , there holds

|G(u) − GJ,l(u)| � C max{‖Oi‖V ∗ }‖P(·, u) − PJ,l(·, u)‖V

� C(2−l‖PJ(·, u)‖W + J−q‖P(·, u)‖V ).

By (7) and proposition 29, ‖P(·, u)‖V and ‖PJ(·, u)‖W are uniformly bounded with respect to
u ∈ U . Therefore, there exists a constant C(δ) > 0 depending only on the data δ such that for
all J ∈ N

I1 � C(δ)Eρ (2−l‖PJ(·, u)‖W + J−q‖P(·, u)‖V )2

� C(δ)(J−2q‖ f ‖2
V ∗ + 2−2l‖ f ‖2

L2(D)
).

To estimate the term I2, we observe that there is a positive constant C > 0 such that for every
J, l ∈ N holds

|Z(δ)−1/2 − ZJ,l (δ)−1/2|2 � C(Z(δ)−3 ∨ ZJ,l(δ)−3)|Z(δ) − ZJ,l(δ)|2.
We note that

|Z(δ) − ZJ,l (δ)| �
∫

U
| exp(−
(u; δ)) − exp(−
J,l(u; δ))| dρ(u)

�
∫

U
|
(u; δ) − 
J,l(u; δ)| dρ(u).

Therefore, as Z(δ) and ZJ,l (δ) are uniformly bounded below for all δ, analysis similar to that
for I1 shows that

I2 � C(δ)(2−2l + J−2q)‖ f ‖2
L2(D)

.

Thus,

dHell(ρ
δ, ρJ,l,δ ) � C(δ)(2−l + J−q)‖ f ‖L2(D). �

3.2. Computational complexity of plain MCMC

Given J, l ∈ N and data δ, we use the MCMC method (10) to sample the probability measure
ρJ,l,δ . In so doing, we create a method for approximating the integrals of functions g : U → R

with respect to ρδ . We use the following notation for the empirical measure generated by the
Markov chain designed to sample ρJ,l,δ:

EρJ,l,δ

M [g] := 1

M

M∑
k=1

g(u(k)), (25)

13
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where the Markov chain CJ,l = {u(k)}k∈N0 ⊂ R
J is started in the restriction of u(0) to R

J . It
depends on the discretization level l and the truncation level J since it is generated from the
process (10) with the acceptance probability (9) being replaced by

αJ,l(u, v) = 1 ∧ exp(
J,l(u; δ) − 
J,l(v; δ)), (u, v) ∈ U × U. (26)

Given M ∈ N we wish to estimate the MC sampling error

E
ρδ

[g] − EρJ,l,δ

M [g]. (27)

We develop in the following two types of error bounds as M → ∞ for (27): a probabilistic
error bound for PJ,l

u(0) almost every realization of the Markov chain and a mean square bound.
We refer to the table in section 1.2 for the notation in the next result.

Proposition 11. Let assumptions 1(i), (ii) and 7 hold. Let g : U → R be a bounded continuous
function on U with respect to the supremum norm. Then, for every initial condition u(0) and
for PJ,l

u(0) -almost every realization of the Markov chain holds the error bound

∣∣Eρδ

g(u) − EρJ,l,δ

M [g]
∣∣ � c1M−1/2 + c2(J

−q + 2−l ),

where c1 � c3|ξM|; ξM is a random variable (on the probability space generating the
randomness within the Markov chain) which converges weakly as M → ∞ to ξ ∼ N(0, 1)

and c2, c3 are non-random constants independent of M, J and l.
Moreover, there exists a constant c4 (which is deterministic and depends only on the data

δ, and which is, in particular, independent of M, J and l) such that(
Eρ,J,l

[∣∣Eρδ

[g] − EρJ,l,δ

M [g]
∣∣2])1/2 � c4(M

−1/2 + J−q + 2−l ). (28)

Proof. As g is bounded, we have from proposition 10 and properties of the Hellinger metric
(specifically, from (2.7) in [8]) for every u ∈ U that

|Eρδ

[g(u)] − E
ρJ,l,δ

[g(u)]| � c̄(g)dHell(ρ
δ, ρJ,l,δ ) � c̄(g)C(δ)(J−q + 2−l ). (29)

Here, C(δ) is as in proposition 10 and c̄(g) depends on the supremum of g(u) over U , but
is independent of J, l. By proposition 5 (and remarks 6 and 4), we deduce the existence of a
constant C > 0, independent of M, J and l, such that there holds, as M → ∞, PJ,l

u(0) almost
surely,

|EρJ,l,δ
[g] − 1

M

M∑
k=1

g(u(k))| � C|ξM|M−1/2,

where ξM converges weakly as M → ∞ to ξ ∼ N(0, 1). Combining this with (29) gives the
first assertion.

To prove the mean square error bound (28), we define

ḡ(u) := g(u) − E
ρJ,l,δ

[g],

as in the proof of proposition 5. We note that ḡ depends on J, l via the dependence on
the approximate posterior measure ρJ,l,δ , but we do not indicate this dependence explicitly.
However, we will use uniform boundedness of ḡ with respect to these parameters in an essential
way in what follows.

14
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Due to the invariance of the stationary measures ρJ,l,δ , we may write

1

M
EρJ,l,δ ,J,l

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

= E
ρJ,l,δ

[ḡ(u(0))2] + 2
1

M

M∑
k=1

M∑
j=k+1

EρJ,l,δ ,J,l[ḡ(u(k))ḡ(u j)]

= E
ρJ,l,δ

[ḡ(u(0))2] + 2
1

M

M−1∑
k=0

M−k∑
j=1

EρJ,l,δ ,J,l[ḡ(u(0))ḡ(u( j))]

= E
ρJ,l,δ

[ḡ(u(0))2] + 2
1

M

M−1∑
k=0

M−k∑
j=1

E
ρJ,l,δ [

ḡ(u(0))EJ,l
u(0) [ḡ(u

( j))]
]

� E
ρJ,l,δ

[ḡ(u(0))2]

+ 2
1

M

M−1∑
k=0

sup |ḡ|
M−k∑
j=1

E
ρJ,l,δ [∣∣EJ,l

u(0)g(u
( j)) − E

ρJ,l,δ
[g]
∣∣]

� E
ρJ,l,δ

[ḡ(u(0))2] + 4
1

M

M−1∑
k=0

sup |ḡ|2
M−k∑
j=1

(1 − R) j.

In the last line, we have used the estimate on the total variation contraction from proposition 5
noting, as in remark 6, that because supu∈U ‖PJ,l (u)‖V is bounded uniformly with respect to the
(discretization) parameters J and l, the constant 0 < R < 1 is independent of the parameters
J and l. Since supJ,l E

ρJ,l,δ
[ḡ(u(0))2] is bounded independently of J and of l, we deduce that

sup
J,l,M∈N

MEρJ,l,δ ,J,l

[∣∣∣∣∣ 1

M

M∑
k=1

ḡ(u(k))

∣∣∣∣∣
2]

< ∞.

Next, we note that

Eρ,J,l

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

=
∫

U
EJ,l

u(0)

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

dρ(u(0))

=
∫

U
EJ,l

u(0)

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

dρ

dρJ,l,δ
(u(0)) dρJ,l,δ (u(0))

� EρJ,l,δ ,J,l

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

ZJ,l (δ) sup
u∈U

exp(
J,l(u; δ)).

As ZJ,l (δ) � 1 and supu∈U |
J,l(u; δ)| are bounded uniformly with respect to J and l, we get
the conclusion after using the bound from proposition 10 on the Hellinger distance between
ρδ and ρJ,l,δ. �

We consider the case where g(u) = �(P(·, u)), with � ∈ V ∗ being a bounded linear
functional on V . As there exists a constant C > 0 such that for all J, l ∈ N, u ∈ U , there holds

|Eρδ

[�(P(·, u))] − E
ρδ

[�(PJ,l(·, u))]| � C(J−q + 2−l )

and

|Eρδ

[�(PJ,l(·, u))] − E
ρJ,l,δ

[�(PJ,l(·, u))]| � C(J−q + 2−l ),

we have

|Eρδ

[�(P(·, u))] − E
ρJ,l,δ

[�(PJ,l(·, u))]| � C(J−q + 2−l ).
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We therefore perform an MCMC algorithm to approximate E
ρJ,l,δ

[�(PJ,l(·, u))]. As
�(PJ,l(·, u)) and 
J,l(u; δ) depend only on the finite set of coordinates {u1, . . . , uJ} in
expansion (5), we perform the Metropolis–Hastings MCMC method on this set with proposals
being drawn from the restriction of the prior measure ρ to this finite set.

Proposition 12. Let assumptions 1(i), (ii) and 7 hold, and assume that g(u) = �(P(·, u)),

where � is a bounded linear functional in V ∗. Then, the approximate evaluation of the sample
average 1

M

∑M
k=1 �(PJ,l(·, u(k))) by the plain MCMC method with M realizations of the chain,

with FE discretization in the domain D at the mesh level l as described above, and with J-term
truncated coefficient representation (13), requires O(ld−12dlMJ) floating point operations.

Proof. The approximate computation of each of the O(ld−12dl ) non-zero entries of the stiffness
matrix of (16) requires at most O(J) operations to compute the coefficients KJ at the quadrature
points6. Therefore, the cost of constructing the stiffness matrix is O(ld−12dlJ). Since the
condition number of this stiffness matrix is assumed to be uniformly bounded, the conjugate
gradient method for the approximate solution of the linear system resulting from the FE
discretization with an accuracy comparable to the order of the discretization error requires
at most O(ld−12dl ) floating point operations. The total cost for solving the approximated
forward problem at each step of the Markov chain requires at most O(ld−12dlJ) floating point
operations. The numerical evaluation of �(PJ,l(u(k))) requires at most O(2dl ) floating point
operations. Since we generate M draws of the chain, the assertion follows. �

Theorem 13. Let assumptions 1(i), (ii) and 7 hold. For g(u) = �(P(u)), where � is a bounded
linear functional in V ∗, with probability pNdof (t), the conditional expectation E

ρδ

[g(u)] can
be approximated using Ndof degrees of freedom to approximate the forward PDE and t2N2/d

dof
MCMC steps (with a total of t2N1+2/d

dof degrees of freedom), incurring an error of O
(
N−1/d

dof

)
,

and using at most

ct2 log(Ndof)
d−1N1+(2+1/q)/d

dof

floating point operations for a positive constant c where, for all t,

lim
Ndof→∞

pNdof (t) →
∫ c′t

−c′t

1√
2π

exp(−x2/2) dx,

for a positive constant c′ independent of Ndof and t.
In mean square with respect to the measure Pρ,J,l , E

ρδ

[g(u)] can be approximated
with an error O(N−1/d

dof ), using at most N1+2/d
dof number of degrees of freedom in total, and

O
(

log(Ndof)
d−1N1+(2+1/q)/d

dof

)
floating point operations.

Proof. We first prove the probabilistic convergence result. We invoke the error estimate in
proposition 11, and choose the parameters M, J and l so as to balance the bounds M−1/2,
J−q and 2−l , taking into account the fact that the coefficient of M− 1

2 is only known through
its asymptotic normality. We select J = 2l/q and M = t2N2/d

dof where t = c3|ξM|, with Ndof

denoting the number of degrees of freedom at each step being Ndof = O(2dl ); the constant c3

and the random variable ξM are as in proposition 11. Then, the total number of floating point
operations required as l → ∞ is not larger than O(t2ld−12(d+2+1/q)l ). We then arrive at the
conclusion. The mean square convergence is proved in a similar manner. �

6 There is an implicit assumption here that the basis functions can be evaluated at a point with O(1) cost.
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4. Sparse gpc-MCMC

We again study the computational complexity of the MCMC method defined by (10) to sample
the posterior probability distribution ρδ . We adapt the approach in the previous section to use
a computational method which effects a reduction in computational cost by precomputing
the parametric dependence of the forward model, which enters the likelihood. The main
results are summarized in theorem 18. This method is introduced, and used in practice, in the
series of papers [19–21]. The major cost in MCMC methods is the repeated solution of the
forward equations, with varying coefficients from the MCMC sampler of ρδ . The complexity
of these repeated forward solvers can be drastically reduced by precomputing an approximate,
deterministic parametric representation of the system’s response which is valid for all possible
realizations of u ∈ U . Specifically, we precompute a sparse tensor FE approximation of the
parametric, deterministic forward problem by an approximate polynomial chaos representation
of the solution’s dependence on u and by discretization of the forward solutions’ spatial
dependence from a multi-level hierarchy of FE spaces in D. This precomputed ‘surrogate’ of
the parametric response map is then evaluated when running M steps of the chain to estimate
expectations with respect to the (approximate due to the use of the surrogate) posterior measure.

As we shall show, this strategy is particularly effective if the observations consist only of
continuous, linear functionals of the system’s response. In this case, only scalar coefficients
of the forward map’s gpc expansion need to be stored and evaluated. We use this to reduce
the cost per step of the MCMC method. We continue to work under assumptions 1(i), (ii) and,
furthermore, we add assumption 1(iii) throughout the remainder of the paper.

4.1. Approximation of the posterior measure

For the solution PN,L in assumption 9, we define the parametric, deterministic forward map
based on the N-term truncated gpc expansion and FE projected surrogate forward map, as
specified in section 2.5

GN,L(u) = (O1(PN,L(·, u)), . . . ,Ok(PN,L(·, u))), (30)

and the corresponding approximate Bayesian potential


N,L(u; δ) = 1
2 |δ − GN,L(u)|2	.

The conditional measure ρN,L,δ on the measurable space (U,�) is defined as

dρN,L,δ

dρ
∝ exp(−
N,L(u; δ)).

We then have the following approximation result.

Proposition 14. Let assumptions 1(i) and 9 hold. Then, there is a constant C(δ) which only
depends on the data δ such that, for every N and L as in assumption 9,

dHell(ρ
δ, ρN,L,δ ) � C(δ)N−τ

dof .

Proof. The proof for this proposition is similar to the proof of proposition 10, differing
only in a few details; hence, we highlight only the differences. These are due to estimates
on the forward error from assumptions 9 being valid only in the mean square sense whilst
proposition 8 holds pointwise for u ∈ U . Nonetheless, at the point in the estimation of I1 and
I2 where the forward error estimate is used, it is possible to use a mean square forward error
estimate instead of a pointwise forward error estimate. From assumption 9, we deduce that
there is a positive constant c such that

ρ{u: G(u) − GN,L(u)| > 1} � cN−2τ
dof .
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As ‖P(u)‖V is uniformly bounded for all u, there is a constant c1(δ) > 0 such that
|δ−G(u)|	 < c1(δ). Choose a constant c2(δ) > 0 sufficiently large. If |δ−GN,L(u)|	 > c2(δ),
then

|GN,L(u) − G(u)|	 � |δ − GN,L(u)|	 − |δ − G(u)|	 > c2(δ) − c1(δ) > 1.

LetU1 ⊂ U be the set of u ∈ U such that |δ−GN,L(u)|	 > c2(δ). We have that ρ(U1) � cN−2τ
dof .

Thus,
1

Z(δ)

∫
U1

∣∣∣∣exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

N,L(u; δ)

)∣∣∣∣ dρ(u) � C(δ)N−2τ
dof .

When u /∈ U1, |δ − GN,L(u)|	 � c2(δ) so there is a constant c3(δ) so that |GN,L(u)| � c3(δ).
An argument similar to that for (24) shows that∣∣∣∣exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

N,L(u; δ)

)∣∣∣∣
� C(2|δ| + |G(u)| + |GN,L(u)|)|G(u) − GN,L(u)|.

Therefore,

I1 = 1

Z(δ)

∫
U

∣∣∣∣exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

N,L(u; δ)

)∣∣∣∣
2

dρ(u)

� C(δ)N−2τ
dof + c

∫
U
(2|δ| + |G(u)| + c3(δ))2|G(u) − GN,L(u)|2 dρ(u)

� C(δ)N−2τ
dof + C(δ)

∫
U

‖P(·, u) − PN,L(·, u)‖2
V dρ(u)

� C(δ)N−2τ
dof .

To show that I2 < C(δ)N−2τ
dof , we still need to verify that

ZN,L(δ) =
∫

U
exp(−
N,L(u; δ)) dρ(u)

is uniformly bounded from below by a positive bound for all N and L. As PN,L is uniformly
bounded in L2(U, ρ;V ),∫

U
|GN,L(u)| dρ(u) � c

∫
U

‖PN,L(u)‖V dρ(u) � c.

Fixing r > 0 sufficiently large, the ρ measure of the set u ∈ U such that |GN,L(u)| > r is
bounded by c/r. Therefore, the measure of the set of u ∈ U such that |GN,L(u)| � r is bounded
from below by 1 − c/r. Thus, we have proved that for every realization δ of the data, there
exists C(δ) > 0 such that

ZN,L(δ) �
∫

U
exp

(
−1

2
(|δ|	 + |GN,L(u)|	)2

)
dρ(u) > C(δ) > 0.

�
Let (u(k))k be the Markov chain generated by the sampling process (10) with the acceptance

probability being replaced by

αN,L(u, v) = 1 ∧ exp(
N,L(u, δ) − 
N,L(v, δ)). (31)

We denote by

EρN,L,δ

M [g] = 1

M

M∑
k=1

g(u(k)).

We then have the following error for the gpc-FE surrogate based MCMC method (for notation
we refer to section 1.2)
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Proposition 15. Let assumptions 1(i) and 9 hold and let g be a bounded continuous function
from U to R. Then,∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣ � c6M−1/2 + c7N−τ

dof , (32)

PρN,L,δ ,N,L almost surely, where c6 � c8|ξM|, where ξM is a random variable which converges
weakly as M → ∞ to ξ ∼ N(0, 1); the constants c7 and c8 are deterministic and do not
depend on M, N and Ndof.

There exists a deterministic positive constant c9 such that the gpc-MCMC converges in
the mean square with the same rate of convergence(

Eρ,N,L[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2])1/2 � c9(M

−1/2 + N−τ
dof ),

where c9 is independent of N,L and Ndof.

Proof. Using (31), a random draw from ρ has probability larger than exp(−
N,L(v; δ)) of
being accepted. Therefore, the transition kernel of the Markov chain generated by (10) with
the acceptance probability (31) satisfies

p(u, A) �
∫

A
exp(−
N,L(v; δ)) dρ(v).

Using theorem 16.2.4 of [22], we deduce that the nth iteration of the transition kernel satisfies

‖pn(u, ·) − ρN,L,δ‖TV � 2

(
1 −

∫
U

exp(−
N,L(v; δ)) dρ(v)

)n

.

From the proof of proposition 14, we have∫
U

exp(−
N,L(v; δ)) dρ(v) � exp(−c2(δ)2/2) + cN−2τ
dof .

Thus, we can choose a constant R < 1 independent of the approximating parameters N and L
so that for all n ∈ N holds

‖pn(u, ·) − ρN,L,δ‖TV � 2(1 − R)n.

In a similar manner as for proposition 11, we deduce the probabilistic bound. For the mean
square bound, similar to the proof of proposition 11, we have

EρN,L,δ ,N,L[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2] � C(M−1/2 + N−τ

dof )
2.

Let U ′ := {u ∈ U : |GN,L(u) − G(u)| > 1}. We deduce that there exists a constant c > 0
independent of L, Ndof, N such that ρ(U ′) � cN−2τ

dof and such that we may estimate

Eρ,N,L[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2] =

∫
U ′
EN,L

u(0)

[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2] dρ(u(0))

+
∫

U\U ′
EN,L

u(0)

[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2] dρ(u(0))

� CN−2τ
dof +

∫
U\U ′

EN,L
u(0)

[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2] dρ(u(0))

� CN−2τ
dof +

∫
U\U ′

EN,L
u(0)

[∣∣Eρδ

[g] − EρN,L,δ

M [g]
∣∣2]ZN,L(δ) exp(
N,L(u; δ)) dρN,L,δ (u(0)).

On U \ U ′, supu∈U |GN,L(u)| is uniformly bounded with respect to all N and L. From this, we
arrive at the conclusion. �
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Remark 16. In proposition 15, g is assumed to be a bounded continuous function from U to
R. The gpc-FE surrogate accelerated MCMC is of particular interest in the case where g is
given by � ◦ P where � is a bounded, linear functional on V , i.e. � ∈ V ∗. From assumption 9
and the fact that

dρδ

dρ
(u) = 1

Z(δ)
exp(−
(u; δ)),

we deduce that

|Eρδ

[�(P(·, u))] − E
ρδ

[�(PN,L(·, u))]| � C(δ, �)N−τ
dof .

On the other hand, from proposition 14, we have (cf [8, equation (2.7)])

|Eρδ

[�(PN,L(·, u))] − E
ρN,L,δ

[�(PN,L(·, u))]| � C(δ, �)N−τ
dof .

Therefore, by the triangle inequality,

|Eρδ

[�(P(·, u))] − E
ρN,L,δ

[�(PN,L(·, u))]| � C(δ, �)N−τ
dof .

We wish to approximate E
ρN,L,δ

[�(PN,L(·, u))] with an MCMC algorithm. In doing so, the
following difficulty may arise: although �(P(·, u)) is uniformly bounded with respect to
u ∈ U , supu∈U �(PN,L(·, u)) may not be uniformly bounded with respect to N and L. However,
we can still apply proposition 15 by using a cut-off argument: to this end, we define the
continuous bounded function g̃(u) : U → R by truncation, i.e.

g̃(u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(PN,L(·, u)) if |�(PN,L(·, u))| � supu∈U |�(P(·, u))| + 1,

sup
u∈U

|�(P(·, u))| + 1 if �(PN,L(·, u)) > supu∈U |�(P(·, u))| + 1,

− sup
u∈U

|�(P(·, u))| − 1 if �(PN,L(·, u)) < − supu∈U |�(P(·, u))| − 1.

Define U ′ := {u ∈ U : |�(P(·, u)) − �(PN,L(·, u))| > 1}. From assumption 9, we find that
ρ(U ′) < C(�, δ)N−2τ

dof . It follows then that there exists a constant c > 0 depending on the data
δ, but independent of N and of L such that

|EρN,L,δ

[�(PN,L(·, u)) − g̃(u)]| �
∫

U ′
|�(PN,L(·, u)) − g̃(u)| dρN,L,δ (u)

� C(δ)

∫
U

IU ′ (u)(|�(PN,L(·, u))| + c) dρ(u)

� C(δ)ρ(U ′)1/2(‖�(PN,L(·, u))‖L2(U,ρ;R) + c) � C(δ)N−τ
dof .

Therefore, we may run the MCMC algorithm on E
ρN,L,δ

[g̃(u)].

At each step of the MCMC algorithm, we need to compute �(PN,L(·, u(k))) which, for
linear functionals �(·), is equal to

∑
ν∈� �(Pν,L)Lν (·, u(k)). Because the parametric solution

of the elliptic problem can be precomputed before the MCMC is run, and then needs only
to be evaluated at each state of the MCMC method, significant savings can be obtained. We
illustrate this, using the ideas of the previous remark 16, to guide the choice of test functions.

Proposition 17. Let assumptions 1(i) and 9 hold and let g(u) = �(P(·, u)) where � ∈ V ∗.
Then, the total number of floating point operations required for performing M steps in the
Metropolis–Hastings method as N, M → ∞ is bounded by O(Nα

dof(log Ndof)
β + MN log N).

Proof. By assumption 9 and with the notation as in that assumption, the cost of solving
problem (E.6) is bounded by O(Nα

dof(log Ndof)
β ). At each MCMC step, we need to evaluate

the observation functionals

Oi(PN,L(u(k))) =
∑
ν∈�N

Oi(Pν,L)Lν (u
(k)). (33)
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We note in passing that the storage of the parametric gpc-type representation of the forward
map (33) requires only one real per gpc mode, provided that only bounded, linear functionals
of the forward solution are of interest. We now estimate the complexity of computing one
draw of the forward map (33). For ν ∈ F , each multivariate Legendre polynomial Lν (uk)

can be evaluated with O(|ν|) float point operations. As |ν| = O(log N), computing the
observation functionals Oi(PN,L) requires O(N log N) floating point operations. Thus, we
need O(Nα

dof(log Ndof)
β + MN log N) floating point operations to perform M steps of the

Metropolis–Hastings method with sampling of the surrogate, sparse gpc-FE representation of
the forward map. �

Theorem 18. Let assumptions 1(i) and 9 hold. For g(u) = �(P(·, u)) with given � ∈ V ∗,
with probability pNdof (t), the conditional expectation E

ρδ

[g(u)] can be approximated with Ndof

degrees of freedom, incurring an error of O(N−τ
dof ) using at most

cNα
dof(log Ndof)

β + ct2N2τ+τ/σ

dof log(Ndof)

many floating point operations, where

lim
Ndof→∞

pNdof (t) →
∫ c′t

−c′t

1√
2π

exp(−x2/2) dx,

for some constants c, c′ independent of Ndof.
In the mean square with respect to the measure Pρ,N,L, E

ρδ

[g(u)] can be approximated
with Ndof degrees of freedom, with an error N−τ

dof using at most

O
(
Nα

dof(log Ndof)
β + N2τ+τ/σ

dof log(Ndof)
)

floating point operations.

Proof. We relate the number of MCMC realizations M to the total number of degrees of
freedom Ndof by equating the terms in the error bound (32). To this end, we choose M = t2N2τ

dof,
where t = c8|ξM|; the constant c8 and the random variable ξM are as in proposition 15. With
N = O

(
Nτ/σ

dof

)
, the number of floating point operations required in proposition 17 is bounded

by

O
(
Nα

dof(log Ndof)
β + t2N2τ+τ/σ

dof log Ndof
)
.

As ξM converges weakly to the normal Gaussian variable, we deduce the limit for the probability
density pNdof (t) of the random variable t. The proof for the mean square approximation is
similar. �

Remark 19. In studying complexity of the plain MCMC method in theorem 13, the discretized
parametric PDE (4) is to be solved once at every step of the MCMC process, using Ndof degrees
of freedom, with O

(
N2/d

dof

)
steps required (the multiplying constant depends on a random

variable when we consider the realization-wise error). Ignoring log factors, the error resulting
from discretization and running the MCMC on the discretized PDE can be bounded in terms
of the total number of floating point operations Nf p by O

(
N−1/(d+2+1/q)

f p

)
. In theorem 18, the

discretized forward PDE is solved for every realization before running the MCMC process.
The rate of convergence of the MCMC process in terms of the total number of floating point
operations used is O

(
N−min(τ/α,1/(2+1/σ ))

f p

)
. This can be significantly smaller than the rate of

convergence in theorem 13 when α is close to 1. To see this we consider in detail the manner in
which assumptions 9 are typically verified which, in turn, requires assumptions 1(iii) and (iv)
(which together imply assumption 1(ii), see discussion in appendix E). For example, with the
decay rate of ‖ψ j‖∞ in assumption 1(iii), the summability constant p in assumption 30 can be
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any constant that is greater than 1/s. Therefore, the gpc approximation rate σ in proposition 31
can be chosen as any positive constant smaller than s − 1/2. On the other hand, the J-term
approximation rate q of the unknown input K in assumption 1(ii) is bounded by s − 1. As

2 + 1

s − 1/2
< d + 2 + 1

s − 1
,

we therefore can choose σ so that
1

2 + 1/σ
>

1

d + 2 + 1/q
.

As shown in [5], when (‖Pν‖H2(D))ν ∈ �p(F ), τ can be chosen as 1/d. Thus, when α is
sufficiently close to 1, the complexity of the sparse gpc-MCMC approach is superior to that
of the plain MCMC approach in the previous section.

5. Multi-level MCMC

In the preceding section, we showed that complexity reduction is possible in the plain
MCMC sampling of the posterior measure ρδ provided that all samples are determined from
one precomputed, ‘surrogate’ sparse tensor gpc-representation of the forward map of the
discretization of the parametric, deterministic problem (4). Specifically, we proved that when
the forward map G(u) consists of continuous, linear functionals Oi(·) on the forward solution
U 
 u �→ P(·, u) ∈ V , and when the functional whose posterior expectation we seek is also
linear on this space, this gpc-type approximation of the solution can reduce the complexity
required. Lower efficiency results if, for example, the rate of convergence of the sparse tensor
FE solution in (E.6) is moderate in terms of the total number of degrees of freedom, and/or
if the complexity grows superlinearly with respect to the number of degrees of freedom.
Furthermore, although an increasing number of efficient algorithms for the computation of
approximate responses of the forward problem on the entire parameter space U are available
(e.g. [2–4, 11, 27]) and therefore gpc-surrogates for the MCMC are available, many systems of
engineering interest may not admit gpc-based representations of the parametric forward maps.
Finding other, non-gpc based, methods for reducing the complexity of plain MCMC sampling
under ρδ is therefore of interest. We do this by using ideas from multi-level Monte Carlo.
The resulting complexity is summarized in theorem 21. We give sufficient conditions on the
approximation methods and on the basis functions ψ j appearing in (5) such that complexity
reduction is possible by performing a multi-level sampling procedure where a number of
samples depending on the discretization parameters is used for problem (4).

5.1. Derivation of the MLMCMC

For given, fixed � ∈ V ∗, a bounded linear functional onV , we aim at estimating E
ρδ

[�(P(·, u))],
where P is the solution of problem (4). For each level l = 1, 2, . . . , L, we assume that problem
(4) is discretized with the truncation of the Karhúnen–Loève expansion after J terms with
J = Jl as defined in (13) and with an FE discretization meshwidth hl . The multi-level FE-
discretization of the forward problem (4) and the truncation (13) induces a corresponding
hierarchy of approximations ρJl ,l,δ of the posterior measure ρδ .

Following [9, 1, 23, 10], the MLMCMC will be based on sampling a telescopic expansion
of the discretization error with a level-dependent sample size. Contrary to [9, 1, 23], however,
we introduce now two multi-level discretization hierarchies, one for the parametric forward
solutions {PJl ,l}L

l=0 (where the level corresponds to mode truncation of the coefficient and to
discretization for the approximate solution of the parametric forward problem) and a second

22



Inverse Problems 29 (2013) 085010 V H Hoang et al

one {ρJl′ ,l′,δ}L
l′=0 for the posterior measure. The ‘usual’ telescoping argument as in [9] or in

[1, 23] together with the single-level error bound in proposition 11 alone does not allow for
obtaining a convergence rate for the present problem.

As in section 3, we work under assumptions 1(i), (ii) and 7. We recall the sequence of
discretization levels in the FE discretizations in the physical domain D, as in assumption 7,
and the input truncation dimension J in assumption 1(ii). We then derive the MLMCMC as
follows. First, we note that, by assumption 7, using the uniform boundedness of the PJ in W
as in the preceding section, there exists C > 0 independent of L such that

|Eρδ

[�(P(·, u))] − E
ρδ

[�(PJL,L(·, u))]| � C sup
u∈U

‖P(·, u) − PJL,L(·, u)‖V � C2−L. (34)

With the convention that expectation with respect to ρJ−1,−1,δ denotes integration with respect
to the measure which assigns zero mass to all subsets of the probability space, we write

E
ρJL ,L,δ

[�(P(·, u))] =
L∑

l=0

(EρJl ,l,δ [�(P(·, u))] − E
ρJl−1 ,l−1,δ

[�(P(·, u))]) (35)

=
L∑

l=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(P(·, u))]. (36)

Analogously, we may write, for any L′ � L (omitting the arguments of P and its approximations
for brevity of notation),

E
ρJL ,L,δ

[�(PJL′ ,L′
)] =

L∑
l=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJL′ ,L′
)]. (37)

With the convention that PJ−1,−1 := 0, we have for each l and L′

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJL′ ,L′
)] =

L′∑
l′=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)]. (38)

Finally, a computable multi-level approximation will be obtained on running, for each level
l = 0, 1, . . . , L of truncation, resp. Galerkin projection, simultaneously a suitable number of
realizations of a Markov chain Cl to approximate the expectations

L∑
l=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJL′ ,L′
)] =

L∑
l=0

L′∑
l′=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)]

(39)

by sample averages of Mll′ many realizations, upon choosing L′(l) judiciously. To derive a
computable MLMCMC estimator we observe that, for any measurable function Q : U → R

which is integrable with respect to the approximate posterior measures ρJl ,l,δ ,

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[Q] = 1

ZJl ,l

∫
U

exp(−
Jl ,l(u; δ))Q(u) dρ(u)

− 1

ZJl−1,l−1

∫
U

exp(−
Jl−1,l−1(u; δ))Q(u) dρ(u)

= 1

ZJl ,l

∫
U

exp(−
Jl ,l(u; δ))(1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))Q(u) dρ(u)

+
(

ZJl−1,l−1

ZJl ,l
− 1

)
1

ZJl−1,l−1

∫
exp(−
Jl−1,l−1(u; δ))Q(u) dρ(u).
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We note further that

ZJl−1,l−1

ZJl ,l
− 1 = 1

ZJl ,l

∫
U
(exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1) exp(−
Jl ,l(u; δ)) dρ(u).

Thus, an approximation for ZJl−1,l−1/ZJl ,l − 1 can be found by running the MCMC with
respect to the approximate posterior ρJl ,l,δ to sample the potential difference exp(
Jl ,l(u; δ)−

Jl−1,l−1(u; δ)) − 1. We define the MLMCMC estimator EMLMCMC

L [�(P)] of E
ρδ

[�(P)] as

EMLMCMC
L [�(P)]

=
L∑

l=0

L′(l)∑
l′=0

EρJl ,l,δ

Mll′
[(1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))(�(PJl′ ,l′ ) − �(PJl′−1,l

′−1))]

+ EρJl ,l,δ

Mll′
[exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1] · EρJl−1 ,l−1,δ

Mll′
[�(PJl′ ,l′ ) − �(PJl′−1,l

′−1)].

Up to this point, the choice of the index L′(l) and the sample sizes Mll′ is still at our disposal.
Choices for them will be made based on an error-versus-work analysis of this estimator that
we now present.

5.2. Error analysis

To perform the error analysis of the MLMCMC approximation, we decompose the error into
three terms as follows.

Proposition 20. There holds

E
ρδ

[�(P)] − EMLMCMC
L [�(P)] = IL + IIL + IIIL (40)

where

IL := E
ρδ

[�(P)] − E
ρJL ,L,δ

[�(P)], IIL =
L∑

l=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(P) − �(PJL′ (l),L′(l))]

and

IIIL: =
L∑

l=0

L′(l)∑
l′=0

{
E

ρJl ,l,δ [(1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))](�(PJl′ ,l′ ) − �(PJl′−1,l
′−1))]

− EρJl ,l,δ

Mll′
[(1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))](�(PJl′ ,l′ ) − �(PJl′−1,l

′−1))]
}

+ {
E

ρJl ,l,δ [exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1] · E
ρJl−1 ,l−1,δ

[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)]

− EρJl ,l,δ

Mll′
[exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1] · EρJl−1 ,l−1,δ

Mll′
[�(PJl′ ,l′ ) − �(PJl′−1,l

′−1)]
}

respectively.

Proof. From equation (36), we have

E
ρδ

[�(P)] − E
ρJL ,L,δ

[�(P)] = E
ρδ

[�(P)] −
L∑

l=0

(EρJl ,l,δ [�(P)] − E
ρJl−1 ,l−1,δ

[�(P)]). (41)

from which it follows that

E
ρδ

[�(P)] − E
ρJL ,L,δ

[�(P)] = E
ρδ

[�(P)] −
L∑

l=0

(EρJl ,l,δ [�(PJL′ ,L′
)] − E

ρJl−1 ,l−1,δ

[�(PJL′ ,L′
)]) − IIL.
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Rearranging and using (38) gives

E
ρδ

[�(P)] = IL + IIL +
L∑

l=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJL′ ,L′
)]

= IL + IIL +
L∑

l=0

L′∑
l′=0

(EρJl ,l,δ − E
ρJl−1 ,l−1,δ

)[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)].

The claimed expression follows from the definition of the MLMCMC method which computes
the MCMC sample path averages of the terms on the right-hand side in (39). �

We next derive an error bound by estimating the three terms in the error (40) separately.
Throughout we choose Jl = 2�l/q�. For the first term IL, we obtain from proposition 10, the
bound

|IL| � C(δ)
(
J−q

L + 2−L
)

� C(δ)2−L. (42)

Likewise we obtain, using assumption 7 in addition to proposition 10,

|IIL| � C(δ)

L∑
l=0

(
J−q

l + 2−l
)
2−L′(l) � C(δ)

L∑
l=0

2−(l+L′(l)). (43)

We now estimate IIIL. Since Jl = 2�l/q�, we have that

sup
u∈U

|�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)| � C2−l′ .

Further

sup
u∈U

|1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ))|
� sup

u∈U
|
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)|(1 + exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))

� C2−l .

As in section 3, for each discretization level l ∈ N, we introduce the Markov chains
Cl = {u(k)}k∈N0 ⊂ R

Jl which are started in the restriction of u(0) to R
Jl and then generated by

(10) with the Jl-term truncated parametric coefficient expansions (13) and forward problems
(16) which are Galerkin-discretized at the mesh level l, i.e. with the acceptance probability
α(u, v) in (9) replaced by

αJl ,l(u, v) = 1 ∧ exp(
Jl ,l(u; δ) − 
Jl ,l(v; δ)), (u, v) ∈ U × U. (44)

For each discretization level l = 1, 2, . . ., the chains Cl are pairwise independent. For every
fixed discretization level L, we denote by CL = {C1, C2, . . . , CL} the collection of Markov
chains obtained from the different discretizations, and by PL the product probability measure on
the probability space generated by the collection of these L chains. For each fixed discretization
level L, this measure describes the law of the collection of chains CL:

PL := Pρ,J1,1 ⊗ Pρ,J2,2 ⊗ . . . ⊗ Pρ,JL,L.

Let EL be the expectation over all realizations of the collection CL of chains Cl with respect to
the product measure PL. We have, by assumption 7 and by proposition 5,

EL
[{

E
ρJl ,l,δ [(1 − exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)))](�(PJl′ ,l′ ) − �(PJl′−1,l

′−1))]

− EρJl ,l,δ

Mll′
[(1−exp(
Jl ,l(u; δ)−
Jl−1,l−1(u; δ)))](�(PJl′ ,l′ )−�(PJl′−1,l

′−1))]
}2]

� CM−1
ll′ 2−2(l+l′ ).
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We also have, again using assumption 7 and the last estimate in proposition 5,

EL
[{

E
ρJl ,l,δ [exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1] · E

ρJl−1 ,l−1,δ

[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)]

− EρJl ,l,δ

Mll′
[exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1]

× EρJl−1 ,l−1,δ

Mll′
[�(PJl′ ,l′ ) − �(PJl′−1,l

′−1)]
}2]

� CEL
[{

E
ρJl ,l,δ [exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1]

− EρJl ,l,δ

Mll′
[exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1]

}2]
× sup

u∈U
|�(PJl′ ,l′ ) − �(PJl′−1,l

′−1)|2

+C sup
u∈U

| exp(
Jl ,l(u; δ) − 
Jl−1,l−1(u; δ)) − 1|2

× EL
[{

E
ρJl−1 ,l−1,δ

[�(PJl′ ,l′ ) − �(PJl′−1,l
′−1)]

− EρJl−1 ,l−1,δ

Mll′
[�(PJl′ ,l′ ) − �(PJl′−1,l

′−1)]
}2]

� CM−1
ll′ 2−2(l+l′ ).

Hence,

EL[|IIIL|2] � CL
L∑

l=0

L′(l)
L′(l)∑
l′=0

M−1
ll′ 2−2(l+l′ ). (45)

To achieve a bound on the error (40) which is O(Lm2−L) for some m ∈ R+, we choose

L′(l) := L − l, and Mll′ := 22(L−(l+l′ )). (46)

We then have

E[|IIIL|2] � CL
L∑

l=0

(L − l)22−2L � CL42−2L.

Theorem 21. For d = 2, 3, under the assumption that P ∈ L∞(U, ρ; H2(D)
⋂

V ), and with
the choices (46) we have that

EL[|Eρ(δ)[P] − EMLMCMC
L [P]|] � C(δ)L22−L. (47)

The total number of degrees of freedom used in running the MLMCMC sampler is bounded by
O(L22L) for d = 2 and O(23L) for d = 3. Assuming the availability of a linear scaling multi-
level iterative solver for the linear systems of equations arising from Galerkin discretization,
the total number of floating point operations in the approximate evaluation of the conditional
expectation under the posterior (for one instance of data δ) is bounded by O(Ld−12(d+1/q)L).
Denoting the total number of degrees of freedom which enter in running the chain on all
discretization levels by N, the error in (47) is bounded by O((log N)3/2N−1/2) for d = 2 and
by O((log N)2N−1/3) for d = 3. The total number of floating point operations to realize the
MLMCMC is bounded by O((log N)−1/(2q)N1+1/(2q)) for d = 2 and by O((log N)2N1+1/(3q))

for d = 3.

Proof. At each step we solve the truncated forward equation (14) for the truncation levels
Jl and Jl′ in expansion (13) and the FE discretization levels l and l′, respectively. Assuming
approximate solution of the discretized problems with termination at the discretization error
O(2−l ), resp. O(2−l′ ), and a linear scaling iterative solver with the choices (46) the total work
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is bounded by an absolute multiple of the total number of degrees of freedom, which in turn
is bounded, for d � 2, by

L∑
l=0

L′(l)∑
l′=0

Mll′ (2
dl + 2dl′ ) = 22L

L∑
l=0

L′(l)∑
l′=0

(2(d−2)l · 2−2l′ + 2−2l · 2(d−2)l′ )

� 22L

(
L∑

l=0

2(d−2)l +
L∑

l=0

2−2l
L−l∑
l′=0

2(d−2)l′
)

.

Therefore, for d = 2, the number of degrees of freedom is bounded by

� 22L

(
L +

L∑
l=0

2−2l(L − l)

)
� L22L.

For d = 3, it is bounded by

� 22L

(
2L +

L∑
l=0

2−2l2L−l

)
� 22L

(
2L +

L∑
l=0

2L2−3l

)
� 23L.

From the proof of proposition 12, we infer that the number of floating point operations at each
step is not larger than O(ld−12dlJl + l′d−12dl′Jl′ ) so that, using again (46), the total number of
floating point operations required to evaluate the MLMCMC estimator is bounded by

�
L∑

l=0

L′(l)∑
l′=0

Mll′ (l
d−12dlJl + l′d−12dl′Jl′ )

� 22L
L∑

l=0

L′(l)∑
l′=0

(ld−12(d−2+1/q)l2−2l′ + l′d−12(d−2+1/q)l′2−2l )

� Ld−122L

(
L∑

l=0

2(d−2+1/q)l +
L∑

l=0

2(d−2+1/q)(L−l)2−2l

)

� Ld−12(d+1/q)L. �

Remark 22. In the preceding work analysis, we assumed the availability of linear scaling,
iterative solvers for the approximate solution of the FE discretizations (16) of the parametric,
elliptic problems (14). These include Richardson or conjugate gradient iteration with diagonal
preconditioning using Riesz bases for the FE spaces V l as presented in appendix D. However,
if such bases are not available, our results will also apply to standard FE discretizations,
provided that linear scaling multi-level solvers, such as multigrid, are used to solve (16), for
each increment of the Markov chain. Our work versus accuracy analysis will also apply in
these cases, with identical conclusions.

6. Conclusions

Rewriting the convergence bounds in theorems 13, 18 and 21 in terms of the error, to achieve
an error ε in the mean square with respect to the probability measure that generates the
randomness of the Markov chain, i.e., Pρ,J,l , Pρ,N,L and PL, respectively, we bound the
complexity as follows (ignoring the logarithmic factors for conciseness):

• for the plain MCMC procedure: O(ε−d−2) degrees of freedom and O(ε−d−2−1/q) floating
point operations;
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• for the gpc-MCMC procedure: O(ε−1/τ ) degrees of freedom and O(ε− max(α/τ,2+1/σ ))

floating point operations;
• and for the MLMCMC procedure: the essential optimal complexity of O(ε−d ) degrees of

freedom and O(ε−d−1/q) floating point operations.

Therefore, the complexity of the gpc-MCMC is superior to that of the plain MCMC
procedure when in assumption 9 τ is close to 1/d and α is close to 1, which holds in many
cases (see, e.g., [27] and the references therein). We also have shown that the asymptotic
accuracy versus work of the MLMCMC is always superior to that of the plain MCMC. We
note that the complexity of the MLMCMC is of the same order as that for solving one single
realization of equation (4) with the same level of truncation for the coefficient, which indicates
some form of optimality of the MLMCMC method proposed here.

We have considered the MLMCMC estimation of functionals �(·) of the solution; in doing
so, we used only minimal regularity �(·) ∈ V ∗ of these functionals, leading to the convergence
rates (34). Higher regularity �(·) ∈ L2(D) will entail in (34) the finite element convergence
rate 2−2L, via a classical Aubin–Nitsche duality argument. Likewise, we only used the lowest
order finite element methods. In the present analysis, we confined ourselves to first-order
finite element discretizations as stronger regularity assumptions on f , �(·) and the ψ j will not
imply corresponding higher rates of convergence for gpc-MCMC and ML-MCMC, due to the
(maximal) order 1/2 afforded by the MC method.

A further aspect pertaining to the overall complexity is the following: in [28] an entirely
deterministic approach to the solution of the Bayesian inverse problem is presented, and in
[26] corresponding numerical experiments are presented. These methods offer convergence
rates in terms of the number M of samples which are superior to the rate 1/2 of MC methods
such as those analyzed here. Nonetheless, MCMC methods will remain popular because of
their data-adaptive nature; the present results indicate how the use of gpc and multi-level ideas
may be used to attain significant speedups of MCMC methods.

We also observe that we have concentrated on a very special MCMC method, namely the
independence sampler. This has been dictated by the need to use MCMC methods which scale
independently of dimension and for which there is a complete analysis of the convergence
rate of the resulting chain demonstrating this fact. Whilst there are now several dimension-
independent MCMC methods [7, 31], the independence sampler is the only one for which the
required analysis of the convergence properties is sufficiently developed for our theory; we
anticipate further theoretical developments for different MCMC methods, and different inverse
problems, in the future. However, we do note that the independence sampler will work well
when the negative log likelihood 
 does not vary significantly, although it will be inefficient
in general. For problems where the prior is Gaussian or log-normal Gaussian, appropriate
MCMC methods may be found in [7]. However, for these more general methods the analysis
of the Markov chain based on the methods of [22], as we have used for the independence
sampler here, is not appropriate and more sophisticated arguments are required, as presented
in [14].
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Appendix A. Lipschitz dependence of the forward map on parameters

Proof of proposition 2. The existence of a solution P to (4), and the bound (7), follows from
the standard application of Lax–Milgram theory. We have, for every φ ∈ V , u, u′ ∈ U ,∫

D
K(x, u)(∇P(x, u) − ∇P(x, u′)) · ∇φ(x) dx

=
∫

D
(K(x, u′) − K(x, u))∇P(x, u′) · ∇φ(x) dx. (A.1)

Again using (6), i.e. K(x, u) is bounded below uniformly with respect to (x, u) ∈ D × U , it
follows that there exists C > 0 such that for all u ∈ U

‖P(·, u) − P(·, u′)‖V � C‖P(·, u′)‖V ‖K(·, u′) − K(·, u)‖L∞(D). (A.2)

Due to (7), it follows from (A.2) that there exists a constant C > 0 such that

∀u ∈ U : ‖P(·, u) − P(·, u′)‖V � C‖K(·, u′) − K(·, u)‖L∞(D). (A.3)

From (5) and assumption 1(i), it follows with C > 0 as in (A.3) that

‖P(·, u) − P(·, u′)‖V � C
∑
j�1

|u j − u′
j|‖ψ j‖L∞(D)

� C‖u − u′‖�∞(N)

∑
j�1

‖ψ j‖L∞(D)

� C
κ

1 + κ
K̄min‖u − u′‖�∞(N).

This establishes the desired Lipschitz continuity. �

Appendix B. Bayesian inverse problems in measure spaces

On a measurable space (U,�) where � is a σ -algebra, consider a measurable map
G : U → (Rk,Bk). The data δ are assumed to be an observation of G subject to an unbiased
observation noise ϑ :

δ = G(u) + ϑ.

We assume that ϑ is a centred Gaussian with law N(0, 	). Let ρ be a prior probability measure
on (U,�). Our purpose is to determine the conditional probability P(du|δ) on (U,�). The
following result holds.

Proposition 23. Assume that G : U → R
k is measurable. The posterior measure ρδ(du) =

P(du|δ) given data δ is absolutely continuous with respect to the prior measure ρ(du) and
has the Radon–Nikodym derivative (2) with 
 given by (3).

This result is established in Cotter et al [8] and Stuart [29]. Although the setting in [8]
and [29] is in a Banach space X , the proofs of theorem 2.1 in [8] and theorem 6.31 of [29]
hold for any measurable spaces as long as the mapping G is measurable.

To study the well-posedness of the posterior measures, that is, continuity with respect to
changes in the observed data, we use the Hellinger distance, as in Cotter et al [8], which is
defined as

dHell(μ,μ′) =
⎛
⎝1

2

∫
U

(√
dμ

dρ
−
√

dμ′

dρ

)2

dρ

⎞
⎠

1/2

(B.1)
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for any two measures μ and μ′ on U which are absolutely continuous with respect to a common
reference measure ρ.7 In [8], it is proved that when U is a Banach space, if the prior measure
ρ is Gaussian, and under the conditions that 
 grows polynomially with respect to u, and is
locally Lipschitz with respect to u fixing δ and with respect to δ fixing u, in the second case
with a Lipschitz constant which also grows polynomially in u, then the posterior measure
given the data δ, i.e. ρδ , is locally Lipschitz in the Hellinger distance dHell:

dHell(ρ
δ, ρδ′

) � c|δ − δ′|,
where (recall) |·| denotes the Euclidean distance in R

k. The Fernique theorem plays an essential
role in the proofs, exploiting the fact that polynomially growing functions are integrable with
respect to Gaussians. In this section, we extend this result to measurable spaces under more
general conditions than those in assumption 2.4 of Cotter et al [8]; in particular, we do
not assume a Gaussian prior. The following assumption concerning the local boundedness,
and local Lipschitz dependence of 
 on δ, will be crucial in our argument. Its validity for
the model problem (4), with (5) and assumption 1, will be verified in the ensuing proof of
proposition 26.

Assumption 24. Let ρ be a probability measure on the measure space (U,�). The Bayesian
potential function 
 : U × R

k → R satisfies:

(i) (local boundedness) for each r > 0, there is a constant 
�(r) > 0 and a set U (r) ⊂ U of
positive ρ measure such that for all u ∈ U (r) and for all δ such that |δ|	 � r

0 � 
(u; δ) � 
�(r). (B.2)

(ii) (local Lipschitz continuity of Bayesian potential 
 on data δ) there is a mapping
G : R×U �→ R such that for each r > 0, G(r, ·) ∈ L2(U, ρ); and for every |δ|	, |δ′|	 � r
it holds that

|
(u; δ) − 
(u; δ′)| � G(r, u)|δ − δ′|	.

Under assumption 24, definition (2) of the posterior measure ρδ is meaningful as we now
demonstrate.

Proposition 25. Under assumption 24, the measure ρδ depends locally Lipschitz continuously
on the data δ with respect to the Hellinger metric: for each positive constant r there is a
positive constant C(r) such that if |δ|	, |δ′|	 � r, then

dHell(ρ
δ, ρδ′

) � C(r)|δ − δ′|	.

Proof. Throughout this proof K(r) denotes a constant depending on r, possibly changing from
instance to instance. The normalization constant in (2) is

Z(δ) =
∫

U
exp(−
(u; δ)) dρ(u). (B.3)

We first show that for each r > 0, there is a positive constant K(r) such that Z(δ) � K(r)
when |δ|	 � r. From (B.3) and assumption 24(i), it follows that when |δ|	 � r, there holds

Z(δ) � ρ(U (r)) exp(−
�(r)) > 0. (B.4)

Using the inequality |exp(−x) − exp(−y)| � |x − y| which holds for x, y � 0, we find

|Z(δ) − Z(δ′)| �
∫

U
|
(u; δ) − 
(u; δ′)| dρ(u).

7 Note that any such common reference measure will deliver the same value for the Hellinger distance.
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From assumption 24(ii),

|
(u; δ) − 
(u; δ′)| � G(r, u)|δ − δ′|	.

As G(r, u) is ρ-integrable, there is K(r) such that

|Z(δ) − Z(δ′)| � K(r)|δ − δ′|	.

The Hellinger distance satisfies

2dHell(ρ
δ, ρδ′

)2 =
∫

U

(
Z(δ)−1/2 exp

(
−1

2

(u; δ)

)
− Z(δ′)−1/2 exp

(
−1

2

(u; δ′)

))2

dρ(u)

� I1 + I2,

where

I1 = 2

Z(δ)

∫
U

(
exp

(
−1

2

(u; δ)

)
− exp

(
−1

2

(u; δ′)

))2

dρ(u),

and

I2 = 2|Z(δ)−1/2 − Z(δ′)−1/2|2
∫

U
exp(−
(u; δ′)) dρ(u).

Using again |exp(−x) − exp(−y)| � |x − y|, we have, for constant K(r) > 0,

I1 � K(r)
∫

U
|
(u; δ) − 
(u; δ′)|2 dρ(u)

� K(r)
∫

U
(G(r, u))2dρ(u)|δ − δ′|2	 � K(r)|δ − δ′|2	.

Furthermore,

|Z(δ)−1/2 − Z(δ′)−1/2|2 � K(r)|Z(δ) − Z(δ′)|2 � K(r)|δ − δ′|2	.

The conclusion follows. �

Proposition 26. For the elliptic PDE (4), the function G defined by (8) and viewed as
map from U to R

k is Lipschitz, if U is endowed with the topology of �∞(N). Moreover,
assumption 24 holds with U (r) = U and G(r, u) = G(r) independent of u.

Proof. We have

∀ u, u′ ∈ U : |G(u) − G(u′)| � C max
i

{‖Oi‖V ∗ }‖P(·, u) − P(·, u′)‖V .

From (A.3), there exists a constant c > 0 such that

∀u, u′ ∈ U : |G(u) − G(u′)| � C‖K(·, u) − K(·, u′)‖L∞(D).

We therefore deduce that G as map from U ⊂ �∞(N) to R
k is Lipschitz .

We now verify assumption 24. For the function G(u), we have from (8) for every u ∈ U
the bound

|G(u)| � max
i

{‖Oi‖V ∗ }‖P(·, u)‖V .

From (7), sup{|G(u)| : u ∈ U} < ∞. We note that for given data δ, there holds

∀u ∈ U : |
(u; δ)| � 1
2 (|δ|	 + |G(u)|	)2

and hence, since supu∈U |G(u)| is finite, the set U (r) in assumption 24(i) can be chosen as U
for all r. We have, for every u ∈ U ,

|
(u; δ) − 
(u; δ′)| � 1
2 |〈	−1/2(δ + δ′ − 2G(u)),	−1/2(δ − δ′)〉|

� 1
2 (|δ|	 + |δ′|	 + 2|G(u)|	)|δ − δ′|	.
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Choosing the function G(r, u) in assumption 24(ii) as

G(r, u) = 1
2 (2r + C),

for a sufficiently large constant C > 0 (depending only on bounds of the forward map and
the observation functionals, but independent of the data δ and of u), we have shown that
assumption 24(ii) holds in the desired form. With proposition 25 follows the assertion. �

Proof of proposition 3. From proposition 26, we deduce that G as map from U ⊂ �∞(N) to R
k

is Lipschitz and, hence, ρ-measurable. We then apply proposition 23 to deduce the existence
of ρδ and the formula for its Radon–Nikodym derivative with respect to ρ. Proposition 25
gives the desired Lipschitz continuity, since proposition 26 implies that assumption 24 holds.

�

Appendix C. Convergence properties of the independence sampler

Proof of proposition 5. We claim that (10) defines a Markov chain {u(k)}∞k=0 which is reversible
with respect to ρδ . To see this let ν(du, dv) denote the product measure ρδ(du) ⊗ ρ(dv) and
ν†(du, dv) = ν(dv, du). Note that ν describes the probability distribution of the pair (u(k), v(k))

on U × U when u(k) is drawn from the posterior distribution ρδ and ν† designates the same
measure with the roles of u and v reversed. These two measures are equivalent as measures if
ρδ and ρ are equivalent, which we establish below; it then follows that

dν†

dν
(u, v) = exp(
(u; δ) − 
(v; δ)), (u, v) ∈ U × U. (C.1)

From proposition 1 and theorem 2 in [30], we deduce that (10) is a Metropolis–Hastings
Markov chain which is ρδ reversible, since α(u, v) given by (9) is equal to min{1, dν†

dν
(u, v)}.

The equivalence of ρδ and ρ follows since the negative of the log-density is bounded
from above and below, uniformly on U , because proposition 26 shows that (B.2) holds with
U (r) = U . Using (B.2) and (9), it follows that the proposed random draw from ρ has
probability greater than exp

(−
�(r)
)

of being accepted. Thus,

p(u, A) � exp
(−
�(r)

)
ρ(A) ∀u ∈ U.

The first result follows from [22, theorem 16.2.4], with X = U. The second result follows
from [22, theorem 17.0.1] . To see that the constant c in (11) can be bounded only in terms of

�(r) and supu∈U |g(u)|, we note that it is given by

c2 = Eρδ |ḡ(u(0))|2 + 2
∞∑

n=1

Eρδ

[ḡ(u(0))ḡ(u(n))], (C.2)

where to ease notation we introduced the function ḡ as ḡ = g − E
ρδ

(g) (and we do not tag
the dependence of ḡ on the data δ in the remainder of this proof). Note that supu∈U |ḡ(u)| is
bounded uniformly w.r.t. to the data δ. Equation (C.2) is commonly known as the integrated
autocorrelation time. Now

2
∞∑

n=0

Eρδ

[ḡ(u(0))ḡ(u(n))] � 2 sup
u

|ḡ(u)|Eρδ

∞∑
n=0

|Eu(0)[ḡ(u
(n))]|

= 2 sup
u

|ḡ(u)|Eρδ

∞∑
n=0

|Eu(0)[g(u
(n))] − E

ρδ

[g]|

� 4 sup
u

|ḡ(u)|2
∞∑

n=0

(1 − exp(−
�(r)))n.
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For the mean square approximation, using the stationarity of the Markov chain conditioned to
start in U 
 u(0) ∼ ρδ , we have

1

M
Eρδ

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

= E
ρδ

[ḡ(u(0))2] + 2
1

M

M∑
k=1

M∑
j=k+1

Eρδ

[ḡ(u(k))ḡ(u j)]

= E
ρδ

[ḡ(u(0))2] + 2
1

M

M−1∑
k=0

M−k∑
j=1

Eρδ

[ḡ(u(0))ḡ(u( j))]

= E
ρδ

[ḡ(u(0))2] + 2
1

M

M−1∑
k=0

M−k∑
j=1

E
ρδ

[ḡ(u(0))Eu(0) [ḡ(u( j))]]

� E
ρδ

[ḡ(u(0))2]

+ 2
1

M

M−1∑
k=0

sup
u

|ḡ(u)|
M−k∑
j=1

E
ρδ

[|Eu(0) [g(u( j))] − E
ρδ

[g]|]

� E
ρδ

[ḡ(u(0))2] + 4
1

M

M−1∑
k=0

sup
u

|ḡ(u)|2
M−k∑
j=1

(1 − exp(−
�(r))) j

� E
ρδ

[ḡ(u(0))2] + 4 sup
u

|ḡ(u)|2
∞∑
j=1

(1 − exp(−
�(r))) j,

which is clearly bounded uniformly with respect to M. Thus, we have shown that there exists
C > 0 such that for all M

Eρδ

[∣∣∣∣∣ 1

M

M∑
k=1

ḡ(u(k))

∣∣∣∣∣
2]

� C

M
.

It remains to show that the expectation Eρδ

with respect to the unknown posterior ρδ can be
replaced by an expectation with respect to the prior measure ρ.

To this end, we note that

Eρ

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

=
∫

U
Eu(0)

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

dρ(u(0))

=
∫

U
Eu(0)

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

dρ

dρδ
(u(0)) dρδ(u(0))

� Eρδ

[∣∣∣∣∣
M∑

k=1

ḡ(u(k))

∣∣∣∣∣
2]

Z(δ) sup
u∈U

[exp(
(u; δ))].

As Z(δ) � 1 and 
(·; δ) is assumed to be bounded uniformly, we deduce that

Eρ

[∣∣∣∣∣ 1

M

M∑
k=1

ḡ(u(k))

∣∣∣∣∣
2]

� C

M
,

for a constant C independent of M. The conclusion then follows. �

Appendix D. Finite element methods

In this appendix, we prove that assumption 7 holds if we employ a Riesz basis for the FE space
and when the domain and the equation’s coefficients possess sufficient regularity.
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We assume in the following that the union of all FE basis functions wl
j of the spaces

V l = span{wl
j : j = 1, . . . , Nl}, l = 0, 1, 2, . . ., constitutes a Riesz basis in V . We remark that

such bases are available in two- and three-dimensional polyhedral domains (see, e.g., [24])
(the following assumption of availability of V -stable Riesz bases is made for convenience, and
may also be replaced by the availability of a linear complexity, optimal preconditioning, such
as a BPX preconditioner).

Assumption 27 (Riesz basis property in V). For each l ∈ N0, there exists a set of indices
Il ⊂ N

d of cardinality Nl = O(2ld ) and a family of basis functions wl
k ∈ H1

0 (D) indexed
by a multi-index k ∈ Il such that V l = span{wl

k : k ∈ Il}, and there exist constants c1

and c2 which are independent of the discretization level l such that if w ∈ V l is written as
w =∑k∈Il cl

kw
l
k ∈ V l, then

c1

∑
k∈Il

|cl
k|2 � ‖w‖2

V � c2

∑
k∈Il

|cl
k|2.

Multiscale FE bases entail, in general, larger supports than the standard, single scale basis
functions which are commonly used in the FEM, which implies that the stiffness matrices
in these bases have additional non-zero entries, as compared to O(dimV l ) = O(2dl ) many
non-zero entries of the stiffness matrices that result when one-scale bases, such as the hat
functions, are used.

To bound the number of non-zero entries, we shall work under

Assumption 28 (Support overlap). For all l ∈ N0 and for every k ∈ Il , for every l′ ∈ N0, the
support intersection supp(wl

k)∩ supp(wl′
k′ ) has positive measure for at most O(max(1, 2l′−l ))

values of k′.

Assumption 28 implies that the number of non-zero entries in the stiffness matrix of the
approximating problem (16) is at most O(ld−12dl ). To prove the error bound (17), we require
the regularity P(·, u) belonging and being bounded in H2(D)

⋂
H1

0 (D) uniformly with respect
to u ∈ U . Assumption 1(ii) implies the following regularity results.

Proposition 29. If D is convex and f ∈ L2(D), and if assumptions 1(i) and (ii) hold, then, for
every u ∈ U, the solution PJ(·, u) of (14) belongs to the space W := H2(D) ∩ H1

0 (D) and
there exists a positive constant C > 0 such that

sup
J∈N

sup
u∈U

‖PJ(·, u)‖W � C‖ f ‖L2(D).

Proof. By (6), KJ(x, u) � Kmin > 0 and we may rewrite the PDE in (14) as

−�PJ(x, u) = 1

KJ(x, u)
( f (x) + ∇KJ(x, u) · ∇PJ(x, u)).

By our assumptions, the right-hand side is uniformly bounded with respect to J and u ∈ U in
the space L2(D). As the domain D is convex, we deduce that PJ are uniformly bounded with
respect to J and u ∈ U in the space W : it holds

sup
u∈U

‖�PJ(·, u)‖L2(D) � 1

Kmin
sup
u∈U

sup
J�1

[‖ f ‖L2(D) + ‖KJ(·, u)‖W 1,∞(D)‖PJ(·, u)‖V ]

� C < ∞
due to the summability of the W 1,∞(D)-norms of the ψ j implied by assumption 1(ii). The
desired, uniform (w.r.t. to J and u) bound in the W norm then follows from the L2 bound on
�PJ(·, u) and (7) and the convexity of the domain D. �
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Appendix E. Generalized polynomial chaos methods

We justify assumption 9 in this section. For the ensuing analysis, we shall impose the following
assumption on the summability of the gpc expansion of P:

Assumption 30. There exists a constant 0 < p < 1 such that the coefficients Pν of the gpc
expansion of P satisfy (‖Pν‖V )ν ∈ �p(F ).

This assumption is valid under the provision of suitable decay of the coefficient functions
ψ j such as assumption 1(ii). We refer to [5, 6] for details. By a classical argument (‘Stechkin’s
lemma’), this implies the following, so-called best N-term approximation property.

Proposition 31. Under assumption 30, there exists a nondecreasing sequence {�N}N∈N ⊂ F
of subsets �N whose cardinality does not exceed N, such that∥∥∥∥∥P −

∑
ν∈�N

PνLν

∥∥∥∥∥
2

L2(U,ρ;V )

=
∑

ν∈F\�N

‖Pν‖2
V � CN−2σ , (E.1)

where the convergence rate σ = 1/p − 1/2 > 1/2 and where the constant C =
‖(‖Pν‖V )ν∈F‖2

�p(F ) is bounded independently of N.

The best N-term approximations

P�N :=
∑
ν∈�N

PνLν (E.2)

in proposition 31 indicate that sampling the parametric forward map with the evaluation of N
solutions Pν , ν ∈ �N of the parametric, elliptic problem with accuracy N−σ is possible; since
σ > 1/2, this is superior to what can be expected from N MC samples. There are, however,
two obstacles which obstruct the practicality of this idea: first, the proof of proposition 31
is nonconstructive, and does not provide concrete choices for the sets �N of ‘active’ gpc
coefficients which realize (E.1) and, second, even if �N were available, the ‘coefficients’
Pν ∈ V cannot be obtained exactly, in general, but must be approximated for example by an
FE discretization in D.

As P ∈ L2(U, ρ;V ), we consider the variational form ‘in the mean’ of (4) as∫
U

∫
D

K(x, u)∇P(x, u) · ∇Q(x, u) dx dρ(u) =
∫

U

∫
D

f (x)Q(x, u) dx dρ(u), (E.3)

for all Q ∈ L2(U, ρ;V ). For each set �N ⊂ F of cardinality not exceeding N that satisfies
proposition 31, and each vector L = (lν )ν∈�N of non-negative integers, we define finite-
dimensional approximation spaces as

XN,L =
{

PN,L =
∑
ν∈�N

Pν,L(x)Lν (u); Pν,L ∈ V lν

}
. (E.4)

Evidently, XN,L ⊂ L2(U, ρ;V ) is a finite-dimensional (hence closed) subspace for any N and
any selection L of the discretization levels.

The total number of degrees of freedom, Ndof = dim(XN,L), necessary for the sparse
representation of the parametric forward map is given by

Ndof = O

(∑
ν∈�N

2dlν

)
as N, lν → ∞. (E.5)
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The stochastic, sparse tensor Galerkin approximation of the parametric forward problem (4),
based on the index sets �N ⊂ F , and L = {lν : ν ∈ �N}, reads: find PN,L ∈ XN,L such that
for all QN,L ∈ XN,L holds

b(PN,L, QN,L): =
∫

U

∫
D

K(x, u)∇PN,L · ∇QN,L dx dρ(u)

=
∫

U

∫
D

f (x)QN,L(x, u) dx dρ(u). (E.6)

The coercivity of the bilinear form b(·, ·) ensures the existence and uniqueness of PN,L as
well as their quasi-optimality in L2(U, ρ;V ): by Cea’s lemma, for a constant C > 0, which is
independent of � and of L,

‖P − PN,L‖L2(U,ρ;V ) � C inf
Qν,L∈V lν

‖P −
∑
ν∈�

Qν,LLν‖L2(U,ρ;V ).

We obtain the following error bound which consists of the error in the best N-term truncation
for the gpc expansion and of the FE approximation error for the ‘active’ gpc coefficients.

‖P − PN,L‖2
L2(U,ρ;V )

� C

(
N−2σ +

∑
ν∈�N

inf
Qν,L∈V lν

‖Pν − Qν,L‖2
V

)
. (E.7)

Let us indicate sufficient conditions that ensure assumptions 30 and 9. The first condition is
the quantitative decay rate of the coefficient functions ψ j in the parametric representation (5)
of the random input.

To obtain convergence rates for the FE-discretization in the domain D, i.e. of the term
‖Pν − Qν,L‖V in (E.7), it is also necessary to ensure the spatial regularity of the solution
P(x, u) of the parametric problem (4). To this end, we employ assumptions 1(iii). We remark
that assumptions 1(iii) and (iv) imply assumption 1(ii) with q = s − 1 > 0. Under these
assumptions, the following proposition holds.

Proposition 32. Under assumptions 1(i), (iii) and (iv) and if, moreover, the domain D is convex
and f ∈ L2(D), the solution P(·, u) of the parametric, deterministic problem (4) belongs to
the space L2(U, ρ;W ).

From estimate (E.7), we obtain with proposition 32 and standard approximation properties
of continuous, piecewise linear FEM the error bound

‖P − PN,L‖2
L2(U,ρ;V )

� C

(
N−2σ +

∑
ν∈�N

2−2lν ‖Pν‖2
H2(D)

)
. (E.8)

In order to obtain an error bound in terms of Ndof defined in (E.5) which is uniform in terms of
N, we select, for ν ∈ �N , the discretization levels lν of the active gpc coefficient Pν so that both
terms in the upper bound (E.8) are of equal order of magnitude. This constrained optimization
problem was solved, for example, in [5], under the assumption that (‖Pν‖H2(D))ν ∈ �p(F ).

In recent years, several algorithms have appeared or are under current development
which satisfy assumption 9 with various exponents α � 1 and β � 0. See for example
references [3, 27, 11, 2, 4]
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