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Abstract

We study a Bayesian approach to nonparametric estimation of the periodic drift function of a
one-dimensional diffusion from continuous-time data. Rewriting the likelihood in terms of local time of
the process, and specifying a Gaussian prior with precision operator of differential form, we show that the
posterior is also Gaussian with the precision operator also of differential form. The resulting expressions
are explicit and lead to algorithms which are readily implementable. Using new functional limit theorems
for the local time of diffusions on the circle, we bound the rate at which the posterior contracts around the
true drift function.
c⃝ 2012 Published by Elsevier B.V.

Keywords: Stochastic differential equation; Nonparametric Bayesian estimation; Posterior consistency

1. Introduction

Diffusion processes are routinely used as statistical models for a large variety of phenomena
including molecular dynamics, econometrics and climate dynamics (see for instance [33,21,19]).
Such a process can be specified via the drift and diffusion functions of a stochastic differential
equation driven by a Brownian motion W . Even in one dimension, this class of processes attracts
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great applied interest. In this case, provided the diffusion function σ is known and under mild
additional assumptions, one can transform the process such that the diffusion function is constant:

d X t = b(X t )dt + dWt . (1.1)

This is the form we consider here.
We are interested in the statistical problem of recovering the drift function b given an observed

path of the diffusion, {X t }t∈[0,T ], which is a solution of (1.1). Whenever application-driven
insight into the form of the drift b is available, one can attempt to exploit this by postulating
a parametric model for b, indexed by some finite-dimensional parameter θ ∈ Θ ⊂ Rd . The
statistical problem then reduces to estimating the parameter θ ; see e.g. [22] for an overview of
this well-researched area. In other cases however, one has to resort to nonparametric methods
for making inference on the function b. Several such methods have been proposed in the
literature. An incomplete list include kernel methods (e.g. [3,22,40]), penalized likelihood
methods (e.g. [8]), and spectral approaches [2].

In this paper we investigate recently developed Bayesian methodology for estimating the drift
function of a diffusion based on continuous-time observations X = {X t }t∈[0,T ]. We consider
a periodic set-up, which essentially means that we observe a diffusion on the circle. This
is motivated by applications, for instance in molecular dynamics or neuroscience, in which
the data consists of recordings of angles; cf. e.g. [27,18] or [26]. We will consider Gaussian
prior measures for the periodic drift function b whose inverse covariance operators are chosen
from a family of even order differential operators. Recent applied work has shown that this is
computationally attractive, since numerical methods for differential equations can be used for
posterior sampling. Specifically, for the prior distributions we consider in this paper we will
derive a weakly formulated differential equation for the posterior mean. Existing numerical
methods can be used to solve this equation, allowing for posterior inference without the need
to resort to Markov chain Monte Carlo methods. This numerical approach, including algorithms
to accommodate both continuously and discretely observed data, is detailed in the paper [26].

In Section 2 we precisely state the inference problem of interest, and describe the properties
of the family of Gaussian priors that we adopt. We postulate a prior precision operator of the
form

C−1
0 = η


(−1)p

+ κ I

,

where ∆ is the one-dimensional Laplacian, p is an integer and η, κ are real and positive hyper-
parameters. Working with prior precision operators has numerous computational advantages and
a central goal of this work is to develop statistical tools of analysis, in particular for posterior
consistency studies, which are well-adapted to this setting. The work of [1] developed tools of
analysis which do this in the context of linear inverse problems with small observational noise,
and we adapt the techniques developed there to our setting.

An appealing aspect of choosing a Gaussian prior on the drift function b is conjugacy, in the
sense that the posterior is Gaussian as well. Since the log-likelihood is quadratic in b (Girsanov’s
theorem) this is not unexpected. Formally the posterior can be computed by “completing the
square”. We note however that for our model, if b is distributed according to a Gaussian prior Π
and given b, the data X are generated by (1.1), the joint distribution of b and X is obviously not
Gaussian in general. As a result, deriving Gaussianity of the posterior in this infinite-dimensional
setting is not entirely straightforward. Section 3 is devoted to showing that, for the priors that we
consider, the posterior, i.e. the conditional distribution of b given X , is indeed Gaussian. After a
formal derivation of the associated posterior in Section 3.2 we rigorously prove in Theorem 3.3
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that the associated posterior is Gaussian and obtain the posterior mean and covariance structure.
The posterior precision operator is again a differential operator, involving the local time of the
diffusion, and the posterior mean is characterized as the unique weak solution of a 2p-th order
differential equation. In Section 3.3 we outline how our Bayesian approach with Gaussian prior
can be viewed as a penalized least-squares estimator, where the pth order Sobolev norm of b is
penalized and the hyper-parameters η and κ quantify the degree of penalization. In the inverse
problem literature this connection is known as Tikhonov-regularization.

In Bayesian nonparametrics it is well known that careless constructions of priors can lead to
inconsistent procedures and sub-optimal convergence rates (e.g. [11,7]). Consistency or rate of
convergence results are often obtained using general results that are available for various types
of statistical models and that give sufficient conditions in terms of metric entropy and prior mass
assumptions. See, for instance, [16,14,15,36], and the references therein. In this paper however
we use the explicit description of the posterior distribution, which allows us to take a rather direct
approach to studying the asymptotic behaviour of our procedure. In particular, we avoid entropy
or prior mass considerations.

Since the posterior involves a periodic version of the local time of the process X , the
asymptotic properties of the local time play a key role in this investigation. In the present setting
the existing asymptotic theory for the local time of ergodic diffusions (cf. e.g. [41,37]) cannot be
used however, since we do not assume ergodicity but instead rely on the periodicity of the drift
function b to accumulate information as T → ∞. As a consequence, the existing posterior rate
of convergence results for ergodic diffusion models of [25] do not apply. Existing limit theorems
for diffusions with periodic coefficients (e.g. [4,31,6]) also do not suffice for our purpose. In
Section 4 we therefore present new limit theorems for the local time of diffusions on the circle.
These can be seen as extending and complementing the work of Bolthausen [6], who proved a
uniform central limit theorem for the local time of Brownian motion on the circle (the case b ≡ 0
in (1.1)). For our purposes we need asymptotic tightness of the properly normalized local time
in certain Sobolev spaces however, and we need the result not just for Brownian motion, but for
general periodic, zero-mean drift functions b.

Having these technical tools in place we use them in combination with methods from the
analysis of differential equations in Section 5 to obtain a rate of contraction result for the posterior
distribution. The result states that when the true drift function b is periodic and p-regular in the
Sobolev sense, then the posterior contracts around b at a rate that is essentially T −(p−1/2)/(2p) as
T → ∞ (with respect to the L2-norm). In particular, we have posterior consistency.

In the concluding section we discuss several possibilities for further refinements and
extensions of the present work.

2. Observation model and prior distribution

In this section we first introduce the diffusion process under study, fixing notation and
describing how we exploit periodicity; see Section 2.1. In Section 2.2 we introduce the prior we
place on the drift function of the diffusion, specifying the prior precision operator and collecting
basic properties.

2.1. The diffusion

Consider the stochastic differential equation (SDE)

d X t = b(X t ) dt + dWt , X0 = 0, (2.1)
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where W is standard Brownian motion and b : R → R is a continuously differentiable, 1-
periodic drift function with zero mean, i.e. b(x + k) = b(x) for all x ∈ R and k ∈ Z and 1

0 b(x)dx = 0. We let T denote the circle [0, 1) so that we can also write b : T → R and we
summarize the assumptions on b by writing b ∈ Ċ1(T), the dot denoting mean zero.

We assume the mean zero property of b for technical reasons. From the perspective of the
statistical problem of nonparametrically estimating the drift b it is not a serious restriction. Note
that if the diffusion X has a periodic drift function b with mean b̄ =

 1
0 b(x)dx , then the process

{X t − b̄t}t≥0 has the zero-mean drift function b − b̄. In practice, the mean can be removed in
a preliminary step using an auxiliary estimator for b̄. The simple estimator XT /T can be used
for instance. It converges in probability to b̄ at the rate T −1/2 as T → ∞ (cf. [4, Theorem 3]),
which is faster than the rates we obtain for the nonparametric problem of estimating the centred
drift function.

For every b ∈ Ċ1(T) the SDE (2.1) has a unique weak solution (see e.g. Theorems 6.1.6 and
6.2.1 in [12, p. 214]). For T > 0, we denote the law that this solution generates on the canonical
path space C[0, T ] by PT

b . In particular PT
0 is the Wiener measure on C[0, T ]. By Girsanov’s

theorem the laws PT
b , b ∈ Ċ1(T), are all equivalent on C[0, T ]. If two measurable maps of X are

almost surely (a.s.) equal under some PT
b0

they are therefore a.s. equal under any of the laws PT
b ,

and we will simply write that they are equal a.s.
We drop the superscript T and denote the sample path of (2.1) by X ∈ C[0, T ]. The

Radon–Nikodym derivative of PT
b relative to the Wiener measure satisfies

dPT
b

dPT
0

(X) = exp


−

1
2

 T

0
b2(X t ) dt +

 T

0
b

X t


d X t


almost surely, by Girsanov’s theorem (e.g. [24]). Observe that by Itō’s formula the likelihood can
be rewritten as

dPT
b

dPT
0

(X) = exp

−ΦT (b; X)


a.s., where

ΦT (b; X) =
1
2

 T

0


b2(X t ) + b′(X t )


dt + B(X0) − B(XT ) (2.2)

and B ′
= b. Note that B is also 1-periodic, since b has average zero.

It will be convenient to write the integrals in the expression for ΦT in terms of the local time
of the process X . Let (L t (x; X) : t ≥ 0, x ∈ R) be the semi-martingale local time of X , so that

∞

−∞

f (x)LT (x; X) dx =

 T

0
f (Xs) ds (2.3)

holds a.s. for any bounded, measurable f : R → R. Defining also the random variables χT (x; X)

by

χT (x; X) =

1 if X0 < x < XT ,

−1 if XT < x < X0,

0 otherwise,
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we may then write

ΦT (b; X) =
1
2


R


LT (x; X)(b2(x) + b′(x)) − 2χT (x; X)b(x)


dx . (2.4)

In view of the periodicity of the functions involved it is sensible to introduce a periodic version
L◦ of the local time L by defining

L◦

T (x; X) =


k∈Z

LT (x + k; X)

for x ∈ T. Note that for every T > 0, the random function x → LT (x; X) a.s. is a
continuous function with support included in the compact interval [mint≤T X t , maxt≤T X t ].
Hence the infinite sum can actually be restricted to the finitely many integers in the interval
[mint≤T X t − 1, maxt≤T X t + 1]. Hence the sum is well defined and x → L◦

T (x; X) is a
continuous random function on T. In particular, we have that the norms ∥L◦

T (·; X)∥∞ and
∥L◦

T (·; X)∥L2 are a.s. finite.
It follows from (2.3) that for any 1-periodic, bounded, measurable function f and T ≥ 0, T

0
f (Xu) du =

 1

0
f (x)L◦

T (x; X) dx . (2.5)

Exploiting the periodicity of b and B and introducing the corresponding periodized version
χ◦

T (·; X) of χT (·; X), we can then rewrite (2.4) as

ΦT (b; X) =
1
2

 1

0


L◦

T (x; X)(b2(x) + b′(x)) − 2χ◦

T (x; X)b(x)


dx . (2.6)

Summarizing, we have the following lemma.

Lemma 2.1. For every b ∈ Ċ1(T) and T > 0 the law PT
b is equivalent to PT

0 on C[0, T ] and

dPT
b

dPT
0

(X) = exp

−ΦT (b; X)


,

a.s., where ΦT is given by (2.6).

2.2. The prior

We will assume that we observe a solution of the SDE (2.1) up to time T > 0, for some
b ∈ Ċ1(T). To make inference on b we endow it with a centred Gaussian prior Π . We will view
the prior as a centred Gaussian measure on L2(T) and define it through its covariance operator
C0, or, rather, through its precision operator C−1

0 . Specifically, we fix hyper-parameters η, κ > 0
and p ∈ {2, 3, . . .} and consider the operator C0 with densely defined inverse

C−1
0 = η


(−1)p

+ κ I

, (2.7)

where ∆ denotes the one-dimensional Laplacian, I is the identity and the domain of C−1
0 is

given by D(C−1
0 ) = Ḣ2p(T), the space of mean-zero functions in the Sobolev space H2p(T) of

functions in L2(T) with 2p square integrable weak derivatives.
To see that C0 is indeed a valid covariance operator and hence the prior is well defined,

consider the orthonormal basis φk of L̇2(T), which is by definition the space of mean-zero
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functions in L2(T), given by

φ2k(x) =
√

2 cos(2πkx),

φ2k−1(x) =
√

2 sin(2πkx),

for k ∈ N. The functions φk belong to the domain Ḣ2p(T) of the operator (2.7) and

C−1
0 φ2k = η


(4π2k2)p

+ κ

φ2k,

C−1
0 φ2k−1 = η


(4π2k2)p

+ κ

φ2k−1,

for k ∈ N. It follows that C0 is the operator on L̇2(T) which is diagonalized by the basis φk , with
eigenvalues

λk = η


4π2


k
2

2p

+ κ

−1

. (2.8)

Thus C0 is positive definite, symmetric, and trace-class and hence a covariance operator on
L̇2(T). (It extends to a covariance operator on the whole space L2(T) by setting C01 = 0.)

The integer p in (2.7) controls the regularity of the prior Π and we assume p ≥ 2 to ensure
that the drift is C1 (see Lemma 2.2). The parameter η > 0 sets an overall scale for the precision.
The parameter κ allows us to shift the precisions in every mode by a uniform amount. We employ
κ > 0 as it simplifies some of the analysis, but κ = 0 could be included in the analysis with
further work. Likewise we have assumed a mean zero prior, but extensions to include a mean
could be made.

The preceding calculations show that the prior Π is the law of the centred Gaussian process
V = {Vx }x∈T defined by

Vx =


k∈N


λkφk(x)Zk, (2.9)

for Z1, Z2, . . . independent, standard Gaussian random variables. Using this series representation
a number of basic properties of the prior can easily be derived.

Lemma 2.2.

(i) There exists a version of V which a.s. has sample paths that are Hölder continuous of order
α, for every α < p − 1/2.

(ii) The reproducing kernel Hilbert space of V is the Sobolev space Ḣ p(T).
(iii) The L2-support of Π is L̇2(T).

Proof. For the first statement, note that
√

λk ∼ k−p asymptotically. Using also the differential
relations between the basis functions φk it is straightforward to see that the process V has
p − 1 ≥ 1 weak derivatives in the L2-sense. Moreover, using Kolmogorov’s classical continuity
theorem it can be shown that this (p − 1)th derivative has a version with sample paths that are
Hölder continuous of order γ for every γ < 1/2. Combining this we see that V has a version
with α-Hölder sample paths, for every α < p − 1/2. In particular, it holds that all the mass of
the prior Π is concentrated on Ċ1(T).

The Karhunen–Loève expansion (2.9) shows that the reproducing kernel Hilbert space
(RKHS) of the prior is given by H = {


k≥1 ckφk :


c2

k/λk < ∞} (see for instance
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[39, Theorem 4.1]). Since 1/λk ∼ k2p this implies that H = Ḣ p(T), proving the second
statement.

The final statement follows from the second one, since the L2-support is the L2-closure of
H [39, Lemma 5.1]. �

Note in particular that the lemma shows that we can view the prior Π as a Gaussian measure
on any of the separable Banach spaces L2(T), C(T), Ck(T) or H k(T), for k ≤ p − 1.

3. Posterior distribution

3.1. Bayes’ formula

We recall that X denotes the path {X t }t∈[0,T ]. If we endow C1(T) with its Hölder norm and
C[0, T ] with the uniform norm, then expression (2.2) shows that the negative log-likelihood
(b, x) → ΦT (b; x) (has a version that) is Borel-measurable as a map from C1(T) × C[0, T ] →

R. Since we can view Π as a measure on C1(T), it follows that we have a well-defined Borel
measure Π (db)PT

b (dx) on C1(T) × C[0, T ], which is the joint law of b and X in the Bayesian
set-up

b ∼ Π , X | b ∼ (2.1).

The posterior distribution, i.e. the conditional distribution of b given X , is then well-defined as
well and given by

Π (B | X) =
1
Z


B

exp (−ΦT (b; X))Π (db),

Z =


C1(T)

exp (−ΦT (b; X))Π (db).
(3.1)

Lemma 3.1. The random Borel measure B → Π (B | X) on C1(T) given by (3.1) is a.s. well
defined.

Proof. By Lemma 5.3 of [17], the posterior is well-defined if Z > 0 a.s. To see that the latter
condition is fulfilled, observe that

|ΦT (b; X)| . (1 + ∥L◦

T (·; X)∥∞)(∥b∥
2
∞ + ∥b′

∥∞).

Since Π is a centred Gaussian distribution on the separable Banach space C1(T), endowed with
its Hölder norm, we have Π (b : ∥b∥∞ +∥b′

∥∞ < ∞) = 1. Together this gives the a.s. positivity
of Z , since ∥L◦

T (·; X)∥∞ < ∞ a.s. (Here, and elsewhere, a . b means that a is less than an
irrelevant constant times b.) �

We have now defined the posterior as a measure on C1(T), but since the prior is in fact a prob-
ability measure on Cα(T) for every α < p−1/2 (see the preceding section), it is a Borel measure
on these Hölder spaces as well. We can of course also view it as a measure on C(T) or L2(T).

3.2. Formal computation of the posterior

The next goal is to characterize the posterior. We proceed first strictly formally and non-
rigorously. Very loosely speaking, we have that the prior Π has a “density” proportional to

b → exp


−

1
2

 1

0
b(x)C−1

0 b(x) dx


(3.2)
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and the negative log-likelihood also has a quadratic form, given by (2.6). This suggests that the
posterior is again Gaussian. Formally completing the square gives the relations

C−1
T = C−1

0 + L◦

T (·; X)I, (3.3)

C−1
T b̂T =

1
2
(L◦

T (·; X))′ + χ◦

T (·; X) (3.4)

for the posterior mean b̂T and the posterior precision operator C−1
T .

As detailed in the preceding section we assume that the prior covariance operator is given by
(2.7), with integer p ≥ 2, η, κ > 0,∆ the one-dimensional Laplacian and D(C−1

0 ) = Ḣ2p(T).
In that case (3.3) gives

C−1
T = η (−1)p

+ (ηκ + L◦

T (·; X))I (3.5)

and D(C−1
T ) = Ḣ2p(T). By standard application of the Lax–Milgram lemma (see [13, Section

6.2]), it follows that the equation C−1
T f = g has a unique weak solution in Ḣ p(T) for every

g ∈ Ḣ−p(T); see [29, Appendix A], for definition and properties of the Sobolev spaces Ḣ2p(T).
From this it follows that CT is well defined on all of Ḣ−p(T). Moreover, CT is a bounded operator
from Ḣ−p(T) into Ḣ p(T), since C−1

T is coercive. If g ∈ L2(T) then the weak solution is more
regular and, in fact, lies in Ḣ2p(T); see [13, Section 6.3].

The ordinary derivative of local time is not defined, and indeed is not an element of L2(T).
Thus we will have interpret (3.4) in a weak sense. In order to enable us to do this, in Section 3.4
we consider the variational formulation of Eq. (3.4). As a precursor to this, the next subsection
is devoted to observing that the differential equation for the mean arises as the Euler–Lagrange
equation for a certain variational problem, yielding an interesting connection with penalized
least-squares estimation.

3.3. Connection with penalized least squares

Here we demonstrate the fact that the posterior mean b̂T given by (3.4) can be viewed as a
penalized least-squares estimator in the case p = 2. Formally, the SDE (2.1) can be written as

Ẋ t = b(X t ) + Ẇt ,

where the dot denotes differentiation with respect to t (obviously, the derivatives Ẋ and Ẇ do not
exist in the ordinary sense). This is just a continuous-time version of a standard nonparametric
regression model and for a drift function u, we can view the integral T

0
(Ẋ t − u(X t ))

2 dt

as a residual sum of squares. A penalized least-squares procedure consists in adding a penalty
term to this quantity and minimizing the resulting criterion over u. Expanding the square in the
preceding integral shows that this is equivalent to minimizing

u → −

 T

0
u(X t ) d X t +

1
2

 T

0
u2(X t ) dt + P(u),

over an appropriate space of functions, where P(u) is the penalty.
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If the function u is smooth and periodic, then by Itō’s formula and the definitions of L◦ and
χ◦, we have, with U a primitive function of u, T

0
u(X t ) d X t = U (XT ) − U (X0) −

1
2

 T

0
u′(X t ) dt

=

 1

0
u(x)χ◦

T (x; X) dx −
1
2

 1

0
L◦

T (x; X)u′(x) dx

and  T

0
u2(X t ) dt =

 1

0
u2(x)L◦

T (x; X) dx .

Hence, if the functions u over which the minimization takes place are smooth enough, the
criterion can also be written as

u →

 1

0


1
2

u2(x)L◦

T (x; X) +
1
2

u′(x)L◦

T (x; X) − u(x)χ◦

T (x; X)


dx + P(u).

Now consider a Sobolev-type penalty term of the form

P(u) =
1
2
η


κ

 1

0
(u(x))2 dx +

 1

0
(u′′(x))2 dx


,

for constants η, κ > 0. Then the objective functional u → Λ(u; X) takes the form

Λ(u; X) =

 1

0


1
2

u2(ηκ + L◦

T (X)) +
1
2

u′L◦

T (X) − uχ◦

T (X) +
1
2
η(u′′)2


dx,

where we omitted explicit dependence on x to lighten notation. To minimize this
functional, simply take its variational derivative in the direction v, i.e. compute the limit
limϵ→0 (Λ(u + ϵv; X) − Λ(u; X)) /ϵ, for a smooth test function v:

δΛ
δu

(v) =

 1

0


uvL◦

T (X) −
1
2
v(L◦

T )′(X) − vχ◦

T (X) + ηv′′u′′
+ ηκuv


dx .

A further integration by parts (where the boundary terms vanish due to periodicity) now yields
the form

δΛ
δu

(v) =

 1

0
v


uL◦

T (X) −
1
2
(L◦

T )′(X) − χ◦

T (X) + ηu(4)
+ ηκu


dx

from which it is evident that equating the variational derivative to zero for all smooth test
functions yields exactly the posterior mean obtained in (3.4) for the case p = 2:

ηu(4)
+

ηκ + L◦

T (X)


u =
1
2
(L◦

T )′(X) + χ◦

T (X).

In the context of inverse problems, adding the square of the norm of the underlying vector space
is known as (generalized) Tikhonov regularization, and the connection to Bayesian inference
with a Gaussian prior is well established in general; see [34]. It may be viewed as a natural
extension of the approach of Wahba [42] from regression to the diffusion process setting. The
case of regularization through higher order derivatives in the penalization term P is similar.
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3.4. Weak variational formulation for the posterior mean

In the preceding section we remarked that the RKHS of the Gaussian prior equals the Sobolev
space Ḣ p(T). Below we prove that the posterior is a.s. a Gaussian measure. Moreover, since the
denominator Z in (3.1) is positive a.s., the posterior is equivalent to the prior. It follows that the
posterior mean b̂T is a.s. an element of Ḣ p(T). By saying it is a weak solution to (3.4) we mean
that it solves the following weak form of the associated variational principle:

a(b̂T , v; X) = r(v; X) for every v ∈ Ḣ p(T), (3.6)

where the bilinear form a(·, ·; X) : Ḣ p(T) × Ḣ p(T) → R and the linear form r(·; X) :

Ḣ p(T) → R are defined by

a(u, v; X) = η


u(p)(x)v(p)(x) dx + ηκ


u(x)v(x) dx +


u(x)v(x)L◦

T (x; X) dx,

r(v; X) = −
1
2


v′(x)L◦

T (x; X) dx +


v(x)χ◦

T (x; X) dx .

The following lemma records the essential properties of a and r and the associated variational
problem.

Lemma 3.2. The following statements hold almost surely:

(i) a(·, ·; X) is bilinear, symmetric, continuous and coercive:

a(v1, v2; X) ≤ (η + ηκ + ∥L◦

T (·; X)∥∞)∥v1∥H p∥v2∥H p

for v1, v2 ∈ Ḣ p(T) and for some constant c > 0, a(v, v; X) ≥ c∥v∥
2
H p for all v ∈ Ḣ p(T).

(ii) r(·; X) is linear and bounded:

|r(v; X)| ≤


1
2
∥L◦

T (·; X)∥L2 + ∥χ◦

T (·; X)∥L2


∥v∥H p

for all v ∈ Ḣ p(T).
(iii) There exists a unique u ∈ Ḣ p(T) such that a(u, v; X) = r(v; X) for all v ∈ Ḣ p(T).

Proof. (i) Bi-linearity, symmetry and continuity follow straightforwardly from the definition
of a. Coercivity follows easily from the positivity of η and κ and the Poincaré inequality
(see [29, Proposition 5.8]). (ii) Again, straightforward. (iii) Follows from (i) and (ii) by the
Lax–Milgram Lemma; see [13, Section 6.2]. �

3.5. Characterization of the posterior

We can now prove that the posterior is Gaussian and characterize its mean and covariance
operator. Recall that by saying that b̂T is a weak solution of the differential equation (3.4) we
mean that it solves the variational problem (3.6).

Theorem 3.3. Almost surely, the posterior Π (· | X) is a Gaussian measure on L2(T). Its
covariance operator CT is given by (3.5) and its mean b̂T is the unique weak solution of (3.4).

Proof. For n ∈ N, let Pn : L2(T) → L2(T) be the orthogonal projection onto the linear span Vn
of the first n basis functions φ1, . . . , φn . Let the random measure Πn(· | X) be given by
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Πn(B | X) =
1
Z n


B

exp (−ΦT (Pnb; X))Π (db),

Zn =


C1(T)

exp (−ΦT (Pnb; X))Π (db),

for Borel sets B ⊂ C1(T). The fact that this random measure is well defined can be argued
exactly as in Section 3.1.

For b ∈ Ċ1(T) it holds that Pnb → b in H1(T) as n → ∞. It is easily seen from (2.6) that
the random map b → ΦT (b; X) is a.s. H1(T)-continuous. It follows that a.s., b → ΦT (Pnb; X)

converges point-wise to ΦT (·; X) on Ċ1(T). By Lemma 3.4, there exists for every ε > 0 a
constant K (ε) such that

−Φn(b; X) ≤ ε∥b∥
2
H1 + K (ε)(1 + ∥L◦

T (·; X)∥2
L2),

and hence

e−Φn(Pnb;X)
≤ eK (ε)(1+∥L◦

T (·;X)∥2
L2 )eε∥b∥

2
H1 .

Since Π can be viewed as a Gaussian measure on H1(T), Fernique’s theorem implies that a.s.,
the right-hand side of the last display is a Π -integrable function of b for ε > 0 small enough
(see [5, Theorem 2.8.5]). Hence, by dominated convergence, we can conclude that Zn → Z
almost surely. The same reasoning shows that for every Borel set B ⊂ C1(T), it a.s. holds that

B
exp (−ΦT (Pnb; X))Π (db) →


B

exp (−ΦT (b; X))Π (db)

as n → ∞, where we rewrite the integral as an integral over C1(T) and then exploit boundedness
of the indicator function χB(·) thus introduced into the integrand.

Hence, we have that with probability 1, the measures Πn(· | X) converge weakly to the
posterior Π (· | X). Note that the weak convergence takes place in C1(T), but then in L2(T) as
well. Since the measures Πn(· | X) are easily seen to be Gaussian, the measure Π (· | X) must
be Gaussian as well.

If we view L̇2(T) as the product of Vn and V ⊥
n , then by construction the measure Πn(· | X) is a

product of Gaussian measures on Vn and V ⊥
n . The measure on Vn really has density proportional

to (3.2), relative to the push-forward measure of the Lebesgue measure on Rn under the map
(c1, . . . , cn) →


ckφk . The formal arguments given in Section 3.2 can therefore be made

rigorous, showing that this factor is a Gaussian measure on Vn with covariance operator Pn CT Pn
and mean bn ∈ Vn which solves the variational problem

a(bn, v; X) = r(v; X)

for every v ∈ Vn . The measure on V ⊥
n has mean zero, so bn is in fact the mean of the whole

measure Πn(· | X). The covariance operator of the measure on V ⊥
n is given by (I −Pn)C0(I −Pn).

Next we prove that the posterior mean b̂T is the weak solution of (3.4). By Lemma 3.2 there
a.s. exists a unique u ∈ Ḣ p(T) such that a(u, v; X) = r(v; X) for all v ∈ Ḣ p(T). Standard
Galerkin method arguments show that for the mean of Πn(· | X) we have bn → u in Ḣ p(T).
Indeed, let en = u −bn . Then we have the orthogonality property a(en, v; X) = 0 for all v ∈ Vn .
Using the continuity and coercivity of a(·, ·; X), cf. Lemma 3.2, it follows that for v ∈ Vn ,

c∥en∥
2
H p ≤ a(en, en; X)

= a(en, u − v; X)

≤ (η + ηκ + ∥L◦

T (·; X)∥∞)∥en∥H p∥u − v∥H p .
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Hence, for every v ∈ Vn we have

c∥en∥H p ≤ (η + ηκ + ∥L◦

T (·; X)∥∞)∥u − v∥H p .

By taking v = Pnu we then see that bn → u in H p(T). On the other hand, by the weak
convergence found above, bn converges a.s. to the posterior mean b̂T in L2(T) (see [5, Example
3.8.15]). We conclude that b̂T a.s. equals the unique weak solution u of (3.4), as required.

It remains to show that the covariance operator of the posterior is given by (3.5). Let
Σn = Pn CT Pn + (I − Pn)C0(I − Pn) be the covariance operator of Πn(· | X) and let Σ be
the covariance operator of the posterior Π (· | X). Since the measures converge weakly and are
Gaussian, we have that for every f ∈ L2(T),Σn f → Σ f in L2(T) (cf. Example 3.8.15 of [5]
again). On the other hand, for n > k and g ∈ L̇2(T) we have⟨g,Σnφk⟩ − ⟨g, CT φk⟩L2

 =
⟨g, (Pn − I )CT φk⟩L2


≤ ∥(Pn − I )g∥L2∥CT φk∥L2 → 0;

hence Σnφk converges weakly to CT φk . It follows that Σφk = CT φk for every k and the proof is
complete. �

Lemma 3.4. For every ε > 0 there exists a constant K (ε) > 0 such that

−ΦT (b; X) ≤ ε∥b∥
2
H1 + K (ε)(1 + ∥L◦

T (·; X)∥2
L2).

Proof. It follows from (2.6) that

−ΦT (b; X) ≤
1
2

 1

0
L◦

T (x; X)|b′(x)| dx +

 1

0
|b(x)| dx .

Now note that for every β > 0 and f, g ∈ L2(T), it holds that 2 ⟨ f, g⟩ ≤ β∥ f ∥
2

+ β−1
∥g∥

2

(Young’s inequality with ϵ, with p = q = 2, see [29, Lemma 1.8]). Applying this to both
integrals on the right we get

−ΦT (b; X) ≤
β

4
∥L◦

T (·; X)∥2
L2 +

1
4β

∥b′
∥

2
L2 +

β

2
+

1
2β

∥b∥
2
L2

≤ ε∥b∥
2
H1 +

1
4ε

+
1
8ε

∥L◦

T (·; X)∥2
L2 ,

where ε = (2β)−1, so K (ε) = (4ε)−1. �

4. Asymptotic behaviour of the local time

In the next section we will investigate the asymptotic behaviour of the posterior, using the
characterization provided by Theorem 3.3. Since (3.3) and (3.4) involve the periodic local time
L◦

T (·; X), the asymptotic properties of that random function play a key role.
The results we establish in this section can be seen as complementing and extending the work

of Bolthausen [6] in which it is proved that if X is Brownian motion (i.e. b ≡ 0 in (2.1)), then
the random functions

√
T


1
T

L◦

T (·; X) − 1


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converge weakly in the space C(T) to a Gaussian random map as T → ∞. For our purposes we
need a similar result in the Sobolev space Hα(T), for α < 1/2, and we need the result not just
for Brownian motion, but for general periodic, zero-mean drift functions b. In fact asymptotic
tightness, rather than weak convergence, suffices for our purposes and it is this which we prove.
In addition, we need the associated uniform law of large numbers which states that

1
T

L◦

T (·; X)

converges uniformly as T → ∞. Similar statements were obtained for ergodic diffusions in
the papers [41,37]. In the present periodic setting however, completely different arguments are
necessary.

Given b ∈ Ċ(T) we define the probability density ρ on [0, 1] by

ρ(x) = C exp


2
 x

0
b(y) dy


, x ∈ [0, 1], (4.1)

where C > 0 is the normalization constant which ensures that ρ integrates to 1. In the one-
dimensional diffusion language, ρ is the restriction to [0, 1] of the speed density of the diffusion,
normalized so that it becomes a probability density. Note that since b has mean zero, ρ satisfies
ρ(0) = ρ(1) and enjoys a natural extension to a periodic function.

We use the standard notation that YT = OP(aT ) for the family of random variables {YT } and
the deterministic family of positive numbers {aT } if the family {YT /aT } is asymptotically tight
as T → ∞ with respect to the probability space underlying the random variables {YT }.

Theorem 4.1.
(i) It almost surely holds that

sup
x∈T

 1
T

L◦

T (x; X) − ρ(x)

 → 0

as T → ∞.
(ii) For every α < 1/2, the random maps

x →
√

T


1
T

L◦

T (x; X) − ρ(x)


are asymptotically tight in Hα(T) as T → ∞. In particular, for every α < 1/2, 1

T
L◦

T (·; X) − ρ


Hα

= OP


1

√
T


as T → ∞.

The proof of the theorem is long and therefore deferred to Section 6 in order to keep
the overarching arguments in this paper, which are aimed to proving posterior consistency, to
the fore. In the following subsection about posterior contraction rates we need the fact that
XT = OP(

√
T ) for the diffusions with periodic drift under consideration. This follows for

instance from the results of [4], but we can alternatively derive it from the preceding theorem.

Corollary 4.2. For every b ∈ Ċ(T), the weak solution X = (X t : t ≥ 0) of the SDE (2.1) satis-
fies XT = OP(

√
T ) as T → ∞.



616 Y. Pokern et al. / Stochastic Processes and their Applications 123 (2013) 603–628

Proof. We have

XT =

 T

0
b(Xs) ds + WT

for a standard Brownian motion W . Since b is 1-periodic, the integral can be rewritten in terms
of the periodic local time L◦. Moreover, (4.1) implies that ρ is 1-periodic as well and ρ′

= 2bρ;
hence 1

0
b(x)ρ(x) dx =

1
2
(ρ(1) − ρ(0)) = 0.

It follows that

|XT | ≤ T


 1

0
b(x)


L◦

T (x; X)

T
− ρ(x)


dx

+ |WT |

≤ T ∥b∥L2

 1
T

L◦

T (·; X) − ρ


L2

+ |WT |.

By the preceding theorem, this is OP(
√

T ). �

Note that statement (i) of Theorem 4.1 implies that for an integrable, 1-periodic function f ,
we have the strong law of large numbers

1
T

 T

0
f (X t ) dt →

 1

0
f (x)ρ(x) dx

a.s. as T → ∞. Moreover, if f is also square integrable, statement (ii) implies that

1
T

 T

0
f (X t ) dt −

 1

0
f (x)ρ(x) dx = OP


1

√
T


.

Results of this type can also be found in [31] and are of independent interest. They can for
instance be useful in the asymptotic analysis of other statistical procedures for the periodic diffu-
sion models we are considering. Uniform Glivenko–Cantelli and Donsker-type statements could
be derived using our approach as well, similar to the results for ergodic diffusions in [40,41].
Since this is outside the scope of the present paper however, we do not elaborate on this any
further here.

5. Posterior contraction rates

In this section we use the characterization of the posterior provided by Theorem 3.3 and the
asymptotic behaviour of the local time established in Theorem 4.1 to study the rate at which
the posterior contracts around the true drift function, which we denote by b0 to emphasize that
the results are frequentist in nature. In particular Pb0 denotes the underlying probability measure
corresponding to the true drift function b0, and the notation OPb0

refers to asymptotic tightness
under this measure.

The first theorem concerns the rate of convergence of the posterior mean b̂T , which, by
Theorem 3.3, is the unique weak solution in Ḣ p(T) of the differential equation (3.4).
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Theorem 5.1. Suppose that the true drift function b0 ∈ Ḣ p(T). Then for every δ > 0,

∥b̂T − b0∥L2 = OPb0
(T −

p−1/2
2p +δ

)

as T → ∞.

Proof. By Theorem 3.3 we have (in the weak sense)

(C−1
0 + L◦

T (·; X))b̂T =
1
2
(L◦

T (·; X))′ + χ◦

T (·; X).

Note that it follows from (4.1) that ρ satisfies ρ′
= 2b0ρ if b0 is the drift function; hence, with

GT =
√

T (L◦

T (·; X)/T − ρ),

(C−1
0 + L◦

T (·; X))b0 =
1
2
(L◦

T (·; X))′ + χ◦

T (·; X) + C−1
0 b0

+
√

T GT b0 −
1
2

√
T G′

T − χ◦

T (·; X).

Subtracting the two equations shows that e = b̂T − b0 satisfies (still in the weak sense)

(C−1
0 + L◦

T (·; X))e = −C−1
0 b0 −

√
T GT b0 +

1
2

√
T G′

T + χ◦

T (·; X).

Since ρ is bounded away from zero (see (4.1)) and statement (i) of Theorem 4.1 says that, almost
surely, L◦

T /T converges uniformly on T to ρ, it follows that there exists a constant c > 0 such
that

inf
x∈T

L◦

T (x; X)

T
≥ c

on an event AT with Pb0(AT ) → 1. As a consequence, testing the weak differential equation for
the error e with the test function e itself (“energy method”) yields, on the event AT , the inequality

∥C−1/2
0 e∥2

L2 + cT ∥e∥2
L2 ≤

C−1
0 b0, e

+ χ◦

T (·; X), e


+
√

T |⟨GT b0, e⟩| +
1
2

√
T
GT , e′


=

C−
1
2

0 b0, C−
1
2

0 e

+ χ◦

T (·; X), e


+
√

T |⟨GT b0, e⟩| +
1
2

√
T

 GT , e′

.

We now use Young’s inequality with ϵ, with p = q = 2, see [29, Lemma 1.8], in the form

2 ⟨ f, g⟩ ≤ β∥ f ∥
2
L2 + β−1

∥g∥
2
L2

to estimate the first three terms on the right. Choosing appropriate β’s and subtracting the
resulting terms involving T ∥e∥2

L2 from both sides we get, still on AT ,

∥C−1/2
0 e∥2

L2 + cT ∥e∥2
L2 . ∥C−1

0 b0∥
2
L2 +

∥χ◦

T (·; X)∥2
L2

T

+ ∥b0∥
2
∞∥GT ∥

2
L2 +

1
2

√
T
GT , e′

 . (5.1)
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We note that the first three terms on the right are now stochastically bounded: the first one is
constant, the second is bounded by a |XT − X0|

2/T , which is OP(1) according to Corollary 4.2,
and the third one is OP(1) by Theorem 4.1.

For the last term on the right we have, since the norm ∥C−s/(2p)

0 · ∥L2 is equivalent to the

H s-norm and C 1/(2p)

0
∂
∂x is bounded,

GT , e′
 =




C
−

s
2p

0 GT , C
s

2p
0 e′

 . ∥GT ∥H s ∥C
s−1
2p

0 e∥L2 .

We now use the interpolation inequality given as Theorem 13 on p.149 in [10],

∥Aιu∥ ≤ ∥Au∥
ι
∥u∥

1−ι,

which is valid for ι ∈ (0, 1) and positive, coercive, self-adjoint densely defined operators A. We

take A = C−
1
2

0 and ι = (1 − s)/p and combining with what we had above we get

√
T
GT , e′

 . T −
s−1
2p ∥GT ∥H s ∥C−

1
2

0 e∥
1−s

p

L2 ∥
√

T e∥
p+s−1

p

L2 .

Using Young’s inequality again we have the further bound
√

T
GT , e′

 . βT −
s−1

p ∥GT ∥
2
H s + β−1

∥C−
1
2

0 e∥2
L2 + β−1T ∥e∥2

L2 .

If we combine this with (5.1), choose β large enough and subtract β−1
∥C−

1
2

0 e∥2
L2 + β−1T ∥e∥2

L2

from both sides of the inequality we arrive at the bound

T ∥e∥2
L2 ≤ OP(1) + T −

s−1
p ∥GT ∥

2
H s ,

which holds on the event AT . In view of Theorem 4.1 and since s ∈ (0, 1/2) is arbitrary, this
completes the proof. �

Theorem 5.1 only concerns the posterior mean, but we can in fact show that the whole
posterior distribution contracts around the true b0 at the same rate. As usual, we say that the
posterior contracts around b0 at the rate εT (relative to the L2-norm) if for arbitrary positive
numbers MT → ∞,

Eb0Π (b : ∥b − b0∥L2 ≥ MT εT | X) → 0

as T → ∞. This essentially says that for large T , the posterior mass is concentrated in L2-balls
around b0 with a radius of the order εT .

Theorem 5.2. Suppose that b0 ∈ Ḣ p(T). Then for every δ > 0, the posterior contracts around
b0 at the rate T −(p−1/2)(2p)+δ as T → ∞.

Proof. Set εT = T −(p−1/2)(2p)+δ and consider arbitrary positive numbers MT → ∞. By the
triangle inequality,

Eb0Π (b : ∥b − b0∥L2 ≥ MT εT | X) ≤ Eb0Π


b : ∥b − b̂T ∥L2 ≥

MT εT

2
| X



+ Pb0


∥b̂T − b0∥L2 ≥

MT εT

2


.
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By Theorem 5.1 the second term on the right vanishes as T → ∞; hence, since the posterior
measure of a set is bounded by 1, it suffices to show that Π (b : ∥b − b̂T ∥L2 ≥ MT εT /2 | X)

converges to 0 in Pb0 -probability. By Markov’s inequality, this quantity is bounded by

4

M2
T ε2

T


∥b̂T − b∥

2
L2Π (db | X).

Since the integral is equal to the trace of the covariance operator of the centred posterior, it
suffices to show that tr(CT ) = OPb0

(ε2
T ). Since MT → ∞ this shows that that bound converges

to zero in Pb0 -probability.
As before, let λi and φi be the eigenvalues and eigenfunctions of the prior covariance operator

C0. For every N ∈ N we have

tr(CT ) =


i≤N

⟨φi , CT φi ⟩ +


i>N

⟨φi , CT φi ⟩ .

To bound the second sum on the right we note that in view of (3.3) we have C−1
T ≥ C−1

0 .

Multiply this inequality by C 1/2
0 from both sides to obtain I + C 1/2

0 L◦

T C 1/2
0 ≥ I and then, noting

that C 1/2
0 L◦

T C 1/2
0 is a bounded positive definite symmetric operator, multiply the inequality with

(I + C 1/2
0 L◦

T C 1/2
0 )−1/2 on both sides to obtain (I + C 1/2

0 L◦

T C 1/2
0 )−1

≤ I . Finally multiply both

sides by C
1
2
0 to arrive at CT ≤ C0. Naturally, care has to be taken with the domain of the unbounded

operators involved, but first performing the calculations for the Fourier basis functions φk , one

can pass to the limit, exploiting that each multiplication by C
1
2
0 only adds compactness; see also

Exercise 8, p.243 of [9] and the treatment in that chapter for more details.
Hence, since λi ∼ i−2p, the second sum is bounded by a constant times N 1−2p. By

Cauchy–Schwarz the first sum is bounded by


i≤N ∥CT φi∥L2 . To further bound this, we observe
that

inf
x∈T

L◦

T (x; X)∥CT φi∥
2
L2 ≤

 1

0
(CT φi (x))2L◦

T (x; X) dx

≤

 1

0
CT φi (x)(C−1

0 + L◦

T (·; X))CT φi (x) dx

=

 1

0
φi (x)CT φi (x) dx

≤ ∥φi∥L2∥CT φi∥L2 = ∥CT φi∥L2 .

Dividing by ∥CT φi∥L2 shows that ∥CT φi∥L2 ≤ 1/ infx∈T L◦

T (x; X) and hence, by the first
statement of Theorem 4.1, ∥CT φi∥L2 = OPb0

(1/T ).

Combining what we have, we see that tr(CT ) ≤ N OPb0
(1/T ) + N 1−2p for every N ∈ N.

The choice N ∼ T 1/(2p) balances the two terms and shows that tr(CT ) = OPb0
(T (1−2p)/(2p)) =

OPb0
(ε2

T ). �

Remarks 5.3. It is clear from the proof of Theorem 5.2 that the posterior spread


∥b̂T −

b0∥
2
L2Π (db | X) is always of the order T (1−2p)/(2p), regardless of the smoothness of the true

drift function b0. Hence if the rate result of Theorem 5.1 for the posterior mean can be improved,
for instance the condition that b0 ∈ Ḣ p(T) can be relaxed to the assumption b0 ∈ Ḣ p−1/2(T)
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(see the discussion in the concluding section), or the δ can be removed from the rate, then the
result of Theorem 5.2 for the full posterior automatically improves as well.

We also note that the proof of Theorem 5.1 delivers convergence rates in other norms. In
particular it yields

∥b̂T − b0∥H p = OPb0
(T

1
4p +δ

)

and hence, by interpolation [29, Lemma 3.27] we have that the error in the mean converges to
zero as

∥b̂T − b0∥H s = OPb0
(T

1−2(p−s)
4p +δ

)

for 0 ≤ s < p − 1/2.

6. Proof of Theorem 4.1

6.1. Semi-martingale versus diffusion local time

Throughout this whole Section 6, the drift function b ∈ Ċ(T) is fixed and, contrary to our use
in previous sections, we denote the underlying law by Px when the diffusion is started in x and
we sometimes shorten this to just P when the diffusion is started in 0.

The weak solution X of the SDE (2.1) is a regular diffusion on R with scale function s given
by

s(x) =

 x

x0

e
−2

 y
y0

b(z) dz
dy.

We choose x0 and y0 such that s(0) = 0 and s(1) = 1. The speed measure m has Lebesgue
density 1/s′. Since b is 1-periodic and mean-zero the function s′ is 1-periodic as well. It follows
that m is 1-periodic and that s satisfies

s(x + k) = s(x) + k, (6.1)

for all x ∈ R and k ∈ Z.
The periodic local time L◦ was defined through the semi-martingale local time L of the

diffusion X , for which we have the occupation time formula (2.3). The diffusion X also has
continuous local time relative to its speed measure, the so-called diffusion local time of X . We
denote this random field by (ℓt (x) : t ≥ 0, x ∈ R). It holds that t → ℓt (x) is continuous and for
every t ≥ 0 and bounded, measurable function f , t

0
f (Xu) du =


R

f (x)ℓt (x) m(dx) (6.2)

(see for instance [20]). For this local time we define a periodic version ℓ◦ as well, by setting

ℓ◦
t (x) =


k∈Z

ℓt (x + k).

The periodicity of m then implies that for every 1-periodic, bounded, measurable function f , t

0
f (Xu) du =

 1

0
f (x)ℓ◦

t (x) m(dx). (6.3)

Comparing this with (2.5) we see that we have the relation s′(x)L◦

T (x; X) = ℓ◦

T (x) for every
T ≥ 0 and x ∈ [0, 1]. Now note that 1/s′ is up to a constant equal to the invariant density ρ
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defined by (4.1). Since ρ is a probability density on [0, 1] and 1/s′ is the density of the speed
measure m, we have m[0, 1]ρ = 1/s′ on [0, 1]. Therefore, statement (i) of Theorem 4.1 is
equivalent to the statement that

sup
x∈T

1t ℓ◦
t (x) −

1
m[0, 1]

 → 0 (6.4)

a.s. as t → ∞, and statement (ii) is equivalent to the asymptotic tightness of

x →
√

t


1
t
ℓ◦

t (x) −
1

m[0, 1]


(6.5)

in Hα(T) for every α ∈ [0, 1/2). We will prove these statements in the subsequent subsections.

6.2. A representation of the local time up to winding times

We define a sequence of P0-a.s. finite stopping times τ0, τ1, . . . by setting τ0 = 0, τ1 is the
first time X exits [−1, 1], τ2 is the first time after τ1 that X exits [Xτ1 − 1, Xτ1 + 1], etc. (Note
that if we define a process Z on the complex unit circle by Z t = exp(2iπ X t ), then τk is the time
that the process Z completes its kth winding of the circle.)

The following theorem gives a representation for the periodic local time of X up till the nth
winding time. The representation involves a stochastic integral relative to s(X). The process s(X)

is a diffusion in natural scale, hence a time-changed Brownian motion, and hence a continuous
local martingale.

Theorem 6.1. For x ∈ (0, 1),

1
n
ℓ◦
τn

(x) − 1 =
1
n

n
k=1

Uk(x),

where U1, . . . , Un are i.i.d. continuous random functions, distributed as

U (x) = ℓτ1(x) + ℓτ1(x − 1) − 1 (6.6)

= Xτ1(1 − 2s(x)) + 2
 τ1

0
φx (Xu) ds(Xu), (6.7)

where φx = 1(x−1,∞) − 1(−∞,x].

Proof. For k ∈ N we write X k
= (Xτk−1+t − Xτk−1 : t ≥ 0) and τ k

1 = inf{t : |X k
t | = 1}.

By Lemma 6.2 ahead, the processes (X k
t : t ∈ [0, τ k

1 ]) are independent and have the same
distribution as (X t : t ∈ [0, τ1]). It follows that for x ∈ (0, 1), with ℓZ denoting the diffusion
local time of the diffusion Z ,

1
n
ℓ◦
τn

(x) − 1 =
1
n

n
k=1

Uk(x), (6.8)

where

Uk(x) = ℓXk

τ k
1

(x) + ℓXk

τ k
1

(x − 1) − 1,

and the Uk are independent copies of the random function U defined by (6.6).
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Now let Y = s(X). Then Y is a regular diffusion in natural scale (i.e. the identity function
is its scale function) and the speed measure mY of Y is related to the speed measure m of X by
m = mY

◦ s. It is easily seen that for ℓY the local time of Y relative to its speed measure mY , we
have ℓt (x) = ℓY

t (s(x)). For diffusions in natural scale, the diffusion local time coincides with
the semi-martingale local time (see [30, Section V.49]). In particular, the Tanaka–Méyer formula
holds:

ℓY
t (x) = |Yt − x | − |x | −

 t

0
sign(Yu − x) dYu (6.9)

under P0. In view of (6.1) τ1 is also the first time that Y exits [−1, 1], so we have that Xτ1 = Yτ1 .
Using also the fact that the scale function s is strictly increasing, we obtain

ℓτ1(x) = |Xτ1 − s(x)| − |s(x)| −

 τ1

0
sign(Xu − x) ds(Xu). (6.10)

Together with (6.1) this implies that (6.7) holds. �

The proof of the theorem uses the following lemma, which implies that X “starts afresh” after
every winding time τk . Let (Ft : t ≥ 0) denote the natural filtration of the process X .

Lemma 6.2. For every P0-a.s. finite stopping time τ such that Xτ ∈ Z a.s., it holds that the
process (Xτ+t − Xτ : t ≥ 0) is independent of Fτ and has the same law as X under P0.

Proof. Fix a measurable subset C ⊂ C[0, ∞). By the strong Markov property we have

P0(Xτ+· − Xτ ∈ C | Fτ ) = f (Xτ )

a.s., where f (x) = Px (X − X0 ∈ C). The periodicity of the drift function implies that for every
k ∈ Z, f (k) = Pk(X − k ∈ C) = P0(X ∈ C). Hence we have

P0(Xτ+· − Xτ ∈ C | Fτ ) = P0(X ∈ C),

a.s., which completes the proof. �

Since we will be interested in the local time up till a deterministic time t , it is necessary to deal
with the time interval between t and the previous or next winding time. The following lemma
will be used for that. For t ≥ 0, let the Z+-valued random variable nt be such that τnt is the last
winding time less than or equal to t , so τnt ≤ t < τnt +1.

Lemma 6.3. For all t ≥ 0 and Borel sets B ⊂ C[0, 1],

P0(ℓ
◦
τnt +1

− ℓ◦
t ∈ B) = E0PX t −Xnt

(ℓ◦
τ1

∈ B).

Proof. We split up the event of interest according to the position of X at time τnt . For k ∈ Z we
have

P0(ℓ
◦
τnt +1

− ℓ◦
t ∈ B; Xτnt

= k) = P0(ℓ
◦
σt,k

− ℓ◦
t ∈ B; Xτnt

= k),

where σt,k = inf{s > t : |Xs − k| ≥ 1}. Let (Fs : s ≥ 0) be the natural filtration of the process
X . Since Xτnt

is Ft -measurable, conditioning on Ft gives

P0(ℓ
◦
τnt +1

− ℓ◦
t ∈ B; Xτnt

= k) = E01{Xτnt =k}P0(ℓ
◦
σt,k

− ℓ◦
t ∈ B | Ft ).
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By the Markov property, the conditional probability equals PX t (ℓ
◦
σ0,k

∈ B). By the periodicity of
the drift function, this is equal to PX t −k(ℓ

◦
σ0,0

∈ B). Since σ0,0 = τ1, we obtain

P0(ℓ
◦
τnt +1

− ℓ◦
t ∈ B; Xτnt

= k) = E01{Xτnt =k}PX t −k(ℓ
◦
τ1

∈ B).

Summation over k completes the proof. �

6.3. Proof of statement (i) of Theorem 4.1

In this subsection we prove that (6.4) holds a.s. for T → ∞, which is equivalent to statement
(i) of Theorem 4.1.

According to Theorem 6.1 we have

1
n
ℓ◦
τn

(x) − 1 =
1
n

n
k=1

Uk(x),

where the Uk are independent copies of the continuous random function on [0, 1] given by (6.6).
Now E∥U∥∞ ≤ 1 + 2E sup|x |≤1 ℓτ1(x). To bound the expectation, we again use the fact that
ℓτ1(x) = ℓY

τ1
(s(x)), for Y = s(X). Relation (6.1) implies that sup|x |≤1 ℓτ1(x) = sup|x |≤1 ℓY

τ1
(x).

Applying the BDG-type inequality for local times to the stopped continuous local martingale Y τ1

(see [28, Theorem XI.(2.4)]) we then see that for some constant C > 0,

E∥U∥∞ ≤ 1 + 2E sup
|x |≤1

ℓY
τ1

(x) ≤ 1 + CE sup
t≤τ1

|Yt | < ∞.

Since by (6.1) it holds that Xτ1 = ±1 with equal probability, it easily derives from (6.7)
that EU (x) = 0. By the Banach space version of Kolmogorov’s law of large numbers (see
[23, Corollary 7.10]), it follows that

sup
x∈[0,1]

1n ℓ◦
τn

(x) − 1

 → 0 (6.11)

a.s.
The random variables τ1, τ2 − τ1, τ3 − τ2, . . . are i.i.d., so by the law of large numbers,

τn/n → Eτ1 a.s. Applying relation (6.2) with t = τ1 and f ≡ 1 we see that

Eτ1 =

 1

−1
Eℓτ1(x) m(dx).

Since Xτ1 = ±1 with equal probability, (6.10) implies that Eℓτ1(x) = 1 − |s(x)|. Using (6.1)
and the periodicity of m, it follows that

Eτ1 =

 0

−1
(1 + s(x)) m(dx) +

 1

0
(1 − s(x)) m(dx)

=

 1

0
(1 + s(x − 1)) m(dx) +

 1

0
(1 − s(x)) m(dx) = m[0, 1].

Combining (6.11) with the fact that τn/n → m[0, 1] a.s., we find that

sup
x∈[0,1]

 1
τn

ℓ◦
τn

(x) −
1

m[0, 1]

 → 0 (6.12)

a.s.
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Now let nt be defined as before Lemma 6.3, so that τnt ≤ t < τnt +1. Then as t → ∞ it
holds that nt → ∞ and hence τnt /nt → m[0, 1] a.s. and τnt +1/nt → m[0, 1] a.s. It follows that
nt/t → 1/m[0, 1] a.s., and therefore also τnt /t → 1 a.s. We can write

1
t
ℓ◦

t (x) =
τnt

t

1
τnt

ℓ◦
τnt

(x) +
1
t
(ℓ◦

t (x) − ℓ◦
τnt

(x)).

Relation (6.12) shows that a.s., the first term on the right converges uniformly to 1/m[0, 1]. The
second term is non-negative and bounded by

1
t
(ℓ◦

τnt +1(x) − ℓ◦
τnt

(x)) =
τnt +1

t

1
τnt +1

ℓ◦

τnt +1(x) −
τnt

t

1
τnt

ℓ◦
τnt

(x),

which converges uniformly to 0 by the preceding. This completes the proof of (6.4) and hence of
statement (i) of Theorem 4.1.

6.4. Proof of statement (ii) of Theorem 4.1

In this subsection we prove that the random maps (6.5) are asymptotically tight in the space
in Hα(T) for every α ∈ [0, 1/2), which is equivalent to statement (ii) of Theorem 4.1. It is
most convenient and of course not restrictive to work with the complex Sobolev spaces. Let
ek(x) = exp(i2kπx), k ∈ Z, be the standard complex exponential basis of L2

[0, 1]. For α ≥ 0,
define the associated Sobolev space

Hα
[0, 1] =


f ∈ L2

[0, 1] : ∥ f ∥
2
Hα =


|k|

2α
|⟨ f, ek⟩|

2 < ∞


,

where ⟨ f, g⟩ =
 1

0 f (x)ḡ(x) dx is the usual inner product on L2
[0, 1].

By the representation of the local time given by Theorem 6.1 and the central limit theorem for
Hilbert space-valued random elements (e.g. [23, Corollary 10.9]), we have that

√
n


1
n
ℓ◦
τn

− 1


(6.13)

converges weakly in Hα
[0, 1] if

1. E∥U∥
2
Hα < ∞.

2. EU = 0 (where the expectation is to be interpreted as a Pettis integral).

We will show that these conditions hold if (and only if) α < 1/2. Slightly abusing notation,
denote the two functions on the right of (6.7) by U1 and U2. We will show that conditions 1–2
hold for U1 and U2 separately.

To show that the conditions hold for U1, recall that Xτ1 ± 1 with equal probability. Hence,
EU1 = 0 and E∥U1∥

2
Hα = ∥1 − 2s∥2

Hα < ∞.
As for U2, using (6.7) and the stochastic Fubini theorem it is readily checked that

⟨U2, ek⟩ = 2
 τ1

0
ck(Xu) ds(Xu),
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where

ck(x) =



1 − ei2kπ

i2kπ
if x + 1 ≤ 0,

ei2k(x+1)π
− ei2kπ

i2kπ
if x ≤ 0 ≤ x + 1 ≤ 1,

ei2kπx
− 1

i2kπ
if 0 ≤ x ≤ 1 ≤ x + 1,

ei2kπ
− 1

i2kπ
if x ≥ 1.

To show that condition 1 holds for U2, note that for u ≤ τ1 it holds that |Xu | ≤ 1. It is
straightforward to see that for |x | ≤ 1, we have |ck(x)| ≤ C(1 + |k|)−1 for some C > 0.
Therefore, by the Itō isometry,

E


|k|
2α


 τ1

0
ck(Xu) ds(Xu)


2

=


|k|

2αE
 τ1

0

ck(Xu)

2 d ⟨s(X)⟩u

≤ C2E ⟨s(X)⟩τ1

 |k|
2α

(1 + |k|)2 .

The sum on the right is finite if α ∈ [0, 1/2). For the diffusion Y = s(X) the diffusion local time
coincides with the semi-martingale local time; hence

E ⟨s(X)⟩τ1
= E


ℓY
τ1

(x) dx =

 1

−1
EℓY

τ1
(x) dx .

The Tanaka–Méyer formula and optional stopping imply that for |x | ≤ 1,

EℓY
τ1

(x) = E|Yτ1 − x | − |x | = 1 − |x |.

Hence, U2 satisfies condition 1. Finally, note that to show that EU2 = 0, it suffices to show that
EU2(x) = 0 for every fixed x ∈ (0, 1). But this follows readily from (6.6) again, by optional
stopping. So indeed the random maps (6.13) converge in Hα

[0, 1] for every α ∈ [0, 1/2).
To complete the proof we consider the decomposition

√
t


ℓ◦

t

t
−

1
m[0, 1]


=


nt + 1


ℓ◦
τnt +1

nt + 1
− 1


nt + 1

t
+

√
t


nt + 1

t
−

1
m[0, 1]



−

ℓ◦
τnt +1

− ℓ◦
t

√
t

.

Since nt/t → 1/m[0, 1] a.s., the tightness of the maps (6.13) implies that the first term is
asymptotically tight. By the central limit theorem,

√
n(τn/n −m[0, 1]) converges in distribution.

Together with the inequality τnt ≤ t < τnt +1 and the delta method this implies that the second
term is asymptotically tight as well. For the last term, note that by Lemma 6.3 we have, for
M > 0,

P0

ℓ◦
τnt +1

− ℓ◦
t

√
t


Hα

> M


≤ sup

|a|≤1
Pa(∥ℓτ1∥Hα > M

√
t) ≤

1

M2t
sup
|a|≤1

Ea∥ℓτ1∥
2
Hα .
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Similar considerations as used to show that condition 1 above holds for U2 show that the
supremum over a on the right-hand side is bounded. We conclude that the last term in the
decomposition is oP (1). This completes the proof.

7. Concluding remarks

We have obtained the posterior contraction rate T −(p−1/2)/(2p) for our nonparametric Bayes
procedure. We remarked that the regularity of the prior is essentially p − 1/2 (Lemma 2.2) and
assumed that the true drift b0 has Sobolev regularity of order p. Although lower bounds for the
rate of convergence in the exact model under study do not appear to be known, comparison with
similar models suggests that the optimal rate for estimating a drift function b0 that is β-regular
(in Sobolev sense) may be T −β/(1+2β) in our setting (in a minimax sense over Sobolev balls
for instance, cf. e.g. [22,35] for similar results). The general message from the Gaussian process
prior literature is that this optimal rate is typically attained if the “regularity” α of the prior
matches the regularity β of the function that is being estimated (see [38]). Since the regularity
of the prior we employ in this paper is essentially α = p − 1/2, this suggests that in principle,
it should be possible to relax our assumption that b0 is p-regular to the assumption that b0 is
(p − 1/2)-regular, while still maintaining the same rate T −(p−1/2)/(2p). It is however not clear
whether this can be achieved by adapting the proof we give in this paper. The method of proof is
adapted from [1] where it is used to study linear inverse problems in the small noise limit. In that
context the proof gives sharp rates in some parameter regimes, but not in others.

There are a number of future directions that this work could be taken in. First of all,
alternative technical approaches could be explored to derive sharp convergence rates. One
approach could be to use the representation of the posterior mean as a minimizer of some
stochastic objective functional (cf. Section 3.3) and use empirical process-type techniques
to study its asymptotic properties. This however requires technical tools (e.g. uniform limit
theorems, maximal inequalities) that are presently not available in this setting of periodic
diffusions. Alternatively, sharp rates may result from a general rate of convergence theory for
posteriors in the spirit of [36], if that could be developed for this class of models. Second,
motivated by practical considerations, it will also be interesting to determine whether useful
adaptive procedures can be constructed by choosing the hyper-parameters p, η and κ in a data-
driven way, for instance by hierarchical Bayes or empirical Bayes procedures. There is recent
computational work in this direction, cf. [32], but no theoretical results are presently available.
A third future direction concerns extension of the ideas in this paper to diffusions in more than
one dimension. The local time is, then, a much more singular object and developing an analysis
of posterior consistency will present new challenges.
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Verlag, Basel, 2001.
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